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Demonstration of a quantum-enhanced fiber
Sagnac interferometer
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The injection of squeezed light can be used to improve the sensitivity of an interferometer beyond the limit
imposed by the zero-point fluctuation of the electromagnetic field. Here, we report on the realization of such
a quantum-enhanced interferometer with a fiber-based Sagnac topology. Continuous wave squeezed states
at 1550 nm with a noise reduction of 6.4 dB below shot noise were produced by type I optical parametric
amplification and subsequently injected into the dark port of the interferometer. A reduction of the interfer-
ometer shot noise by 4.5 dB was observed, and the enhancement of the signal-to-noise ratio for a phase
modulation signal generated within the interferometer could be demonstrated. We achieved a 95% fiber
transmission for the squeezed states, which suggests that corresponding fiber-based quantum metrology and
communication systems are feasible. © 2010 Optical Society of America
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Fiber Sagnac interferometers are used as optical ro-
tation sensors and fiber optic gyroscopes [1], but their
versatility has led to numerous further applications
that include, among others, fiber loop mirrors [2]
serving as high reflectors, fiber optic current sensors
[3], and applications in the automotive industry [4].

For a given geometry and laser power, the sensitiv-
ity of any such optical measurement device is funda-
mentally limited by the so-called shot noise. For un-
correlated photons, i.e., for coherent states of light,
the smallest measurable phase change is given by
���1/�N, where N is the photon number per mea-
surement time. Consequently, the sensors’ perfor-
mance can be improved by increasing the laser
power. However, excess phase and polarization noise
stemming from photon–phonon interactions like
stimulated Raman scattering [5], stimulated Bril-
louin scattering, and guided acoustic-wave Brillouin
scattering [6] constrain the maximum transmittable
power through conventional all-silica fibers. An arbi-
trary increase in laser power to improve the sensitiv-
ity is therefore not possible.

In 1981, Caves [7] envisaged a way to enable the
measurement beyond the shot-noise limit (SNL). The
quantum-mechanical approach to the interferometer
response (to a phase signal) showed that all the mea-
surement noise comes from only one quadrature of
the vacuum field entering the interferometer through
the unused port of its 50:50 beam splitter. Caves’ idea
was to replace the vacuum field by a squeezed field
that exhibits less noise in this quadrature, thereby
reducing the quantum noise and hence increasing the
signal to shot noise ratio. The two quadrature compo-
nents of the electromagnetic field are the amplitude
and phase quadrature, X̂1 and X̂2, respectively. Their
variances are restricted by an uncertainty relation of

2 ˆ 2 ˆ
the form � X1 ·� X2�1. The minimum uncertainty
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state with symmetrically distributed noise �2X̂1

=�2X̂2=1 corresponds to the field’s ground state and
the so-called vacuum field. A state with a quadrature
variance below unity is called a squeezed state, and
the variance suppression factor is called the squeez-
ing factor. Following Caves’ suggestions several
tabletop experiments demonstrated quantum en-
hanced Mach–Zehnder [8], polarization [9], and
Michelson interferometers [10–12]. In all of these ex-
periments freely propagating continuous-wave (cw)
laser beams were used. Generally, a critical issue in
the quantum enhancement of interferometers is the
optical loss introduced by the interferometer, because
loss is a decoherence effect and degrades the squeez-
ing factor. A quantum enhanced fiber-based interfer-
ometer is more difficult to realize because of absorp-
tion and scattering in the optical fiber. Also, the mode
matching of a squeezed field into a fiber is critical
and should be close to perfect. The same is true for
the quantum efficiency of the final photoelectric de-
tection. For instance, an optical loss of 20% demin-
ishes a squeezing factor from 10 to 3.6; see, for ex-
ample [13]. In the pulsed-laser regime squeezed
states of light are produced by using the optical Kerr
effect in fibers. Unfortunately, the high laser intensi-
ties required set Raman-induced limits to efficient
squeezing in optical fibers [5]. Squeezed states of cw
laser radiation are efficiently produced by parametric
downconversion in optical resonators containing a
second-order nonlinear crystal. Squeezing factors
greater than ten have been realized recently at the
laser wavelength of 1064 nm [13,14]. Also recently,
squeezed states of cw laser light at 1550 nm could be
produced [15]. This wavelength is in the c-band
transmission window of standard telecommunication
fibers, where attenuation and dispersion effects are
comparatively weak.
2010 Optical Society of America
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In this Letter, we report the realization of a fiber
Sagnac interferometer with a sensitivity beyond its
SNL. Squeezed light from a nonlinear resonator was
injected into the fiber interferometer. The interferom-
eter signal and the squeezed quantum noise were de-
tected by a high-quantum-efficiency balanced homo-
dyne detector. A nonclassical sensitivity improvement
of 4.5 dB was achieved. Figure 1 illustrates our ex-
perimental setup. A 10 m fiber Sagnac interferometer
was operated with a cw erbium microfiber laser at
1550 nm. The two output fields of the 50:50 Sagnac
beam splitter (SBS) were carefully mode matched
into the ends of a 10 m polarization maintaining
PANDA-type fiber with 10.5 �m mode field diameter
and numerical aperture of 0.12. In addition to two
lenses in each arm of the interferometer, aspheric
lenses with f=11 mm were used to compensate for
the strong divergence due to the fiber. The fiber had
antireflective (AR) coatings on its end faces to mini-
mize coupling loss for the traversing light. The
single-path transmission efficiency was determined
to be 95�±1�% by a relative power measurement with
a single photodetector in front of and behind the
fiber.

For the generation of squeezed light at 1550 nm
we employed type I parametric downconversion
(optical parametric amplification) in a 2 mm�1 mm
�10 mm periodically poled potassium titanyl phos-
phate (PPKTP) crystal inside a single-ended stand-
ing wave cavity with coupling-mirror power reflectiv-
ity of 90% and 20% for the fundamental and

Fig. 1. (Color online) Schematic diagram of the optical
setup. The experiment is driven by a fiber laser emitting
1550 nm radiation. SHG, second-harmonic generator pro-
ducing the 775 nm pump field; FCs, filter cavities for spa-
tial mode cleaning; PZT, piezoelectric transducer; DBS, di-
chroic beam splitter; OPA, optical parametric amplifier
generating squeezed states; LO, local oscillator beam of the
balanced homodyne detector, BHD. For characterization
the squeezed field was sent via path 1 onto BHD1. To quan-
tum enhance the Sagnac interferometer the squeezing was
sent along path 2 and was injected into the dark signal port
by using a Faraday rotator, half-wave plate, and a polariz-
ing beam splitter (PBS). EOM, electro-optic modulator to
generate a phase modulation signal inside the Sagnac in-
terferometer. The interferometer signal and the squeezed

quantum noise were detected with BHD2.
harmonic field, respectively. The crystal had AR coat-
ings on its end faces with residual reflection �0.25%,
which together with 0.1%/cm absorption loss within
the crystal and the mirror transmittance of 10% re-
sulted in 90% escape efficiency. The second-harmonic
pump field at 775 nm was generated in another non-
linear standing wave cavity. For details on the
squeezed light generation at 1550 nm we refer to
[15]. The squeezed field from the optical parametric
amplifier (OPA) cavity was guided by a flip mirror
into a balanced homodyne detector (BHD1) for char-
acterization (path 1 in Fig. 1). The visibility with the
homodyning local oscillator (LO) was 0.994. By
changing the relative phase � between the LO and
the signal beam with a piezo actuated mirror the
measured quadrature X���=cos���X1+sin���X2 was
determined. The collected data are shown in Fig. 2.
The vacuum (shot) noise reference level was mea-
sured with the signal input blocked. When the signal
port was opened and the phase angle was set to de-
tect the squeezed quadrature �X�0�=X1�, a noise re-
duction of 6.4 dB below the shot noise was obtained.
By switching to the orthogonal quadrature �X�� /2�
=X2� the corresponding antisqueezing of 11.1 dB
above shot noise was recorded. These results can be
well explained by a simple model assuming 16% op-
tical loss, zero phase noise, and an initially pure state
with 11.8 dB of squeezing (solid lines in Fig. 2). In
our experiment photons were lost owing to the imper-
fect escape efficiency �10�±3�%�, during propagation
�1�±0.5�%�, imperfect homodyne visibility (1.2%),
and due to the limited quantum efficiency of our
custom-made photodiodes, which we infer to be about
96�±3�%. Obviously the measured squeezing
strength was primarily limited by loss due to the im-
perfect AR coatings on the PPKTP crystal itself. After
the characterization of the field produced by the OPA
the squeezed mode was guided via path 2 (Fig. 1) and
was precisely modematched to the (dark) signal port
mode of the Sagnac interferometer. To generate a
phase-modulation signal inside the interferometer a
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Fig. 2. (Color online) Noise powers of the squeezed states
initially emitted by the OPA at a sideband frequency of
5 MHz normalized to the shot-noise level. Shot-noise,
squeezed noise, and antisqueezed noise were averaged
twice. X��� was recorded by linearly sweeping the LO
phase. All traces were recorded with a resolution band-
width of 300 kHz and a video bandwidth of 300 Hz; the de-
tector dark noise (20 dB below shot noise) was not

subtracted.
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broadband electro-optic modulator (EOM) that could
be driven by a signal generator was placed close to
the Sagnac beam splitter. The signal at the output
port was analyzed with a second balanced homodyne
detector (BHD2). Figure 3 shows a 6 MHz phase
modulation measured with the Sagnac interferom-
eter without (a) and with (b) squeezed light input.
Both traces were normalized to the vacuum and re-
corded with a resolution bandwidth of 200 kHz and a
video bandwidth of 200 Hz. The curves were aver-
aged twice; the dark noise was not subtracted from
the data. The Sagnac input power was 200 �W, and
the LO power 1.75 mW, which yielded a dark noise
clearance of about 16 dB. The LO phase was set to
the signal maximum; the phase of the pump and the
length of the OPA cavity were set to yield maximum
squeezing. By the injection of squeezed vacuum a
noise reduction of 4.5 dB below shot noise was
achieved, which corresponds to a coherent state laser
power increase of 2.8 and a phase sensitivity increase
by a factor of about 1.7. When the squeezing was in-
jected into the interferometer further optical loss oc-
curred, which limited the nonclassical sensitivity im-
provement. The assumption of an additional 15% loss
could account for this degradation. The detection ef-
ficiencies for BHD1 and BHD2 were almost equiva-
lent and did not need to be taken into account. Inde-
pendent measurements provided about 2.5�±1�% loss
due to the imperfect overlap between the squeezed
field and the Sagnac, 4�±1�% loss due to the double
pass through the Faraday rotator, PBSs, and a wave-
plate, 1.2% due to the contrast at the Sagnac beam
splitter, and 5�±1�% due to the transmission through
the fiber. In addition to that we assume 2�±1�%
propagation loss inside the interferometer due to the
lenses and the EOM and 0.5% loss due to lenses and
mirrors needed for the squeezed light input. These
contributions yield an additional loss of approxi-
mately 14�±1�% which, given the experimental un-
certainties, accounts well for our observations. Note

Fig. 3. (Color online) Sagnac interferometer output signal
as recorded by the balanced homodyne detector. A 6 MHz
phase modulation was measured without [trace (a)] and
with [trace (b)] squeezed light input, which yielded a reduc-

tion of the interferometer shot noise by 4.5 dB.
that light exiting the fiber (both directions) could be
matched to a reference cavity with an overlap of
0.996 and 0.997, respectively, illustrating that the
transmission efficiency of 95% was essentially lim-
ited by suboptimal AR coatings.

In conclusion, we have demonstrated the nonclas-
sical sensitivity improvement of a 10 m fiber Sagnac
interferometer by 4.5 dB beyond its SNL. The total
loss due to the input mode matching into the fiber
and due to the output mode matching to a spatially
filtered local oscillator beam was just 5%. Given that
conventional optical fibers can have losses as low as
�0.2 dB/km [16], the 6.4 dB squeezed states gener-
ated here could be transmitted over a fiber length of
8 km and would still show 3 dB of squeezing, assum-
ing a 5% loss due to input–output mode matching.
Our results show that the quantum enhancement of
local area (kilometer-size) optical fiber networks and
fiber-based measurement devices with squeezed light
are feasible.
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