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1 Introduction

This chapter reviews the role of corpora in phonological research, as well as
the role of exemplars in phonological theory. We begin with illustrating the
importance of corpora for phonological research as a source of data. We then
present an overview of speech corpora, and discuss the kinds of problems that
arise when corpus data have to be transcribed and analyzed. The enormous
variability in the speech signal that emerges from speech corpora, in combina-
tion with current experimental evidence, calls for more sophisticated theories
of phonology than those developed in the early days of generative grammar.
The importance of exemplars for accurate phonological generalization is dis-
cussed in detail, as well as the characteristics of and challenges to several types
of abstractionist, exemplar, and hybrid models.

2 The importance of corpora for phonology

2.1 Getting the facts right

Why are corpora becoming increasingly important as a data source for pho-
nologists? One answer is that corpora help us bridge the gap between the
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analyst’s conception of the data and the actual data themselves. Phonologists
have formulated generalizations, some of which, as we know now, thanks to
corpus-based research, do not do full justice to the data. Language appears
to be much more complex than is generally assumed and this complexity is
important for theories of phonology as well as for theories of speech produc-
tion and comprehension. By way of example, we discuss a number of corpus
studies on assimilation, intonation, and language change.

Our first example concerns regressive voice assimilation in Dutch. There is
broad consensus in the phonological literature that obstruents are obliga-
tory voiced before /b/ and /d/ within prosodic words, including compounds
(see, e.g.,[Booij, [1995; Wetzels and Mascar, [2001)). Thus, the compound we/t/ + /b/oek
‘law’+‘book’ is pronounced as we[db]oek. The exceptional combined presence
of final devoicing, regressive voice assimilation, and progressive voice assimila-
tion in Dutch has received considerable attention in the theoretical literature
on the nature of the feature voice (privative or not) and the typology of voice
(see, e.g. Lombardi, [1999; Zonneveld, |2007). However, the data are much less
straightforward when we consider what speakers actually produce by investi-
gating speech corpora. Ernestus et al.| (2006) extracted all 908 word tokens
that according to the literature should show regressive voice assimilation from
the subcorpus of read speech in the Spoken Dutch Corpus (Oostdijkl [2000).
Three phoneticians listened to the audio files and classified all of the obstru-
ents as voiced or voiceless. Unexpectedly, only 43% of the clusters (instead
of the predicted 100%) exhibited regressive voice assimilation. In 25% of the
clusters progressive voice assimilation was observed, even though progressive
assimilation is traditionally seen as impossible in these contexts. Thus, wetboek
was sometimes also pronounced as we[tp|oek. Furthermore, no assimilation was
observed for 20% of the data (we[tb]oek).

This is a first illustration showing that there can be a remarkable and disqui-
etingly large gap between the received phonological wisdom and the actual
data. This gap in turn questions the adequacy of phonological theories that
build on the — supposedly — exceptional facts from Dutch. Of course, the
corpus findings could be explained away by the assumption that the Dutch
grammar only allows regressive voice assimilation, and that the observed cases
of no assimilation and also those of progressive voice assimilation are due to
performance factors. However, this would introduce an unsurmountable gap
between phonological competence and phonetic reality, and effectively render
phonological theories unfalsifiable.

As a second illustration, consider regressive place assimilation in English. The
traditional wisdom holds that alveolar word-final stops (/n, t, d/) often as-
similate to the place of assimilation of the following labial or velar consonant.
As a consequence, gree/n b/oat is often pronounced in connected speech as
greem bloat (Gimson, [1970). A substantial amount of research in psycholin-



guistics has investigated the consequences of this assimilation process for the
listener. Researchers have argued both in favor and against a role of percep-
tual compensation for assimilation and its role in language acquisition (e.g.,

Gaskell, |2003; |Gowl, 2001; Mitterer and Blomert,, 2003]).

Dilley and Pitt| (2007) investigated regressive place assimilation in conversa-
tional English, using the Buckeye Corpus of Conversational Speech (Pitt et al.,
2005)). Regressive place assimilation was observed relatively infrequently, much
less frequently than standard descriptions would lead one to believe: on aver-
age only for 9% of their data. In contrast, deletion of the alveolar stop (32%),
glottalization (15%), or unassimilated pronunciations (44%) were present more
often. Again, we see that the phonologists’ generalizations underestimated the
complexity of the data. A phenomenon that is relatively easy to observe with
minimal training in phonetics, assimilation of place, made it into the stan-
dard literature, even though it is infrequent in everyday speech. Phonological
processes that are much more common in the same phonological environment
went unnoticed until Dilley and Pitt’s careful survey of what people actually
say.

An example from the domain of intonation comes from |Dainoral (2001)). Dain-
ora studied downstep in American English on the basis of the Boston Univer-
sity Radio News (Ostendorf et al., [1995]). Downstep refers to the phenomenon
that during a sequence of high tones, the last tones may show a somewhat
lower fundamental frequency, which is annotated with an exclamation mark

(H* versus H*) in Tones and Break Indices (Pierrehumbert) 1987).

Do high and downstepped high tones represent two fundamentally different
categories? If so, we would expect that the frequency distance between two
successive high tones (H*H*) would be smaller than the distance between
a high tone and a following downstepped high tone (H*!'H*). On average,
there is indeed such a difference. |Dainoral (2001)), however, pointed out that
the distribution of the two frequency distances appear to form one single
normal distribution, with the distances between successive high tones forming
the distribution’s left half and the distances between high and downstepped
high tones its right half. It is not the case that we have two disjunct normal
distributions, one for the H*H* distances and one for the H*!H* distances.
This suggests that we should not interpret !H* as a separate category in its
own right, since it forms one natural continuum with H*. Instead, !H* is a
marker of where the lower variants of H* occur.

Our final illustration concerns the study of rhoticity in New Zealand English
by Hay and Sudbury| (2005). In many dialects of English, postvocalic /r/ has
been lost before consonants, and word-final /r/ is only pronounced before
vowel-initial words (car versus calr] alarm). In addition to this linking /r/,
these non-rhotic dialects may have intrusive /r/, which appears between vowel-



final and vowel-initial words, as in ma r and pa. The phonological literature
offers several accounts of the loss of rhoticity and the rise of linking and
intrusive /r/. One theory holds that in a first stage postvocalic /r/ was lost,
except in linking positions. Linking /r/ was subsequently interpreted as a
sandhi-process, which gave way to intrusive /r/ (Vennemann| 1972). Other
researchers have argued that in non-rhotic dialects, linking /r/ spread to new
words by reanalysis on the part of the listener, and that both linking /r/ and
intrusive /r/ are underlyingly present (Harris, [1994). [Hay and Sudbury| (2005)
investigated the loss of rhoticity and the rise of linking and intrusive /r/ on
the basis of a diachronic corpus of New Zealand English (Gordon et al., [2007)).
They found that the first generation of New Zealanders was still partly rhotic,
in contrast to what is generally assumed. More surprisingly, some of these New
Zealanders also showed intrusive /r/, which shows that the complete loss of
preconsonantal /r/ was not necessary for the rise of intrusive /r/ (in contrast
to the first theory). Furthermore, the data show that intrusive /r/ and linking
/r/ are clearly different phenomena, as intrusive /r/ is less frequent than
linking /r/, and linking /r/ appears more often in high-frequency collocations
and morphologically complex words, whereas intrusive /r/ is seldom found in
these contexts.

All these studies clearly show that speech corpora are substantially broad-
ening the empirical scope of phonological research. Corpora show that many
well-established basic facts that constitute a kind of canon feeding both phono-
logical theory and psycholinguistic theories involve substantial simplifications
that do not do justice to the variability and the range of phenomena that
characterize actual speech.

2.2 Discovering new facts

Corpora are also becoming increasingly important as a data source for phonol-
ogists because they reveal new facts of which we did not know that they were
right there in our own languages. It is difficult to pay attention to the details
of the acoustic signal, when we are listening to our own language, since in
normal language use the focus of attention is on content instead of form. This
is especially so when listening to casual speech. As a consequence, we know
very little about the fine phonetic detail of words in fast, unscripted speech.
Such details are relevant for phonological theory, however, as they constitute
an intrinsic part of speakers’ knowledge of their language.

Take for example the pronunciation of homophones, such as time and thyme.
It is generally assumed that homophones have exactly the same pronuncia-
tion, and differ only in meaning. This view has informed the theory of speech
production developed by Levelt and colleagues (Levelt] 1989; Levelt et al.,



1999). In this theory, time and thyme have separate conceptual and syntactic
representations, but share the same word form representation. In this model,
there is no way in which the difference in meaning between time and thyme
can be reflected in speech. Yet this is exactly what |Gahl (2008]) observed. Gahl
analyzed roughly 90,000 tokens of homophones in the Switchboard corpus of
American English telephone conversations. She found that words with a high
token frequency, such as time, tend to have shorter realizations than their low-
frequency homonyms, such as thyme, even after having controlled for factors
such as speech rate and orthographic regularity. More in general [Bell et al.
(2003), Aylett and Turk (2004), and Pluymaekers et al.| (2005b) all document,
on the basis of speech corpora, shorter durations of segments, syllables, and
words if these linguistic units or their carriers are of a higher frequency of oc-
currence. Such differences in fine phonetic detail must therefore be accounted
for in linguistic theories and in psycholinguistic models of speech production.

An important phenomenon that can only be well studied on the basis of speech
corpora is reduced speech. Well-known by now is the phenomenon of t-deletion
(e.g., Browman and Goldstein, 1990), which has been studied extensively in
sociolinguistics (e.g., Guy|, [1980; Neu, 1980)). Recent research has shown, how-
ever, that reduction in everyday speech is much more pervasive than the clas-
sical example of t-deletion would suggest. In addition to /t/, many other
segments are prone to deletion, and deletion is not restricted to single seg-
ments, but may affect complete syllables. For instance, English ordinary is
often pronounced as [onri], because as [k"z], and hilarious as [hlere] (Johnson,
2004)). Johnson’s counts, based on the Buckeye corpus, show that some form
of reduction characterizes no less than 25% of the words in colloquial Amer-
ican English. An example from Dutch illustrates the wide range of possible
pronunciations a word may have: natuurlik ‘of course’ may be pronounced not
only in its canonical form [natyrlok], but also as [notyrlok], [natylok], [ntylok],
[notyk], [ntyk], [ndyk], [tylok], and [tyk]|, among others (Ernestus, 2000). Sim-
ilar observations have been made by Kohler for German (see, e.g., Kohler,
1990)).

These reduction processes might be argued to be phonetic variation and out-
side the domain of inquiry of phonology. However, what segments reduce and
the extent to which they reduce seems to be subject to a variety of intrin-
sically phonological constraints. For instance, a high degree of reduction is
observed only for words without sentential accent in utterance medial posi-
tion (e.g. Pluymaekers et al., 2005a,b). Sometimes, reduction is made possi-
ble by prosodic restructuring (Ernestus, 2000)). Furthermore, although some
phonotactic constraints that govern unreduced speech are relaxed for reduced
speech, reduced speech nevertheless remains subject to many phonological and
phonotactic constraints.

In turn, reduction provides information about phonological structure in casual



speech. An interesting example is the reduction of don’t in American English.
On the basis of 135 tokens of don’t from a corpus of conversational American
English, Scheibman and Bybee| (1999) showed that don’t may be realized with
schwa, but only after the word that most frequently precedes don’t, that is,
after I. The presence of [ is more important than the identity of the word
following don’t, even though reduction is also more likely and greater if this
following word is more frequent after don’t (e.g., know, think, mean). These
data suggest that there is a tighter cohesion within I don’t than within, for
instance, don’t know or don’t think. This is exactly the opposite of what would
be expected given the syntactic structure of these phrases, which group to-
gether the two verb forms rather than the pronoun and the first verb. This
corpus-based research thus supports earlier observations on possible syntax-
phonology mismatches, which led to the development of Prosodic Phonology
(e.g., Nespor and Vogel, |1986)).

As a final example of how corpora can reveal new facts, we mention the study
of endangered languages. Collecting data from native speakers of minority lan-
guages without a tradition of literacy is often difficult if not impossible. For
endangered minority languages, speakers tend to be old, monolingual, and not
used to carry out tasks that require metalinguistic skills. Fortunately, story
telling avoids such experimental problems, and corpora of recorded stories
or dialogues may provide valuable information for the phonologist. Russell
(2008) studied a corpus of oral narratives in Plains Cree. He investigated
two vowel sandhi processes. He measured the formants and durations of some
450 sequences of /af#o/ that may be produced as [0:], and showed that this
sandhi process is gradient and probably results from gestural overlap. The
more specialized, possibly morphosyntactically governed, coalescence of /a+i/
or /a:+i/ to [e:] (some 250 tokens), in contrast, appeared to be more categori-
cal. Data such as these raise the theoretical question whether gradient sandhi
processes are part of phonology or of phonetics.

2.3 Understanding phonology in its wider context

The role of discourse and pragmatics in the grammar of pronunciation is be-
coming a more and more important field of research. An example is the study
by [Fox-Tree and Clark| (1997). These researchers investigated the pronun-
ciation of the definite article the in a corpus of spontaneous conversations.
Traditional wisdom holds that the vowel of the is pronounced as [o] before
consonant-initial words and as [i| before vowel-initial words. Fox-Tree and
Clark showed that speakers also use the realization with [i] in non-fluent speech
when they are dealing with a problem in production, ranging from problems
with lexical retrieval to problems with articulation. By using [i], speakers may
signal that they would like to keep the floor. The same discourse effect has



been observed by Local (2007) for the realization of English so. On the basis of
a survey of tokens of so extracted from corpora of spontaneous speech, Local
shows that this word is reduced less when speakers want to keep the floor. It
is more reduced and trails off when so marks the end of a turn. Such subtle

use of phonetic cues is part and parcel of the grammar of a native speaker of
English.

Other types of pragmatic function may affect pronunciation as well. |Plug
(2005)), for instance, discussed the Dutch word eigenlijk ‘actually, in fact’,
and documented, on the basis of a corpus of spontaneous speech (Ernestus,
2000)), that this word is more reduced when it signals that speakers provide
information which contrasts with information that they provided previously
in the discourse. If tokens of eigenlijk introduce information that contradicts
the presuppositions attributed to the listener, they tend to be less reduced.

Corpora have also been used to study phonological variation across social
groups. Keune et al| (2005), for instance, investigated degree of reduction
in Dutch as a function of speakers’ social class, gender, age, and nationality
(Belgium versus the Netherlands) on the basis of the Spoken Dutch Cor-
pus (Oostdijki 2000). The data showed a difference between men and women
(with women reducing less) and differences between social classes (but only
in Belgium). Furthermore, while there was on average more reduction in the
Netherlands than in Flanders, degrees of reduction varied strongly with in-
dividual words. Thus, whereas natuurlijk ‘of course’ reduces more often in
the Netherlands, other words with the same morphological structure, such as
waarschijnlijk ‘probably’, show very similar degrees of reduction across the two
countries. These differences between men and women and between Flanders
and The Netherlands suggest that reduction is not just driven by articulatory
processes but is in part a cultural phenomenon. Phenomena such as these raise
questions about how phonological theory should account for variation in the
grammars of different groups of speakers in the larger speech community.

3 Using speech corpora

3.1  An overview of speech corpora

Speech corpora are a relatively recent data source compared to corpora of writ-
ten language. Traditionally, phoneticians and phonologists based their analyses
on incidental observations and carefully designed experiments. Experiments
have the advantage that they offer complete control over the materials. Words,
phonemes, or phrases can be placed in exactly the right contexts and can be
elicited in soundproof environments, free from background noise. Experiments,



however, are not without disadvantages. The amounts of data gathered tend
to be small and typically cannot be re-used for different purposes. Moreover,
speech styles elicited in the context of experiments tend to be formal and not
spontaneous, and materials are presented in isolation or in small, often arti-
ficial, contexts. To complement experimental research, the last decades have
witnessed the development of several speech corpora designed specifically for
spoken (American) English and Dutch. We discuss some of the most important
ones, stressing the differences in speech type and sound quality.

An important early speech corpus, the TIMIT corpus of read speech (Fisher
et al., 1986)@, provides the data of what can be regarded as a large pro-
duction experiment. TIMIT sampled read speech (6300 sentences) from 630
speakers from several dialect regions of the United States. Two sentences were
constructed to elicit as many differences between dialects as possible. Further
sentences were constructed to provide a good coverage of phone pairs. A third
set of sentences was sampled from existing sources to add to the diversity
of sentence types and phonetic contexts. This corpus was designed and has
been used extensively for the development of Automatic Speech Recognition
systems.

A few years later, the HCRC Map Task CorpusE] was published (Anderson
et al., |1992)). It provides a set of 128 dialogues (18 hours of speech) that were
experimentally elicited with the Map Task. In this task, the two speakers in
a dialogue are provided with a map that the other cannot see. One speaker
has a route marked on her map, and has to guide the other speaker such that
she reproduces this route on her own map. The crucial manipulation in this
experiment is that the two maps are not identical, which forces speakers to
engage in extensive discussions in order to complete their task. This leads
to (the repetition of) specific words (especially of the missing landmarks),
corrections, questions, and so on with a high probability. For instance, by
annotating a landmark picture as vast meadow, Anderson and colleagues tar-
geted t-deletion. All dialogues in the HCRC Map Task Corpus are transcribed
and annotated for a wide range of behaviors including gaze. Map Task corpora
have also been built for many other languages, including Italian, Portuguese,
Czech, Japanese and Dutch.

In contrast to TIMIT and the HCRC Map Task Corpus, the speech sampled
in the Switchboard corpus (Godfrey et al., 1992)@ was under no experimental
control whatsoever. This corpus comprises some 2430 telephone conversations
of on average 6 minutes involving speakers who did not know each other. In all,
the corpus consists of 240 hours of recorded speech with about three million

2 http://www.ldc.upenn.edu/Catalog/readme_files/timit.readme.html

3 http://www.hcrc.ed.ac.uk/maptask/
4 “http://www.ldc.upenn.edu/Catalog/readme_files/switchboard.readme.
html
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word tokens, produced by 500 speakers, both males and females, from all
major dialects of American English. The corpus is fully transcribed, and each
transcript is accompanied by a time alignment file which provides estimates
of the beginning and end of words. Detailed information about the speakers
is also available, including age, sex, education, current residence and places of
residence during the formative years.

More recently, a corpus of spontaneous conversations has become available
with a high-quality acoustic signal, the Buckeye Speech corpus (Pitt et al.,
2005)@. Data were collected in a quiet room with head-mounted microphones
for 40 speakers (20 men, 20 women, cross-classified by age) from Columbus
Ohio. Each speaker was interviewed for one hour, leading to a corpus of some
300,000 words. Conversations were orthographically transcribed and phonemic
transcriptions were obtained with the help of automatic speech recognition
software. Time stamps are available for each of the phones.

Ernestus (2000) compiled a corpus of 15 hours of conversational Dutch with 10
pairs of speakers. She selected the speakers for each pair on the criterion that
they knew each other very well, in the hope that they would feel free to engage
in spontaneous and lively discussion, even in a sound-proof booth, with a sep-
arate microphone for each speaker. A recording session consisted of two parts.
During the first part, the speakers talked freely about all kinds of subjects.
Conversations were so free that a substantial amount of gossip was elicited.
During the second part of the session, the speakers had to engage in role play-
ing, enacting scripts in which they knew each other very well. The corpus
has been transcribed orthographically, and a broad phonemic transcription is
available that has been obtained using automatic speech technology (Schup-
pler et al.| [tted). This corpus has been a crucial source of information for the
study of reduction in spontaneous Dutch. Similar corpora have recently been
compiled for French, Spanish and Czechm.

An example of a recent corpus that provides speech from a wide range of spo-
ken registers is the Spoken Dutch Corpus (Oostdijkl, 2000)m. This corpus (in
all some 9 million words, 800 hours of speech) includes a 2.1 million word sub-
corpus of spontaneous face-to-face conversations, a 900,000 word subcorpus of
read speech (recorded books from the library for the blind), and a two million
word subcorpus of telephone conversations. The spontaneous face-to-face con-
versations were recorded at people’s homes with a single microphone, in order
to optimize the likelihood of obtaining spontaneous speech. The drawback,
however, is that the quality of the recordings is not optimal due to the pres-
ence of substantial background noise. The subcorpus of read speech, however,

> http://buckeyecorpus.osu.edu/php/corpusInfo.php

6 For information about these four corpora: http://mirjamernestus.ruhosting.
nl/Ernestus/Corpora.html
’ http://lands.let.kun.nl/cgn/ehome.htm
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provides very high quality sound files.

A corpus of a very different type is the ONZE corpus of New Zealand English
(Gordon et al.| 2007)@, one of the few diachronic speech corpora. It consists
of three subcorpora: a collection of radio recordings of some 300 speakers
born between 1851-1910, a collection of recordings of some 140 speakers born
between 1890-1930, and a more recent and still growing collection of recordings
of speakers born between 1930-1984. All sound files come with orthographic
transcriptions.

Ideally, speech corpora would be paired with video, allowing researchers to
investigate the roles of gesture, gaze direction, facial expression and so in
spontaneous speech. An example of such a recent multimodal corpus is the
IFA Dialog Video corpus, developed by van Son and Wesselingrﬂ This cor-
pus has recordings of maximally 15 minutes for some 50 speakers of Dutch,
with orthographic transcriptions, automatically derived word and phoneme
alignment, part-of-speech labeling, and annotations for gaze direction. An au-
diovisual corpus of read speech for English is reported by Hazen et al.| (2004).

3.2 Transcriptions in speech corpora

A collection of just speech files does not constitute a speech corpus. Speech
corpora make the audio data accessible by means of transcriptions and links
between the transcriptions and the speech files. The most basic transcription
is a straightforward orthographic transcription, which serve the function of
providing a search heuristic for accessing the speech files. Some corpora also
provide phonological or phonetic transcriptions. Obtaining reliable phonolog-
ical or phonetic transcriptions, however, is a non-trivial enterprise.

One possible procedure is to base the transcriptions on acoustic measurements.
This is an option if the features to be transcribed have obvious correlates in
the acoustic signal. Most features, however, such as the voice of obstruents,
are cued by different aspects of the acoustic signal (e.g., the duration of the
obstruent, the duration of the preceding vowel, the presence of vocal fold vi-
bration and so on). When the relative contributions of the different aspects to
the overall percept are not well known, and when they may vary across speak-
ers and registers, transcriptions based on (automatically obtained) acoustic
measurements are infeasible.

Transcribing utterances by ear, however, is also not a trivial task, as it requires
great concentration and even then remains error prone. Moreover, human tran-

8 http://www.ling.canterbury.ac.nz/onze/
9 http://www.fon.hum.uva.nl/TFA-SpokenLanguageCorpora/IFADVcorpus/
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scribers tend to be influenced by their expectations, based on the words’ pro-
nunciations in clear speech, spelling, the phonotactics of the language, and so
on (e.g., Cucchiarini, (1993)). |Vieregge| (1987, 9) even argues that human tran-
scriptions are influenced by the transcribers’ expectations without exception,
and are never objective reflections of reality. Along the same lines, Keating
(1998) suggests that pronunciation variability is necessarily confounded with
transcription variability in studies with human transcribers.

Expectations play an important role especially when the acoustic signal is
less clear, for instance due to background noise. Speech may also be less clear
because speakers reduced their articulatory effort and produced smaller and
overlapping articulatory gestures. In such casual speech, the reduced forms
may differ substantially from their unreduced counterparts. Yet transcribers
will tend to hear the reduced forms as unreduced.

Since transcribing is such a difficult and subjective task, listeners often dis-
agree about the correct transcription. Notoriously difficult is deciding on the
presence versus absence of sonorant segments (such as schwa and liquids) and
about segments’ voice specifications. For instance, [Ernestus| (2000) reported
that her three transcribers disagreed about the presence versus absence of
the first vowel of the word natuurlijk ‘of course’ for 58% of the 274 tokens,
while they disagreed on the voicing of intervocalic plosives for 15% of the more
than 2000 cases. Similar figures have been reported by [Ernestus et al.| (2006)),
Coussé et al.| (2004)), and |Pitt et al.| (2005]). Disagreement arises even when lis-
teners do not provide detailed transcriptions but classify word forms roughly
into predefined categories of “no to low reduction” or “high reduction” (Keune
et al., 2005)).

What to do with tokens for which transcribers disagree? One obvious solution
is not to incorporate them into the analyses. If the number of problematic to-
kens is low, this is feasible. However, when there are many problematic cases,
the number of available data points may decrease substantially, and as a conse-
quence, the power of subsequent statistical analyses as well. Furthermore, the
problematic data points may all belong to a small number of classes (e.g., high
vowels, or segments preceeded by liquids, or segments in unstressed syllables)
which may provide crucial information and hence should not be excluded from
the analysis a priori. In fact, such data points may be of theoretical interest,
for instance, they may be indicative of an ongoing sound change (Saraclar and
Khudanpurj, 2004]).

Another way of dealing with disagreements is to ask transcribers to listen to
the problematic tokens again (and again) and see whether they are willing
to change their classifications. This method does not necessarily lead to more
accurate transcriptions, however, since the transcribers, when listening for the
second time, know each other’s classifications, and the classification which is
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eventually accepted may not be the best one, but the one obtained from the
most confident transcriber. Finally, note that even when listeners are in full
agreement, this does not necessarily imply that they provide the correct tran-
scriptions: The transcribers may all be led astray by the same expectations.

Both these procedures to handle disagreements face yet another problem, since
a high degree of disagreement may indicate that the phenomenon under in-
vestigation is continuous rather than categorical. For instance, when studying
reduction or voicing, segments can be partially deleted or partially voiced,
and requesting raters to give absolute judgments may not do justice to the
complexity of the data. Below, we will mention yet another way to deal with
inconsistent transcriptions which is based on the use of statistics and avoids
this problem in a principled way.

To what extent do automatic speech recognition (ASR) systems provide a solu-
tion for this problem? An obvious advantage is that the slow cumbersome, and
subjective work by human transcribers is replaced by a computer algorithm
that will always yield the same results. Unfortunately, ASR systems need to
be trained on phonetically transcribed materials and as a consequence their
accuracy depends heavily on the quality of these human made training tran-
scriptions. Several experiments have shown that ASR transcriptions generally
show a somewhat lower agreement with human transcribers than human tran-
scribers among each other (e.g., Van Bael et al., 2006; |Wester et al., [2001)). ASR
systems have difficulties especially with those classifications that are notori-
ously difficult also for human transcribers (presence versus absence of schwa,
liquids, etc).

The field of ASR systems is still in full development. One interesting new di-
rection is the replacement of phonemic transcriptions by continuous transcrip-
tions of articulatory based features (e.g., King and Taylor, 2000; Ten Bosch
et al |2006). The choice of the set of features is largely inspired by both the
theory of distinctive features (Chomsky and Halle, |1968) and the gestural the-
ory of speech production (Browman and Goldstein), |1992). This type of ASR
systems may prove especially useful for the study of fine phonetic detail.

3.8  Analyzing corpus data

Corpus data should be used responsibly. Corpora are not build for looking
up some incidental examples, however interesting they may be. We all too
easily find examples that fit the hypothesis driving our research, and we all
too easily overlook examples that do not fit our theory. Moreover, it has been
very well documented by now that speakers show probabilistic behavior lead-
ing to (varying degrees of) intraspeaker variation. Finding one or two tokens
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of a word displaying the phenomenon of interest (e.g., schwa deletion) does
not provide us with information about the way the speaker normally realizes
the word. These two tokens may just represent exceptional pronunciations.
Furthermore, we also have to investigate where the phenomenon under study
could be expected but did not occur, since our theories should account for
these facts as well. As in any other domain of scientific inquiry, we have to
survey all potentially relevant data.

Corpus research thus necessarily implies the inspection of very large data sets,
and for this statistical analysis is indispensable. In what follows, we give a brief
introduction to a technique that is of particular relevance for the analysis of
corpus data, linear mixed-effects modeling (Baayen, 2008; |Jaeger, |2008). We
illustrate this general modeling tool using a small, simplified, constructed data
set that mirrors part of the structure of the data set of Hay and Sudbury| (2005))
on postvocalic /r/ in New Zealand English that we discussed above.

Table 1

Counts of non-rhotic and rhotic variants (in that order) for four subjects (S1, S2,
S3, S4) for 15 word pairs (W1 ... W15) with varying log frequencies for the second
word of the pair (FreqWord) and for the complete word pair (FreqWordPair).

words FreqWord FreqWordPair S1 S2 S3 5S4

Pairl 4.69 026 04 04 05 01
Pair2 4.25 026 04 31 12 03
Pair3 4.21 045 04 31 22 06
Pair4 4.56 034 04 21 12 06
Pairb 4.73 064 03 71 42 04
Pair6 3.04 025 02 20 41 14
Pair7 3.26 046 11 40 31 17
Pair8 1.46 0.17 33 40 10 13
Pair9 4.35 040 20 50 70 21
Pair10 4.24 026 04 13 03 03
Pairll 4.00 021 03 13 14 02
Pairl2 4.99 003 04 12 01 02
Pairl3 3.62 022 05 10 25 01
Pairl4 2.78 030 05 52 23 04
Pairlh 3.91 054 05 31 43 04

Consider Table 1, which lists for four speakers (S1, S2, S3, S4) and for
fifteen word pairs (Pairl to Pair15) the log-transformed lexical frequency
of the second word (FreqWord), the log-transformed frequency of the word
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pair (FreqWordPair)™®] and the number of times /r/ was observed absent
and present for each of the four subjects for each word pair. Given these
observations, we ask ourselves the following questions.

(1) Does the probability of the presence of /r/ decrease with FreqWord?
(2) Does this probability increase with FreqWordPair?

(3) Does the probability of /r/ vary between speakers?

(4) Does the probability of /r/ vary between word pairs?

To answer these questions, we fit a regression model to the data with as pre-
dictors FreqWord, FreqWordPair, Speaker, and Word Pair. Our dependent
variable requires special care. Each observation in our dataset has one of two
values: present (success) or absent (failure). What we are interested in is the
probability of an /r/ given specific values for our predictors. One possibility
is to analyze the percentages of successes. Percentages (and the correspond-
ing proportions or probabilities), however, have mathematical properties that
make them unsuited for regression analysis (see, e.g., Harrell, 2001; Jaeger,
2008, for detailed discussion). The most important one is that percentages are
bounded between 0 and 100 (and proportions and probabilities between 0 and
1). A commonly used solution is to model the logarithm of the odds ratio of
the successes and failures L;; for Speaker ¢ and Word pair j:

#successes

(1)

Li; zlogi,p:log _
1—p #tailures + #successes

The log odds ranges from minus infinity to plus infinity. When there are more
successes than failures, the log odds is positive, when the number of successes is
the same as the number of failures, it is zero, and when the number of successes
is smaller than the number of failures, it is negative. Given a regression model
for the log odds, the predictions of the model on the probability (rather than
the log odds) scale can be obtained using the relation

1
1+elu

P = (2)

In what follows, we model the log odds ratio L;; for Speaker ¢ and Word Pair
J as a function of baseline odds ratio 3y (the intercept), adjustments b; and b,
to this baseline for Speaker i and Word Pair j, together with coefficients 3,
and (35, which represent the effects of the frequency of the second word and
the frequency of the word pair. These two coefficients represent slopes, the
increase in rhoticity for a unit increase in frequency.

Lij = (Bo + bi + b;) + B1FreqWord; + ByFreqWordPair; + €;;. (3)

10 For frequencies, log transformations are required in order to reduce the enormous
skew which is normally present in the distributions of frequencies.
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When we fit this linear mixed-effects model to the data in Table 1, we find that
the slope for the frequency of the word pair is 6.6, indicating that the likelihood
of rhoticity increases as this frequency increases. The slope for frequency of the
second word is estimated at -1.4, which means that rhoticity is less likely as
this frequency increases. The model also provides detailed information about
how the likelihood of rhoticity varies from speaker to speaker, and from word
pair to word pair. For instance, S4 is the least rhotic speaker of the four
and Speaker S2 the most rhotic. Of the word pairs, Pair 9 is realized most
often with [r], for Pair 1 the reverse holds. Tests of significance confirm that
the effects of the two frequencies are significant, and that there is significant
variability between speakers and between word pairs.

Of course, the real data studied by Hay and Sudbury are much more complex,
and required inclusion of predictors such as speaker’s sex (men turned out to
produce /r/ more often than women) and the nature of the preceding and
following vowels (front vowels disfavored [r]). Such variables can be added
straightforwardly to the statistical models.

Our constructed example does not do justice to the non-randomness and non-
independence in natural discourse. Pickering and Garrod| (2004)), for instance,
call attention to various priming effects in dialogue. How a given word is
actually realized often depends on how that word, or similar words, were
realized in the preceding discourse. This non-independence requires special
care in statistical analysis (Rietveld et al., 2004)). In mixed-effects models, it
is often possible to bring such dependencies under control with the help of
longitudinal variables (De Vaan et al. 2007; Balling and Baayen, 2008). For
instance, the number of times a given word appeared with a given realization
in the preceding discourse can be added as a predictor to the model.

Above, we discussed the problem that transcribing speech is a difficult and
subjective task that often leads to disagreement among transcribers. Hay and
Sudbury| (2005) had the same analyst transcribe the same materials twice
with a couple of months intervening. They included in their analysis only
those cases where on both occasions the same judgment was made, and thus
accepted data loss. A solution explored by [Ernestus et al| (2006) makes use
of mixed-effects modeling and considers as dependent variable the individual
classifications produced by the raters, but adds the identity of the rater as an
additional factor to the model. The idea is to predict what individual listener-
raters think they heard instead of aggregating over listener-raters to compute
a verdict of what was actually said. The regression model determines the
role of the different predictors (e.g., lexical frequency, phonological properties
of the word) as well as the influence of the different listener-raters for the
classifications. In other words, it is left to the regression model to handle
disagreements between listener-raters.
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3.4 Generalizing data to different speakers

We are now in the position to address the issue of how corpus-based statis-
tical analyses relate to the theory of grammar. One question is phrased by
Newmeyer| (2003, p. 696) as follows.

The Switchboard Corpus explicitly encompasses conversations from a wide
variety of speech communities. But how could usage facts from a speech
community to which one does not belong have any relevance whatsoever to
the nature of one’s grammar? There is no way that one can draw conclusions
about the grammar of an individual from usage facts about communities,
particularly communities from which the individual receives no speech in-
put.

Recall that the Switchboard Corpus sampled speakers from all major varieties
of American English. At first sight, it does indeed seem highly implausible
that data from a set of speakers of variety A would help us to understand the
grammar of an individual from variety B. However, mixed effects modeling
offers us the means for carefully teasing apart what is common to all speakers
and what is specific to a particular dialect. Let’s return to our hypothetical
data on /r/ sandhi in New Zealand English. Suppose we have not just 4
speakers, but 40 speakers from dialect A, 30 speakers from dialect B, and 50
speakers from dialect C. (Dialects D, E, F, ... are not sampled.) The model that
we would now fit to the data would include dialect as a second random-effect
predictor modifying the intercept (by).

Lij = (Bo + b; + b; + by,) + SiFreqWord; + foFreqWordPair; + €, (4)

The adjustment by to the intercept for Dialect k informs us about the extent to
which Dialect & differs from the language as a whole. Similarly, the adjustments
b; and b; to the intercept for speaker i word pair j give us further information
about the individual differences in the rate of occurrence of postvocalic [r] for
the speakers and the word pairs. The coefficients 3y, (1, and (3 estimated by
such a model tell us what is common to all dialects and to all the different
word pairs and speakers within these dialects. Crucially, information of speaker
X from dialect A contributes to our estimates of these (-coefficients, and
therefore to our understanding of the grammar of speaker Y from dialect B.
In other words, our mixed-effects model helps us to separate out the role of
Dialect, the role of the individual Speaker, and the role of the shared grammar.

There are many other dimensions of variation that we will need to consider
in our corpus-based models. One such dimension is register, contrasting, for
instance, read speech with scripted speech, telephone conversations, and face-
to-face conversations. Other dimensions are time, social class, education. There
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are currently no speech corpora that properly sample across all these dimen-
sions. As a consequence, conclusions based on corpus data are by necessity
conditional on the input data.

4 Abstractionist and exemplar-based models

Corpus-based research has made more than obvious that pronunciation varia-
tion is inherent to natural language. We have also seen that statistical models
help clarify which patterns are characteristic of a language (variant) and which
are of a more idiosyncratic nature. Moreover, such models indicate which fac-
tors (sociolinguistic, phonological, morphological, etc.) help explain this varia-
tion. All this information helps the researcher to develop better linguistic and
psycholinguistic models.

Broadly speaking, present-day linguistic and psycholinguistic models can be
classified along a continuum with at one endpoint purely abstractionist models
and at the other endpoint purely exemplar-based models. These two types of
models differ in their views of the nature of linguistic generalizations and the
amount of detailed knowledge that is assumed to be available in the mental
lexicon.

4.1 The nature of linguistic generalizations

Early generative phonology and direct successors, including Optimality The-
ory (e.g., Chomsky and Halle, |1968; McCarthy and Prince, |1993)), are typical
examples of purely abstractionist models. They assume that generalizations
over the language, such as Final Devoicing and the position of word stress, are
stored independently from the words in the mental lexicon in the form of ab-
stract representations. These abstract generalizations can be applied directly
to new words, such as loan words, without reference to the words from which
these generalizations were previously deduced during learning. For instance,
the English verb save is pronounced in Dutch, a language with Final Devoic-
ing, as [sef]. According to abstractionist theories, this is due to the application
of a rule of Final Devoicing that exists independently of the data. In machine
learning, learning strategies that build on abstract generalization are called
eager or greedy learning strategies (Daelemans and Van den Bosch| [2005)).

Purely exemplar-based models, on the other hand, do not posit generalizations
in the form of abstract rules that are stored independently from the individ-
ual words. Generalizations are extracted from the exemplars only when they
are needed (see e.g., [Semon, 1923| the first to discuss exemplar-based mod-
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els). The English verb save is pronounced as [sef] in Dutch, because on-line
checking of its nearest phonological neighbors in the Dutch lexicon ([lef] "live’,
[nef] 'nephew’, [xef] 'give’; ... ) reveals overwhelming and in fact exceptionless
support for the /f/. Exemplar-based models are thus characterized by lazy
learning: generalization is delayed until a query is made to the system. The
reason for this delay is, as we shall see below, that generalization accuracy is
optimal when all exemplars ever encountered are available for consideration.
Forgetting rare, low-frequency forms is harmful.

The “on-line checking” in exemplar-based models involves the simultaneous
evaluation of all relevant exemplars in memory. This imposes a large compu-
tational burden. T'wo different approaches have been explored. Skousen (2002)
has developed algorithms for his computationally highly demanding theory of
analogical modeling of language that anticipate the advent of quantum com-
puting. Even for computationally less demanding algorithms, measures have
to be taken to speed up processing. In machine learning, it is common to
use tree-based memory structures that may afford compression rates of 50%
or more, and hence allow shorter searches and faster retrieval of the nearest
neighbors (see, e.g., Daelemans and Van den Bosch, 2005, p.47). To increase
the speed of evaluation at run-time even more, generalizations can be built
into the tree-based memory, but, as we shall see below, this tends to go hand
in hand with a decrease in the quality of the generalizations of the model
(Daelemans and Van den Bosch, 2005, p.67-73). In short, the hybrid solution
trades quality for speed. We will return to this hybrid approach below.

In what follows, the focus of our discussion will be on models assuming exem-
plars at some linguistic level, as purely abstractionist models are presented in
detail in the other chapters of this handbook. Furthermore, due to limitations
of space, only the main properties of different types of models are discussed.
We also challenge the traditional conception of phonology as a subdiscipline of
pure linguistics. Many phonologists working within abstractionist frameworks
view their task as developing a theory of just the declarative knowledge one
must know as a speaker of a language. We see many problems with such a con-
ception of the field. First, it is unclear what data fall under the ‘jurisdiction’
of the phonologist. In the preceding section, we have reviewed a wide range of
phenomena that illustrate subtle aspects of the knowledge that speakers have
about the sound structure of their language. Some of these phenomena can
be explained with the theoretical apparatus of traditional phonology, others,
however, will require this field to broaden its scope. Second, science in the
21st century is increasingly becoming an interdisciplinary endeavor. The like-
lihood that phonology will make significant advances while dismissing recent
achievements in other fields, be it computational linguistics, psycholinguistics
and neurolinguistics, or phonetics, as irrelevant, is in our view unnecessarily
small.
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4.1.1 The importance of many exemplars

Purely abstractionist models assume that a relatively small sample of exem-
plars is sufficient for developing robust generalizations. In this approach, once
a generalization has been established, further incoming evidence has no role to
play, and is disregarded. By contrast, exemplar-based models assume that gen-
eralizations are most precise when based on as large an instance base as possi-
ble. Importantly, several studies have shown that generalizations based on all
available evidence are indeed better predictors of speakers’ behavior (see, e.g.,
Daelemans et al., [1999). By taking more examples into account, more specific
generalizations become possible, enabling exemplar-based models not only to
replicate the general regularities captured by traditional grammars, but also
to formulate more local, detailed regularities. Such more restricted regularities
are important because they allow us to predict for which words speakers are
uncertain, and to predict forms that speakers produce even though these forms
are not expected under an abstractionist account. Thus Skousen’s Analogical
Modeling of Language not only correctly predicts that the English indefinite
article tends to be a before consonants and an before vowels, but also simulates
speakers’ behavior in tending to chose a for some vowel-initial nouns which are
special due to the characteristics of the phonemes following the initial vowels
(Skousen, |1989).

Similarly, we have shown that the traditional description of regular past-tense
formation in Dutch is too simplistic (Ernestus and Baayen| [2004)). It is true
that most verbal stems ending in a voiceless obstruent (before the application
of Final Devoicing) are affixed with [to] and all other stems with [da], but for
some verbs speakers produce non-standard forms quite often (choosing [do]
instead of [to], or vice versa). The final obstruents of these verbs have voice-
specifications that are unexpected given the other words ending in the same
(type) of rhyme. For instance, the verb dub ‘waver’ is special in Dutch since
it ends in a voiced bilabial stop, whereas the sequence short vowel - voice-
less bilabial plosive is much more frequent (e.g., in klap, stop, nip, step, hap).
In line with this local generalization, speakers often choose te, instead of de
as the past-tense allomorph. Importantly, when speakers produce standard
past-tense forms for these exceptional verbs, they need more time to select
the correct past-tense allomorph than when producing standard past-tense
forms for non-exceptional verbs. Past-tense formation in Dutch does not only
obey the general high-level generalization formulated in traditional phono-
logical models, but also more local generalizations within the words’ sets of
phonologically similar words.

As a final example we mention the work by Plag and colleagues on stress as-
signment in English compounds (Plag et al., 2007, |2008)). Their comprehensive
surveys revealed that traditional factors (such as argument structure and the
semantics of the head noun) were only moderately successful in predicting the
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position of stress. They obtained much better predictive accuracy by consid-
ering the distribution of stress positions in the modifier and head constituent
families (the sets of compounds sharing head or modifier). For instance, street
names involving street as their right-hand member pattern alike in having left-
ward stress (e.g., Ozford street, main street), whereas street names ending in
avenue have rightword stress (e.g., Fifth avenue, Maddison avenue). Similar
biases for left or right stress, although often less pronounced, are found across
the lexicon for other constituent families. Their conclusions harmonize well
with work on the interfixes in Dutch and German compounds (Krott et al.,
2001) and on the semantic interpretation of compounds (Gagné, 2001).

Several models assuming abstract generalizations have incorporated the idea
that generalizations should be based on many exemplars. Two of these have
been computationally implemented: Stochastic Optimality Theory (Boersma,
1998; Boersma and Hayes, 2001), and Minimal Generalization Learning (Al-
bright and Hayes, 2003)). Stochastic Optimality Theory implements, unlike
most other abstractionist theories, a continuous learning process in which
stochastic constraints are continuously updated. The Minimal Generalization
Learner constructs a large set of weighted rules that are learned during train-
ing. Once learning is completed, the rules are applied on-line during ‘testing’.

As shown by |[Keuleers| (2008), the Minimal Generalization Learner and TIMBL,
are computationally equivalent, with TIMBL executing similarity-based reason-
ing at runtime, and the Minimal Generalization Learner executing previously
learned weighted rules at runtime. This shows that at the computational level,
abstractionist and exemplar-based models can be equivalent. In such cases,
evaluation should be guided by how much insight and guidance the models
provide given current theories across theoretical linguistics, computational lin-
guistics, psycholinguistics, and cognitive science.

4.1.2  The productivity of generalizations

Purely abstract models assume that all generalizations are fully productive.
They are assumed to apply across the board to any input that meets their in-
put requirements. However, several studies have argued that a generalization’s
productivity depends on the number of exemplars in the lexicon supporting the
generalization (e.g.,Bybee, 2001)). Regularities are in general more productive
if they are supported by more exemplars. Thus, word-specific pronunciation
variation, which is characterized by only little lexical support (e.g., only from
the lexical item itself), tends to be unstable and to disappear in favor of vari-
ation shared with other, phonologically similar, words. Only a high frequency
of occurrence can protect isolated words against regularization (e.g., Bybee,
2001).
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Furthermore, generalizations based on words which are more similar are more
productive than generalizations based on words that are less similar. A lesser
degree of similarity has to be compensated for by a greater number of exem-
plars (and vice versa). Thus, a single exemplar can only affect a neighboring
word if the two neighbors are already highly similar (Frisch et al., |2001)).

In contrast to models assuming abstract generalizations, exemplar-based mod-
els are able to account for the effect of the number of exemplars and the
similarity among the exemplars on degree of productivity. In these models
generalizations are formulated by on-line checking of all exemplars. Each ex-
emplar may contribute to the generalization based on its similarity. More ex-
emplars and exemplars showing higher similarities may lead to stronger and
therefore more productive generalizations. |Skousen| (1989), for instance, has
incorporated these mechanisms in his Analogical Modeling of Language, by
distinguishing sets of exemplars which differ in their influence based on their
set size, their (phonological) distance to the target word, and also the consis-
tency among the exemplars with respect to the outcome of the generalization
(e.g., voiced versus voiceless for syllable-final obstruents in Dutch).

Note that it is important to carefully distinguish between generalization and
abstraction (Daelemans & van den Bosch, 2005). Exemplar-based models and
abstractionist models share the goal of generalization, of being able to predict
the behavior of unseen cases, and to understand how this prediction follows
from past experience. The crucial difference is how this goal is achieved. In
purely abstractionist approaches, individual tokens (at a given level) are used
to formulate abstract rules. Once the rules have been formulated, the individ-
ual tokens considered in formulating the rules are redundant, and discarded as
theoretically unimportant. By contrast, exemplar-based approaches are driven
by the conviction that every token counts, and that in order to achieve maxi-
mum prediction accuracy, it is essential to carefully consider the contribution
of each exemplar. Thus, perhaps the most crucial difference between abstrac-
tionist and exemplar-based models is their very different evaluation of the role
of human memory in language.

4.2 The content of the mental lexicon

Abstractionist models typically work with sparse lexicons, with as only excep-
tion in generative grammar the work of |Jackendoff (1975)). Once the linguistic
generalizations of the language have been deduced from the input, the input
words are no longer needed to support the generalizations. If they are mor-
phologically complex and completely regular in all respects, they can even be
removed from the lexicon, as they can always be recreated via the morpho-
phonological generalizations. The lexicon can be as sparse as to contain only
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lemmas (morphologically simplex forms, such as tree and school) and mor-
phologically complex words that are semantically, morphologically, syntacti-
cally, or phonologically irregular (e.g., children and juicy). Regular morpho-
logical derivations and inflections are always derived by means of morpho-
phonological generalizations (see, e.g., Kiparsky, [1982; |Pinker, [1991]).

This approach, advocated especially by generative grammar, implies that the
form stored in the (mental) lexicon need not be phonotactically well-formed
and identical to a form that occurs in the actual linguistic output. Take for
instance regular plural nouns in Dutch, which consist of the noun stem and the
suffix [o] or [s|. The affixation with [o] may lead to voice alternation of the stem-
final obstruent, for instance, singular [hont| hond ‘dog’ versus plural [honda]
honden ‘dogs’. The [t] of [hont] is predictable, since Dutch words cannot end in
voiced obstruents (Final Devoicing), whereas the [d] of [honds] is not (compare
the plural [honds] with the plural [lonto] ‘matches’). Therefore, generative
grammar is forced to assume that the stored form is /hond/, from which
both the singular (Final Devoicing) and the plural ([o]-affixation) can easily
be computed. This underlying form is however phonotactically illegal as a
surface form (see, e.g. Booij, [1981; Wetzels and Mascar;, [2001)).

Exemplar models differ from abstractionist models in that the lexicon is viewed
as a database containing huge numbers of exemplars (see, e.g., [Bybee, 1985,
2001; [Johnson) 2004)). As it is difficult, if not impossible, to determine the
relevance of abstract generalizations and exemplars in the lexicon, it is not
surprising that many researchers have brought evidence from language pro-
cessing into the debate. In what follows, we discuss evidence for exemplars at
different linguistic levels: for regular morphologically complex words, for pro-
nunciation variants of one and the same word, and for exemplars of individual
acoustic/articulatory events.

4.2.1 Storage of reqular morphologically complexr words

An important finding from the psycholinguistic literature is that the pro-
cessing of completely regular morphologically complex words is known to be
affected by these words’ frequencies of occurrence. For instance, Stemberger
and MacWhinney| (1988)) demonstrated that speakers produce fewer errors
for high frequency than for low frequency regular past-tense forms. Similarly,
numerous studies have demonstrated that readers’ and listeners’ recognition
times of regularly inflected and derived words in a wide variety of languages
is affected by these forms’ frequencies of occurrence (e.g., Baayen et al., 1997;
Sereno and Jongman) [1997; Bertram et al., 1999; Baayen et al., [2008; |Kuper-
man et al., 2008; Baayen et al., 2007). These form-specific frequency effects
show that language users have detailed knowledge at their disposal about how
likely specific forms are. Such detailed knowledge is totally unexpected from
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the purely abstractionist perspective, especially when abstractionist models
are projected straightforwardly onto language processing (see, e.g., Pinker,
1991)), but harmonizes well with exemplar-based models.

Additional evidence for the storage of regular morphologically complex words
comes from language change. Bybee, (2001) discusses the historical lengthening
of short vowels (accompanied by a change in vowel quality) in Dutch open
syllables. This change resulted in morphologically conditioned pronunciation
variation in several noun stems. Later, the change became unproductive. If the
alternation had been completely governed by an abstract generalization stored
independently of the relevant nouns, the loss of the generalization should have
resulted in the disappearance of all the vowel alternations governed by that
generalization. This, however, is not the case: Modern Dutch still shows the
alternation for some words (e.g., schi]p - schle|pen ‘ship’ - ‘ships’), words which
otherwise have a fully regular plural inflection. This can only be explained if it
is assumed that the different forms in a word’s paradigm become entrenched
in lexical memory, irrespective of whether they are regular or not (see also,
e.g., Tiersma, 1982).

The storage of large numbers of regular derivational and inflectional forms
makes it unnecessary to posit, as in generative grammar, underlying represen-
tations that would differ from the words’” actual pronunciations. If all forms of
a paradigm are stored in a redundant lexicon, there is no need to assume that
the stem’s underlying representation contains all unpredictable properties. If
both Dutch /hont/ ‘dog’ and /honds/ ‘dogs’ are stored in the mental lexi-
con, there is no need to assume that the morpheme for ‘dog’ is represented as
/hond/ with the unpredictable final /d/. Neither speakers nor listeners need to
compute the plural [honds] from the underlying lexical representation of hond,
since either the plural is stored in the mental lexicon together with /hont/,
or the voice specification of the obstruent can straightforwardly be inferred
from its nearest phonological neighbors (/vondo/ found’, /monde/ 'mouths’,
/mando/ "baskets’ ... ).

4.2.2  Storage of pronunciation variants

The wide pronunciation variation observed in speech corpora cannot be ac-
counted for by the storage of just the canonical pronunciations of the words
or word forms in the lexicon. The words stored have to be accompanied by in-
formation about their possible pronunciations. Abstractionist models assume
phonological rules (or interactions of phonological constraints) which derive
the possible pronunciations (during speech production) and deduce the stored
representations from the observed realizations (during speech comprehension).
For instance, a phonological rule of flapping specifies in which segmental (and
probably social) contexts American English /t/ may be realized as a flap (e.g.,
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in the word butter). Similarly a rule (possibly the same) specifies that a flap in
American English maps on /t/ in lexical representations. This rule of flapping
applies to hundreds of words, and therefore represents a true generalization
over American English.

This account of pronunciation variation faces an important challenge. Many
types of pronunciation variations are restricted to just a few words, instead
of all words satisfying the structural description of the generalization, as in
the case of flapping /t/. For instance, in Dutch, word-final /t/ can be absent
in utterance-final position only in the word niet ‘not’, and word-final velar
fricatives may be absent only in toch ‘nevertheless’ and nog ‘still’ (Ernestus,
2000). In general, we see that words are more reduced the higher their fre-
quency of occurrence, which may lead to word-idiosyncratic pronunciation
variation. In abstractionist models, word-specific pronunciations imply either
word-specific rules or constraints, or the storage of several pronunciations for
the same word (see, e.g. Booij, |1995)). A question that arises in this context is
how many different words have to show the same pronunciation variation for
a generalization to come into existence.

Such questions are irrelevant for models that simply assume that each word
is stored in the mental lexicon together with all its possible pronunciations.
The representations of all these possible pronunciations might be abstract in
nature (e.g., strings of phonemes), in which case the model is close to purely
abstract models. Alternatively, these representations may be abstract labels
for clouds of exemplars each representing one individual acoustic/articulatory
event (see section 4.2.3). In this case, the model is more similar to a purely
exemplar-based model. In both types of models, the Dutch word niet is stored
with the pronunciations [nit] and [ni], which “explains” why this word may
occur with and without [t] in all sentence positions. Importantly, these models
account for word-specific pronunciation variation as well as for the productiv-
ity of alternations displayed by a wide range of words, such as /t/ flapping in
American English.

Several studies have produced experimental evidence for the storage of at least
some pronunciation variants. [Racine and Grosjean| (2002)) showed that native
speakers of French can well estimate how often a particular word is produced
with and without schwa in spontaneous speech: The correlation between sub-
jects’ estimates of the relative frequencies and the relative frequencies observed
in a speech corpus was r = 0.46. Apparently, speakers know the likelihoods of
both pronunciation variants. In a purely abstractionist approach, it might be
argued that this probability information is stored with the unreduced form and
affects the likelihood of the application of a schwa deletion rule. This account
implies that there must be some memory trace for the reduced form, albeit
not instantiated in the form of a separate lexical representation, but in the
form of a word-specific probability of schwa deletion. However, from a com-
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putational perspective, this word-specific probability is difficult to distinguish
from a separate representation in an exemplar-based model.

From an exemplar-based perspective, these facts would be captured by posit-
ing that the two variants are represented by two exemplars (or two clouds of
exemplars) that may have different long-term probabilities of becoming ac-
tive in speech comprehension or production. Connine and colleagues (for an
overview see (Connine and Pinnow, 2006) showed that the frequencies of pro-
nunciation variants play a role in word recognition. Their study of the nasal
flap as a pronunciation variant of /nt/ in American English showed that lis-
teners recognize words pronounced with a nasal flap faster if these words are
more often produced with a nasal flap instead of [nt] (Ranbom and Connine,
2007)). This illustrates once again that language users are sensitive to the
probabilities of pronunciation variants.

The assumption that all pronunciation variants of a word are lexically stored
is not unproblematic. In |Ernestus et al.| (2002), we showed that listeners rec-
ognize reduced word forms presented in isolation with a higher accuracy the
more similar they are to the corresponding unreduced forms. Thus, we found
a strong positive correlation between the number of missing sounds and the
number of misidentifications (r = 0.81). This strongly suggests that listeners
recognize reduced pronunciations, spliced out of their contexts, by means of
the lexical representations of the unreduced counterparts. This finding can
only be explained within exemplar-based theory if we make the assumption
that lexical representations are specified for the context in which they occur
(see e.g., [Hawkins, [2003)). Reduced pronunciations would then be specified
as “not occurring in isolation”. This specification would also explain why the
number of misidentifications was much lower when the reduced pronunciations
were presented in their natural contexts instead of in isolation.

4.2.83  Storage of acoustic and articulatory tokens

The most extreme variant of exemplar-based models assumes that the mental
lexicon contains all acoustic and articulatory tokens of all words that the lan-
guage user has ever encountered (e.g.,|Johnson, 2004)). The lexicon thus would
contain millions of tokens of every word form, many of which hardly differ in
their phonetic characteristics. The lexicon would therefore be very similar to
a speech corpus itself. Tokens sharing meaning would then be organized in
clouds of words (cognitive categories) and would be interconnected as in all
other versions of exemplar-based theories. We will refer to this specific type
of exemplar-based models as episodic models.

Episodic models differ in another crucial characteristic from the exemplar-
based models described so far. They assume that all tokens are stored with
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all their fine phonetic detail. In contrast, models allowing just one or a small
number of lexical representations for every word, each reflecting a different
pronunciation type, typically assume that lexical representations are built up
from abstract symbols such as phonemes, allophones, or phonological features.
Listeners are assumed to abstract away from the details of the speech signal
that cannot be captured by these abstract categories. The tacit assumption is
that these details would not be relevant for higher-level generalizations. The
models discussed in the previous sections are thus closer to the endpoint of
abstractionist models of the continuum than episodic models, which occupy
the other extreme endpoint.

Lexical representations consisting of abstract symbols, such as phonemes, are
problematic because the conversion of real speech into such abstract symbols,
which includes the process of speaker normalization, has proven difficult to
capture. For instance, the categorization of a sound as a certain phoneme (or
allophone) is determined by many factors, including segmental context, the
speaker’s gender, and the listener’s expectations (for an overview, see e.g.,
Johnson, (1997). Episodic models obviate the need for problematic processes
such as speaker normalization by assuming that every word token is stored
together with all its fine phonetic detail, including the characteristics of the
speaker (e.g., high versus low voice, Northern versus Southern accent).

The assumption that human beings store all their experiences in full detail,
as claimed by episodic models, is not new. It has been developed in the cate-
gorization literature, which also contains discussions of purely abstractionist
(see e.g., Homa et al. |1979) and exemplar-based (see e.g., Nosofsky, [1986)
models. Exemplar-based models have been highly popular ever since the arti-
cle by Medin and Schaffer| (1978), but have recently been seriously criticized
by Minda and Smith| (2002).

The popularity of episodic models within (psycho)linguistics does not only
stem from the possibility to do without speaker normalization, but also from
experimental evidence showing that listeners store token specific fine phonetic
detail, including detail carrying indexical information (i.e., information about
speaker identity and speech rate). For instance, (Craik and Kirsner| (1974)
showed that words are recognized faster and more accurately when they are
produced by the same voice. Likewise, Cole et al.| (1974) found that partici-
pants are faster in determining whether two words in a sequence are identical,
if these two words are recorded from the same speaker. Furthermore, [Schacter
and Church/(1992) demonstrated that when presented with stems participants
tend to form complex words which they have heard before, especially if these
complex words were produced by the same voice as the stems. For production,
Goldinger| (1998) reported that participants tend to mimic previously heard
pronunciations in their fine phonetic detail.
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One of the few episodic models that has been described in (some) detail and
that can capture this experimental evidence is MINERVA, developed by [Hintz-
man| (1986)), and applied to speech by |Goldinger| (1998]). In this model, word
recognition involves the activation of all phonetically similar tokens in the lex-
icon, proportional to their similarity to the speech input. An aggregate of all
activated exemplars constitutes an echo sent to the working memory, on the
basis of which the speech input is recognized. The echo contains more idiosyn-
cratic information of the exemplars in the lexicon if there are fewer of them
present, while a higher number of exemplars results in a more general echo.
Repetition of (the echo of) a low frequency word may therefore result in a
token that is phonetically highly similar to one of the previously encountered
tokens. Furthermore, the strength of an echo is proportional to the activa-
tion in the lexicon created by the input and a stronger echo facilitates the
recognition process (and thus leads to shorter recognition times). Goldinger
tested MINERVA by predicting the results of a shadowing experiment. In order
to skip the first phase of the recognition process and to focus on the episodic
part of the model, he converted the phonetic characteristics of the input sig-
nal and of the exemplars in the lexicon into simple vectors of numbers: Each
token consisted of 100 name elements, 50 voice elements, and 50 context ele-
ments. The predictions made by MINERVA approximated the human data very
closely. Thus, participants shadowed the fine phonetic detail of a stimulus
more closely if they had heard only few tokens of that word and they were
faster in shadowing high frequency (compared to low frequency) words.

Another influential episodic model is XMOD developed by |Johnson| (1997) for
auditory word recognition. It differs from MINERVA especially in that it is an
extension of the Lexical Access from Spectra (LAFS) model developed by Klatt
(1979), which assumes that the incoming speech signal is transformed into a
sequence of spectra (instead of vectors of abstract numbers). Johnson’s XMOD
assumes that during the recognition process, exemplars respond to the input in
proportion to their similarity to this input. Their activation feeds activation
of the abstract word nodes, which in turn enable recognition. Importantly,
XMOD assumes that smaller units of linguistic structure, such as syllables and
segments, emerge in the recognition process. Like word categories, these units
are defined simply as sets of exemplars.

Interestingly, evidence is accumulating that when listeners make use of in-
dexical information in previous mentions of a word, they do so only under
slow processing conditions. McLennan and Luce (2005) showed this in a se-
ries of long-term repetition priming experiments, that is, lexical decision and
shadowing experiments in which each target word occurred twice. Participants
reacted faster on the second occurrence of a word, as expected. Importantly,
the effect of identity priming was greatest if the second occurrence was similar
to the first occurrence in speech rate or voice, and simultaneously also process-
ing was slowed down, either by the nature of the nonwords in the experiment
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(lexical decision) or by the forced time span between the stimulus and the
response (shadowing). Mattys and Liss| (2008]) reported similar results for an
experiment in which participants first listened to two series of words and had
to indicate for the words in the second series whether they had heard them
before. Participants were faster in identifying target words as “old” if the two
occurrences were produced by the same speaker and this speaker suffered from
dysarthria, which slowed down the average speed in the experiment.

4.3  Hybrid models

All models discussed so far have either abstract representations or exemplars at
a given linguistic level. In addition, various models have been developed which
assume both abstract generalizations and exemplars at the same linguistic
level. We will refer to them as hybrid models. These hybrid models explicitly
assume both a redundant lexicon and abstract generalizations. Several types
of hybrid models have been formulated recently, but none of them have been
fully implemented computationally.

One of the oldest hybrid models is the one proposed by |Pierrehumbert| (2002).
She posits both abstract phonological representations and abstract phonologi-
cal rules (e.g., prosodic final lengthening) as well as exemplar clouds associated
with phonological units as exhibited in words (phonemes, phoneme sequences,
and the words themselves). According to this model, speakers use all of this
information during phonological encoding. Perception, in contrast, proceeds
without the intervention of an abstract level, since fine phonetic detail in the
speech signal, which would be abstracted away at an intermediate abstract
phonological level, is known to affect the comprehension process.

McLennan et al| (2003) presented a hybrid model based on the Adaptive
Resonance Theory (ART) of |Grossberg and Stone| (1986)). This model as-
sumes that an acoustic input activates chunks of lexical (words) and sublex-
ical (allophones, features) representations. Some of the chunks are abstract
(i.e., representations for words, allophones, phonological features) and oth-
ers are captured by exemplars (e.g., speaker information). Chunks resonate
with the input, and this resonance constitutes the listener’s eventual percept.
Importantly, more frequent chunks establish resonance with the input more
easily and more quickly. Hence, by making the plausible assumption that more
abstract representations are more frequent, McLennan and colleagues easily
account for the finding that indexical information affects speech processing
only when speech processing is slowed down.

McLennan and Luce (2005)) already mention the possibility that the abstract
representations and the exemplars are stored in different parts of the brain.
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Goldinger| (2007)) discusses the Complementary Learning System (CLS) in
which this is a central assumption. This model, which has been extensively de-
veloped into a computational model by |O’Reilly and Rudy| (2001)) and Norman
and O’Reilly (2003]), assumes that an acoustic input first passes the cortical
complex, where abstract processing takes place: The word is, among others,
divided into its segments and acquires its meaning. It then passes, with all
fine phonetic detail still present, via the entorhinal cortex to the hippocampal
complex, where it is matched with acoustically similar traces and is stored it-
self as well. The hippocampal complex is a fast-learning network, which, again
via the entorhinal cortex, affects the more stable cortical complex. This corti-
cal complex is specialized to slowly learn statistical regularities. The CLS can
account for why indexical properties play a role in speech perception especially
when recognition is delayed. Listeners then react only after the acoustic input
has arrived at the hippocampal complex, which processes indexical proper-
ties. Like MINERVA, the CLS does not yet have as its input realistic data: The
model’s input still consists of vectors with abstract numbers and letters.

The approach of Polysp (Polysystemic Speech Perception) developed by Haw-
kins and Smith (Hawkins and Smith| |2001; Hawkins, 2003)) differs from the
other models in two crucial respects. First, it stresses the assumption that
a memory trace not only consists of acoustic information, but also contains
its multimedial context, for instance, visual information about the speaker’s
articulatory gestures, information about the room the speaker was in, and
information about the relationship between the speaker and the listener. Sec-
ond, Polysp assumes that the analysis of an acoustic input into its linguistic
units (phonemes, etc) is incidental. Circumstances dictate whether this anal-
ysis takes place at all, and if it takes place, whether the analysis precedes,
coincides, or follows word recognition. Linguistic analysis may prevail espe-
cially in adults with extensive experience with identifying formal linguistic
structure, in formal listening situations. This approach can thus account for
the finding that, at least under some circumstances, indexical information af-
fects word recognition only when processing is slow. Polysp has not been com-
putationally implemented but Hakwins provides some suggestions, including
incorporation in the ART model developed by Grossberg and colleagues (e.g.,
Grossberg and Stone, [1986). Note that this model is located on the continuum
closer to the endpoint of exemplar-based models than any of the other models
discussed above that assume both abstraction and exemplars.

4.8.1 Hybrid aspects of compressed lexicons

Current hybrid models build on the assumption that large numbers of indi-
vidual exemplars are stored. Therefore, they run into the same problem that
purely exemplar-based models have to face, namely, how to avoid an instance
base with so many exemplars that it becomes impossible to query the instance
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base in real time. In actual computational memory based models, some form
of data compression is implemented. The role of data compression is worthy
of further theoretical discussion.

Data compression has a long history in computer science. Efficient data struc-
tures for storing words were already discussed by Knuth in the early sev-
enties (Knuth, [1973). Unsurprisingly, TIMBL, which is often applied to huge
data sets, has implemented various compression algorithms. One of these, the
“information gain tree” (IG-TREE), is especially interesting in the context of
phonological generalizations with hybrid models.

An information gain tree is a kind of decision tree. Suppose we build such a
decision tree in the context of predicting whether a final obstruent in Dutch
is voiced or voiceless. Each successive decision in the tree considers a feature
(e.g., the manner of articulation of the obstruent) and splits the data according
to this feature, assigning to each of its daughter nodes the most likely outcome
(voiced or voiceless) given the set of exemplars governed by that node. Note
that in this tree data structure, similar exemplars share similar paths down
the decision tree. In an IG-TREE, the successive decisions are ordered in such a
way that as we move from its root down to its leaf nodes, the decisions become
less and less important (and less successful) in separating the voiced from the
voiceless realizations.

Now consider how such an IG-TREE performs under different time constraints.
Under severe time constraints, only a few decision nodes can be considered. As
a consequence, the choice for voiced or voiceless has to be based on the most
likely outcome associated with decision nodes high up in the tree. As a conse-
quence, this compressed memory will show rule-like behavior: the top nodes
in the tree encode the highest-level generalizations. When time constraints
are relaxed, more and more lower-level decisions will come into play, with at
the lowest levels the individual exemplars. An exemplar memory compressed
in this way has exactly the processing properties observed in the experiments
of McLennan and Luce (2005) and [Mattys and Liss (2008). This explana-
tion is, however, completely different from that of the other hybrid models,
which assume that abstract generalizations and exemplars are subserved by
very different modules of the grammar (see also [Ullman, 2004). Models with
data compression show that computationally the abstract generalizations can
be part and parcel of the organization of exemplars in memory. We note here
that, as mentioned above, hybrid architectures in machine learning may speed
on-line processing time, but may lead to somewhat degraded qualitative per-
formance (Daelemans and Van den Bosch| 2005).
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5 Concluding remarks

To conclude, advances in information technology, computer science, and psy-
cholinguistics have created new possibilities for the study of phonology. Corpus-
based research and computational modeling offer exciting new tools for under-
standing the knowledge that speakers and listeners have of the sound structure
of their language.
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