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ABSTRACT 

The current version of the psycholinguistic model of human 
word recognition Shortlist suffers from two unrealistic con-
straints. First, the input of Shortlist must consist of a single 
string of phoneme symbols. Second, the current version of the 
search in Shortlist makes it diff icult to deal with insertions and 
deletions in the input phoneme string. This research attempts to 
fully automatically derive a phoneme string from the acoustic 
signal that is as close as possible to the number of phonemes in 
the lexical representation of the word.  

We optimised an Automatic Phone Recogniser (APR) us-
ing two approaches, viz. varying the value of the mismatch pa-
rameter and optimising the APR output strings on the output of 
Shortlist. The approaches show that it will be very diff icult to 
satisfy the input requirements of the present version of Shortlist 
with a phoneme string generated by an APR. 

1. INTRODUCTION 

‘Speech recognition’ is investigated by automatic speech rec-
ognition (ASR), which studies the recognition of speech by 
computers, and psycholinguistics, which studies human speech 
recognition (HSR). Although the two fields are related, their 
aims are different. The central issue in ASR is minimising the 
number of recognition errors, whereas HSR aims at building 
models that simulate and explain human speech recognition. 
Although both ASR and HSR intend to investigate the entire 
process from the acoustic signal to the recognised units, models 
of HSR tend to cover only parts of the human speech recogni-
tion process, unlike the end-to-end-systems in ASR. An inte-
gral model covering all stages of the human speech recognition 
process does not yet exist. For instance, virtually all psycholin-
guistic models start from a discrete segmental representation 
instead of the acoustic signal. Furthermore, in building partial 
models little attention is paid to the feasibility of interfacing 
modules with models of other stages [1: pp.145-150]. 

Despite the gap that separates ASR from HSR, there is a 
growing interest in possible cross-fertilisation [1: pp.145-150, 
pp.49-54]. From the viewpoint of ASR, there is some hope of 
improving performance by incorporating essential knowledge 
about HSR into current ASR systems [1]. Researchers of hu-
man word recognition hope to deploy ASR approaches to inte-
grate partial modules into a convincing end-to-end model [1]. 
The research programme introduced in this paper attempts to 
look both ways: by trying to build an end-to-end HSR model, 
we hope to identify pieces of HSR knowledge that can be used 
to improve ASR performance.  

The psycholinguistic model used in this study is Shortlist [2]. 
As a (partial) model of HSR, Shortlist accounts for a wide 
range of results from psycholinguistic experiments related to 
word recognition. Shortlist is a two-stage process. In the first 
stage, an exhaustive lexical search yields a shortlist of (typi-
cally) maximally 30 word candidates that are roughly consis-
tent with the phonemic input. This search is repeated from 
scratch for each phoneme that is detected in the input. The ac-
tivation of words in the shortlist is determined by their degree 
of fit with the phonemic input. If a phoneme in a word matches 
the input, the word activation is increased by 1; for each mis-
matching phoneme the word activation is reduced. The amount 
of reduction is controlled by the mismatch parameter. In the 
second stage, the activated words in the shortlists compete with 
each other by means of their initial activation and the inhibition 
of other words in the list. When all phonemes in the input are 
processed, the word with the highest activation is selected. 

Despite its explanatory power the current version of Short-
list requires substantial modifications to turn it into a compre-
hensive account of HSR. First, the input of the current imple-
mentation must consist of a single string of discrete phoneme 
symbols. Although subjects can perform phoneme detection 
tasks, few -if any- scientists believe that this implies that 
speech signals can be segmented into a sequence of discrete 
sounds. Moreover, the current implementation of the search in 
Shortlist makes it diff icult to deal with insertions and deletions 
in the input phoneme string. As a result, the present implemen-
tation gives a large premium to inputs with the ' correct' number 
of symbols. This is not realistic, since in spontaneous speech 
many insertions, substitutions, and deletions occur. In the re-
mainder of this paper, this problem will be referred to as the 
‘ insertion and deletion problem’. Although the limitation to a 
single phoneme string comprising the correct number of sym-
bols can be overcome by changing the implementation of the 
search, we think that it is useful -also for ASR- to investigate 
the extent to which an operational front-end that converts 
acoustic signals into a discrete segmental representation can 
fulfil the requirements of a single string with the ' correct' num-
ber of elements. 

Words that are highly similar to the input phoneme string 
will be more likely to make it to the shortlist than words that 
only match at the cost of several substitutions, deletions, or in-
sertions. Moreover, it has been easier to derive substitution 
costs from acoustic/phonetic distances between phonemes than 
to define insertion and deletion costs. Therefore, it is important 
to try and derive an input phoneme string from the acoustic 
signal that is as close as possible to the number of phonemes in 
the lexical representation of the spoken words.  



The research described in this paper is an attempt to investigate 
how far ASR can go in terms of decoding acoustic signals into 
a string of discrete phoneme symbols that meet the input re-
quirements of Shortlist, and at the same time see to what extent 
the present implementation of Shortlist can adapt to an input 
afflicted by insertions and deletions. Obviously, this requires 
that we develop an Automatic Phone Recogniser (APR). In op-
timising this APR for Shortlist, we have to pay special attention 
to the insertion and deletion problem. We have considered two 
approaches: 
• The value of the mismatch parameter of the Shortlist 

model is varied: ‘Mismatch parameter’ . This approach in-
vestigates the room offered by the present implementation 
of Shortlist to handle ‘errors’ in its input. 

• The APR is optimised on the output of Shortlist. The 
conventional way to optimise an APR is to make its out-
put as similar as possible to some reference transcription 
of the test corpus, but that is not necessarily the best pos-
sible input for Shortlist. The optimisation criterion that 
we used in this approach is the percentage of utterances 
for which the correct word was present in the shortlists: 
‘Optimisation on the output of Shortlist’ . 

The goal of the exercise is to obtain a better understanding of 
the current mismatch between what ASR can provide and what 
Shortlist needs in terms of interface to acoustic speech signals. 
As a result, we expect to be in a better position to determine the 
most promising ways towards a remedy of that mismatch. 

In the next section, the material used for the experiments 
and the design of the experiments will be described. Section 3 
will present and discuss the results obtained with the experi-
ments. Finally, in Section 4, we draw some conclusions. 

2. METHOD 

2.1. Material 

2.1.1. Corpora 

For training and testing the APR, data from the Dutch Direc-
tory Assistance Corpus (DDAC2000) [3] are used. The corpus 
is recorded over the telephone and consists of Dutch city names 
pronounced by unknown speakers. The material to train the 
acoustic models of the APR comprises 24,559 utterances. Each 
utterance consists of a Dutch city name or ‘ ik weet het niet’ (‘I  
don’ t know’) pronounced in isolation. The reason for this strict 
selection is that we wanted to obtain the cleanest possible 
phone models with a training corpus for which only unique ca-
nonical transcriptions of the words are available. Including 
longer utterances in the training corpus would probably yield 
more contaminated models. Moreover, the models obtained 
with this corpus are optimally matched to the requirements of 
the test.  

The independent test set consists of 10,510 utterances with 
a total number of 11,523 words. These utterances may also 
contain disfluencies and connected speech responses like ‘haar-
lem noordholland’ (i.e., a city name plus the name of a prov-
ince). 

2.1.2. Phone models, lexicon, and language model 

For the APR, 36 context independent phone models, 1 silence 
model, 1 model for filled pauses, and 1 noise model were 
trained. Each phone model consists of 3 pairs of 2 identical 

states, one of which can be skipped. The maximum number of 
Gaussians trained per state is 128. The models were trained on 
the ‘optimised transcriptions’ of the training material (cf. Sec-
tion 2.1.3) using the training procedure described in [4].  

The lexicon of the APR only contains the 36 trained phones 
and three additional models for garbage, filled pauses, and si-
lence. Uni- and bigram language models (LMs) for the APR 
were trained on the optimised phonemic transcriptions of the 
training material. The ‘words’ in these LMs are in fact phones. 
The LM was only used in the experiments with the APR.  

2.1.3. The Shortlist lexicon and test corpus transcriptions 

When people speak they often do not adhere to the standard 
dictionary pronunciation. In spontaneous speech many substitu-
tions, deletions and insertions occur [4]. Consequently, the 
number of actually produced phonemes may differ from the 
number of phonemes in the standard transcription. The psycho-
linguistic theory underlying Shortlist does not make claims 
about the manner in which humans cope with pronunciation 
variation. Specifically, there is nothing in the theory that pro-
motes the exclusive use of citation forms in the mental lexicon. 
To avoid unnecessary problems due to pronunciation variation 
we decided to add frequent variants to the Shortlist lexicon.  

For the generation of these new forms, we used the Weka 
decision tree (d-tree) tools [5] and the bottom-up d-tree ap-
proach described in [4]. In building the d-trees, only the left 
and right neighbour of the phones were used as input to the d-
tree algorithm. The d-trees were used to generate multiple po-
tential pronunciation variants for all words in the training and 
test corpus. An ASR trained on the canonical transcription of 
the training corpus, running in forced recognition mode, was 
then used to find the most likely variant for each word in the 
training and test corpus. The phonemic transcriptions of the 
two corpora were then updated by replacing the canonical tran-
scriptions by the ‘best matching’ variant. Finally, new phone 
models in the APR were trained using the updated (‘opti-
mised’ ) transcriptions of the training corpus.   

The d-trees attach a score to all pronunciation variants they 
produce, which can be considered as a prior probabili ty. This 
allows us to select the most likely pronunciation variants to add 
to the Shortlist lexicon. To this end, all variants produced by 
the d-trees were ranked according to their prior probabili ty. A 
threshold was then determined such that adding all variants 
with a higher probability to the Shortlist lexicon resulted in an 
average of 2.5 variants per word. The number of 2.5 vari-
ants/word was chosen because independent ASR experiments 
(cf. [4]) have shown that a higher number of variants will cause 
a deterioration of the recognition performance, unless the prior 
probabilities of the variants can be used in the recognition 
process (which Shortlist does not). 
 
2.2. Experiments 

We have used two measures in our experiments, viz. phone er-
ror rate (PER) and the proportion of utterances for which the 
correct word was in the shortlist. PER, in its turn, is evaluated 
by comparing the output of the APR against two reference 
transcriptions 1) the original phonemic transcriptions and 2) the 
optimised transcriptions in the test corpus. Phone Error Rate 
(PER) is defined as: 

NDISPER )( ++=                                             (1) 



with S, I, D, and N the number of substitutions, insertions, dele-
tions, and total number of phones, respectively. 

The results of the ‘mismatch parameter’ experiments can 
only be evaluated through the operation of Shortlist, in terms of 
the percentage of utterances for which the correct answer is 
present in the shortlist. In addition, we record and report the 
proportion of utterances for which the correct word had the 
highest activation at the very output of Shortlist.  

2.2.1. Mismatch parameter 

Our first attempt to loosen the input constraint of Shortlist fo-
cuses on the implementation of Shortlist itself, namely on the 
mismatch parameter. The reasoning behind this is that when 
the deactivation of a word by the mismatch parameter is re-
duced, mismatching phonemes will be penalised less severely, 
resulting in a better ability of Shortlist to recognise input 
strings containing insertion and deletion errors.  

In a series of experiments, the value of the mismatch pa-
rameter was reduced from its default value 3.0 to 0.0 in steps of 
0.5. As input, the output strings of the APR were used. 

2.2.2. Optimisation of the APR on the output of Shortlist 

The second approach to reduce the insertion and deletion prob-
lem of Shortlist is to optimise the APR on the output of Short-
list. In this way, the criteria an input string of Shortlist must 
comply with to be recognised correctly are optimally met by 
the output strings of the APR. 

A straightforward way to control the number of phonemes 
and their identity in the output of the APR is through the word 
insertion penalty (WP) and the language model factor (LMF), 
respectively. WP determines the trade-off between insertions 
and deletions: when WP increases, fewer phonemes will be in-
serted. LMF determines the weighting of the acoustic and the 
language model contribution to the total probabili ty of a pho-
neme: by increasing LMF, the contribution of the LM probabil-
ity to the total probability of the phoneme is increased.  

In this experiment, WP and LMF were simultaneously op-
timised. The values of LMF and WP that produced the lowest 
error rate for the test set were regarded as optimal. The cost 
function used for the optimisation process was the proportion 
of utterances for which the correct word was not present in the 
shortlists created after the last input phoneme was presented. 

3. RESULTS AND DISCUSSION 

Table 1 shows the effect of decreasing the value of the mis-
match parameter from the default value 3.0 to 0.0. The effect is 
measured in terms of the percentage of utterances for which the 
correct word was present in the shortlist and the percentage of 
utterances within this set for which the correct word was not 
recognised (‘Not rec.’ ). Furthermore, the percentage of utter-
ances for which the correct word was recognised is shown. A 
word is recognised if it has the highest activation.  

As can be seen in Table 1, lowering the value of the mis-
match parameter increases both the percentage of utterances for 
which the correct word was present in the shortlist, as well as 
the percentage of correctly recognised utterances. These results 
confirm our intuition that reducing the value of the mismatch 
parameter results in a better ability of Shortlist to deal with in-
put strings containing insertion and deletion errors. Words con-

taining insertion and deletion errors are penalised less severely 
and therefore recognised more often. 

Table 1: Effect of decreasing the value of the mismatch 
parameter. 

In shortlist Mismatch 
(M) % Not rec. (%) 

Recognised 
(%) 

3.0 42.3 33.9 27.9 
2.5 43.1 33.1 28.9 
2.0 48.6 35.6 31.3 
1.5 51.4 35.4 33.2 
1.0 58.5 40.4 34.9 
0.5 66.9 45. 6 36.4 
0.0 76.5 46.0 41.3 

 
The column ‘Not rec’ shows that when M=3.0, 33.9% of the 
utterances for which the correct word was present in the Short-
list were not correctly recognised. This percentage increases to 
46.0% when M is reduced to 0.0. Thus, it appears that the pro-
portion of the utterances for which the correct word is included 
in the shortlist grows faster than the proportion of the utter-
ances that are correctly recognised. Apparently, the competi-
tion stage is not able to deal with too liberal an input. 

An analysis of the output showed that only in rare cases 
does the decrease of the mismatch parameter cause a word that 
was recognised correctly at a higher value to fail . This is con-
trary to what has been observed in many ASR experiments in 
which the number of different words allowed into the search is 
increased. In those experiments, it is almost invariably ob-
served that adding words/variants causes many changes in the 
final output, but a substantial proportion of these changes ap-
pear to be new errors, which trade off the number of improve-
ments. We expect that an in-depth analysis of the way Shortlist 
profits from relaxing its input constraints can show directions 
for improving ASR.  

Table 2 shows the results for the ‘optimisation on the out-
put of Shortlist’ experiments at the level of the APR. To show 
the effect of improving the transcriptions of the test material, 
the performance of the APR relative to 1) the canonical pho-
nemic transcriptions of the test corpus (‘TrOrig’ ), and 2) the op-
timised transcriptions of the test material (‘TrOpt’ ) are pre-
sented. The column ‘Av. #ph/utt’ shows the average number of 
phonemes per utterance in the output of the APR. Finally, the 
number of insertions, deletions, and substitutions when the in-
put strings are compared to the optimised transcriptions of the 
test material are shown. The ‘B(aseline)’ row shows the per-
formance of the baseline system. The ‘O(ptimised)’ rows show 
the performance of the system when the output of the APR is 
optimised on the output of Shortlist. The value of the mismatch 
parameter in these experiments was 3.0 and 0.0, i.e., the two 
extreme values used in the experiment described above. 

Table 2: Effect of the ‘optimisation on the output of 
Shortlist’ evaluated at the level of the APR. 

APR Out-
put 

PER 
TrOrig 

PER 
TrOpt 

Av. 
#ph/utt 

#Ins #Dels #Subs 

B 38.28 34.42 7.35 3,657 9,030 16,097 
O: M=3.0 40.83 37.34 8.26 8,744 4,657 17,817 
O: M=0.0 56.10 53.43 9.69 21,922 2,434 20,317 

 



As can be seen in Table 2, it is clear that the PER for the opti-
mised transcriptions is lower, but this result must be interpreted 
with some caution. After all, the optimised transcriptions have 
been generated with essentially the same acoustic models as 
used in the APR.  

With respect to the PER for the phoneme strings optimised 
on the output of Shortlist, Table 2 shows an increase in the er-
ror rate relative to a ‘ straightforward’ optimisation on the 
acoustic signal per se. This suggests that the present implemen-
tation of Shortlist prefers a phonemic input that is not necessar-
ily an optimal representation of the acoustic speech signal (but 
rather some representation that is closer to a symbolic represen-
tation of the words that happens to be present in the lexicon). 
The deterioration is especially large for M=0.0. The increases 
in PER are due to an increase in the average number of pho-
nemes per utterance (cf. ‘Av. #ph/utt’) . As can be seen in Table 
2, the number of substitutions remains about the same when the 
number of phonemes per utterance increases. As expected, the 
number of deletions decreases strongly; however, the increase 
in insertions is larger, leading to a higher PER. 

Table 3 shows the results for the ‘optimisation on the out-
put of Shortlist’ experiments at the level of Shortlist. The ‘I n 
shortlist’ columns show the absolute and relative number of ut-
terances for which the correct word was present in the shortlist, 
and the percentage of these utterances for which the correct 
word did not have the highest activation. The columns ‘Recog-
nised’ show the absolute and relative number of correctly rec-
ognised utterances.  

Table 3: Effect of the ‘optimisation on the output of 
Shortlist’ evaluated at the level of Shortlist. 

In shortlist Recognised APR Out-
put Abs. % Not rec. (%) Abs. % 

B:  M=3.0 4,442 42.3 33.9 2,937 27.9 
O:  M=3.0 4,720 44.9 9.4 4,278 40.7 
B:  M=0.0 8,043 76.5 46.0 4,343 41.3 
O:  M=0.0 8,885 84.5 65.5 3,063 29.1 

 
Although the performance of the optimised phoneme strings 
deteriorates in terms of PER, the performance at the level of 
Shortlist is better than the baseline output. As can be seen in 
the ‘ In shortlist’ columns, more phonemes per utterance lead to 
more utterances for which the correct word was present in the 
shortlist. This corroborates the suggestion that Shortlist prefers 
input that matches forms in its internal lexicon, rather than a 
precise account of the acoustic signal.  

With M=3.0 (the default value of the mismatch parameter) 
optimising the APR so as to maximise the proportion of utter-
ances for which the correct word appears in the shortlist leads 
to a small improvement in terms of the ‘ In shortlist’ measure. 
However, the improvement in terms of the proportion of utter-
ances that are correctly recognised is much larger. This is due 
to the fact that only in 9.4% of the utterances the correct word 
in the shortlist does not end up with the highest activation. For 
M=0.0 the situation is completely different. With the APR out-
put optimised on the acoustic signal the number of utterances 
for which the correct word enters the shortlist is almost twice 
as large as for M=3.0. However, the proportion of utterances in 
which the correct word also has the highest final activation de-
creases dramatically. The final result is that the recognition 
performance in the B: M=0.0 condition is almost the same as in 

the O: M=3.0 condition. Optimising the APR to maximise the 
proportion of utterances with the correct word in the shortlist 
with M=0.0 makes things even worse: the cost function does 
indeed improve somewhat, but the final recognition perform-
ance deteriorates enormously. This shows again that the com-
petition process in Shortlist does not handle input strings with 
many insertions too well. Analysis of the errors suggests that 
Shortlist prefers long words, which consume a large number of 
input phonemes, at the cost of shorter words in the presence of 
insertions. 

4. CONCLUSIONS 

The ‘mismatch parameter’ experiments have shown that the 
search process that selects the words to enter the shortlist must 
trade the proportion of utterances for which the correct word 
enters the shortlist against the capability of the competition 
stage to guarantee that the correct words ends up with the high-
est activation. The search in the present implementation of 
Shortlist is probably not optimal. Therefore, we will i nvestigate 
the possibili ty of adapting the first stage of Shortlist in such a 
way that insertions and deletions are handled more appropri-
ately, without producing a shortlist that is difficult to handle for 
the competition stage.   

Optimising the phoneme string on the output of Shortlist 
increases the number of utterances for which the correct word 
was present in the shortlist. Comparing the results of the condi-
tions where the value of the mismatch parameter is 0.0 and 3.0, 
we found that the increase in number of utterances is larger in 
the case of 0.0 but at the cost of a dramatic increase in PER and 
decrease in number of utterances where the correct word has 
the highest activation. 

In conclusion, the approaches we considered in this study 
show that the gap between what ASR can provide in terms of a 
phonemic decoding of speech signals, and the requirements 
that models such as Shortlist make for their discrete symbolic 
input is quite substantial. However, we are confident that we 
can narrow the gap by simultaneously adapting the search in 
Shortlist and the performance of the APR. 

5. ACKNOWLEDGEMENT 

For converting the d-trees into FSGs, software developed at the 
International Computer Science Institute (ICSI), Berkeley, 
USA, was used. 

6. REFERENCES 

[1] Smits, R., Kingston, J., Nearey, T., Zondervan, R. (Eds), 
Proceedings Speech Recognition as Pattern Classifica-
tion Workshop, Nijmegen, 2001. 

[2] Norris, D., “Shortlist: a connectionist model of continu-
ous speech recognition” , Cognition 52, 189-234, 1994. 

[3] Sturm, J., Kamperman, H., Boves, L., den Os, E., “ Impact 
of speaking style and speaking task on acoustic models” , 
Proceedings ICSLP, pp. 361-364, 2000. 

[4] Wester, M., “Pronunciation variation modelling for 
Dutch automatic speech recognition” , Ph.D. thesis, Uni-
versity of Nijmegen, the Netherlands, 2002. 

[5] Weka-3 Machine Learning software in Java, 
http://www.cs.waikato.ac.nz/ml/weka/index.html. 


