
Phylogenetic studies of the
vesicular fusion machinery

Dissertation
for the award of the degree

”Doctor rerum naturalium” (Dr. rer. nat.)
Division of Mathematics and Natural Sciences

of the Georg-August-Universität Göttingen

submitted by
Nickias Kienle

from
Tübingen, Germany

Göttingen, 2010

Members of the Thesis Committee:

Dr. Dirk Fasshauer (1st Reviewer)
Research Group Structural Biochemistry, Department of Neurobiology, Max
Planck Institute for Biophysical Chemistry

Prof. Dr. Burkhard Morgenstern (2nd Reviewer)
Department for Bioinformatics, Institute for Microbiology and Genetics,
University of Göttingen

Prof. Dr. Nils Brose
Department of Molecular Neurobiology, Max Planck Institute of Experimen-
tal Medicine

Date of the oral examination:

Declaration of Authorship

Hereby, I confirm that I have created this work (Phylogenetic studies of the
vesicular fusion machinery) entirely on my own and that I have only used
the sources and materials cited.

Göttingen, 31st of May 2010
Nickias Kienle

i

In accordance with the standard scientific protocol, I will use the personal
pronoun ”we” to indicate the reader and the writer, or (as explained in
Appendix A) my scientific collaborators and myself.

ii

Acknowledgements

First of all, I would like to thank Dirk Fasshauer and Tobias Kloepper for
letting me work on this project. Their advice and support led me along
my path. I am very grateful for the opportunity and the nice atmosphere
throughout the whole time.
Many thanks to Prof. Dr. Burkhard Morgenstern and Prof. Dr. Nils Brose
for being members of my committee and for their advice.
Thanks a lot to Anand Radhakrishnan for the C2 domain introduction and
my practical intern Annette Weizbauer for her help with the SNAPs.
Furthermore, I would like to thank Gottfried Mieskes for continuous orga-
nizational support.
Many thanks to the GGNB for financially supporting my method course at
the Cold Spring Harbor Laboratories.
I would like to acknowledge Caro, Esra, Ioanna, Katrin, Sina, Ulrike, Alexan-
der, Anand, Dennis, Matias, Nathan, Pawel, and Tobias who all started out
as colleagues, but became friends. Thank you all a lot, it never would have
been the same without you.
Zu guter Letzt möchte ich meinen Eltern, meiner Schwester, Luise und Erika
(Ruhe in Frieden) danken. Ihr seid die beste Familie die man sich nur
vorstellen kann.

iii

iv

Abstract

The eukaryotic cell consists of a large system of membrane delimited com-
partments. Material exchange between these compartments is mediated by
intracellular trafficking vesicles. These vesicles bud from a donor compart-
ment, travel along the cytoskeleton, are tethered, and finally fuse with the
membrane of the target compartment. Several key protein families (e.g.
SNARE, SNAP, Rab, SM, C2 domain proteins) that are involved in intra-
cellular trafficking are highly conserved not only between species, but also
between different trafficking steps. The precise molecular activity of the
members of these families is often not well understood and little is currently
known about the changes of individual factors during evolution. Unravel-
ing the evolutionary history of these vesicular fusion proteins would fill the
gaps and provide more insight into the molecular events. Hence, a technical
basis is needed for data handling and to conduct necessary analyses. This
thesis describes the development of the highly flexible and efficient Tracey
management system (database, Java database package, and web interface).
With this innovative system, it is possible to classify and analyze even ex-
tremely complex and versatile protein families. Consequently, the system
was used to analyzed SNARE proteins in fungi, the SNAP family, and C2
domains in fungi.

v

vi

Kurzfassung

Die eukaryotische Zelle ist in mehrere Kompartimente unterteilt, welche
durch Membranen vom Rest der Zelle abgetrennt sind. Stoffaustausch zwi-
schen Kompartimenten geschieht über vesikulären Transport. Vesikel werden
am Donorkompartment abgeschnürt, wandern danach entlang des Zytoske-
letts, um schliesslich mit der Membran des Zielkompartiments zu fusionieren.
Verschiedene Proteinfamilien (z.B. SNARE, SNAP, Rab, SM, C2 Domänen
Proteine), die im intrazellulären Transport eine entscheidende Rolle spielen,
sind hoch konserviert. Dies gilt nicht nur für unterschiedliche Organismen,
sondern auch für die unterschiedlichen Transportschritte innerhalb einer Zel-
le. Die genau Funktionsweise dieser Proteinfamilien ist häufig unklar und es
existieren wenig Hinweise auf deren evolutionärer Entwicklung. Eine Unter-
suchung der Entstehung dieser Proteinfamilien könnte interessante Einblicke
in die molekularen Ereignisse liefern. Zur Durchführung einer solchen Un-
tersuchung bedarf es einiger technischer Voraussetzungen. Die vorliegende
Arbeit beschreibt die Entwicklung des flexiblen und leistungsfähigen Tra-
cey Verwaltungssystems (Datenbank, Java Datenbankpaket und Webseite).
Dieses innovative System erlaubt die Klassifizierung und Analyse selbst von
hoch komplexen und mannigfaltigen Proteinfamilien. Darüber hinaus wurde
das System eingesetzt, um die SNARE Proteine in Pilzen, die SNAP Familie
und die C2 Domänen in Pilzen zu untersuchen.

vii

viii

Contents

1 Introduction 1
1.1 Intracellular membrane trafficking 1

1.1.1 The core fusion machinery 3
1.1.2 SNARE complex disassembly 6
1.1.3 C2 domain proteins play an important role in neuronal

exocytosis . 7
1.2 Classification approach . 11
1.3 SNARE-Project and Management System 14

1.3.1 SNARE classification 14
1.3.2 SNARE database . 18
1.3.3 SNARE Java database package 18
1.3.4 SNARE web interface 18

1.4 Aim of this Work . 20

2 Material & Methods 23
2.1 MUSCLE . 23
2.2 HMMER . 27

2.2.1 Architecture . 28
2.2.2 HMMER Programs . 30

2.3 Phylogeny . 32
2.3.1 IQPNNI . 34
2.3.2 Likelihood-Mapping 34
2.3.3 Bootstrapping . 35
2.3.4 Calculation & evaluation of phylogenetic trees 36

2.4 SNARE web interface . 37

3 Results & Discussion 41
3.1 Aligning sequences . 41

3.1.1 Motif Aligner . 42
3.1.2 Alignment Refiner . 43
3.1.3 Conservation Filter . 43

3.2 Tracey . 44
3.2.1 Tracey database . 46

3.2.1.1 sequences & genes 46

ix

Dissertation Nickias Kienle

3.2.1.2 taxonomies 49
3.2.1.3 motifs . 51
3.2.1.4 layouts . 55
3.2.1.5 p2dMapping 56

3.2.2 Tracey Java database package 58
3.2.3 Tracey web interface 61

3.2.3.1 Query . 64
3.2.3.2 Insert . 69
3.2.3.3 Verify . 71
3.2.3.4 UserSettings 76

3.2.4 WebAccessManager 77
3.3 SNARE proteins in fungi . 80

3.3.1 Vam7 is an apomorphy of the fungi lineage 83
3.3.2 SNARE changes in the endosomal/vacuolar pathways

of the Saccharomycotina 84
3.3.3 A whole genome duplication resulted in an increased

set of secretory SNAREs in Saccharomyces cerevisiae 86
3.3.4 The tomosyn SNARE motif in Saccharomycotina is

degenerated . 88
3.3.5 The Pezizomycotina lineage contains clearly diverged

secretory syntaxins . 89
3.3.6 Fungi phylogeny is recapitulate by SNAREs 90

3.4 SNAP proteins . 91
3.5 C2 domain proteins in fungi 97

4 Conclusion & Outlook 107

References 111

A Contributions 123

x

List of Figures

1.1-1 Intracellular vesicle trafficking 2
1.1-2 SNARE cycle . 4
1.1-3 SNARE structures . 5
1.1-4 C2 structures . 8
1.1-5 C2 topologies . 10
1.2-6 General classification scheme 13
1.3-7 SNARE-Project interaction scheme 15
1.3-8 The 20 distinct SNARE subgroups 17
1.3-9 SNARE-Project database scheme 19
1.3-10 SNARE-Project dataset interface 20

2.1-1 MUSCLE algorithm . 24
2.2-2 Plan 7 profile HMM architecture 29
2.3-3 Likelihood-Mapping Visualization 35
2.4-4 SNARE website query example 38

3.1-1 MSA Example . 42
3.1-2 Alignment with HMM consensus 43
3.2-3 Novel interaction scheme 45
3.2-4 Tracey database scheme . 47
3.2-5 UML-like schematic of sequences & genes tables 49
3.2-6 UML-like schematic of taxonomy related tables 50
3.2-7 UML-like schematic of motif related tables 52
3.2-8 UML-like schematic of layout related tables 57
3.2-9 UML-like schematic of the p2dMapping table 57
3.2-10 Tracey Java database package interfaces 58
3.2-11 MVC paradigm . 62
3.2-12 TagLib code snippet . 63
3.2-13 UML-like schematic of the Tracey web interface 63
3.2-14 Tracey web interface sequence query mask 65
3.2-15 Tracey web interface sequence list view 66
3.2-16 Tracey web interface sequence detail view 67
3.2-17 Insert masks of the Tracey web interface. 70
3.2-18 NCBI taxonomy check results 71
3.2-19 Sequence verify mask of the Tracey web interface 72

xi

Dissertation Nickias Kienle

3.2-20 Motif verify mask of the Tracey web interface (unverified) . 74
3.2-21 Motif verify mask of the Tracey web interface (verified) . . 75
3.2-22 Layout verify panel of the Tracey web interface 76
3.2-23 WebAccessManager Task Interfaces 79
3.3-24 Vesicle trafficking and related SNAREs of a yeast cell . . . 81
3.3-25 Unrooted Qa.III.b tree of fungi SNAREs 85
3.3-26 Unrooted Qa.IV tree of fungi SNAREs 87
3.3-27 Phylogenetic relationships of concatenated SNAREs 92
3.4-28 SNAP Structures . 93
3.4-29 Unrooted tree of SNAPs . 95
3.5-30 Unrooted tree of fungi C2 domains 103

xii

List of Tables

2.2.1 Weighting schemes of hmmbuild 31

3.5.1 Proteins with C2 domains in fungi lineages 98

xiii

xiv

List of Abbreviations

aa amino acid
AM AccessManager
AMS AccessManagerServer
AU Approximately Unbiased
BLAST Basic Local Alignment Search Tool
Doc2 Double C2 domain protein
ES ExecutorService
EST Expressed Sequence Tag
fUnc13 Fungi Uncoordinated Family Member 13
GSP Groovy Server Pages
HMM Hidden Markov Model
IQP Important Quartet Puzzling
IQPNNI Important Quartet Puzzling and Nearest Neighbor Inter-

change
JVM Java Virtual Machine
LE Log Expectation
Lgl Lethal giant larvae
MLE Maximum Likelihood Estimation
MP Maximum Parsimony
MSA Multiple Sequence Alignment
MUG190 Meiotically Up-regulated Gene 190 Protein
MUSCLE Multiple Sequence Comparison by Log-Expectation
MVC Model-View-Controller
NCBI National Center for Biotechnology Informatio
NEDD4 Neural Precursor Cell Expressed, Developmentally Down-

regulated 4
Npsn Novel Plant SNARE
nr non-redundant
NSF N-ethylmaleimide-sensitive fusion protein
Pfam Protein family database
PKC Protein Kinase C
PLC Phospholipase C
PSD2 Phosphatidylserine Decarboxylase 2
PSI-BLAST Position-Specific Iterative BLAST

xv

Dissertation Nickias Kienle

PSSM Position-Specifc Scoring Matrix
PX Phox homology
RefSeq Reference Sequence
RP3 Rabphilin
SM Sec1/Munc18
SMART Simple Modular Architecture Research Tool
SNAP Soluble NSF attachment protein
SNAP-25 Synaptosomal-associated Protein 25 kDa
SNARE Soluble N-ethylmaleimide-sensitive factor attachment pro-

tein receptor
Syb Synaptobrevin
Syp Syntaxin of plants
Syt Synaptotagmin
Syx Syntaxin
TCB Three Calcium and Lipid Binding Domains
TMR Transmembrane region
UPGMA Unweighted Pair Group Method with Arithmetic mean
WAM WebAccessManager
WGD Whole Genome Duplication
XML Extensible Markup Language

xvi

1 Introduction

1.1 Intracellular membrane trafficking

The eukaryotic cell encompasses a large system of intracellular membrane

delimited compartments. It is often assumed that this extensive endomem-

brane system evolved as a result of a phagotrophic lifestyle by invagination

of the plasma membrane. For example the Endoplasmic Reticulum builds

the starting point for proteins of the secretory pathway. It facilitates pro-

tein biogenesis and folding of newly synthesized proteins. In a subsequent

step, these proteins get transported to the Golgi apparatus for further post-

translational modification and processing. Additionally, the Golgi apparatus

serves as a sorting hub for proteins to their target destination. In the en-

docytic pathway, extracellular material is taken up by the cell. During this

process, endosomes and lysosomes/vacuoles are required for sorting and pro-

cessing of newly internalized molecules.

Vesicles, small, intracellular, membrane-enclosed sacs, are utilized as carriers

to mediate material exchange between different compartments. All vesicle

transport reactions can be divided into four steps, vesicles bud from a donor

organelle, move along the cytosceleton, are tethered, and then fuse with

an acceptor organelle (see fig. 1.1-1). The protein machineries involved in

these processes (e.g. Coat proteins [1], Rabs [2], soluble N-ethylmaleimide-

sensitive factor attachment protein receptors (SNAREs) [3], Sec1/Munc18

(SM) proteins [4]) are highly conserved, not only among all eukaryotes, but

1

Dissertation Nickias Kienle

Figure 1.1-1: Distinct steps of an intracellular transport vesicle. In the first step
(budding), a vesicle buds from a donor compartment. Subsequently, it moves along
the cytosceleton towards its destination. Tethering factors bring the vesicle into
place, so that the fusion process can begin. Modified from [10]

also between different vesicular trafficking steps [5, 6, 7] and probably orig-

inated by duplication and diversification events of prototypic protein ma-

chineries during evolution. This indicates that the proto-eukaryotic ancestor

was already equipped with the various compartments found in present cells

[8, 9, 10, 11].

An extensively well-studied example for intracellular trafficking is neuronal

exocytosis. It takes place at the presynaptic membrane of a chemical synapse

and serves interneuronal signaling. Upon Ca2+ influx, vesicles filled with

neurotransmitters fuse with the presynaptic plasma membrane and secret

their cargo into the synaptic cleft. Afterwards, the neurotransmitters dif-

fuse to the receptors of the post-synaptic membrane of the neighboring neu-

ron. Neuronal exocytosis can be divided into four different steps (teth-

ering, docking, priming, and fusion). First, tethering factors capture free

vesicles in order to concentrate them at their destined place of work. Sec-

ond, docking proteins/complexes hold the vesicles in close proximity to the

plasma membrane. In the third step, priming factors make arrangements

and modifications, so that upon Ca2+ influx, fusion can be triggered nearly

2

Dissertation Nickias Kienle

instantaneously. In the final step, proteins of the core fusion machinery (e.g.

SNAREs, SM) drive the process by merging the vesicle with the presynap-

tic plasma membrane. Neuronal exocytosis is a highly specialized process

that involves various additional factors. Some of these factors contain C2

domains (e.g. Synaptotagmin (Syt), Rabphilin (RP3), double C2 domain

protein (Doc2), Unc13) and seem to play an important role as Ca2+ sensors.

1.1.1 The core fusion machinery

In all intracellular trafficking steps, the central machinery involved in the

fusion process is composed of members of the SNARE protein family (re-

viewed in detail in [3, 12]). It is thought that this machinery is tightly

controlled by members of the SM family. SNAREs form a large family of

cytoplasmic oriented membrane proteins, with most of them anchored by a

C-terminal transmembrane region (TMR). SNARE proteins are associated

either with the vesicle membrane or with the target membrane. The defin-

ing feature of the family is a unique motif, the so-called SNARE motif. It

is a stretch of about 60-70 amino acids (aa), arranged in heptad repeats

1.1-3. During the fusion process, SNAREs assemble into a tight four-helix

bundle complex between opposing membranes. This association is thought

to occur in a zipper-like fashion from the N-terminus towards the membrane

anchors at the C-terminus, a process that is thought to pull the opposing

membranes into close proximity (see fig. 1.1-2). In its interior, the SNARE

complex is hold together by 16 layers (−7 to +8, see fig. 1.1-3) of mostly

hydrophobic residues. The complex-forming domains are highly conserved,

not only between different species, but also between different vesicle traf-

ficking steps. Initially, SNAREs were named v- and t-SNARE, reflecting

their membrane association (v stands for vesicle membrane and t for tar-

get membrane). However, a more detailed analysis of the main structural

features of the SNARE complex allowed for a finer classification of SNARE

3

Dissertation Nickias Kienle

Figure 1.1-2: Initially, the three Q-SNARE motifs form the acceptor complex
(Qabc). When the vesicle with the R-SNARE comes into close proximity, the for-
mation of a four-helical trans-complex (SNAREs anchored on opposing membranes)
is promoted. This zipper-like process starts at the N-terminnus and assembles to-
wards the transmembrane anchors at the C-terminus. Finally, the fusion pore opens
and the vesicle merges with the plasma membrane, transferring the SNAREs into
a cis-complex-configuration (SNAREs anchored on the same membrane). To en-
able the SNAREs for consecutive rounds of fusion, they have to be disassembled
again. This is managed by the AAA+ ATPase NSF together with its cofactor
SNAP (soluble NSF attachment protein). (modified from [3])

proteins into four main groups (Qa, Qb, Qc, and R), reflecting their posi-

tion in the four-helix bundle [13, 14, 15] (see fig. 1.1-3). In contrast to the

mostly hydrophobic residues of the different layers in the SNARE complex,

the 0-layer is special, as it contains hydrophilic residues. The reclassifica-

tion of the SNAREs is based on the residues present at this position. While

Q-SNAREs mostly contain a glutamine (1-letter code Q) at their 0-layer

(see SNARE complex structure in fig. 1.1-3), R-SNAREs mostly contain

an arginine (1-letter code R) at their central layer. SNAREs of different

main groups vary in their N-terminal domains. Whereas most Q-SNAREs

possess a three-helical Habc domain at their N-terminus, several R-SNAREs

contain an N-terminal profilin/longin domain, and the members of the reg-

ulatory SNAREs contain two consecutive seven-bladed β-propeller domains

4

Dissertation Nickias Kienle

1 2 3 4 5 6 7 8-1-2-3-4-5-6-7 0

Qa

Qb

Qc

R

N-terminal
domains

SNARE
domain

Transmembrane
region

Qa

Qb

Qbc

Qc

R

R.Reg

Figure 1.1-3: Domain compositions of Q/R SNAREs. Blurry domains cannot be
found in all members of the specific subfamily. Qa SNAREs are known to possess
a short N-terminal peptide and a three-helical domain (Habc domain). The same
three-helical domain can also be found in several members of the Qb and Qc sub-
family. A special Qc SNARE (Vam7) contains a N-terminal Phox homology (PX)
domain, but lacks a transmembrane region (see section 3.3.1). Qbc members have
an N-terminal Qb and an C-terminal Qc domain that are interconnected by a linker
region. The linker often carries a cysteine stretch that is known to be palmitoylated
(zig-zag lines) and serves as a membrane anchor [16]. Most R-SNAREs carry an
N-terminal profilin/longin domain. Except Ykt6, all members of this subfamily
possess a transmembrane anchor. Membrane association of Ykt6 is mediated by
isoprenylation [17]. Regulatory SNAREs contain two consecutive seven-bladed β-
propeller domains at their N-terminus. Some members of this subfamily lost their
SNARE motif (see section 3.3.4). (adapted from [3])

5

Dissertation Nickias Kienle

(for details see fig. 1.1-3). Similar crystal structures from three different

SNARE complexes [18, 19, 20] show that each main group contributes one

SNARE motif to the formation of a four-helix bundle (QabcR-rule) [13].

In different intracellular trafficking steps, membrane fusion is mediated by

specific combinations of SNAREs. However, it is still under intense debate

in what manner SNAREs are to be assigned to different trafficking routes.

1.1.2 SNARE complex disassembly

After fusion of a vesicle with the plasma membrane, SNAREs are assem-

bled and anchored on the same membrane (Cis-SNARE configuration, see

fig. 1.1-1). For consecutive rounds of fusion, SNARE complexes need to

be disassociated again, but spontaneous complex disassembly is very slow

[21, 22]. Active SNARE disassembly is carried out by the AAA+ ATPase

N-ethylmaleimide-sensitive fusion protein (NSF) together with its cofactor

soluble NSF attachment protein (SNAP) [23]. Currently, it is assumed that

at the beginning of disassembly process, the Cis-SNARE complex stands

upright in the membrane. Since SNAREs do not possess a binding site for

NSF, SNAP proteins (most likely three) envelope the complex and act as

adaptors between the SNAREs and NSF [24, 25]. Subsequently, ring-shaped

NSF hexamers hydrolyse ATP to disassemble the SNARE complex, begin-

ning at the N-terminus [26, 27, 28, 29].

Higher eukaryotes have three isoforms of SNAPs: α-, β-, and γ-SNAP [25],

whereas fungi only posses the single α-SNAP homolog Sec17. Unfortunately,

it is entirely unclear how the different SNAPs are evolutionary related. Since

most organisms contain only a single NSF, it is likely that SNAPs and NSF

are able to disassemble all different SNARE complexes.

6

Dissertation Nickias Kienle

1.1.3 C2 domain proteins play an important role in neuronal

exocytosis

As mentioned above, C2 domains can be found in various different factors

involved in neuronal exocytosis. High conservation of sequence and struc-

ture suggests that all C2 domains belong to one family (see fig. 1.1-4).

Originally, they were defined as the second conserved amino acid stretch in

the α, β, and γ isoforms of Protein Kinase C (PKC) [30]. These members of

the PKC family are involved in various signal transduction pathways, dur-

ing which a stimulus (mechanical or chemical) is converted into a cellular

response. They contain two consecutive C1 domains that serve as phor-

bol esters/diacylglycerol binding site, the aforementioned C2 domain, and

a catalytic serine/threonine kinase domain. Several other C2 domain pro-

teins play roles in signal transduction as well (e.g. Phospholipase C (PLC),

cytosolic Phospholipase A2, Phosphatidylinositol 3-kinase). Interestingly,

most of these factors possess only a single C2 domain. Various other pro-

teins with C2 domains are involved in membrane trafficking (e.g. Syt, RP3,

Doc2, Unc13). Often these proteins contain multiple C2 domains (e.g. Syt,

RP3, and Doc2 possess two domains, Munc13 contains three C2 domains

and Myoferlin, Dysferlin, and Otoferlin contain up to six C2 domains). Al-

though it is not clear why multiple C2 domains, within one protein, emerged

and how they function, it is quite imaginable that these domains might be

able to function cooperatively. Many C2 domain proteins are cytosolic, but

some factors (often related to intracellular trafficking) are membrane an-

chored by transmembrane regions (e.g. Syt, TCB).

A well-established function of C2 domains is Ca2+ dependent membrane

lipid binding. C2 domains act like a switch, with increased lipid binding

affinity upon Ca2+ binding. Higher intracellular Ca2+ concentrations can

origin for example from opening Ca2+ channels in the synaptic endplate of

a neuron or the Sarcoplasmic reticulum in muscle cells. Two different lipid

7

Dissertation Nickias Kienle

PKCa

PKCb

cPLA2

Syt1 C2B

Syt1 C2A

RP3 C2B

RP3 C2A

Figure 1.1-4: Peripherally shown are the C2 domain structures of Protein Kinase
C α (PKCa), Protein Kinase C β (PKCb), cytosolic phospholipase A2 (cPLA2),
Synaptotagmin (Syt), and Rabphilin (RP3). Centrally shown is the overlay of the
outer single structures. Two blue spheres at the top indicate two Ca2+ ions at the
binding site.

8

Dissertation Nickias Kienle

binding modes can be distinguished. In the absence of Ca2+, the regions

around the Ca2+ binding loops exhibit a negative electrostatic potential.

Upon binding of positively charged Ca2+ ions, these regions become either

positive, which allows for binding of anionic membrane lipids (e.g. phos-

phatidylserine) or overall neutral, enabling binding of zwitterionic mem-

brane lipids (e.g. phosphatidylcholine) [31]. Additionally, it has been shown

that some C2 domains are involved in protein-protein interactions [32]. Still

it seems that Ca2+ dependent membrane binding is the predominant func-

tion of C2 domains.

C2 domains have a variable length of about 130aa and they form an anti-

parallel eight-stranded β-sandwich with highly flexible loops on ”top” and

at the ”bottom” (see structures on fig. 1.1-5). Two distinct topologies

(termed type I and type II) can be observed in connecting the β-strands

[33] (fig. 1.1-5). In type I, the red β-strand in figure 1.1-5 is at the N-

terminus of the domain, whereas configuration of type II bears the β-strand

at the C-terminus. The evolutionary background of this topology difference

is completely unclear, but the question arises if this difference can be asso-

ciated with a specific evolutionary event. It as postulated that type I C2

domains might have been originated by recombination of conserved terminal

β-strands between neighboring type II domains in animal three calcium and

lipid binding domains (TCB) [34]. However, the presented evidence and the

line of argument does not prove this hypothesis without a doubt. It cannot

be excluded that more than two different topologies exist or that the ob-

served topology changes are the result of different events. To be able to shed

more light into the evolutionary history of C2 domains, a more universal and

profound analysis is necessary.

The original C2 domain function is not clear yet, but identifying the canon-

ical C2 domain set of the eukaryotic ancestor might answer this question.

As outlined before, C2 domains occur mostly as Ca2+ dependent membrane

9

Dissertation Nickias Kienle

N C

N C

12

1

2

3

4

5

6

7

8

4 3

5 8

6 7

81

3 2

4 7

5 6

1

2

3

4
5

6

7
8

A

B

Figure 1.1-5: Two different structural topologies of C2 domains. Highlighted in
red is the β-strand that is structurally equivalent in both topologies, but permuted
in the primary sequence. (A) C2 type I topology with the red β-strand at the
N-terminus. The structure shows the C2 domain of Protein Kinase C α (PKCa)
from Rattus norvegicus (PDB code 1DSY). (B) C2 type II topology with the red
β-strand at the C-terminus. The structure depicts the C2 domain of Protein Kinase
C ǫ (PKCe) from Rattus rattus (PDB code 1GMY).

10

Dissertation Nickias Kienle

binding modules in various different proteins. This is often an auxiliary

function that supports the protein in its actual role (e.g. kinase domain

of PKC, catalytic domain of PLC). So far, it is unclear if a C2 domain of

a specific protein can be used as a characteristic to identify this protein.

Only by analyzing the evolutionary history of these domains throughly, it is

possible to answer all these open questions.

1.2 Classification approach

As outlined above, several conserved protein families play important roles

in vesicle trafficking. Little is currently known about the changes of in-

dividual factors during evolution and whether their functions are indeed

conserved between fungi, plants, or animals. Moreover, several of these

trafficking components only function in larger protein complexes. Hence,

it is likely that individual factors of larger machineries co-evolved. Unrav-

elling the evolutionary history of these vesicular fusion proteins would fill

the gaps and provide more insight into variations of molecular events. To

be able to accomplish this, a universal and thorough classification of the

involved protein families is required. Several attempts based on standard

bioinformatic approaches have been conducted to classify proteins involved

in intracellular trafficking processes. However, these studies are limited ei-

ther by the number of included species or by the number of included se-

quences [35, 6, 36, 37, 5, 13, 33, 15]. Additionally, such studies often use

high throughput oriented methods, but speed at the cost of sensitivity can

lead to false assumptions.

Several sophisticated and well established methods are available, which are

able to detect many different domains (e.g. protein family database (Pfam)

[38], simple modular architecture research tool (SMART) [39]). Such con-

ventional approaches are usually based on only a few models and their main

focus is to achieve a high degree of sensitivity (i.e. if a known domain is

11

Dissertation Nickias Kienle

present in a protein, it most likely will be detected). These methods usu-

ally work very well for the identification of domains, but existing models

are rarely updated. Another limitation is that the specificity of the final

result is often unknown. For example, SNARE motifs are often detected,

but usually it is not possible to determine what kind of SNARE protein (e.g.

Syntaxin, Synaptobrevin or Tomosyn) it might be. An additional problem

of such methods is that their models usually are not generated to reflect

the evolutionary development of a domain. This however is important to

understand the evolutionary history of a domain.

To overcome the limitations of conventional approaches, our group devel-

oped a classification approach (see fig. 1.2-6) that aims to identify and

distinguish all members of a given functional domain [7]. In the first step, a

representative starting set of domain sequences is collected. Subsequently,

an alignment of these sequences serves as the input for a basic phylogenetic

reconstruction. The resulting hierarchy is then analyzed to define a set of

groups and Hidden Markov Models (HMMs) are trained for each of these

groups. In the next step, the models are utilized to gather more sequences

by scanning different sources (e.g. sequence databases, genome projects).

New sequences have to be verified to ensure only correct sequences are in-

corporated. The expanded set of sequences serves as the new basis for the

refinement of the evolutionary conserved groups and models. This proce-

dure is repeated iteratively until no new sequences can be identified or the

quality of the models is sufficient.

Sequence alignments are the basis of the phylogenetic reconstruction and

the HMMs. Hence, correct sequences and high quality alignments are very

important elements in this classification approach. Incorporation of a ver-

ification process into the classification, in which newly gathered sequences

are inspected by experts, ensures that only correct sequences are used in

any further step. Although there are attempts to address redundancy and

12

Dissertation Nickias Kienle

Data

HMM

Classification

Data Verification

Biological Knowledge/
Phylogenetic Reconstruction

Training
(hmmerbuild)

Search for new proteins
(hmmpfam/hmmsearch)

Figure 1.2-6: Schematic of the general classification system. The left circle (Data)
is the starting point. Biological knowledge and phylogenetic reconstruction meth-
ods are applied to available data. This leads to a hierarchical classification for
the underlying dataset. According to the resulting classification, Hidden Markov
Models (HMMs) are trained for each distinct group. In the next step, these HMMs
are used to scan several different sources (protein databases, genome projects) for
new proteins. Newly predicted hits are not transferred directly into the working
tables of the database, but go firstly into the verification tables. Entries in these
tables have to be inspected by experts and then either deleted (wrong prediction
or duplicate) or verified into the working tables.

accuracy in most common sequence databases, they still contain a variety

of sequence variants (i.e. splice variants and sequences with low certainty).

Collection of all these sequences without initial inspection, could negatively

influence the balance and the quality of the underlying sequence dataset,

but exactly this is mandatory to achieve high sensitivity in domain identifi-

cation.

Amino acid sequences are prone to mutations and differences in the se-

quences reflect their evolutionary history. Homologous sequences can be

divided into two different types, orthologs and paralogs. Orthologous se-

quences occur in different species, but originated for a common ancestor,

whereas paralogous sequences originated by duplication in the same organ-

ism. Unraveling the evolutionary history of a domain by state-of-the-art

phylogenetic reconstruction methods, allows for identification of orthologs

and paralogs within a family of homologous domains. With this knowledge,

13

Dissertation Nickias Kienle

it is possible to generate a set of models that better reflect the evolution-

ary hierarchy of a domain family and this results in significantly improved

specificity.

The developed classification approach, with a combination of machine learn-

ing methods, phylogenetic methods, and biological knowledge of functional

domains, not only result in highly sensitive and specific predictors, but can

also lead to the identification of unknown members within these domains

and families.

1.3 SNARE-Project and Management System

The aim of the SNARE project was to establish a universal, hierarchical clas-

sification for SNARE proteins that reflects the specific evolutionary devel-

opment of this family [7]. The previously introduced classification approach

was utilized to achieve this goal (see section 1.2). Additionally, a strategy

and a management system (database, Java database package, and web in-

terface) was developed that ensured the efficiency of communication and

knowledge transfer [40] (see fig. 1.3-7 and sections 1.3.2, 1.3.3, and 1.3.4).

Biological knowledge and bioinformatic methods can be tightly combined to

ensure high quality of the outcome.

1.3.1 SNARE classification

As introduced in section 1.1.1, SNARE proteins contain a SNARE motif with

a length of about 60-70aa. However, to be able to use ungapped alignments,

only the 53aa (layers −7 to +8) of the core SNARE motif were included into

the classification. 150 well-known SNAREs (already classified into the main

groups Qa, Qb, Qc, and R by Bock et al. [13]) served as a starting point for

the analysis. Alignments of the motifs were used to train HMMs for each of

the four SNARE main groups. Subsequently, a search of the non-redundant

14

Dissertation Nickias Kienle

Java Objects

Database

Java

Bioinformatic

Biology

Computational
Sequence Analysis

Phylogenetic
Reconstruction

Statistical
Calculations

Biological
Sequence Analysis

Phylogenetic
Analysis

Statistical Analysis

Web Interface (Tomcat/JSP)

Figure 1.3-7: SNARE-Project interaction scheme between the bioinformatic (top)
and the biology (bottom) side. All relevant information are stored in the database
(white box in the middle). Each data table is wrapped by a belonging Java class
(grey box) [41]. Stored information can be accessed either through direct usage of
the Java wrapper classes or via a web interface , which also utilizes the respective
classes.

15

Dissertation Nickias Kienle

(nr) database of the National Center for Biotechnology Information (NCBI,

[42]) with the trained models resulted in about 800 SNARE proteins. Based

on this dataset, a conducted phylogenetic reconstruction revealed 20 distinct

conserved subgroups (see fig. 1.3-8). HMMs were trained for each of the

20 subgroups. After another round of searching in various sources (nr-, est-

database, and several genome projects), followed by extensive sorting and

selection, the final dataset comprised a total of 2165 SNAREs. The proteins

were distributed over 154 different species, including 59 animals, 41 fungi,

18 plants, 25 protists, and two viruses. For about half of the species an

almost complete SNARE set was present.

The 20 subgroups can be putatively assigned to different trafficking routes

within the cell (see fig. 1.3-8). Five acceptor organelles can be assigned

to basic intracellular transport: (I) the Endoplasmatic Reticulum, (II) the

Golgi apparatus, (III.a) the trans Golgi network, (III.b) the endosomal com-

partments, and (IV) the plasma membrane. According to the QabcR-rule

one SNARE of each main group needs to be present for the formation of a

SNARE complex, therefore every distinct trafficking step requires a Qa, Qb,

Qc, and R SNAREs from each main group. In the case of neuronal exocytosis

these would be Syntaxin1a (Qa.IV), SNAP-25 (providing Qb.IV/SNAP.b,

Qc.IV/SNAP.c), and Synaptobrevin2 (R.IV). Figure 1.3-8 depicts tentative

assignments of SNAREs to the distinct intracellular trafficking steps. How-

ever, the way, in which SNAREs should be assigned to different trafficking

routes, is still unclear. Additionally, some SNAREs are shown to have rather

ambiguous interactions ([3, 44, 45]). Therefore, the SNARE groups in fig.

1.3-8 might represent the predominantly formed complexes, but participa-

tion of SNAREs in complexes of other fusion processes seems likely.

As mentioned before, the analysis revealed that the 20 subgroups are highly

conserved within all species included. Several organisms seem to have an

extended SNARE set (Homo sapiens 41, Arabidopsis thaliana 61). These

16

Dissertation Nickias Kienle

Vti1

m: Vti1a
m: Vti1b

f: Npsn
p: Npsn

m: Syx6
f: Tlg1
p: Syp5

m: Syx8
f: Syx8
f: Vam7
p: Syp7

m: membrin
m: Gos28
f: Bos1
f: Gos1
p: membrin

1st Helix of
m: SNAP-25
m: SNAP-29
m: SNAP-47
f: Sec9

Bet1

m: Gs15
f: Sft1

2nd Helix of
m: SNAP-25
m: SNAP-29
m: SNAP-47
f: Sec9

m: Syx7
m: Syx13
m: Syx20
m: Syx17
f: Pep12
p: Syp2

m: Syx18
f: Ufe1
p: Syp8

m: Syx5
f: Sed5
p: Syp3

m: Syx16
f: Tlg2
p: Syp4

m: Syx1
f: Sso
p: Syp1

1 2 3 4 5 6 7 8-1-2-3-4-5-6-7 0

Endoplasmatic Reticulum

Golgi apparatus

trans-Golgi Network

Endosomes

Secretion

Regulation

QcQb

SNAP.bQb.I Qb.II Qb.III SNAP.cQc.I Qc.II Qc.III

Qb.III.bQb.III.d Qc.III.b Qc.III.c

Qa

Qb

Qc

R

Sec22

m: Sec22like

Ykt6 m: Vamp7
m: Vamp7like
m: Vamp4
f: Nyv1
p: Vamp7

m: Syb1
f: Snc1

m: Tomosyn
m: Lgl
f: Sro

R

R.I R.II R.IVR.III R.Reg

Qa

Qa.I Qa.II Qa.IVQa.III.a Qa.III.b

Sec20 Use1

Figure 1.3-8: The four-helix bundle structure of the neuronal SNARE complex is
shown as a ribbon diagram in the middle (blue, red, and green for synaptobrevin 2,
syntaxin 1a, and Synaptosomal-associated protein 25a (SNAP-25a) respectively).
The layers (−7 to +8) in the core of the bundle are indicated by virtual bonds
between the corresponding Cα positions. SNARE proteins were divided into four
main groups and 20 subgroups, using an extensive classication analysis. Genuine
complexes are composed of four different SNARE motifs each belonging to one
of the four main groups (’QabcR’ composition). Putative SNARE units have been
assigned to the basic transport steps. In addition to the fusogenic SNARE proteins,
a regulatory R-SNARE without a membrane anchor, tomosyn, exists. The most
commonly used names for the different SNARE types are given. For historical
reasons, the names used for homologous SNAREs are often different in the different
eukaryotic kingdoms. Different SNARE names used for metazoa (m), fungi (f),
and plants (p) are listed. The names syntaxin and synaptobrevin (the secretory R-
SNARE of metazoa that is also referred to as VAMP, vesicle-associated membrane
protein) are abbreviated by Syx and Syb respectively. Several plant Q-SNAREs
have been named syntaxin of plants (Syp). Moreover, several more special names
of the markedly increased SNARE repertoire of vertebrates are not listed. [43, 7]

17

Dissertation Nickias Kienle

changes are usually the results of multiplication and diversification of the

basic 20 subgroups. In the contrary, some lineages only comprise a very

simple SNARE repertoire (fungi, green algae), containing only the basic 20

SNAREs. Hence, the 20 SNARE sub groups, shown in fig. 1.3-8, might be

the original SNARE repertoire of an assumed proto-eukaryoitc ancestor.

1.3.2 SNARE database

To be able to store the information of the SNARE family, an appropriate

database structure is necessary. The SNARE database [40] (see fig. 1.3-7)

is build up by tables for the protein sequences, the motifs (working tables),

the species, the groups, and the families. Moreover, tables exist for the pro-

tein sequences and motifs that still have to be verified (verification tables).

Tables and table relations of the database are shown in fig. 1.3-9. The

database is realized in the MySQL open source software [46].

1.3.3 SNARE Java database package

For each table in the database (see fig. 1.3-7) a software package with

Java classes [41] was developed [40]. An instance of such a class represents

one dataset (row) of the associated table. Each attribute of the tables are

mirrored onto a member variable in the according Java class. Additional

attributes simplify the handling of datasets. All classes contain a variety of

member function that are able to alter/process the dataset and the database

in various helpful ways. Every class implements the interface dataset (see

fig. 1.3-10).

1.3.4 SNARE web interface

A web interface was developed that provides easy access to all stored infor-

mation [40]. This web interface allows to search the database for specific

data, to insert new data, and to verify predicted data. The web interface also

18

Dissertation Nickias Kienle

id
comments
name
parent_id

species

global_id
gi
shortname
sequence
active
comments
multi_gi
sp
changeLog
strain_id
private

sequences

global_id
motifname
startposition
stopposition
comments
group_id
local_id
gaps
active
eValue

motif

global_id
gi
shortname
sequence
active
comments
multi_gi
sp
changeLog
strain_id
private
id

verifySequences

global_id
motifname
startposition
stopposition
comments
group_id
local_id
gaps
active
eValue

verifyMotif

id
comments
name

families

id
name
functionalName
shortname
parent_id
comments
family_id

groups

w
o

rk
in

g
 t
a

b
le

s
v
e

ri
fi
c
a

ti
o

n
 t
a

b
le

s

Figure 1.3-9: A schematic of the table relations of the SNARE-Project database.
The tables sequences and motif build the so called working tables that contain
the verified sequences/motif. The verification tables (verifySequences/verifyMotif)
hold predicted hits, which were not inspected yet. Additionally, tables for families,
groups (within families), and species complement the database.

19

Dissertation Nickias Kienle

clone(): Object
isNew(): boolean
toString(): String
writeInDatabase(): boolean
updateInDataBase(): boolean
removeFromDatabase(): boolean

<<Interface>>
Dataset

Figure 1.3-10: UML-like diagram of the interface dataset

implements a rights management system with three different ranks, to be

able to grant different privileges to different user. For detailed information

see section 1.3.2.

1.4 Aim of this Work

Previously, our group has analyzed the evolutionary history of the SNARE

protein family. For this, a management system had been developed that in-

cluded a database, Java database package, and a web interface. This study,

which focused on the core membrane fusion machinery, was the starting

point for analyzing the evolutionary history of the entire protein machinery

involved in the docking and fusion of transport vesicles with the acceptor

compartment. It turned out, however, that the management system de-

signed for the SNARE protein family is not flexible enough to incorporate

other protein families. The main aim of this study was to develop a new

management system that would allow for incorporating various additional

protein families. Since several protein families involved in vesicle trafficking

contain various different domains and sometimes even multiple copies of the

same domains, special attention had to be paid to manage proteins with

complicated domain architecture. To indicate the domain composition of

such proteins, a layout system needed to be developed. In addition, easier

and more automatic data handling and data maintenance of the stored se-

20

Dissertation Nickias Kienle

quence data should be aimed for.

Furthermore, comprehensive tests of the novel data management system

should be conducted by analyzing different additional protein families. These

tests not only serve to find possible weak points of the management system

but also to improve the pipelines for data handling. Based on the estab-

lished classification of the SNARE protein family, the evolutionary history

of the SNARE protein family in the fungi lineage should be investigated

as a starting point. Since the genomic data available for fungi expanded

drastically in the last few years, this would require to incorporate a large set

of additional SNARE sequences from various fungi species. A novel protein

family to incorporate into the new database were the SNAPs, which serve as

cofactors for the SNARE disassembly ATPase NSF. According to the liter-

ature, the SNAP family could be expected to be rather small, usually only

present in few copies in each eukaryotic genome. Therefore, this protein

family was chosen to be analyzed in all eukaryotes in order to reconstruct

its evolutionary history. In contrast, C2 domain proteins appear to be much

more abundant, in particular in animals. This large protein family was cho-

sen to be incorporated into the database and to eventually reconstruct its

evolutionary history. In contrast to the SNARE and SNAP protein families

this is a more challenging task, because this protein family is very diverse as

the C2 domain can be contained as module for Ca2+ mediated membrane

binding in different types of proteins. Owing to its complex modular archi-

tecture, C2 domain proteins would therefore serve as a touchstone for the

novel data management system.

21

Dissertation Nickias Kienle

22

2 Material & Methods

2.1 MUSCLE

Alignment reconstruction tools are used in many different situations. For ex-

ample, as an initial step of the classification and for constructing alignments

for the phylogenetic analysis. Experience with different alignment construc-

tion tools (e.g. T-Coffee [47], PROBCONS [48], MAFFT [49]), manifested

MUSCLE as the tool of choice. T-Coffee and PROBCONS calculate align-

ments with high accuracy, but high computational cost and high memory

usage limits the number of sequences (<100) for both tools [50]. Addition-

ally, the PROBCONS implementation was not very stable, this resulted in

various program crashes. MAFFT and MUSCLE are comparable in terms

of accuracy, speed, and memory usage [50]. However, MAFFT had consid-

erable problems to construct alignments for a large number of very short

sequences. MUSCLE proved to be very fast, accurate, and robust, therefore

it was used as the standard tool.

MUSCLE is an abbreviation and stands for MUltiple Sequence Comparison

by Log-Expectation [51]. It is an example of an iterative alignment algo-

rithm for constructing Multiple Sequence Alignments (MSAs). The algo-

rithm of MUSCLE can be divided into three parts (see fig. 2.1-1):

• Initial Progressive Alignment

• Improvement of the Alignment

23

Dissertation Nickias Kienle

Figure 2.1-1: MUSCLE algorithm [51]

• Iterative Refinement of the Alignment

Initial Progressive Alignment

The focus during the initial alignment is speed and not accuracy. First, a

distance matrix is build up with the k − mer (word of length k) distances

for each pair of input sequences. Assuming that two related sequences X,Y

have a higher number of common k−mers than two random sequences, the

frequencies nX(τ), nY (τ) of k−mer τ in X, Y can be counted and together

with their length LX , LY a similarity measure between sequences X and Y

can be defined as:

FX,Y =
∑

τ

min[nX(τ), nY (τ)]

min[LX , LY] − k + 1

24

Dissertation Nickias Kienle

The k-mer distance measures are defined as:

dk−mer = 1 − FX,Y

The k −mer distances (dk−mer) are used to reconstruct a distance matrix,

which in turn is used to reconstruct a guide tree. MUSCLE uses by default

Unweighted Pair Group Method with Arithmetic mean (UPGMA) for the

construction of the guide tree. One key advantage of UPGMA is its good

runtime (O(N2)) compared to other distance based reconstruction methods

[51].

Another characteristic of MUSCLE is the profile scoring function for the

pairwise alignment. MUSCLE introduces a new function called log expecta-

tion (LE) score:

LExy = (1 − fx
G)(1 − f y

G) log(
∑

i

∑

j

fx
i f

y
j pij

pipj
)

i and j are symbols from an alphabet (e.g. amino acids), fx
i is the observed

frequency of i in column x of the first profile and fx
G the observed frequency

of gaps in that column at position x. pi is the background probability of i

and pij the joint probability of i and j being aligned to each other, taken

from the PAM-VTML-240 matrix [51, 52]. The factor (1− fx
G)(1− f y

G) rep-

resents the occupancy of columns x, y and reduces the score for columns

with a majority of gaps, leading to an significant improvement of the MSAs

accuracy.

Combining the UPGMA guide tree with the LE score assures fast construc-

tion of an initial progressive alignment (see fig. 2.1-1 step 1.1 − 1.3).

Improvement of the Alignment

Phase two utilizes the initially constructed MSA to calculate an improved

distance matrix. Using the new matrix for the construction of a refined guide

25

Dissertation Nickias Kienle

tree, which in turn should lead to an improved MSA. Phase two is similar to

phase one, with the improved distance matrix as the only difference (see fig.

2.1-1 steps 2.1−2.3). MUSCLE uses the Kimura distance [53] to obtain the

new distance matrix from the initial MSA. For two sequences with partial

overlap D, the distance is defined as:

dKimura = − log(1 −D −
D2

5
)

Iterative Refinement of the Alignment

Phase three is the iteration step. It can be divided into four parts (see fig.

2.1-1 steps 3.1 − 3.4):

• Delete an edge to get two subtrees

• Compute subtree profiles

• Realign the profiles

• Compare the scores

Although, the resulting alignment of phase two is reasonably accurate, it is

still biased towards the construction of the initial guide tree. In the first

step of the third phase, two subtrees will be obtained by removing the edge

with the greatest distance to the root of the guide tree. The profiles of the

two subtrees are then realigned, this leads to a new MSA. Finally, the score

of the new alignment is calculated and compared to the last best alignment

obtained so far. If its score is higher, the new alignment will be used as the

starting point in the next step, otherwise the last best one. This four steps

will be repeated until the calculation converges or a user defined threshold

is satisfied.

26

Dissertation Nickias Kienle

Usage

Default usage:

muscle -in <inputfile> -out <ouptutfile>

Usage for large alignments:

muscle -maxiters 1000 -maxmb 2 -in <inputfile> -out <ouptutfile>

2.2 HMMER

Profile HMMs can be utilized to model position-specific information about

an MSA (e.g. the degree of conservation or the amino acid distribution of a

column, possible inserts, and gaps) and to use this model to search for se-

quences or parts of sequences that show similar characteristics as the MSA. A

profile HMM consists of an emission alphabet Σ of symbols (e.g. the 1-letter

symbols for amino acids), a set of states π (π1, π2...), a matrix P = {pkl}

of transition probabilities pkl,∀ k, l ∈ π (sums up to 1) and emission proba-

bilities ek(b),∀ k ∈ π and∀ b ∈ Σ (sums up to 1) [54]. An MSA can be used

to train a HMM, thereby training P and e with the given training set. The

HMMER package is an implementation of profile HMMs for biological se-

quence analysis [55]. It provides programs for training a HMM (hmmbulild,

hmmcalibrate) and for conducting sequence searches (hmmsearch, hmmp-

fam). The results of a HMM search depends on the sequences used during

training. On the one hand side, if the chosen sequences are to similar, the

method may not be able to find distantly related sequences (HMM is to

specific). On the other hand, if the training set is to diverse, the chance of

randomly associating sequences with the profile (false positives) increases

significantly. HMMER offers a good tradeoff between sensitivity and speci-

ficity. For example, if a protein family contains three subgroups, HMMs

can be trained for each of the subgroups and for the whole family. Such a

27

Dissertation Nickias Kienle

strategy provides options of high sensitivity (general family HMM) and high

specificity (subgroup HMMs).

For example, HMMER can be much more sensitive and specific than classi-

cal sequence similarity search methods (Basic Local Alignment Search Tool

(BLAST) [56] or FASTA [57]), since a flexible number of sequence can be

used to train the HMM that builds the basis of the search. HMMER can

also more flexible than Position-Specific Iterative BLAST (PSI-BLAST) [58].

PSI-BLAST runs an initial BLAST search for a sequence, using a stan-

dard substitution matrix (e.g. BLOSUM62). The resulting sequences are

then used to construct a Position-Specifc Scoring Matrix (PSSM). In the

next search iteration, this PSSM replaces the initial matrix, which can in-

crease the search sensitivity. These last two steps can be repeated, until

PSI-BLAST converges (no new sequence hit included in the last iteration).

Crucial point of this method, is to choose the correct sequences for the con-

struction of the PSSM. In this, PSI-BLAST and HMMER are quite similar,

but the usage of HMMER is much more flexible and therefore much more

practical. For example, the sequences for HMM training can be collected

independently of the database a search is focusing on, whereas PSI-BLAST

is directly dependent on the sequences in the database and thus the PSSM

might be biased. Additional, a very practical feature of HMMER is the

possibility to quickly check, whether a sequence belongs to a certain family.

This can also be done with the PSI-BLAST, but it involves an indirect and

intricate procedure.

2.2.1 Architecture

Fig. 2.2-2 shows an example for the the so called Plan 7 profile HMM

of HMMER. The depicted architecture in the example represents a MSA

with four columns, each is modeled by a match state (Mx). Every match

state contains emission probabilities for emitting a character of the emis-

28

Dissertation Nickias Kienle

Figure 2.2-2: Plan 7 profile HMM architecture [55].

sion alphabet. In the case of protein sequence alignments, this would be

20 emission probabilities, one for each amino acid. Deletion states (Dx) are

non-emitters and they model a region of gaps in an MSA. Possible inser-

tions in an MSA are modeled by insertion states (Ix). These states contain

emission probabilities that represent specific regions of inserts. HMMER

calls the group M/D/I at the same position a node [55]. The arrows in the

architecture represent the transition probabilities to switch from one state

into another. Except for I → D and D → I, all transitions between M/D/I

are possible. Additionally, the architecture contains non-emitting states for

entering (B) and exiting (E) the main model. B/M/D/I/E builds the core

of the Plan 7 profile HMM architecture.

S/N/C/T/J are special states that are important for local or multi hit

alignments. Initially, the model begins in the non-emitting start state (S).

Regions of unaligned N-terminal/C-terminal sequence would be modeled by

the N/C state. The J state represents possible joining segments of un-

aligned sequence between the hits. This comes in handy, if the the system

is used to search for certain motifs in a sequence that could contain multiple

copies of that specific motif. N/J/C all emit on transition with specific

emission probabilities. Finally, the non-emitting E state represents the exit

of the model.

29

Dissertation Nickias Kienle

2.2.2 HMMER Programs

The HMMER package contains several different programs that are able to

accomplish various task. Programs that are mainly used in this thesis are

described in more detail, giving more insight into the application and some

useful parameters.

hmmbuild

A program to build a HMM from an MSA.

Basic Usage:

hmmbuild [-options] <hmmfile output> <alignment file>

Options:

-n <s> : name; name this (first) HMM <s>

-o <f> : re-save annotated alignment to <f>

-A : append; append this HMM to <hmmfile>

-F : force; allow overwriting of <hmmfile>

–hand : this allows the specification of the model architecture

by hand

–amino : force the sequence alignment to be interpreted as

amino acids

–nucleic: force the sequence alignment to be interpreted as

nucleic acids

Additionally, there are several options concerning weighting schemes for

sequences (see table 2.2.1 [55]).

Principal usage for constrcuting HMMs:

hmmbuild -F –hand –amino <hmmfile output> <alignment file>

30

Dissertation Nickias Kienle

Option Weighting Method Reference

–wblosum Henikoff simple filter weights [59]

–wgsc GSC tree weights (default) [60]

–wme maximum entropy (ME) [61]

–wpb Henikoff position-based weights [62]

–wvoronoi Sibbald/Argos Voronoi weights [63]

–wnone dont do any weighting

Table 2.2.1: Different weighting schemes options of hmmbuild. [55]

hmmcalibrate

If a model is not calibrated, it uses an analytic upper bound calculation (ex-

tremely conservative) to determine the expectation value scores (E-value)

for a search hit. By calibrating the model, hmmcalibrate empirically de-

termines parameters for an HMM that make searches more sensitive. The

calibration can take some time, but this eventually results in more accurate

E-values and therefore higher sensitivity.

Usage:

hmmcalibrate <hmmfile>

hmmsearch

This program searches a sequence database for matches to a specific HMM.

Usage:

hmmsearch [-options] <hmmfile> <sequence file/database>

Options:

–cpu <n> : sets the number of CPUs to <n>

-E <x> : sets E value cutoff (globE) to ≤ x

-T <x> : sets T bit threshold (globT) to ≥ x

-Z <n> : sets Z (# seqs) for E-value calculation

-A <n> : limit of the alignment output is <n> best

31

Dissertation Nickias Kienle

domain alignments

Principal usage for sequence searches:

hmmsearch -Z 100000 <hmmfile> <sequence file/database>

hmmpfam

A program that searches an HMM database for matches to a query sequence.

The query sequence can be one among many in a sequence database. All

matches for the sequences are listed in the output.

Usage:

hmmpfam [-options] <hmm database> <sequence file/database>

Options:

–cpu <n> : sets the number of CPUs to <n>

-n : nucleic acid models/sequence (default protein)

-E <x> : sets E value cutoff (globE) to ≤ x

-T <x> : sets T bit threshold (globT) to ≥ x

-Z <n> : sets Z (# seqs) for E-value calculation

-A <n> : limit of the alignment output is <n> best

domain alignments

Principal usage for sequence searches:

hmmpfam -Z 100000 <hmm database> <sequence file/database>

2.3 Phylogeny

Phylogeny is the reconstruction of evolutionary relations between different

organisms, based on molecular data (DNA, RNA, or amino acid sequences).

The most commonly-used methods can be divided into three different basic

types: distance methods, maximum parsimony (MP), and maximum likeli-

hood estimation (MLE).

32

Dissertation Nickias Kienle

For a given set of molecular data, distance based methods first compute a

distance matrix and then try to find a tree that represents these distances

as closely as possible. These methods are very fast, even for large datasets.

However, their accuracy is heavily debated and they seem to perform not

as good as methods from the other two categories. Additionally, quality

estimation of such reconstructed trees can be quite time consuming.

Based on a statistical model for evolution, MLE methods try to find a phylo-

genetic tree that maximizes the likelihood of generating the given sequences

at the leaves of the tree. MLE provides a systematic frame-work for ex-

plicitly incorporating assumptions and knowledge about the process that

resulted in the given data. Any model of evolution is only a rough esti-

mation of real biological evolution, but fortunately MLE is quite robust to

violations of the model assumptions. MLE methods can statistically evalu-

ate different tree topologies and use all available sequence information. On

small data sets (about 20 sequences) MLE methods work excellent, but for

larger datasets heuristics have to be utilized. This is due to the extensive

tree space search, which is necessary to find the maximum likelihood.

MP methods take a set of aligned sequences and try to find a tree and a

labeling of its internal nodes by auxiliary sequences with the intention of

minimizing the number of mutations along the tree. In contrast to distance

methods and MLE, MP methods are cladistics, as they try to reconstruct the

pathways of evolution. MP methods do not provide information on branch

length and are prone to long branch attraction artifacts. Long branch at-

traction is a phenomenon of phylogenetic reconstruction methods that infers

two or more long branches as related, independent of their true evolutionary

relation.

33

Dissertation Nickias Kienle

2.3.1 IQPNNI

Important Quartet Puzzling and Nearest Neighbor Interchange (IQPNNI)

[64] is a very efficient MLE method for tree reconstruction and can be divided

into four steps. In the initial step (1), the method calculates a tree using

BIONJ [65] and then Nearest Neighbor Interchange is applied to this tree,

until no further improvement of the likelihood function can be found [66].

To optimize the tree (2), first each leave with a probability below a certain

threshold is deleted. These leaves are then reinserted by usage of Important

Quartet Puzzling (IQP), followed by optimization using Nearest Neighbor

Interchange. The resulting tree is tested (3) and, if the log-likelihood is

better compared to the current best tree, the new tree is kept. The method

stops if the number of optimization steps are above a pre-defined threshold

(4), otherwise it returns to step (2).

2.3.2 Likelihood-Mapping

Likelihood-Mapping is a graphical method to visualize phylogenetic content

of a set of aligned sequences [67]. Each quartet of sequences can infer three

fully resolved tree topologies. Analysis of the maximum likelihoods of these

topologies builds the basis of the method. A equilateral triangle with the

three topologies as vertices represents the likelihoods as points inside (see

fig. 2.3-3). Fig. 2.3-3 (A) shows a simplified model, in which the tree

preferences are indicated by three basins. Data that represents real-world

evolution is not as simple and sometimes it is not possible to resolve the

phylogenetic relation of four sequences. Being not able to resolve this is

either due to short sequences (noise) or a potential star-like evolution. Fig.

2.3-3 (B) depicts a model for which this possibility was included. With this

model, it is possible to visualize phylogenetic content and it shows whether

data are suitable for phylogenetic reconstructions. Additionally, the analysis

is also able to look at specific clusters (disjoint groups of sequences), instead

34

Dissertation Nickias Kienle

Figure 2.3-3: Equilateral triangles that visualizes the Likelihood-Mapping. (A)
Simplified model with three basins. Point c shows equal preference for all three
trees, whereas the x points show equal preference for two trees and none for the
third. (B) Refined model for improved real-world evolution representation. A∗

shows the area for star-like phylogeny. A1, A2, and A3 show tendencies for tree-like
regions. For the rest of the areas, the tendency for either topology is not clear.
Modified from [67].

of looking at all quartets. Such an Likelihood-Mapping analysis can be used

to exhibit support values of internal branches for a given tree topology.

2.3.3 Bootstrapping

Bootstrapping is a commonly used method for evaluating the reliability of

an inferred phylogenetic tree. It starts by resampling the original MSA

with replacement of the columns, this is analogous to cutting the MSA into

individual columns and throwing them into a hat. Subsequently, columns

are drawn from the hat and they become the columns of the new MSA.

After a column is drawn, it is put back in the hat, the hat is shaken and

another column is drawn. In the next step, a phylogenetic tree is inferred

based on the new MSA. Resampling and tree reconstruction are repeated

for a sufficient amount of times (between 100 and 1000 iterations). Branches

of the original predicted tree are considered to be significant, if the same

branches are also frequent (>85%) in the resampled trees. Bootstrapping

can be applied by using the phylip package [68].

35

Dissertation Nickias Kienle

Bootstrapping is very useful in practice, but it is biased [69, 70, 71, 72].

The approximately unbiased (AU) test [73] aims on reducing the bias of the

bootstrap probability. Changes in the sequence length lead to several sets of

bootstrap replicates. To obtain the bootstrap probability values for different

sequence lengths, the method counts the number of times the hypothesis is

supported by the replicates for each set. Using the change in the bootstrap

probability value along the changing sequence length, the AU test calculates

the approximately unbiased probability value. The test provides an unbiased

procedure for assessing the confidence of the inner edges of a tree.

2.3.4 Calculation & evaluation of phylogenetic trees

Each phylogenetic reconstruction started with the calculation of a IQPNNI

tree. The Jones, Taylor, and Thornton matrix [74] was used as a distance

matrix and a gamma distribution with four categories (accounts for rate-

heterogenity across sites) served as the model of evolution. The stopping

rule of IQPNNI was used, but the reconstruction had to run at least the

suggested number of iterations. Likelihood-Mapping [67] was applied to

each edge of the tree to estimate the accuracy of the topology. As a second

source of confidence, the bootstrap analysis of the phylip package [68] was

applied with a 1000 replicates. Standard settings for seqboot, again the

Jones, Taylor, and Thornton distance matrix and a gamma distribution

(with parameter approximation from tree-puzzle) for protdist, and standard

options for neighbour were used. A random seed was set to nine if required.

To correct for the systematically biased bootstrap values, consel [75] was

used to perform the AU test [73]. A modified version phyml calculated [66]

the site-wise log-likelihoods needed for the AU test. The initially obtained

IQPNNI tree served as a starting point to join the results of the confidence

calculation and its inner edges were labeled with Likelihood-Mapping and

the corrected bootstrap values.

36

Dissertation Nickias Kienle

2.4 SNARE web interface

With the simplification of data handling in mind, a web interface was de-

veloped [40] for the SNARE-Project (see section 1.3). This web interface

provides easy access to all information in the database (see fig. 1.3-7).

The dynamic content of the website is realized in JavaServer Pages [41].

JavaServer Pages are a Java based technology and therefore allows usage of

the software package, introduced in section (1.3.3). The website implements

a rights management system with three different ranks. The first rank is

”user”, with this rank it is only possible to look at the protein sequences.

No changes of existing protein sequences or entries of new protein sequences

can be made. The second rank is ”submit”. In addition to the first rank,

users with ”submit” rights can change protein sequences or insert new pro-

tein sequences into the database, but each change or insertion needs to be

verified by a user with the highest rank, ”verify”. Only these users have the

rights to verify changed or inserted protein sequences. This ranking system

is very important, as it ensures data integrity. Currently, the actual website

is for internal use only, but a public version of the website (without submit-

ting and verification possibilities) is located at http://bioinformatics.

mpibpc.mpg.de/snare/.

To obtain an overview of the already known and classified protein sequences,

the website provides the possibility to search the database with different at-

tributes. Search attributes are the short name of a protein sequence, the

species of a protein sequence, the group of a motif that belongs to a pro-

tein sequence and whether a protein sequence is active or inactive. Two

ways can be used for the search for protein sequences by their short names,

species or groups. Firstly, by typing the exact short name of the protein

sequence into a edit field. The result is just this protein sequence. Secondly,

a wild card (%) can be used to do a fuzzy search in the database. Each

protein sequence, for which the parameter is part of the short name, is re-

37

http://bioinformatics.mpibpc.mpg.de/snare/
http://bioinformatics.mpibpc.mpg.de/snare/

Dissertation Nickias Kienle

Shortname-parameter: ArTh%;%ho%
Group-parameter: Qb.I;R%
Result: All datasets, which have “ArTh” at the beginning
or “ho” somewhere in the short name
and have motifs with the groupname “Qb.I”
or with a groupname that begins with “R”

Shortname-parameter: DaRe Syx8
Species-parameter: Homo sapiens
Result: There will be no result, because no dataset exists
that has a short name that includes “DaRe”,
and a species that is “Homo sapiens”

Figure 2.4-4: Example for a query at the SNARE website

turned. If the edit field contains several search parameters, they must be

separated (”;”). Additionally, boxes with all available species and groups

are presented. Multiple entries of these boxes can be chosen and they are

included into the search criteria. Several search parameters for one attribute

are logically-or connected, attributes themselves are logically-and connected

(see example 2.4-4).

Sometimes it is necessary to modify existing protein sequence entries if new

information is available. The website provides functionality the for altering

of a dataset and it distinguishes between two cases. Firstly, if the user who

changed the data has ”verify” rights and the attribute ”sequence” was not

changed, the protein sequence is simply updated in the sequences table of the

database. Secondly, if the attribute ”sequence” was changed or the dataset

was changed by an user with ”submit” rights or if an user with ”verify”

rights marks the dataset to be veried, the protein sequence is transferred to

the verifySequences table. In addition, a search for conserved motifs of the

protein sequence is conducted (hmmsearch, 2.2.2). The program searches

through the amino acid chain according to the trained HMMs and writes

the results in a file. Afterwards, the motifs are extracted and saved into the

verifyMotif table. A connection between the altered protein sequence entry

38

Dissertation Nickias Kienle

in the verifySequences table and the new motifs in the verifyMotif table is

established.

Insertions of new protein sequence entries into the database is restricted to

user with ”submit” or ”verify” rights. All fields on the insertion mask can

be editable freely, except for the species field. In this case, a drop-down box

contains all the species that are stored in the database. If the species of the

protein sequence is not present in the database, it has to be added first. The

new protein sequence is first inserted into the verifySequence table. Addi-

tionally a search (hmmsearch, 2.2.2) for the motifs is conducted. Resulting

motifs are inserted into the verifyMotif table. Like in the procedure after

changing a protein sequence a connection between the new protein sequence

in the verifySequences table and the new motifs in the verifyMotif table is

established.

Verification of newly predicted protein sequences can also be carried out

via the website. This part is only accessible to user with ”verify” rights.

The verification search mask provides the same search options as already

described before. Several helpful tools are offered to a user that verifies pro-

tein sequences. Predictions for a sequence can be accepted, which transfers

the sequences, along with its motif(s) into the working tables. By choosing

the option ”Keep in verification table” changes can be made, but the protein

sequence and its motifs remain in the verication tables. Additionally, the

website offers the possibility to recalculate the motifs for a specific protein

sequence. It is in inevitable to recalculate motifs, if a earlier conducted

prediction was incorrect or if the amino acid chain of a protein had to be

altered. Furthermore, occasional updates of the HMM models might lead

to the necessity of motif recalculation. In all these case the old motifs are

deleted and the new motifs are inserted into the verifyMotif table and linked

to the actual protein sequence. Moreover, possible false positives (predicted

motifs that are incorrect hits), together with its motifs, can be deleted on

39

Dissertation Nickias Kienle

the website.

Predicted motifs, together with all relevant information, are presented apart

from the actual sequence. One of the most important reference for the qual-

ity of a motif prediction by HMM methods is the so called E-value. It is

a significance criteria for the reliability of a predicted motif and it repre-

sents the probability for a motif to occur in the amino acid chain by chance

[54]. Along with the motif sequence, the HMM consensus and the similarity

are presented. The amino acids of the HMM consensus string are the ones

with the highest probability according to the HMM used. Capital letters

stand for highly conserved residues. Additionally, insert errors in the HMM

consensus are highlighted by dots (”.”). Similarity shows the correlation

between the HMM consensus and the actual found motif. Letters (1-Letter

code for amino acids) indicate exact matches, whereas not exact, but con-

served matches are shown by a ”+” [54]. Additional options can be utilized

to further simplify the decision finding process for the verifying user. Some-

times it can be helpful to be able to check similar, already verified motifs.

Therefore a link for each motif exists that displays all verified motifs that

belong to the same group and occur in the same species. It is possible to

align the actual motif with one of the already verified motifs, to compare the

similarity. This might not be sufficient, if a species is completely new. In

this case, no verified motifs are present in the database. Therefore, it can be

helpful to be able to check homologous species. The website also provides

a link to compare verified motifs from homologous species that belong to

the same group. After evaluating all information on the predicted motifs, a

verifying user has to mark the correct ones for transfer to the working tables

and the wrong ones for deletion. This can be done for every motif via radio

buttons.

Furthermore, the websites provides sections for insertion, view, and change

of species and groups.

40

3 Results & Discussion

3.1 Aligning sequences

Sequence alignments play a crucial role in the classification of domains. They

serve as the basis of the phylogenetic reconstructions, as well as training sets

for HMMs. Therefore, the quality of sequence alignments is of the utmost

importance. Of all alignment construction tools tested, MUSCLE [51, 52]

showed the best performance, especially in the case of large datasets. Unfor-

tunately, even the heuristic approach of MUSCLE (see section 2.1) seemed

to be error-prone in some cases (see fig. 3.1-1 A). Hence, a strategy was

developed that aims on reducing the complexity of sequence alignment con-

struction, by combining different methods. HMM predictions (motifs) are

used to align conserved regions (see section 3.1.1). If the HMM is of high

quality, consequently the prediction is of high quality and the conserved re-

gions are well aligned. Motifs can contain not well conserved inserts that do

not fit to the conserved regions represented by the HMM. These inserts can

additionally be aligned by MUSCLE. The alignments are further refined,

by applying an iterative block strategy that scans for conserved blocks and

realigns the regions in between (see section 3.1.2). Additionally, a conserva-

tion filter was developed to ensure that all alignments only contain significant

information (see section 3.1.3).

41

Dissertation Nickias Kienle

A B

Figure 3.1-1: Small example of (A) mis-aligned sequences and (B) well-aligned
sequences after refinement.

3.1.1 Motif Aligner

At the beginning of a classification, initial alignments are constructed using

MUSCLE, followed by manual curation according to secondary structure

elements, available 3D structures and TMR predictions. Afterwards, these

high quality alignments serve as training sets for the first HMMs (see hmm-

build and hmmcalibrate in section 2.2.2). Subsequently, these models can

be used to gather sequences with homologous domains form various sources

(see hmmsearch and hmmpfam in section 2.2.2). All hits come with the

HMM consensus string that indicates conserved positions (including gaps)

and possible insert errors (see section 2.4). Since all domains predicted by

the same specific model must have the same number of conserved positions,

the consensus can be used to align these domains. An algorithm was imple-

mented that goes through all consensus strings and aligns the residues at

the conserved positions of the domains. Insert errors are independent of the

HMM (various length) and therefore have to be aligned with a alignment

construction tool (see fig. 3.1-2). Combining HMM motif predictions for

conserved regions, together with MUSCLE for not well conserved insertions

enhances the quality of the alignments significantly and thus improves the

classification.

42

Dissertation Nickias Kienle

A A A a a A A A A A a a A A A A A A A

B B B B B B B B B b b B B B B B B

C C C c C C C C C C C C C C C C

A A A a a A A A A A a a A A A A A A A

B B B B B B B B B b b B B B B B B

C C C c C C C C C C C C C C C C

- -
-

- -
- -

- -

- -

Figure 3.1-2: Example for an alignment, using the HMM consensus string. On
top are the unaligned sequences. Capital letters show conserved positions, whereas
small letters indicate insert errors. The aligned sequences at the bottom show
blocks of conserved residues with blocks of aligned insert errors in between.

3.1.2 Alignment Refiner

Unfortunately, even the motif aligner approach sometimes results in mis-

aligned sequences. The HMM package (hmmer, see section 2.2) applies the

so called Plan 7 profile HMM architecture to construct the HMMs (see sec-

tion 2.2.1). This architecture does not allow transitions from an insert to

a deletion state and vice versa. If a training set alignment would result in

such a transition, the programs of the HMM package adjust the alignment

to correct for this before the HMMs are constructed. This policy could be

one cause for mis-aligned sequences, when using the HMM consensus.

To improve the alignments further, an algorithm was developed that refines

a given alignment using an iterative block strategy. It searches for conserved

blocks within an alignment and aligns unconserved blocks in between, us-

ing alignment construction tools. For newly aligned unconserved blocks, it

recursively refines them further, applying the same strategy. This approach

significantly improves the alignment quality (see fig. 3.1-1 B) and therefore

the quality of the classification.

3.1.3 Conservation Filter

As mentioned before, sequence alignments are the basis of phylogenetic re-

constructions and HMMs. To ensure the quality of the results, it is impor-

43

Dissertation Nickias Kienle

tant to filter out alignment columns with insufficient information content.

The information content of a column can simply be defined by the num-

ber of gaps (a column with 500 residues has a higher information content

than a column with 200 residues and 300 gaps), but also by entropy [76].

Additionally, sequences can be incomplete (e.g. incomplete Expressed Se-

quence Tag (EST) sequences or misassembled sequences). Such sequences

might possess only little information content and need to be filtered out as

well. To address both issues, an algorithm was developed that traverses an

alignment and removes columns with information content below a specific

threshold and rows below a specific number of amino acids. This ensures

that only the most significant information of an alignment are used in any

further steps.

3.2 Tracey

During the work with the SNARE proteins it became clear that the SNARE-

Project management system (database, Java database package and web in-

terface, see section 1.3) was not flexible enough for the further analyses.

Core principles of the system remained unchanged, but established compo-

nents were adapted and complemented with novel additions (see fig. 3.2-3).

The subsequent sections give an overview about innovations made to the

management system and how these improve data handling. A major aim

of the project was to shed more light into the evolutionary history of the

protein families that are part of the intracellular vesicle fusion machinery.

This might also provide the possibility to infer conclusions on the func-

tionality of specific factors. Therefore, the novel management system was

named Tracey, adopted from intracellular vesicle fusion machinery. Major

objectives of this new system are to be generic, to be flexible, and to yield

high-performance.

44

Dissertation Nickias Kienle

Java Objects

Database

Java

Web Interface (Tomcat/Groovy on Grails)

Bioinformatic

Biology

Computational
Sequence Analysis

Phylogenetic
Reconstruction

Statistical
Calculations

Biological
Sequence Analysis

Phylogenetic
Analysis

Statistical Analysis

WebAccessManager Daemon

Figure 3.2-3: Novel interaction scheme between the bioinformatic (top) and the
biology (bottom). All relevant information are stored in the database (white box in
the middle). Each data table is wrapped by a belonging Java class (grey box) [41].
Stored information can be accessed either through direct usage of the Java wrapper
classes or via a web interface. Contrary to the SNARE-Project, this novel interac-
tion scheme contains an additional layer that mediates data exchange between the
web interface and the database.

45

Dissertation Nickias Kienle

3.2.1 Tracey database

Although the SNARE-Project database (see section 1.3.2) served as the ba-

sis for the novel Tracey database, only little remained unchanged. The ta-

bles sequences, motifs (motif), and verifyMotifs (verifyMotif) were already

present in the SNARE-Project database, but their configuration was mod-

ified fundamentally. Additionally, species, groups, and families also under-

went an extensive redesign and were renamed to taxonomy, domainGroups,

and domains. The table verifySequences was removed from the database.

Figure 3.2-4 shows a schematic overview of the Tracey database and the re-

lations between tables. Some of the NCBI databases are used as a reference

for tables in this database. The database is embedded in the MySQL open

source software (version 5.1.34) [46].

3.2.1.1 sequences & genes

The table sequences builds the core of the database. Fig. 3.2-5 (A) shows

the column names and the associated column types. Each sequence is stored

in this table. Its primary key is ”sequence id”, which is an unsigned integer

value, unique for every dataset. All protein sequence sources provide their

sequences with a short description (usually as the FastA header). These

information can be stored in the field ”foreignAnnotation”. A ”shortName”

can be given to every sequence in the table. These short names are usually

build up by the ”taxonomyShortname” of the organism (see section 3.2.1.2),

followed by an underscore and the abbreviation of the protein name. For ex-

ample, the SNARE Synaptobrevin 1 from Homo sapiens has the short name

HoSa Syb1. The field ”annotation” is reserved for custom annotations. ”se-

quence” can hold either the 1-letter code of an amino acid chain, the 1-letter

code of an RNA chain, or the 1-letter code of an DNA chain. It can be very

helpful to be able to rank sequences with different statuses. Values for these

are in style of NCBI and can be ”live” (alive and ready to use), ”crystal

46

Dissertation Nickias Kienle

1:n 1:n

1:1

1:n

n:1

1:n

1:n

1:n

1:n

1:n

1:1

n:1
1:n1:n

domains

sequences

domainGroups methodsp2dMapping

proteinLayouts

proteinLayout
Groups

NCBI_Taxono
mySynomyms

NCBI_Taxonomy

layouts

genes

taxonomies

insertErrors

motifsverifyMotifs

Figure 3.2-4: Tracey database scheme. The central table of the database is se-
quences. Every other table is directly or indirectly linked to this one. The table
genes helps to keep track of all sequences belonging to the same gene. All necessary
information about organisms can be stored in tables taxonomies, NCBI Taxonomy,
and NCBI TaxonomySynonyms. Predicted motifs are stored in motifs/verifMotifs,
with links to insertErrors, domainGroups, domains, and methods. Layouts are hold
in the layouts table with links to proteinLayoutGroups, and proteinLayouts. Rela-
tions between domainGroups and proteinLayoutGroups are realized by p2dMapping.

47

Dissertation Nickias Kienle

structure” (represents a crystal structure), ”suppressed” (sequence is being

suppressed from the analysis, maybe incorrect), ”replaced NCBI” (replaced

at the NCBI database and should no longer be used), ”replaced” (replaced

with a sequence that is not from NCBI), ”withdrawn” (withdrawn from the

source database and no longer avaiable), ”dead” (not used), ”ignore” (se-

quence is ignored) and ”unknown” (unknown status). Comments about the

entry can be saved in the field ”sequenceComments”. References to the orig-

inal sequence, can be stored in the fields ”dbxref” (identifier of the original

entry within the source database) and ”sourceDatabase” (the name of the

source database). Every entry in the sequences table contain a reference

(”taxonomy id”) to a species in the taxonomies table (see section 3.2.1.2).

sequences contains published and unpublished data simultaneously, there-

fore ”private” can be used to mark them accordingly. Unforunately, protein

sequence nomenclature is not unique. Homologous sequences from different

organism can have varying names. For example, the most prominent Qa.I

SNARE is called Syntaxin 1 (Syx1) in most organisms, but in the nematode

Caenorhabditis elegans it is called Unc64, based on the screen in which it

was discovered. Sometimes, even the same proteins from the same organism

have different names (Synaptobrevin/Vamp). It is important to include as

many names as possible of a specific protein. For exactly this purpose the

field ”aliases” can be used. Some sequences may be updated over time. If

this happens, their status is set to ”replaced”. The new sequence contains

a link to the replaced one in the field ”replacedBy”. As mentioned before,

the ”sequence” field can hold either a protein, DNA, or RNA sequence. The

type of the sequence is indicated by the values of the field ”sequenceType”.

”gene id” is a foreign key that links the sequence to an entry in the genes

table.

A gene can result in several different sequences (DNA, RNA or protein),

according to possible splice variants. Data handling can be simplified a lot,

48

Dissertation Nickias Kienle

sequence_id: int(11)
foreignAnnotation: longtext
sequenceShortname: varchar(50)
annotation: longtext
sequence: longtext
sequenceStatus: text
sequenceComments: longtext
dbxref: varchar(25)
changeLog: longtext
taxonomy_id: int(11)
private: tinyint(3) unsigned
aliases: text
sourceDatabase: text
replacedBy: int(11)
sequenceType: varchar(25)
gene_id: int(11)
-

sequences

gene_id: int(11)
ncbiGene_id: varchar(10)
-

genes

A

B

Figure 3.2-5: An UML-like schematic of the tables (A) sequences and (B) genes.
Primary keys of each table are indicated by underlines, foreign keys by dashed
underlines.

by knowing whether similar sequences are products of the same gene. To be

able to store genes, the Tracey database contains the genes table (see fig.

3.2-5 (B)). Besides the primary key ”gene id”, the table only contains an

additional field for the unique identifier (”ncbiGene id”) of the NCBI genes

database, to be able to link genes to this table [42]. The genes table is still

quite rudimentary, but will be extended considerably in the future.

3.2.1.2 taxonomies

The main function of the taxonomy tables is to keep all sequences organized

from a taxonomical perspective. This allows for quick extraction of all se-

quences belonging to a specific organism or a specific taxonomical branch

(e.g. metazoa or plants). Each sequence entry is linked to a specific or-

ganism. NCBI provides an established system to structure taxonomical

information. This comprehensive NCBI Taxonomy database [42] is used as

49

Dissertation Nickias Kienle

name: text
NCBI_TaxonomySynonyms_id: int(10) unsigned
NCBI_Taxonomy_id: int(11)
class: text

NCBI_taxonomySynonyms

taxonomy_id: int(11)
commonName: text
scientificName: text
taxonomyComments: longtext
taxonomyParent_id: int(11)
taxonomyRank: text
taxonomyShortname: tinytext
ncbi_Taxonomy_id: int(11)
taxonomyStatus: text

taxonomies

rank: text
scientificName: text
division: text
commonName: text
genus: text
species: text
subspecies: text
ncbi_Taxonomy_id: int(11)
nucNumber: int(11)
estNumber: int(11)
protNumber: int(11)
structNumber: int(11)
genomeNumber: int(11)
geneNumber: int(11)
active: tinyint(1)
lastUpdate: date
class: text
parent_id: int(11)
-

NCBI_taxonomy
A B

C

Figure 3.2-6: An UML-like schematic of the tables (A) taxonomies, (B)
NCBI taxonomy, and (C) NCBI taxonomySynonyms. Primary keys of each table
are indicated by underlines, foreign keys by dashed underlines.

a reference for the Tracey table taxonomies (see fig. 3.2-6 (A)). In fact, the

tables NCBI taxonomy (see fig. 3.2-6 (B)) and NCBI taxonomySynomyns

(see fig. 3.2-6 (C)) are kept synchronized with the NCBI taxonomy database,

which ensures the integrity of the taxonomies table. The taxonomies table,

as its name suggests, not only contains single organisms, but also their hier-

archical taxonomic classification. Primary key of taxonomies table is ”tax-

onomy id”, this unsigned integer values is unique for each dataset. The field

”taxonomyParent id” links an entry back to ”taxnomy id” of the parent.

The table provides two names fields, ”commonName” (e.g. human, fruit

fly) and ”scientificName” (e.g. Homo sapiens, Drosophila melanogaster).

It is possible to add comments (”taxonomyComments”) to every dataset.

The ranks (”taxonomyRank”) of taxonomy entries are directly taken from

NCBI taxonomy and reflect the phylogenetic rank of an entry (e.g. king-

dom, phylum, family, genus, species, strain). Each taxonomy entry has a

unique ”taxonomyShortname”. If not already in use, it is build by the initial

50

Dissertation Nickias Kienle

two letters of the species, followed the initial two letters of the strain (e.g.

Homo sapiens, HoSa), otherwise a similar short name is chosen. A direct

link to the NCBI taxonomy table is stored in the field ”ncbi taxonomy id”.

Sometimes, several species of the same genus are available (e.g. 14 species of

Drosophila). Associated sequence are often similar and thus would not pro-

vide additional information, but could bias the analysis. For better discrim-

ination each dataset in the taxonomies table has a specific status. Available

statuses are, in descending order, ”main reference” (species that are include

in a standard analysis), ”secondary reference” (can be used as a secondary

reference), ”additional” (additional species without new information but are

included for completeness), and ”unknown” (species without known status).

3.2.1.3 motifs

Motif predictions can result in multiple hits for the same position. There-

fore, an expert has to control the predicted motifs and choose the correct

ones, this is called ”verification process”. Newly predicted motifs (verifyMo-

tifs) go into the verifyMotifs table (see fig. 3.2-7 (B)). Upon verification, the

verified motifs get transferred into the motifs table (see fig. 3.2-7 (A)). The

principal design of the tables verifyMotifs and motifs is identical. Primary

keys of the tables are the fields ”motif id” and ”verifyMotif id”, respectively.

In order to connect a motif to a specific sequence, the ”sequence id” can be

saved as a foreign key. All motifs that belong to the same protein family

(domain) also possess an identical ”motifname” (e.g. SNARE, C2). It is

essential to know where a motif occurs within a sequence and if it bears any

gaps. For this purpose, motifs and verifyMotifs offer the fields ”startposi-

tion”, ”stopposition”, and ”gaps”. The position fields contain simple integer

values, but the gaps field contains a combination of the start position of the

gap, followed by a colon and the gap length (e.g. 34:2 would be a gap of

length 2 starting at sequence position 34). Specific comments can be saved

51

Dissertation Nickias Kienle

sequence_id: int(11):
motifname: tinytext
startposition: int(11)
stopposition: int(11)
verifyMotifComments: longtext
domainGroup_id: int(11)
verifyMotif_id: int(11)
gaps: longtext
active: tinyint(4)
method_id: int(11)
verifyMotifRank: int(11)
asciiOutput: longtext
binaryOutput: mediumblob

verifyMotifs

sequence_id: int(11)
motifname: tinytext
startposition: int(11)
stopposition: int(11)
motifComments: longtext
domainGroup_id: int(11)
motif_id: int(11)
gaps: longtext
active: tinyint(4)
method_id: int(11)
motifRank: int(11)
asciiOutput: longtext
binaryOutput: mediumblob

motifs

insertError_id: int(11)
motif_id: int(11)
startposition: int(11)
stopposition: int(11)

insertErrors

domainGroup_id: int(11)
domainGroupName: varchar(50)
domainGroupFunctionalName: varchar(50)
domainGroupShortname: tinytext
domain_id: int(11)
domainGroupComments: longtext
domainGroupParent_id: varchar(100)
domainGroupLength: int(11)
appendixName: text

domainGroups

domain_id:int(11)
domainName: varchar(50)
domainComments: longtext
alignment: longtext
alignmentLength: int(11)

domains

method_id: int(11)
domainGroup_id: int(11)
input: longtext
type: mediumtext
parameter: text

methods

A

B

C

D

F

E

Figure 3.2-7: An UML-like schematic of the tables (A) motifs, (B) verifyMotifs,
(C) insertErrors, (D) methods, (E) domainGroups, and (F) domains. Primary keys
of each table are indicated by underlines, foreign keys by dashed underlines.

52

Dissertation Nickias Kienle

in ”motifComments”/”verifyMotifComments”. Both tables contain a ”do-

mainGroup id” field to connect the motifs to a specific domain group in the

table domainGroups (see fig. 3.2-7 (E)). The ”active” field is specifically

important for the verifyMotifs table. Initially, all predicted verifyMotifs

possess an active value of ”0”. During the verification process, a reviewer

assigns an active value of ”1” to the correct verifyMotifs, whereas the other

verifyMotifs get an active value of ”-1”. All motifs/verifyMotifs are con-

nected to the methods table (see fig. 3.2-7 (D)), via the field ”method id”.

A ”rank” is assigned to each motif/verifyMotif, to be able to determine the

significance. The fields ”asciiOutput” and ”binaryOutput” contain method

specific information. All American Standard Code for Information Inter-

change (ASCII) encoded information are stored in the ”asciiOutput” field.

In the case of an hmmsearch/hmmpfam prediction, this field would contain

the E-value, the bitscore, the consensus string, the similarity, and the actual

predicted motif in Extensible Markup Language (XML) format [77]. Binary

information (e.g. images) are stored in the ”binaryOutput”.

Predicted motifs may contain insert errors, which are indicated by the pre-

diction method. Upon verification, all insert errors are transferred into a

separate table called insertErrors (see fig. 3.2-7 (C)). It is a small table

that contains a primary key (”insertError id”), a foreign key (”motif id”)

that links entries back to their motif, and positions for the start (”startpo-

sition”), and the end (”stopposition”) of the insert error. In the database

of the SNARE-Project, insert errors were part of the motif table, but this

turned out to be impractical.

The tables motifs and verifyMotifs have links to the methods table (see fig.

3.2-7 (D)). This table has the primary key ”method id” and is designed to

associate domain groups (”domainGroup id”) with methods. The ”type”

field contains the actual method name (e.g. hmm). ”input” and ”parame-

ter” can be used to specify optional parameters.

53

Dissertation Nickias Kienle

Several tables have connections to domainGroups (see fig. 3.2-7 (E)). Po-

tential hierarchical relations of a classification are represented by domain

groups. For example, the SNARE hierarchy (see fig. 1.3-8) shows the four

main types Qa, Qb, Qc, and R. These basic types are stored in the database

as the basic domain groups of the SNARE family. Additionally, each of the

main types could be further refined into subtypes. These more specific do-

main groups are also stored in the database (e.g. Qa.I is involved in transport

to the Endoplasmatic Reticulum, whereas Qa.IV is involved in secretion).

The domainGroup table contains all domain groups within a specific domain

(indicated by the field ”domain id”). Each entry has a unique unsigned

integer field ”domainGroup id” as primary key. Three columns (”domain-

GroupName”, ”domainGroupFunctionalName”, and ”domainGroupShort-

name”) contain different annotations for the domain groups, plus one col-

umn (”domainGroupComments”) for possible comments. As mentioned be-

fore, domain groups might exhibit hierarchical relations. Therefore, domain

groups have the field ”domainGroupParent id” that points to the ”domain-

Group id” of their direct ancestor. The ”domainGroupLength” for each

domain group dataset can be stored in the respective field. Resulting from

the protein domain architecture, SNARE domain groups all have the same

length, whereas C2 domain groups can vary in their length. All members

of the SNAP domain group have either a ”B” or a ”C” as their appendix,

depending whether they represent the Qb or the Qc motif of the protein.

The field ”appendix” provides the possibility to store these appendices into

the database.

All domains are organized in the table domains. Each entry has a unique

primary key ”domain id” and unique ”domainName” (e.g. SNARE, C2).

Additionally, comments about the domain can be saved in ”domainCom-

ments”. The basis for every domain classification is a MSA. domains pro-

vides fields to store the ”alignment” and the ”alignmentLength”.

54

Dissertation Nickias Kienle

3.2.1.4 layouts

Another new feature of Tracey, is the possibility to combine motifs into

layouts. A layout contains the domains, a protein is composed of (domain

compositions). For example, the SNAP-25 layout contains the motif of the

domain group SNAP-25.b, followed by the motif of domain group SNAP-

25.c. To be able to save all necessary information, a special architecture was

designed. Entries in the table layouts (see fig. 3.2-8 (A)) are used in a similar

fashion as motifs. Each one has a unique primary key ”layout id” and a

connection to sequences via the foreign key ”sequence id”. Comments about

the layout can be saved in the ”layoutComments” field. Each layout belongs

to a protein layout group, linked through the field ”proteinLayoutGroup id”.

They have ”layoutRanks” that are calculated by combining the significance

values of the underlying motifs. Different statuses (”layoutStatus”) can be

given to the layouts. Currently, only two statuses can be assigend, ”live”

and ”unknown”. All layouts possess a ”layoutString”. This string describes

how the layout is composed. A general layout string looks like

startposition1#domainGroup id1,motif id1#stopposition1;

startposition2#domainGroup id2,motif id2#stopposition2;

...

startpositionN#domainGroup idN,motif idN#stoppositionN;

with N equals the number of motifs the layout is composed of. Sometimes, a

sequence is incomplete, but its domain composition is obvious. In this case

the domain group id would be set but the ”motif id” would be substituted

by a dash (−). Additionally, the position parameters would be set to either

the start position of the following motif or the end of the sequence. Due to

performance issues, the layout string is at the moment static. Eventually,

this string has to be calculated dynamically, whenever related information

change.

55

Dissertation Nickias Kienle

Similar to motifs that are hierarchically organized through domain groups,

layouts are hierarchically organized via protein layout groups. The table

proteinLayoutGroups can store these elements (see fig. 3.2-8 (B)). Protein

layout groups are specifically designed to describe general domain compo-

sition of a group of protein sequences. For example, the aforementioned

SNAP-25 layout is a protein layout group and its parent is the protein layout

group doubleSNARE. Such an organization allows for the hierarchical repre-

sentation of domain compositions, similar as for single domains via a domain

groups. Protein layout groups have unique primary keys (”proteinLayout-

Group id”) and contain three fields (”proteinLayoutGroupName”, ”protein-

LayoutGroupFunctionalName”, and ”proteinLayoutGroupShortname”) for

annotation purposes. Comments about the protein layout group can be

stored in ”proteinLayoutComments”. The hierarchical organization of the

protein layout groups requires a connection to a direct ancestor. This is real-

ized through the field ”proteinLayoutGroupParent id”. Each protein layout

group is connected to a dataset in the table proteinLayouts via the field

”proteinLayout id”.

Entries in the table proteinLayouts (see fig. 3.2-8 (C)) are used to the gener-

ally define a protein layout composition. Protein layout groups are special-

izations of this general composition. Each proteinLayout dataset possesses a

unique primary key ”proteinLayout id” and a unique ”proteinLayoutName”.

Comments can be stored in ”proteinLayoutComments”. The general com-

position is contained in the field ”layout” and contains a string with domain

identifiers (see 3.2.1.3), separated by semi-colons.

3.2.1.5 p2dMapping

Protein layouts are used to define the domain composition and more specific

domain group compositions are organized via protein layout groups. It is

indispensable to be able to assign domain groups in correct order to their

56

Dissertation Nickias Kienle

proteinLayout_id: int(11)
proteinLayoutName: varchar(50)
proteinLayoutComments: longtext
layout: longtext

proteinLayouts

proteinLayoutGroup_id: int(11)
proteinLayoutGroupName: varchar(50)
proteinLayoutGroupFunctionalName: varchar(50)
proteinLayoutGroupShortname: tinytext
proteinLayout_id: int(11)
proteinLayoutGroupComments: longtext
proteinLayoutGroupParent_id: int(11)
-

proteinLayoutGroups

layout_id: int(11)
layoutComments: longtext
proteinLayoutGroup_id: int(11)
sequence_id: int(11)
layoutRank: int(11)
layoutStatus: text
layoutString: longtext

layouts

CA

B

Figure 3.2-8: An UML-like schematic of the tables (A) layouts, (B) proteinLay-
outGroups, and (C) proteinLayouts. Primary keys of each table are indicated by
underlines, foreign keys by dashed underlines.

p2dMapping_id: int(11)
domainGroup_id: int(11)
proteinLayoutGroup_id: int(11)
position: int(11)

p2dMapping

Figure 3.2-9: An UML-like schematic of the p2dMapping tables. The primary
key of each table are indicated by underlines, foreign keys by dashed underlines.

protein layout groups. The table p2dMapping (see fig. 3.2-9) serves exactly

this purpose. It has a unique primary key ”p2dMapping id” and fields for

”domainGroup id” and ”proteinLayoutGroup id”. With this table it is pos-

sible to assign several domain groups to a specific protein layout group. The

order of the domain groups can be determined by the field ”position”. It

holds indices/positions for the domain groups, starting from zero.

57

Dissertation Nickias Kienle

clone(): Object
isNew(): boolean
toString(): String
hashCode(): int
equals(o: Object): boolean
writeInDatabase(): boolean
updateInDatabase(): boolean
removeFromDatabase(): boolean

<<Interface>>
Dataset

getSubGraph(): Hierarchy
getSubGraphSet(): HashSet
getSubGraphList(addPrefix: boolean): ArrayList

<<Interface>>
HierarchicalDataset

<extends>

toXMLString(asDocument: boolean): String
readXMLString(xml: String): void
readXMLString(start: Element): void

<<Interface>>
XMLParsableDataset

<extends>

Figure 3.2-10: Interfaces of the Tracey Java database package. Dataset is de-
signed as the central interface of the package. The interfaces XMLParsableDataset
and HierarchicalDataset extend the basic interface with additional functionality.

3.2.2 Tracey Java database package

With the development of the Tracey database, the system contains a persis-

tent data storage mechanism. Subsequently, a system was needed that can

take care of data handling in a efficient manner (e.g. input/output, process-

ing). Good experience made, during the development and work with the

SNARE-Project Java database package (see section 1.3.3), influenced the

decision to realize the data handling system for Tracey in a similar fashion.

The Java database package for Tracey comprises classes for every table in

the database (see fig. 3.2-4). Basic functionality of all classes is assured

through implementation of specific Java interfaces.

58

Dissertation Nickias Kienle

Interfaces

The basic interface Dataset (see fig. 3.2-10) defines the fundamental func-

tionality every class in the database package should implement. It includes

functions for writing a dataset into the database (writeInDatabase()), up-

dating a dataset that is already in the database (updateInDatabase()), delet-

ing a dataset from the database (removeFromDatabase()), and checking if a

dataset is already present in the database (isNew()). Additionally, the inter-

face contains functions for cloning an object (clone()), string representation

of an object (toString()), comparison of objects within a list (equals()), and

hash code calculation (hashCode()).

Some of the tables, introduced in section 3.2.1, are designed to be able to con-

tain hierarchical datasets (e.g. domain groups, taxonomies). Hence, the re-

spective classes should reflect the hierarchically organization. Fundamental

functionality of such classes are defined by the interface HierarchicalDataset.

It contains functions that return the hierarchical data as a customized Hi-

erarchy object (getSubGraph()) or as a Java HashSet (getSubgraphSet()).

Additionally, the function getSubGraphList(addPrefix: boolean) returns the

hierarchical data as a Java ArrayList. If the ”addPrefix” parameter is true,

the returning entries will have dash prefixes (-, - -, - - -,...) in front of

their names. The prefix starts containing no dashes and adds one for every

descending step within the hierarchy. This simplifies the differentiation of

hierarchy levels (see group box for domain groups at the upper right side on

fig. 3.2-14).

It is important to be able to extract datasets from the database into a docu-

ment or to import dataset from a document into the database. A standard-

ized way to do this is to encode data in hierarchical XML format [77]. To

support this format, all classes implement the XMLParsableDataset inter-

face. It includes functions to read in data in XML format either in full encod-

ing (readXMLString(xml: String)) or from a specific element in the XML-

59

Dissertation Nickias Kienle

tree (readXMLString(Element: start)). Furthermore, the interface defines a

function to encode datasets into XML format (toXMLString(asDocument:

boolean)). If ”asDocument” is true, the dataset is transformed in a full

XML document, otherwise it is written as an XML tree element.

Database Classes

Each table in the Tracey database has an associated Java class in the

database package and this class has member variables to be able to map all

information of the associated table. For example, the class that corresponds

to the table domains is called DomainData and it contains the member

variables ”domain id” (int), ”name” (String), ”comments” (String), ”align-

ment” (String), and ”alignmentLength” (int), according to the columns of

the table (see fig. 3.2-7 (F)). An object instance of a class represents a row

of the associated table. Every class contains a set of constructors that can

be distinguished into two distinct types. Firstly, the constructors that in-

stantiate an object with all information contained as parameters. Secondly,

constructors that retrieve all information directly from the database. In the

latter case, the constructor contains a parameter that represents a primary

key of a table (e.g. ”domain id” or ”name” for the table domain). If such a

constructor is invoked, it connects to the database and transfers the infor-

mation, associated with the primary key, in the newly instantiated object.

Each class contains several additional functions that aid in data handling.

For example the class DomainData possess functions that can retrieve datasets

from other tables that have a connection to a specific domain (e.g. domain-

Groups, motifs or sequences). The results are returned as a list, containing

the respective objects (e.g. DomainGroupData, MotifData, or Sequence-

Data). Establishing a database connection for a single dataset is very fast,

but retrieving a large list of datasets can take a substantial amount of time,

if the database connection has to be opened and closed for every entry. To

60

Dissertation Nickias Kienle

address this problem, most classes provide functions that open a database

connection and transfer sets of entries of a table into a Java map data con-

tainer (e.g. HashMap, TreeMap). Keys of such maps are either the primary

keys or the unique name, which point to the respective objects (e.g. domain

identifier point to DomainData objects or domain names point to Domain-

Data objects). A database connection has to be established only once and

an object can be retrieved immediately, if only the identifier or the name is

available.

The flexible and comprehensive Tracey Java database package enables high

performance database interaction and data handling for all upcoming tasks.

3.2.3 Tracey web interface

With the introduction of the Tracey database (section 3.2.1) and the Java

database package (section 3.2.2), the bioinformatic part of Tracey (see fig.

3.2) is covered. Data handling should be carried out in a simple fashion

and the data should be available from various locations. Hence, the best

solution for data access is web based. Main goals of the Tracey web in-

terface are performance and flexibility, not only for new add-ons, but also

in the case of data presentation. Since the Tracey Java database package

was already implemented, it was favorable to use a Java based web applica-

tion framework. It was decided to use Grails, formerly known as ”Groovy

on Rails” (Groovy is a object-oriented programming language for the Java

platform, often also used as a Java scripting language). Grails is an open

source web application framework, based on the Java platform, that follows

the Model-View-Controller (MVC) paradigm (see fig. 3.2-11). In the case

of the Tracey web interface, the aforementioned classes of the Java database

package, together with the tasks of the Web Access Manager (see section

3.2.4), build the Model layer. All components of the Controller and the

View layer are implemented within the Grails framework, as either Groovy

61

Dissertation Nickias Kienle

View

Controller

Model

Figure 3.2-11: Schematic of the MVC paradigm. Model represents the respective
data upon which the application operates. The underlying data can be simple
information or it can be a persistent storage mechanism such as a database. View
renders the model in a suitable form. In a web application, this is usually HyperText
Markup Language or Extensible Hypertext Markup Language. The controller is
responsible for coordination and interaction. It handles user actions, interacts with
the model and delegates to a view.

classes or Groovy Server Pages (GSP) respectively.

All views of the web interface are implemented as GSPs. One major goal

of the Tracey web interface is flexibility, therefore all views are build up in

a modular fashion and each modul/panel can easily be replaced if neces-

sary. Grails offers an elegant way to serve this purpose, called dynamic tag

libraries. Customized functions (actions), that correspond to a tag, can be

bundled in Groovy classes. These Groovy actions can be invoked from a

GSP by adding the respective tag (see fig. 3.2-12). All panels in the follow-

ing sections correspond to a customized tag. The results can easily altered

by either changing the logic behind a tag or by exchanging the tag in the

view.

To access any information, a user has to login to the system with the proper

authentication. Similar to the web interface of the SNARE-Project (see sec-

tion 2.4), the Tracey web interface also implements a rights management

system with different ranks. The principal differentiation into ”user”, ”sub-

mit”, and ”verify” was adopted from the SNARE web interface (see section

62

Dissertation Nickias Kienle

GSP Tag:
<g:sequenceData ... />

Tag Library Action:
def sequenceData = { attrs, body ->

...
}

Figure 3.2-12: Code snippet example for the usage of customized dynamic tag
libraries. The tag has to be invoked in a GSP, but the actual logic is implemented
as a action in a Groovy class. Possible parameters in the tag call are indicated by
three dots. All parameters are available through the attrs variable in the Groovy
class.

Login

tracey Web Interface

Secure Area

Motifs

Verify

Sequences
Taxonomies
Domain Groups
Domains

Insert

Default Values

User Settings

Sequences
Taxonomies
Domain Groups
Domains

Query

<<login>>

Figure 3.2-13: An UML-like schematic of the Tracey web interface. A user has
to login with the proper authentication. The secure area can be sectioned into four
parts, Query, Insert, Verify, and User Settings. Each of the main sections contains
further subsections for specific tasks.

2.4), but it is possible to further refine these ranks. Additionally, in Tracey

it is possible to grant ranks with respect to domains and protein layouts. For

example, a user can have ”verify” rank for a SNAREs, but only ”user” rank

for SNAPs. Once logged into the secure area, the web interface offers four

main sections (see fig. 3.2-13). At the moment, the Tracey web interface

is intended for internal use only, but ultimately it will also contain a public

section.

63

Dissertation Nickias Kienle

3.2.3.1 Query

The main purpose of the query section is to access verified information.

These information can be sequences, together with their predicted motifs,

taxonomies, domain groups, and domains. Every user that falls into the

”user” rank category is granted access to areas of this part of the web inter-

face.

Sequences

Fig. 3.2-14 shows the search mask for sequences. The tabs at the top show

all protein layouts contained in the database (SNARE is selected). Vari-

ous search parameter can be specified. The upper panel of the search mask

holds options for short name, taxonomy, domain groups, sequence id, and

motif id. Unlike for the query example of the SNARE-Project web interface

(see 2.4-4), a fuzzy search does not require a wild card anymore. A user

can just type in all distinct parameter (separated by a ”;”) into a edit field

and the system takes care of the rest. Additionally, multiple choices can

be made in the group boxes for taxonomies (by clicking the check boxes)

and domain groups (by marking the lines). The second panel holds search

options for status, private, public, and protein layout groups. All edit fields

and group boxes behave the same way as for the first panel. The options for

domain groups and protein layout groups change with the selected protein

layout tab. Sort options (short name, taxonomy, status, and private) can

be chosen in the third panel, all results are sorted accordingly. A user can

chose to view the results either as a list or a detailed view. Pressing one of

the buttons in the bottom panel either resets the view or submits all pa-

rameter and starts the database search. The specified parameter (”sec9;sso”

in the short name field and clicked checkbox for Saccharomyces cerevisiae)

in fig. 3.2-14 results in the Saccharomyces cerevisiae sequences SaCe Sec9,

SaCe Sso1, and SaCe Sso2.

64

Dissertation Nickias Kienle

Figure 3.2-14: Sequence query mask of the Tracey web interface.

The list view (see fig 3.2-15) simply arranges the resulting sequences, with

basic information (i.e. short name, taxonomy, aliases, status, foreign an-

notation, comments, and sequence), under each other. A user can obtain

detailed information, either by clicking the belonging check boxes and press-

ing the change button at the bottom of the list or by directly clicking at the

short name of a sequence of interest. Additionally, it is possible to extract

the results in FastA format. Clicking the ”Fasta File” link on the lower right

side opens a pop-up window with the respective information.

Fig. 3.2-16 shows the detailed view of the protein SaCe Sec9. The first panel

shows all sequence related information (i.e. short name, aliases, taxonomy,

status, comments, db reference, source database, gene identifier, foreign an-

notation, and sequence). A user can conduct a BLAST search [58] against

all sequences with similar domains, by either clicking the links ”BLAST” or

”BLAST All”. The latter performs a direct search against all sequences with

65

Dissertation Nickias Kienle

Figure 3.2-15: Sequence list view of the Tracey web interface.

similar domains, whereas the ”BLAST” link firstly opens a pop-up window

with an edit field for short name parameters. This field can be used to spec-

ify short names of the sequences that should be incorporated into the search

(similar to the sequence query mask on fig. 3.2-14). The SNARE-Project

web interface did not provide an option to perform BLAST searches. With

this possibility, annotation of sequences can be accomplished much more

efficient. The link ”Recalculate Motifs” enables a user to recalculate the

motifs of the actual sequence. Clicking on the link opens a pop-up window

with various options. A user can specify, which motif should be recalculated

and for which domain the search should be conducted. Additionally, it is

possible to change some search parameters. If a motif is chosen for recal-

culation, the system deletes the actual motif and performs an HMM search

(see section 2.2) of the actual sequence. All results are transferred into the

verifyMotifs table. Similar as for the list view, it is possible to extract the

results in FastA format (see ”Fasta File” link in the upper right corner of

the sequence panel).

The second panel in fig. 3.2-16 involves all layout related information. These

are the protein layout group name, the status, the rank, and the domain com-

position. The domain composition is depicted in a graphical fashion and it

shows all motifs of the sequence lined up. Motifs of different domains are

shown in distinct combinations of shapes and colors. For example, SNARE

motifs are shown as blue cylinders (3.2-16), whereas C2 motifs are shown as

66

Dissertation Nickias Kienle

Figure 3.2-16: Detailed sequence view of the Tracey web interface. This view
also includes to the sequence belonging layouts and motifs.

67

Dissertation Nickias Kienle

yellow ellipses. Hovering the mouse over one of these motifs shows a hint

box with the domain group name and the position of the respective motif.

For example, hovering the mouse over the first motif in fig. 3.2-16 would

show that the motif belongs to the SNAP.b domain group and that it ranges

from start position 443 until stop position 496 in the sequence.

All motif related information are listed in the third panel of fig. 3.2-16.

These are the motif name, the method, the domain group, the functional

name of the domain group, the bitscore, the E-value, the position within

the sequence, and the rank. Additionally, the sequence, with the position

of the motif highlighted by red amino acids, is shown. Furthermore, the

panel shows an alignment of the HMM consensus string, the similarity, and

the motif. This indicates the degree of conservation of specific positions

within the motifs. The HMM consensus string depicts the amino acids with

the highest probability according to the used model (positions with capital

letters are higher conserved) and possible insert errors (”.”). Correlations

between the HMM consensus string and the predicted motif are shown as

the similarity. Letters show exact matches, whereas not exact, but con-

served matches are indicated by a ”+” [54]. Every motif offers a BLAST

search [58] option (see ”BLAST/BLAST All” links on the upper right of

each motif). Both links behave similar to the ones of sequence panel, with

the only difference that the searches only involve motif sequences.

Taxonomies, Domain Groups & Domains

In addition to sequences, the query section also provides a user with the

possibility to browse through taxonomies, domain groups, and domains.

Despite little differences, querying taxonomies, domain groups, and domains

is done in the same way as discussed for sequences. The ”user” rights for

this part of the web interface are independent of the rights for sequences and

have to be specified for each area. The views are also build up in a modular

68

Dissertation Nickias Kienle

fashion and make use of the customized tag library.

3.2.3.2 Insert

The web interface allows for insertion of data into the database. It is manda-

tory for an user, who wants to insert data, to possess the rank ”submit” for

the specific category. Data can be inserted into the sequences, domain-

Groups, domains, and taxonomies table. Fig. 3.2-17 shows the insert mask

for the aforementioned categories.

Every mask contains edit or drop-down fields for all necessary information.

Inserting a sequence involves more than just the transfer of the specified

sequence parameters into the sequences database. Upon submission, the

system performs an HMM search for all available domains. Newly predicted

motifs are written into the verifyMotifs table. To be able to verify those,

a user needs to have access to the verify section of the web interface (see

section 3.2.3.3).

The domain group insert mask (see fig. 3.2-17 (B)) contains a drop-down

field for a domain. Choosing a domain entails possible choices of the drop-

down field for parents. Without a choice for domain, the parents drop-down

field contains all domain groups, a user has rights for. If a domain is cho-

sen, only the domain groups that belong to this domain are contained in

the drop-down field. Additionally, a domain group can have more than one

parent. Clicking the ”+” link next to the parent label adds another domain

group drop-down field. Every additional field is also affected by the domain

choice.

The domain insert mask (see fig. 3.2-17 (C)) contains a special field for

alignment. Pressing the ”Browse” button allows a user to choose a local

alignment file (FastA format). Upon submit, the system reads in the align-

ment of the specified file and transfers it into the domains table. Along with

this, the system also determines the respective alignment length.

69

Dissertation Nickias Kienle

A

B

C

D

Figure 3.2-17: The insert masks for (A) sequences, (B) domain groups, (C)
domains, and (D) taxonomies of the Tracey web interface.

70

Dissertation Nickias Kienle

Figure 3.2-18: NCBI taxonomy entry for scientific name, common name, and
genbank name of Homo sapiens. This is the result for entering the NCBI taxonomy
number for Homo sapiens (9606) into the ”NCBI-Nr” field on the insert taxonomy
mask (see fig. 3.2-17 (D)).

Inserting a new taxonomy is somewhat special. The Tracey taxonomies ta-

ble (see section 3.2.1.2) follows the NCBI Taxonomy database [42] quite

thorough. A new taxonomy cannot just be inserted as submitted, but has

to be transfered from the NCBI Taxonomy database [42]. Hence, the tax-

onomy insert mask (see fig. 3.2-17 (D)) contains only the fields ”NCBI-Nr”

and ”Scientific Name”. The system takes the information of either field and

tries to find the respective entry in a taxonomy dump file. The latest version

can be found on NCBI’s File Transfer Protocol server [78]. After the entry

is located, the scientific name, the common name, and the genbank common

name of the respective taxonomy are presented to the user (see fig. 3.2-18).

The user has to check the results and decide if this is the correct taxonomy.

If this holds true, pressing on the ”Submit” button will insert the dataset

into the Tracey taxonomies table.

Some tables of the database contain columns that are marked as unique (e.g.

sequence short name, foreign annotation, or domain name). If a user tries

to insert information that is already contained in one of these columns, the

system will return an error message. After the insertion is carried out, all

new components are directly ready for use.

3.2.3.3 Verify

To ensure high quality data, newly predicted motifs initially go into the

verifyMotifs table. The Tracey web interface provides a section to browse

through these motifs and to mark them for verification or deletion. Browsing

71

Dissertation Nickias Kienle

Figure 3.2-19: Detailed sequence panel of the verify section.

and verifying motifs is restricted to users with adequate knowledge, those

will be assigned with the ”verify” rank. The verify section contains a query

mask, which is quite similar to the one of the query section (see fig. 3.2-14).

Variations are the color (yellow for the verify section and blue for the query

section), no preselection of the status and instead of a protein layout group

field, it involves a taxonomy status field.

As shown on fig. 3.2-19, the detailed sequence panel of the verify section

is very similar to the sequence panel of the query section (see fig. 3.2-16).

One important difference is the red ”motif” link on the lower right side of

the panel. This link only appears, if the respective sequence has already

verified motifs. Clicking on it opens a pop-up window with all motif rele-

vant information. Another variation is the ”Delete” button. If this button

is clicked, the system deletes all motifs in the verifyMotifs table that are

associated with the actual sequence. After that, it checks if the actual se-

quence has more information associated with it (e.g. additional motifs or

layouts). If this is not the case, the system also erases the sequence from the

database. Additionally, this panel contains a check box (”Verify Dataset”)

at the bottom. It has to be checked, if a motif (marked as verified) is sup-

posed to be transferred from the verifyMotifs to the motifs table. In this

case, it is not allowed for any motif to still be marked as ”Unknown”. Fig.

72

Dissertation Nickias Kienle

3.2-20 shows the motif panels of the verify section. The lower detailed motif

panel is similar to the ones used in the query section (see fig. 3.2-16). One

major difference are the three radio buttons (”Delete”, ”Unknown”, ”Ver-

ify”) below each motif. If a user wants the motif to be verified, all motifs

at the same position have to be marked either for deletion or verification.

For verification of motifs with the SNARE-Project web interface, a user

had to go through all motifs and click the respective radio buttons. This

could be quite time consuming, because sequences can contain a lot more

than two predicted motifs for a specific position. Furthermore, a sequence

might be comprised of motifs at multiple positions. The Tracey web inter-

face provides an effective solution to address this problem (see fig. 3.2-20

upper panel). All motifs are displayed in a graphical fashion, with different

motif positions horizontally and multiple predictions for a specific position

vertically. The example on fig. 3.2-20 shows two distinct motif positions

(78 − 132 and 216 − 270). Predictions resulted in two motifs for each po-

sition, SNAP.b/Qb.III for the first one and SNAP.c/Qc.III for the second

one. Multiple motifs for one position are presorted by their E-value. The

graphical depiction also includes the significance criteria (bitscore in blue

and E-value in red) for the respective motif. These can be utilized to decide

upon which motif to mark for verification. Pressing the ”Accept” link marks

the topmost motifs of each position. It is possible to alter the vertical sort-

ing by dragging the respective motif to another position. Marking motifs

in this panel has a direct effect on the radio buttons of the detailed motif

panels. Fig. 3.2-21 shows the same example with marked motifs. In this

case the ”Accept” link was used to mark the topmost motifs. By doing this,

the system automatically switches the radio buttons of the marked motifs

to ”Verify”, whereas all other radio buttons are switched to ”Delete”. Oc-

casionally, significance criteria alone might not be sufficient to decide upon

verification. It is possible to compare each motif to similar, already verified

73

Dissertation Nickias Kienle

Figure 3.2-20: Motif display of the Tracey web interface verification section.
Nothing is verified yet. All motif cylinders in the upper panel are displayed in the
same color and all radio buttons are set to ”unknown”.

74

Dissertation Nickias Kienle

Figure 3.2-21: Motif display of the Tracey web interface verification section.
The motifs are marked for verification/deletion. The upper two motif cylinders are
displayed in darker blue and all radio buttons are set either to ”‘Verify” or ”Delete”.

75

Dissertation Nickias Kienle

Figure 3.2-22: Layout verification panel of the Tracey web interface. Marked
layouts are indicated by a continuous frame line. The numbers in red are the
layout ranks, which are calculated by summing bitscores of the underlying motifs.

motifs. Clicking the ”Similar Motifs” link starts a search for verified motifs

that occur in the same species group and belong to a similar domain group

(parents or children of the actual one).

Besides the motif verification, the system also allows verification via lay-

outs. Clicking on the ”Show Layouts” link at the upper panel on fig. 3.2-21

switches this panel to display layouts (see fig. 3.2-22). The depicted puta-

tive layouts are not stored in the database, instead the system calculates all

possible layouts from the predicted motifs on-the-fly. Significance criteria

for the layouts are the ranks. In the example on fig. 3.2-22 ”doubleSNARE”

has rank 95, ”Qc.III.c” has rank 41, and ”Qb.III” has rank 24. The ranks

are the added bitscores of the underlying motifs. After the marking of all

motifs/layouts the system transfers motifs, marked as ”Verify”, together

with the layout into motifs and layouts respectively. If the verification was

made through the layout mode (see fig. 3.2-22), the chosen layout and the

belonging motifs are transferred. If it was done via the motif mode, the

layout is calculated according to the chosen motifs and then together with

the motifs transferred.

The Tracey web interface verification system is very efficient and allows for

verification of motifs from up to 500 sequences per hour.

3.2.3.4 UserSettings

To further increase work efficiency, the web interface allows users to specify

certain default values. Currently, these are ”Presentation Mode”, ”Preferred

76

Dissertation Nickias Kienle

Protein Layout”, ”Verification Mode”, ”Direct Verification”, and HMM

search related parameters. Values for ”Presentation Mode” can be ”list”

or ”detail”. Upon this choice, the results of the query and the verify section

get presented in list or detailed mode. All protein layouts, a user has rights

for, are possible choices of ”Preferred Protein Layout”. This parameter di-

rectly influences which protein layout is preselected at the search sequence

masks of the verify and the query section (see tabs on top of fig. 3.2-14,

SNARE is preselected). As introduced in section 3.2.3.3, verification can be

done either by marking motifs (see upper panel of fig. 3.2-21) or by marking

layouts (see fig. 3.2-22). The setting of parameter ”Verification Mode” de-

termines which mode is active. ”Direct Verification” can be used to preselect

the ”Verify Dataset” checkbox (see fig. 3.2-19 at the bottom). Sometimes

a user might want to work on predicted motifs, but does not want them to

get transferred into the motifs table. In this case, this option can be set to

”false” and the checkbox is not preselected. As already pointed out before,

the link ”Recalculate Motifs” on the detailed sequence panel of the query

(see fig. 3.2-16) and the verify section (see fig. 3.2-19) allows for motif re-

calculation of a sequence. A user can specify certain HMM search specific

parameters (e.g. E-value cutoff). Default values for these parameters can

also be defined in the user settings section.

3.2.4 WebAccessManager

The WebAccessManager (WAM) (see fig. 3.2-3) is a tool that solves several

problems that arose during the development of Tracey. Firstly, there is al-

ways the security issue. As published and unpublished data are stored in

one database, it would be preferable to hide the database completely from

access, even from the server hosting the Tracey web interface. A second

issue is performance. The system needs to be able to conduct various cal-

culations and any results should be presented over the web interface. It is

77

Dissertation Nickias Kienle

possible to separate the performance issue into two smaller problems, the

running time should be minimal and it should be possible for any number of

calculations to run simultaneously. Preserving data coherence is the third

problem. Since multiple user might change information in the database at

the same time, the system needs to be able to secure data integrity.

The WAM has been designed to solve the aforementioned problems. Java

Remote Method Invocation technology builds the core of the WAM. This

allows a devoloper to create distributed, remote Java objects. Such objects

can be invoked on a Java virtual machine (JVM) and then sent through a

network layer to another JVM. Possible results can be returned back to the

original JVM. Using the apache commons package [79], a daemon service,

called AccessManagerServer (AMS), was implemented. The AMS starts the

AccessManager (AM) and takes care of keeping the service alive, restart-

ing it upon possible crashes and error handling. For example, if the AM

crashes for an unknown reason, the AMS immediately starts the AM again

and thus downtime for the service is minimal. The AM is the central man-

agement facility of the WAM and its main functionality is the organization

of different ”Tasks”. Any kind of request from the web interface to the AM

has to be sent as a ”Task”. Additionally, each task needs to implement

one of four currently available basic TaskType interfaces. These are Read-

Task, ModifyTask, WriteTask, and LongRunningTask. These interfaces all

extend the basic Task interface. It defines the basic operations that any

task must be able to conduct (see fig. 3.2-23 (A)). The method ”execute()”

starts the operation of a task and the outcome can be obtained with ”ge-

tResult()”. Furthermore, the interface defines several maintenance meth-

ods: ”getUserId()” returns the user identification of the user that requested

the task, getStackTrace() returns possible error traces, getUserMessage() re-

turns potential feedback to the user beyond the result, ”getAgeInSeconds()”

returns the time a task has been running for, and ”getTaskType()” returns

78

Dissertation Nickias Kienle

<extends>

execute(): void
getResult(): Object
getUserId(): Integer
getStackTrace(): String
getUserMessage(): String
getAgeInSeconds(): Integer
getTaskType(): TaskType

<<Interface>>
Task

<<Interface>>
ReadTask

getDatabaseEntries2Lock():
HashSet<DatabaseEntryIdentifier>

<<Interface>>
ModifyTask

<<Interface>>
LongRunningTask

getDatabaseEntries2Lock():
HashSet<DatabaseEntryIdentifier>

<<Interface>>
WriteTask

<extends>
<extends>

<extends>

Start

Obejcts

Blocked?

Stop

WriteTask

Conduct Changes

and Return

Success Code

Return Failure

Code

NoYes

A B

Figure 3.2-23: (A) Interfaces for the different tasks included in the WAM. On top
is the basic interface that all tasks have to implement. ModifyTask and WriteTask
have an additional method that provides access to identifiers of blocked elements
during data modification. (B) Flow chart for submission of a WriteTask.

the type of the task.

ReadTask represents a request to extract data from the database. A Mod-

ifyTask also extracts data, but additionally indicates that the user, who

requested the data, has the intention of modifying it. By doing so, the

system stores the identifiers of the requested objects in a list for a given

amount of time (specified by a program parameter). The ModifyTask in-

terface defines the additional method ”getDatabaseEntries2Lock()”, which

returns the identifiers of the blocked elements. To change the requested

data, a user has to sent a WriteTask to the server. This task also imple-

ments the method ”getDatabaseEntries2Lock()”, which returns the object

identifiers the task intends to change. If the objects are still blocked, write

access is granted and changes can be made (see fig. 3.2-23 (B)). In this case,

the elements are removed from the block list and the execute() method is

invoked. However, if the elements are not blocked, either because someone

else changed them beforehand or the time between the modify request and

the write request expired, the write request will be denied. The final task

type is called LongRunningTask. It is mainly used to run, possibly long-

lasting, complex computations (i.e. alignment calculation).

To be able to use multiple processors or cores in parallel, Java provides the

79

Dissertation Nickias Kienle

ExecutorService (ES) technology. Basically, all ReadTasks are grouped to-

gether into one ES, all Write- and ModifyTasks into another ES, and all

LongRunningTasks into a third service. The Write- and ModifyTask ES is

restricted to a single core and thus serializes database access. ReadTasks

ES and LongRunngingTask ES are not restricted to a single core, but Lon-

gRunngingTask ES runs on a separate set of cores, since it might conduct

long-lasting, complex operations and could therefore overload the WAM

hardware. Each task submitted to the WAM is enclosed in a TaskRunner

object that implements the Runnable interface and these objects are redi-

rected to the according ES.

The WAM has been proven to be a very powerful tool. For example, using

the WAM allows for the removal of all database references from the web

interface. In fact, since the web interface is only dependent on the Java

objects, introduced in section 3.2.2, for database interaction, it could easily

be moved to a different storage system. Additionally, the WAM enables the

usage of modern chip design, by allowing calculations to run on multiple

cores. Furthermore, it is possible to adapt the technology to be able to use

a platform like GridGain [80] to run complex tasks on a computer cluster.

In order to accomplish this, only the TaskRunner and the ES have to be

adapted.

3.3 SNARE proteins in fungi

The underlying dataset for the classification of the fungi SNAREs comprises

an overall set of more than 1500 SNARE proteins from 123 fungi species.

Out of this, 70 species contain almost complete SNARE sets. Most of the

sequences originate from the nr-database at NCBI [42], various genome

projects (DOE Joint Genome Institute [81], Baylor College of Medicine [82],

J. Craig Venter Institute [83], and Broad Institute [84]), and several EST

databases (NCBI Expressed Sequence Tags database [42], Fungal Genomics

80

Dissertation Nickias Kienle

TGN

ER

Secretory

vesicles

Endocytic

vesicles

Golgi

Sed5

Gos1

Sft1

Ykt6

Qa:

Qb:

Qc:

R:

Tlg2

Vti1

Tlg1

Ykt6

Qa:

Qb:

Qc:

R:

Ufe1

Sec20

Use1

Sec22

Qa:

Qb:

Qc:

R:

Sed5

Bos1

Bet1

Ykt6

Qa:

Qb:

Qc:

R:

Pep12

Vti1

Syx8

Nyv1/Ykt6

Qa:

Qb:

Qc:

R:

Vam3

Vti1

Vam7

Nyv1

Qa:

Qb:

Qc:

R:

Sso1/2

Snc1/2

Qa:

Qb:

Qc:

R:

Sec9/Spo20

Tlg2

Vti1

Tlg1

Ykt6/Snc

Qa:

Qb:

Qc:

R:

LE EEVacuole

Nucleus

Figure 3.3-24: Schematic outline of the vesicle trafficking pathways and tentative
assignement of the involved sets of SNARE proteins of baker’s yeast. It should be
kept in mind, however, that the assignment of some SNAREs to certain trafficking
steps, in particular of the R-SNAREs, is still debated. Note that baker’s yeast
has two endosomal syntaxins, Pep12, and Vam3, that are thought to be involved
in consecutive trafficking steps towards the vacuole, whereas other fungi only have
one. [87]

Project [85], and Taxonomical Broad EST Database [86]). All sequences

and species used in this study can also be found in the SNARE database at

http://bioinformatics.mpibpc.mpg.de/snare.

For the classification of the fungi SNAREs, previously established HMM

models were used [7] . The 53aa of the highly conserved SNARE core mo-

tif build the basis for these models. Fig. 3.3-24 shows a schematic of a

yeast cell with its different inner compartments. As already elaborated by

Kloepper et al. [7], fungi SNAREs can generally be divided into 20 dis-

tinct subgroups. Each subgroup can be associated with a distinct conserved

trafficking step (see fig. 1.3-8). Compared to the assumed SNARE set of

the proto-eukaryotic ancestor, the SNARE sets in fungi remained largely

unchanged. In most organisms with a complete genome, each SNARE sub-

81

http://bioinformatics.mpibpc.mpg.de/snare

Dissertation Nickias Kienle

group is comprised only of one member. Thus only little over twenty different

SNAREs were found in most fungi species. In other eukaryotic kingdoms

(eg.g metazoa or plants), SNARE sets with 30 or more members are not un-

usual. Increase in SNAREs might have occurred during the transition from

a unicellular to a multicellular lifestyle [88]. Together with other studies

([9, 89, 90]), the idea was promoted that an expansion of the SNARE set is

generally linked to the rise of multicellularity. Interestingly, fungi developed

multicellularity independently, but in contrast to plants and metazoa, this

change was not accompanied by an expansion of the SNARE set.

Despite the very basic repertoire of SNARE proteins in fungi, some lineages

underwent duplication events. Mostly secretory and endosomal/vacuolar

trafficking pathways were affected by such events, whereas SNAREs of the

more ancient trafficking routes between the Endoplasmatic Reticulum, the

Golgi apparatus, and the trans Golgi network were basically unaffected.

A closer look revealed that the fungi SNAREs are comparable to the set

of the single-cell choanoflagellate Monosiga brevicollis. This organism is

thought to be closely related to animals. Unlike Monosiga brevicollis, basal

animals possess a somewhat increased number of SNARE proteins [88].

Remarkably, the fungi Batrachochytrium dendrobatidis and Blastocladiella

emersonii both contain a sequence, classified as Qb.III.d (novel plant SNARE

(Npsn,)) [91], which is absent in Monosiga brevicollis. Initially, Npsn was

thought to be only present in plants [91] and protists [7], but not in choanoflag-

ellates or animals [88]. Batrachochytrium dendrobatidis and Blastocladiella

emersonii both belong to the chytrid/Chytridiomycota division of the fungi

kingdom. This lineage is very basal and its members are considered to be the

most primitive fungi [92]. In agreement with this, phylogenetic reconstruc-

tions usually places the SNARE protein sequences of this species closely to

the root. Taking all this into account, it seems that Npsn was part of the

assumed SNARE repertoire of the proto-eukaryotic ancestor, but was later

82

Dissertation Nickias Kienle

lost in choanoflagellates, metazoa, and more derived fungi.

3.3.1 Vam7 is an apomorphy of the fungi lineage

Generally, fungi possess three Qc.III-type SNAREs, Tlg1, syntaxin 8 (Syx8),

and Vam7 [93, 94, 95, 96], whereas basal metazoa and the choanoflagellate

Monosiga brevicollis possess only two Qc.III homologs (Syx6 and Syx8) [88].

The latter two SNAREs are homologs of Tlg1 and Syx8, respectively. Strik-

ingly, Vam7 cannot be found in any other eukaryote, but was found in all

fungi with a completely sequenced genome, even in the basal chytrid Batra-

chochytrium dendrobatidis. This was already reported before by Yoshizawa

and colleagues [36]. However, their analysis had a number of incorrect bi-

ological conclusions, due to a inferior cluster approach that led to wrongly

assigned relationships. Additionally, several well established SNAREs were

also missing in their analysis. Despite the similarity of the Vam7 SNARE

motif to the other members of the Qc.III group, it cannot be judged clearly,

whether Vam7 is a descendent of either Tlg1 or Syx8.

Vam7 is the only SNARE with an N-terminal PX domain, but without

TMR. The PX domain can interact with the phospholipid phosphatidyl-

inositol 3-phosphate [97], which is specific for membranes of the endosomal

and vacuolar pathways. This suggests a role of Vam7, together with its

cognate SNAREs Vam3 (Qa.III.b), Vti1 (Qb.III.b), and Nyv1 (R.III), in

endosomal trafficking or homotypic vacuole fusion [98, 99]. Furthermore,

the acquisition of this novel membrane binding domain by Vam7 possibly

compensated for the loss of the C-terminal TMR. This protein is a unique

invention of the fungi kingdom and is the only SNARE with this specific

domain structure. Thus, Vam7 is a defining feature (apomorphy) of the

fungi lineage and can therefore be used as a criterion for the recognition of

fungal species.

83

Dissertation Nickias Kienle

3.3.2 SNARE changes in the endosomal/vacuolar pathways

of the Saccharomycotina

As mentioned before, only a few SNARE repertoire changes could be ob-

served in the fungi lineages. One occurred in the Saccharomycotina (some-

times referred to as hemiascomycetes), this is a subphylum of the Ascomy-

cota phylum. Two well studied organisms of this subphylum are Candida

albicans (human pathogen) and Saccharomyces cerevisiae (baker’s yeast).

The Qa.III.b SNARE proteins of this subphylum underwent a duplication,

giving rise to Pep12 and Vam3. It is believed that Pep12 and Vam3 are

involved in trafficking to late endosomes and vacuoles, respectively. While

Pep12 also is present in other fungi lineages, Vam3 seems to be a duplication

specific to the Saccharomycotina (see fig. 3.3-25). This observation is also in

agreement with previous studies [100]. Interestingly, there are no clear ho-

mologs of Vam3 in other multicellular eukaryotes ([91], [88]), this indicates

that the duplication of the Qa.III.b SNARE into Pep12 and Vam3 occurred

independently to the metazoan duplications of early endosomal syntaxins

that resulted in syntaxin 7, syntaxin 13, syntaxin 17, and syntaxin 20 [88].

Another possibility is that the unique duplication of Qa.III.b-type SNAREs

into Pep12 and Vam3 in hemiascomycetes, might be the result of of a spe-

cialized homotypic vacuole fusion machinery that originated in this lineage.

This process occurs during the asexual reproduction of a yeast cell, in which

the vacuoles of the mother cell get fragmented and the resulting multi-

ple small vacuoles subsequently segregate into the budding daughter cell.

These fragments fuse again and become the new vacuoles of the daughter

cell [101, 102, 103]. Previous studies used homotypic vacuole fusion to ana-

lyze the role of SNAREs and other factors in the fusion process [99, 98].

The R-SNARE Nyv1 seems to interact specifically with Vam3 and not with

Pep12, which is thought to interact preferentially with the R-SNARE Ykt6.

It has been debated before, whether Nyv1 is really homologous to the meta-

84

Dissertation Nickias Kienle

0.99/0.85

0.67/0.34

0.44/0.85

1.00/0.85

0.64/0.85

0.54/0.85

0.58/0.46

0.62/0.46

0.86/0.85

0.99/0.85

0.97/0.85

1.00/0.85

0.89/0.85

0.99/0.85

0.69/0.85

GiZe_Pep12
FuVe_Pep12

NeHa_Pep12

FuOx_Pep12

TrVi_Pep12
TrRe_Pep12

TrAt_Pep12

MaGr_Pep12

PoAn_Pep12

NeCr_Pep12

ChGl_Pep12

ScSc_Pep12

HiCa_Pep12
PaBr_Pep12

UnRe_Pep12
CoPo_Pep12
CoIm_Pep12

AsNg_Pep12

AsNi_Pep12

AsFl_Pep12

AsOr_Pep12

AsTe_Pep12

NeFi_Pep12
AsFu_Pep12

AsCl_Pep12

PyTr_Pep12
CoHe_Pep12

PhNo_Pep12

MyGr_Pep12

YaLi_Pep12 YaLi_Pep12_2

UsMa_Pep12

MaGl_Pep12

PuGr_Pep12

PhCh_Pep12
CoCi_Pep12

LaBi_Pep12
LeEd_Pep12p

PoPl_Pep12

CrNe_Pep12RhOr_Pep12
PhBl_Pep12BaDe_Pep12p

LeSc_Pep12p
SpRo_Pep12

ScPo_Pep12

ScJp_Pep12

ErGo_Pep12

KlLa_Pep12
KlWa_Pep12

SaKl_Pep12

CaGl_Pep12

VaPl_Pep12

SaPa_Pep12

SaCe_Pep12
SaMi_Pep12

SaBa_Pep12

SaKu_Pep12

SaCa_Pep12

PiAn_Pep12

DeHa_Pep12
CaGu_Pep12

CaDu_Pep12
CaAl_Pep12

CaTr_Pep12

LoEl_Pep12

CaPa_Pep12
PiSt_Pep12

CaLu_Pep12

CaGu_Vam3

PiSt_Vam3

DeHa_Vam3

CaLu_Vam3

CaTr_Vam3

CaDu_Vam3
CaAl_Vam3

CaPa_Vam3

LoEl_Vam3

VaPl_Vam3

CaGl_Vam3

ErGo_Vam3

SaKl_Vam3

SaCa_Vam3

SaMi_Vam3
SaKu_Vam3
SaBa_Vam3

SaPa_Vam3
SaCe_Vam3

KlWa_Vam3

KlLa_Vam3

PiAn_Vam3

Pezizomycotina

Saccharomycotina

Pep12

Vam3

Tlg2

Figure 3.3-25: Unrooted Qa.III.b tree of fungi SNAREs highlighting the events of
gene duplication and diversification of the Qa.III.b SNARE group in fungi. The en-
dosomal Qa-SNAREs (Qa.III.b-type) of fungi split into two major branches, Pep12
and Vam3, within the Saccharomycotina. The syntaxin involved in trafficking to-
wards the trans Golgi network, Tlg2 (Qa.III.a-type) is shown as outgroup. The
labels on the major branches represent the Likelihood Mapping (left) and AU sup-
port values (right). [87]

zoan R-SNARE Vamp7 and previous work indicated that the SNARE motif

of Nyv1 from baker’s yeast is only distantly related to Vamp7 in animals

[104, 105]. In contrast to this, the results of the conducted analysis, showed

that Nyv1 clearly falls into the R.III group, the same group Vamp7 be-

longs to as well. A recently published structure promotes this further, as

it shows that Nyv1 indeed contains a canonical profilin-like N-terminal ex-

tension [106], often also referred to as longin domain [104, 105]. Previous

85

Dissertation Nickias Kienle

analyses were able to find this domain in other R-SNAREs Sec22 (R.I) [107]

and Ykt6 (R.II) [108]), but could not confirm its existence in Nyv1. Gener-

ally, a homolog of Nyv1 can be found in all fungi, except the members of the

Schizosaccharomyces (Schizosaccharomyces pombe and Schizosaccharomyces

japonicus). In comparison to the other fungi lineage, Nyv1 of Saccharomyc-

etales seems to be quite derived and it is therefore not surprising that it

has been difficult before this analysis to acknowledge Nyv1 as a bonafide

endosomal R-SNARE.

3.3.3 A whole genome duplication resulted in an increased

set of secretory SNAREs in Saccharomyces cerevisiae

The conducted analysis revealed that of all inspected fungi, Saccharomyces

cerevisiae possesses the largest set of SNARE proteins. Its repertoire com-

prises 26 different SNAREs (including the regulatory proteins Sro7 and

Sro77). This is surprising, because so far baker’s yeast was considered to be

a reduced organism. Besides the previously mentioned fungi specific Vam7

and the Saccharomycotina specific Vam3, it also contains four closely related

pairs of secretory SNARE proteins, Sso1/Sso2 (Qa.IV), Snc1/Snc2 (R.IV),

Sec9/Spo20 (Qbc.IV), and Sro7/Sro77 (R.Reg). This increase of secretory

SNAREs probably arose during a well established whole genome duplication

(WGD) in this organism [109, 110]. Similar duplications are also present in

closely related species (Saccharomyces paradoxus, Saccharomyces mikatae,

Saccharomyces bayanus, and Saccharomyces kudriavzevii). Together, these

species form the Saccharomyces sensu stricto group (see fig. 3.3-26). A

WGD is mostly followed by a loss of duplicated genes. In the case of baker’s

yeast, only 14% of all duplicated genes were kept. Interestingly, all dupli-

cated SNAREs that were retained are involved in the secretory process, sug-

gesting that this provided the organism with a selective advantage. Out of

the three homologous secretory pairs, only the Qbc-SNAREs (Sec9/Spo20)

86

Dissertation Nickias Kienle

0.93/0.89

0.78/0.89

0.86/0.89

0.65/0.79

0.53/0.89

0.77/0.89

0.76/0.89

0.87/0.89

0.51/0.89

0.94/0.89

0.92/0.89

1.00/0.89

0.91/0.89

0.70/0.89

0.99/0.89

0.96/0.89

0.98/0.89
0.91/0.89

0.96/0.89

0.80/0.89

1.00/0.89

0.96/0.89

0.88/0.89

0.95/0.89

0.97/0.89

1.00/0.89

1.00/0.89

0.99/0.89

1.00/0.89

MyFi_SsoA

MyGr_SsoA

CoHe_SsoA-1
CoHe_SsoA-2

PhNo_SsoA

BoCi_SsoA
ScSc_SsoA

NeHa_SsoA
FuOx_SsoA

GiZe_SsoA
FuVe_SsoA

TrVi_SsoA
TrRe_SsoA

PoAn_SsoA

ChGl_SsoA

MaGr_SsoA

NeCr_SsoA

AsOr_Ssoa
AsFl_Ssoa

AsCl_Sso
NeFi_Sso

AsFu_Sso

AsTe_Sso

AsNg_Sso

AsNi_Sso

AsOr_Ssob
AsFl_Ssob

ScSc_SsoB
BoCi_SsoB

HiCa_Sso
PaBr_Sso

CoIm_Sso

CoPo_Sso
UnRe_Sso

PhNo_SsoB

PyTr_SsoB
CoHe_SsoB

MyFi_SsoB
MyGr_SsoB

PoAn_SsoB

ChGl_SsoB

MaGr_SsoB

NeCr_SsoB
FuOx_SsoB
FuVe_SsoB

GiZe_SsoB

NeHa_SsoB

TrRe_SsoB
TrAt_SsoB

TrVi_SsoB

SaCa_Sso1
SaCa_Sso2

CaGl_Sso_a

SaCe_Sso2

SaPa_Sso2

SaMi_Sso2
SaKu_Sso2

SaBa_Sso2

SaMi_Sso1
SaCe_Sso1

SaPa_Sso1
SaKu_Sso1

SaBa_Sso1

VaPl_Sso

SaKl_Sso

KlLa_Sso

ErGo_Sso

KlWa_Sso

DeHa_Sso_a
DeHa_Sso_b

CaLu_Sso

CaGu_Sso

PiSt_Sso_a

PiSt_Sso_b

CaAl_Sso
CaDu_Sso

CaTr_Sso

CaPa_Sso
LoEl_Sso

YaLi_Sso_c

YaLi_Sso_a

YaLi_Sso_b

PhCh_Sso_a

TrVe_Sso_bp

PoPl_Sso_b

TrVe_Sso_ap
PoPl_Sso_a
PhCh_Sso_b

LaBi_Sso

AgBi_Sso

CoCi_Sso

MiVi_Ssop
SpRo_Sso_a

CrNe_Sso

LeSc_Ssop

UsMa_Sso

MaGl_Sso

LeSc_Ssop-2

SpRo_Sso_b

PhPc_Ssop-2
PuGr_Sso

PhPc_Ssop

ShPo_Sso
ScJp_Sso

BlEm_Ssop

BaDe_Sso_b
BaDe_Sso_a

PhBl_Sso_b

RhOr_Sso_c

PhBl_Sso_c
RhOr_Sso_a

PhBl_Sso_a

CuEl_Ssop

PhBl_Sso_d
RhOr_Sso_b

MoVe_Ssop

Pezizomycotina

SsoB

SsoA

Sso1Sso2

Saccharomycotina

Basidiomycota

Figure 3.3-26: Unrooted Qa.IV tree of fungi SNAREs highlighting the events of
gene duplication and diversification of the Qa.IV SNARE group in fungi.The phy-
logenetic tree of secre- tory syntaxins (Qa.IV-type) reveals independent expansions
in Pezizomycotina and in the Saccharomyces sensu stricto clade. The latter expan-
sion probably occurred during a whole-genome duplication, during which the other
secretory SNAREs were duplicated as well. Note that independent duplications of
Sso genes occurred in other lineages as well. In each tree, the diverged SNARE
types are shown by different colors. The labels on the major branches represent
the Likelihood Mapping (left) and AU support values (right). [87]

diverged quite significantly (approximately 37% identity), while the secre-

tory syntaxins (Sso1/Sso2 with approximately 79% identity) and R-SNAREs

(Snc1/Snc2 with approximately 74% identity) are much more similar. Be-

sides sequence similarity differences between Sec9 and Spo20, Spo20 is also

shorter and it lacks a rather long N-terminal extension [111], which is typ-

ically for this SNARE type in Saccharomycotina lineage. As mentioned

before, both proteins are involved in secretory processes, but they are spe-

cialized to different developmental stages in baker’s yeast. Whereas Sec9

interacts with both secretory syntaxins and synaptobrevins in secretion dur-

ing vegetative growth, the more deviated Spo20 is required only for sporu-

lation. During sporulation in Saccharomyces cerevisiae, the prospore mem-

87

Dissertation Nickias Kienle

brane, which envelops each daughter nucleus during meiosis, is generated

de novo adjacent to the spindle pole bodies by the secretory SNARE ma-

chinery [112]. Sec9 and Spo20 show partial functional redundancy during

sporulation, because only the Spo20/Sec9 double mutants exhibit a complete

loss of prospore membranes. While Spo20 mutants show mild sporulation

phenotyp, Sec9 mutants have no sporulation phenotype [112, 113, 111]. Ad-

ditionally, even though the two secretory syntaxins Sso1/Sso2 share a high

sequence similarity, they might have some functional differences, since only

Sso1 seems to be necessary during sporulation [114, 115].

3.3.4 The tomosyn SNARE motif in Saccharomycotina is

degenerated

It has been established before that tomosyn (R.Reg), a regulatory R-SNARE

without a membrane anchor, is a member of the assumed SNARE repertoire

of the proto-eukaryotic cell [7]. The structure of the tomosyn yeast homolog

Sro7 revealed that the protein possesses two consecutive seven-bladed β-

propeller domains at its N-terminus [116]. Absence of a transmembrane

anchor at the C-terminus makes tomosyn unable to participate in the fusion

process [14, 117, 118, 119]. Instead, it is believed to function as a regula-

tor by controlling the accessibility of the Q-SNAREs acceptor complexes in

polarized secretion [116]. Saccharomyces cerevisiae comprises two homologs

of tomosyn, Sro7 and Sro77 (55 % identity) [120]. Both proteins do not

possess a canonical R-SNARE motif and are therefore very often confused

with the Lethal giant larvae (Lgl) factor, which supposedly has a function in

establishing epithelial cell polarity in animals [121, 122]. Previous studies es-

tablished that Lgl derived independently from tomosyn in animals [123, 117],

where it lost its SNARE domain [88]. The fact that the R-SNARE motifs of

tomosyn homologs are present in other fungi lineages ([123, 117]) points to

the conclusion that the motifs of Sro7 and Sro77 degenerated independently

88

Dissertation Nickias Kienle

in the Saccharomycetales clade.

3.3.5 The Pezizomycotina lineage contains clearly diverged

secretory syntaxins

Duplications of SNAREs involved in secretory processes, particularly the

secretory syntaxin (Sso, Qa.IV), occurred in several fungi lineages. Mostly,

the duplicates did not diverge much and so far no clear pattern between du-

plications and lifestyle or taxonomical grouping could be detected. Previous

studies ([100, 124]) established that Neurospora crassa (sodariomycete) pos-

sesses two markedly diverged secretory syntaxins (nsyn1 and nsyn2). The

same holds true for the Pezizomycotina Trichoderma reesei [125]. Pezizomy-

cotina (older name Euascomycota) are filamentous fungi that reproduce by

fission rather than budding. Together with the other major subphylum, Sac-

charomycotina, they comprise most of the fungi phylum Ascomycota. This

phylum, commonly known as ”sac fungi”, is the largest in fungi and covers

more than 64, 000 subspecies. Ascomycota are defined by the so called ascus,

a microscopic sexual structure that surrounds the meiotic spores. During

vegetative growth, most Pezizomycotina grow hyphae at their tips, a pro-

cess that involves highly polarized secretion of cell wall material. The two

syntaxins of Trichoderma reesei, Sso1 and Sso2, were found to be involved

in different secretory processes. Whereas Sso2 was found in the apical com-

partments of actively growing hyphae, Sso1 was found in older, non-growing

hyphae. It has been shown before by in vivo fluorescence resonance energy

transfer studies that the two proteins exert their secretory function at spa-

tially segregated areas of the plasma membrane [125]. Fig. 3.3-26 clearly

shows that the two diverged secretory syntaxins in Trichoderma reesei and

Neurospora crassa represent a split that arose within the lineage of Pezi-

zomycotina.

Interestingly, not all species within the Pezizomycotina show a duplication

89

Dissertation Nickias Kienle

of the Qa.IV SNARE group. Some species of the Eurotiomycetes, including

the genus Aspergillus, only contain one copy of the Sso gene. This points

to the conclusion that the group branched off before the duplication oc-

curred [126]. Within the Aspergillus genus, some species (e.g. Aspergillus

oryzae, Aspergillus flavus) actually contain two different secretory syntax-

ins, but it seems that this duplication occurred independently within the

Eurotiomycetes. To clarify the difference between the duplicated secretory

syntaxins in Saccharomyces cerevisiae (Sso1 and Sso2) and the ones in Pez-

izomycotina, the latter are named SsoA and SsoB.

The duplication in Pezizomycotina did not affect the cognate SNARE (i.e.

Snc (R-group) and Sec9 (Qbc-group)) partners of the secretory syntaxins.

Subsequently, these protein should be able to interact with both SsoA and

SsoB. For Trichoderma reesei this was shown by Valkonen et al. [125]. Of

notice to mention is that in a few Sodariomycetes (i.e. Magnaporthe grisea,

Neurospora crassa, Podospora anserina and Chaetomium globosum) Sec9 is

markedly diverged.

3.3.6 Fungi phylogeny is recapitulate by SNAREs

Recent phylogenetic analyses, based on multi-genic information, showed that

the phylogenetic relationships within the fungi kingdom might differ from

the established opinion. Furthermore, studies like [126, 127, 128, 129, 130,

92, 109, 110] introduced a new view on certain fungal clades that differed

clearly from previous classifications of yeasts, which were usually defined

mostly by morphological analysis and growth responses. Individual gene

trees based on orthologous SNAREs concur with the newer classification.

Together, this points to the conclusion that SNARE proteins have diversi-

fied only slowly during evolution, but fast enough to reflect species evolution

within the fungi kingdom. For a better glimpse at the resolution of fungal

species evolution, a phylogenetic tree based on the concatenated sequences

90

Dissertation Nickias Kienle

of all singleton SNAREs was reconstructed. This tree reflects the recently

refined classification of the major fungi lineages (see fig. 3.3-27). The major

fungi phyla Basidiomycotina and Ascomycotina are clearly distinguished in

the tree. A closer look into the Ascomycotina reveals the major subphyla,

Pezizomycotina and Saccharomycotina. The third subphylum, Schizosac-

charomyces, clearly sits on the outside of the Ascomycotina. Within the

Pezizomycotina, the fungi of the Eurotiomycetidae split first. The difference

between the Eurotiomycetidae (only one Sso) and the other members of the

Pezizomycotina (SsoA and SsoB) was previously discussed in section 3.3.5

and fig. 3.3-27 (Split Sso) clearly shows that this characteristic emerged

after the split of the Eurotiomycetidae.

Two major clusters can be distinguished in the Saccharomycotina phylum.

One is the Candida clade. Members of this clade translate the codon CTG

as serine instead of leucin [133, 132]. The other major clade of the Sac-

charomycotina is the Saccharomyces complex. These two distinct clusters

are clearly separated in all individual trees built from orthologous SNAREs.

Interestingly, Yarrowia lipolytica, the single member of a third cluster of the

Saccharomycotina splits earlier. The top of the tree in fig. 3.3-27 shows the

evolutionary relation of some more basal fungi. Concatenated sequences of

two Mucoromycotina, Rhizopus oryzae and Phycomyces blakesleeanus, and

the chytrid fungus Batrachochytrium dendrobatidis were incorporated into

the tree reconstruction. It can be seen that these species clearly differ from

the Basidiomycotina.

3.4 SNAP proteins

As introduced in section 1.1.2, members of the SNAP family aid in SNARE

disassembly by mediating NSF binding to the assembled SNARE complex.

The SNAP family was already discovered more than 30 years ago [25]. Three

isoforms (α-, β-, and γ-SNAP) were purified from bovine brain cytosol. Since

91

Dissertation Nickias Kienle

Rhizopus oryzae
Phycomyces blakesleeanus

Batrachochytrium dendrobatidis

Sporobolomyces roseus
Puccinia graminis

Postia placenta
Phanerochaete chrysosporium

Coprinus cinereus
Laccaria bicolor

Malassezia globosa
Ustilago maydis

Yarrowia lipolytica
Saccharomyces castellii

Candida glabrata
Saccharomyces mikatae
Saccharomyces paradoxus
Saccharomyces cerevisiae

Saccharomyces kudriavzevii
Saccharomyces bayanus

Vanderwaltozyma polyspora
Saccharomyces kluyveri

Kluyveromyces waltii
Eremothecium gossypii

Kluyveromyces lactis
Candida albicans
Candida dubliniensis

Candida tropicalis
Candida parapsilosis

Lodderomyces elongisporus
Pichia stipitis

Candida lusitaniae
Debaryomyces hansenii

Candida guilliermondii
Aspergillus oryzae
Aspergillus flavus

Aspergillus nidulans
Aspergillus terreus

Aspergillus niger
Aspergillus fumigatus

Neosartorya fischeri
Aspergillus clavatus
Coccidioides posadasii
Coccidioides immitis
Uncinocarpus reesii

Histoplasma capsulatum
Paracoccidioides brasiliensis

Pyrenophora tritici-repentis
Cochliobolus heterostrophus

Phaeosphaeria nodorum
Mycosphaerella graminicola
Mycosphaerella fijiensis

Sclerotinia sclerotiorum
Botrytis cinerea

Neurospora crassa
Podospora anserina

Chaetomium globosum
Magnaporthe grisea
Trichoderma atroviride
Trichoderma reesei

Trichoderma virens
Nectria haematococca
Fusarium oxysporum
Fusarium verticillioides
Gibberella zeae

Schizosaccharomyces pombe
Schizosaccharomyces japonicus

Loss of Nyv1

Split Pep12/Vam3

Motif loss tomosyn

Extra AA in

Syx8 motif

Split Sso

Codon usage CTG

WGD

E
u

ro
tia

les
O

n
y

g
en

a
les

P
ezizo

m
y
co

tin
a

L
eo

tio
-

m
y
cetes

D
o
th

id
eo

-

m
y
cetes

E
u

ro
tio

m
y

cetes
S

o
d

a
rio

-

m
y
cetes

S
a
cch

a
ro

m
y
ces co

m
p

lex
C

a
n

d
id

a
 cla

d
e

se
n

su
 str

ic
to

P
u

ccin
io

-

m
y
co

tin
a U
stila

g
o
-

m
y
co

tin
aA

g
a
rico

m
y
co

tin
a

A
rch

ia
sco

-

m
y
co

tin
a

S
a
cch

a
ro

m
y
co

tin
a

1.00/0.78

1.00/0.78

1.00/0.78

0.99/0.78

0.96/0.78

0.79/0.78

1.00/0.78

1.00/0.78

0.19/0.78

1.00/0.78

1.00/0.78

1.00/0.78

1.00/0.78

1.00/0.78
1.00/0.78

0.99/0.78

0.86/0.78

1.00/0.78

0.92/0.78

1.00/0.78

0.80/0.78

0.91/0.78

0.35/0.62

Expansion group IV

invention

Vam7

B
A

S
A

L

F
U

N
G

I

B
A

S
ID

IO
M

Y
C

O
T

A
A

S
C

O
M

Y
C

O
T

A

Figure 3.3-27: Phylogenetic relationships based on concatenated SNARE se-
quences from 66 sequenced fungal genomes.The major clades are named. Species
that share the WGD [109, 110] and those with the different code usage (CTG)
[131, 132] are indicated in blue, SNARE protein-derived synapomorphies are indi-
cated in red. Support of the clades are represented by likelihood mapping values
(left) and AU support values (right). The best AU support value returned by the
bootstrap analysis was 0.78. [87]

92

Dissertation Nickias Kienle

A

B

Figure 3.4-28: Structures of (A) Saccharomyces cerevisiae α-SNAP (Sec17, PDB
code 1QQE) [135] and (B) monomer B of the γ-SNAP structure of Brachydanio
rerio (PDB code 2IFU) [136].

then, only little progress has been made analyzing the evolutionary history of

the SNAP family. This is especially surprising, considering the importance

of SNAPs in all intracellular trafficking step. For instance, severe growth

defects have been shown for a temperature sensitive α-SNAP mutant (Sec17

mutant) in yeast [134, 25]. To gain a deeper insight into the evolutionary

development of the SNAPs, a detailed classification of the family was con-

ducted in this thesis.

Structures of baker’s yeast α-SNAP (Sec17) and zebra fish γ-SNAP show

a high degree of structural similarity (see fig. 3.4-28). Both structures re-

veal an elongated all-helix protein, containing 14 α-helices in α-SNAP [135]

and 15 α-helices in γ-SNAP [136]. For an initial SNAP alignment, the two

structures were used as reference points. 41 α-, β-, and γ-SNAPs from var-

93

Dissertation Nickias Kienle

ious species were aligned. This led to a first SNAP HMM. Subsequently,

this model was used to scan the Reference Sequence (RefSeq) database from

NCBI. This resulted altogether in about 300 SNAP sequences. Three HMMs

were trained for the three SNAP subtypes (α-SNAP with length of 275aa,

β-SNAP with 273aa, and γ-SNAP with 286aa) and additionally a general

HMM with all SNAPs combined (SNAP with 273aa). Another scan of the

RefSeq database, the est database, and several genome projects, followed

by removal of duplicates and misassembled sequences led to an overall set

of 434 SNAP sequences. In detail, the dataset included SNAPs from 69

animals, 79 fungi, 19 plants, 47 protists, and 2 viruses.

A phylogenetic analysis revealed two distinct, basic SNAP groups, one con-

sisting of γ-SNAP and one consisting of α- and β-SNAP (see fig. 3.4-29).

Only α- and γ-SNAP could be found in all eukaryotic lineages. This sug-

gests that the duplication into α-SNAP and γ-SNAP must be very ancient

and that these two constitute the set of SNAP genes present in the assumed

proto-eukaryotic ancestor. Whether this duplication occurred synchronously

to the event that gave rise to the twenty basic SNARE subtypes remains yet

elusive.

In the branch of α- and β-SNAP, β-SNAP probably arose by duplication of

α-SNAP in vertebrates (see fig. 3.4-29). In fact, it has been reported that

two consecutive rounds of WGD in vertebrates occurred. This resulted for

example in an enlarged secretory SNARE repertoire [88]. Furthermore, pre-

vious studies have shown that α-SNAP is ubiquitously expressed in a wide

range of tissue, whereas β-SNAP is a brain-specific isoform [137]. Together,

this indicates that this additional SNAP must have provided a selective

advantage in vertebrates. A high degree in sequence identity between α-

SNAP and β-SNAP in vertebrates further supports that the two proteins

are closely related. For example, α-SNAP of Homo sapiens is quite sim-

ilar to other vertebrate α-SNAPs (e.g. Xenopus laevis 90%, Danio rerio

94

Dissertation Nickias Kienle

.9
3
/.
7
2

.7
0
/.
7
2

.7
5
/.
7
2

.7
8
/.
7
2

.4
3
/.
7
2

.5
2
/.
7
2

.9
3
/.
7
2

1
.0
0
/.
7
2

.5
1
/.
7
2

.6
0
/.
7
2

.6
6
/.
7
2

V
e
rt
e
b
ra
ta

S
n
a
p
B

V
e
rt
e
b
ra
ta

M
e
ta
zo
a

P
la
n
ts

Fu
n
g
i

P
la
n
ts

M
e
ta
zo
a

B
a
sa
l-

Fu
n
g
i

K
in
e
to
p
la
st
id
s

K
in
e
to
p
la
st
id
s

S
n
a
p
A

S
n
a
p
C

Fo
V
i_
a
S
N
A
P
-2

Fo
V
i_
a
S
N
A
P

C
a
V
i_
a
S
N
A
P

Figure 3.4-29: Unrooted phylogenetic SNAP tree of various eukaryotic lineages.
α-, β-, and γ-SNAP branches are color-coded. The labels on the major branches
represent the Likelihood Mapping (left) and AU support values (right)

95

Dissertation Nickias Kienle

84% identity) and vertebrate β-SNAPs (e.g. Homo sapiens 83%, Xeno-

pus laevis 85%, Danio rerio 81% identity), whereas it is much less identical

to non-vertebrate α-SNAPs (e.g. Branchiostoma floridae 75%, Nematostella

vectensis 64%, Ciona intestinalis 58%), not to mention γ-SNAPs (e.g. Homo

sapiens 22%, Xenopus laevis 22%, Danio rerio 22%, Branchiostoma flori-

dae 20%, Nematostella vectensis 20%, Ciona intestinalis 17%). Strikingly,

the inspected birds, Gallus gallus and Taeniopygia guttata, only possess β-

SNAP, but no α-SNAP. Unfortunately, these are the only two bird genomes

available. Inspections of additional genomes are necessary to confirm that

birds, maybe even their reptile ancestors, lost α-SNAP.

Interestingly, in addition to eukaryotic α-SNAP, the analysis also showed α-

SNAPs in Canarypox virus and Fowlpox virus (see fig. 3.4-29, color-coded

in red). Presence of a gene, encoding α-SNAP in both species, was already

reported previously [138, 139]. The viruses belong to the Avipoxvirus genus,

which is a member of the Poxviridae family. The virus can be transmitted

either by insect bites or wound contamination (moderate form) or by air-

borne infection (severe form) and is able to spread onto humans. Canarypox

virus α-SNAP has 47% sequence identity with α-SNAP and 45% identity

with β-SNAP of Homo sapiens, whereas the Fowlpox virus homolog has 43%

and 41% identity, respectively. A high degree of sequence conservation in

different strains of the Fowlpox virus, combined with no obvious replication

defect upon α-SNAP deletion, suggests a role of viral α-SNAP in virus-host

interaction [139]. Several ideas on the function of α-SNAP in virus-host

interaction have been postulated [139], but so far none of them could be

confirmed.

Another interesting duplication of α-SNAP took place in the kinetoplastids

(see fig. 3.4-29). The species Leishmania infantum, Leishmania major, Try-

panosoma brucei, and Trypanosoma cruzi all contain more than one distinct

α-SNAP. All these species are parasitic and possess a single emergent flagel-

96

Dissertation Nickias Kienle

lum. So far, it is not clear what advantage that additional SNAP provided

for the organisms.

As mentioned earlier, the γ-SNAP type was found all kingdoms of the Eu-

karya domain. However, the presence of few fungi species in the γ-SNAP

branch was somewhat surprising, since Sec17 (i.e. the bona-fide α-SNAP

homologue) was the only reported SNAP in fungi up to now. Interestingly,

all fungi species containing a γ-SNAP are rather basal (see fig. 3.4-29). A

similar loss occurred in the phylum Apicomplexa. Except of Toxoplasma

gondii all inspected members of this lineage seem to also have lost γ-SNAP.

Unfortunately, the cause for the losses of γ-SNAP are rather obscure, but

might be due to the different lifestyle of these organisms.

In general, all eukaryotic species contain only a small number of SNAPs.

Most fungi and the Apicomplexa reveal that only one SNAP type is suffi-

cient to ensure functionality of the SNARE disassembly mechanism. Differ-

ent groups of SNAREs mediate fusion of vesicles to different compartments

and they are tightly regulated by various factors. It is quite imaginable

that disassembly is a SNARE unspecific process that does not require any

regulators.

3.5 C2 domain proteins in fungi

The first collection of C2 domain sequences contained about 150 domains

from various proteins, but only few organisms. A first phylogenetic analysis

revealed three distinct groups. HMMs were trained for these groups and a

scan of the NCBI nr database resulted in more than 1500 C2 domain pro-

teins altogether. The analysis of a subsequent phylogenetic reconstruction

resulted in 15 refined HMMs. Currently, the database contains almost 3500

sequences with about 5300 C2 domains from NCBI databases (nr, RefSeq,

and EST) and several genome projects. These proteins are distributed over

160 organisms from various eukaryotic kingdoms. A general refinement of

97

Dissertation Nickias Kienle

BUD2 MUG190 NEDD4 PSD2 TCB fUnc13 fPKCa fPKCb fPLCa fPLCb fc2a t1

BasidiomycotaBasidiomycota * ** ** * * * * * * (*) *(*) *

Pezizomycotina * * * * * * * * * *(*) * *

Ascomycota Saccharomycotina * * * **(*) * * * * *(*) *

Schizosaccharomycetes * ** * ** ** * * *

Basal FungiBasal Fungi * * ** ** *** ** * * * * **(*) *

Table 3.5.1: The table shows the occurrence of the basic C2 domain proteins in
the different fungi lineages. Asterisks in brackets indicate proteins that can only
be found in some organisms of the lineage.

the HMMs is currently in progress.

The large dataset renders the classification and analysis of the C2 domain

family challenging. C2 domains are particularly abundant in animals, even

in basal organisms (e.g. 50 proteins with 90 C2 domains in Trichoplax ad-

haerens or 84 proteins with 144 C2 domains in Nematostella vectensis). The

analysis of SNAREs in fungi revealed that fungi encompass a relative simple

SNARE set, mostly comprising the SNAREs of the proto-eukaryotic ances-

tor. With this in mind, the C2 domain analysis was firstly focused on the

fungi kingdom.

With the refined HMMs, it was possible to identify the C2 domain proteins

in fungi. Generally, 12 proteins with C2 domains were found in most fungi.

These are BUD2, meiotically up-regulated gene 190 protein (MUG190), neu-

ral precursor cell expressed, developmentally down-regulated 4 (NEDD4),

phosphatidylserine decarboxylase 2 (PSD2), TCB, fungi uncoordinated fam-

ily member 13 (fUnc13), two PKCs, two PLCs, and two proteins with un-

known function, referred to as fc2a and t1. Some lineages contain multiple

of the basic C2 domain proteins, whereas other lineage lost some of the basic

factors (see table 3.5.1).

BUD2 is a GTPase activating factor for Rsr1p/Bud1p and it seems to be

required for axial and bipolar budding patterns [140]. The presence of a

C2 domain in BUD2 (bud2 C2 domain) was reported before [33]. The con-

ducted analysis revealed that BUD2 is present as singleton in almost all

fungi lineages, except for Schizosaccharomycetes, in which it seemed to be

98

Dissertation Nickias Kienle

lost independently (for an overview see table 3.5.1). Homologs of this pro-

tein were also found in choanoflagellates and animals.

MUG190 has two consecutive C2 domains (mug190 C2 domains). So far

nothing was known about the function of protein, except that it was found

to be up-regluated during meiosis [141]. The analysis showed that most fungi

contain one copy of this protein, except of the Basidiomycota, in which it

seems to be duplicated. Interestingly, MUG190 is not present in Saccha-

romycotina. This might be due their ability to reproduce asexually by bud-

ding.

NEDD4 is a ubiquitin ligase involved in regulating various intracellular pro-

cesses [142]. It contains an N-terminal C2 domain (nedd4a C2 domain),

several WW domains and a C-terminal HECT domain [142]. The con-

ducted analysis revealed that basal fungi and the Basidiomycota possess

two different NEDD4, whereas the Ascomycota seem to have lost one of

them. Interestingly, Schizosaccharomycetes, which are part of the Ascomy-

cota phylum, also contain two NEDD4 (for an overview see table 3.5.1).

This indicates that one NEDD4 must have been lost independently in the

subphylum Saccharomycotina and Pezizomycotina of the Ascomycota. Ho-

mologs of fungi NEDD4 were also found in of all animal lineages.

PSD is an enzyme that converts phosphatidylserine to phosphatidylethanol-

amine in both prokaryotes and eukaryotes [143]. Previous studies have

shown that two types of PSD can be found in fungi, but only one with

a C2 domain [143]. Interestingly, the refined C2 domain HMMs were able to

find two consecutive C2 domains in PSD. The presence of the first domain

in PSD was not known before. More derived fungi lineages possess a single

PSD with C2 domains, whereas basal fungi contain two (for an overview see

table 3.5.1). Interestingly, PSDs with a single C2 domain were also found in

Capsaspora owczarzaki and the slime molds Dictyostelium discoideum and

Dictyostelium purpureum.

99

Dissertation Nickias Kienle

The occurrence of C2 domains in fungi TCB has been reported before, but

the number of C2 domains vary between three [144] and six [34]. Indeed

the TCBs analyzed in this study feature between three and five C2 do-

mains (tcb a, tcb b, tcb c, tcb d, and tcb e). It is assumed that these

proteins have a role in membrane trafficking, but their exact function is

yet unknown [144, 34]. Pezizomycotina and Basidiomycota contain a sin-

gle TCB. Schizosaccharomycetes and most Saccharomycotina contain two

TCB proteins, whereas some Saccharomycotina (e.g. Candida albicans, Sac-

charomyces cerevisiae) and most basal fungi possess three TCBs (for an

overview see table 3.5.1). It has been reported before that TCB can also

be found in animals and plants [34]. This could not be confirmed, since

the refined fungi C2 HMMs were only able to find TCB in the basal an-

imals Nematostella vectensis and Hydra magnipapillata, but not in other

animal species. Additionally, conducted BLAST searches against the re-

ported TCBs did not result in significant hits. Interestingly, the refined

TCB HMMs were able to find TCB in the protists Capsaspora owczarzaki

and Encephalitozoon cuniculi.

fUnc13 proteins contain a single C2 domain (f unc13) that is embedded

within a MUN domain [145]. Very likely, it has a role in membrane traf-

ficking, potentially as priming or tethering factor [145]. Most fungi lin-

eages posses a single fUnc13, but basal fungi and Schizosaccharomycetes

contain two (for an overview see table 3.5.1). Interestingly, fUnc13 in Ba-

trachochytrium dendrobatidis exhibits an additional C2 domain at the N-

terminus. The fact that Unc13 homologs in animals contain two or three

C2 domains respectively, might indicate that these proteins derived from a

common ancestor.

Two types of PKCs can be distinguished with the refined HMM. The f pkc a

C2 domain was predicted in fPKCa, while the f pkc b C2 domain was pre-

dicted in fPKCb. Both proteins have potential roles in signal transduction

100

Dissertation Nickias Kienle

processes. So far, only one PKC (fPKCa) was found in fungi [146]. Most

fungi lineages contain fPKCa and fPKCb as singletons. Interestingly, fP-

KCb seems to have been lost in Schizosaccharomycetes. This loss must have

been occurred independently, since fPKCb is present in other Ascomycota

lineages (for an overview see table 3.5.1).

Similar to the PKCs, PLCs with C2 domains can also generally be di-

vided into fPLCa (f plca a C2 domain) and fPLCb (f plc b C2 domain).

These proteins are involved in regulating various cellular processes by hy-

drolyzing phosphatidylinositol 4,5-biphosphate to inositol 1,4,5-triphosphate

[147, 148]. The occurrence of fPLCa has been reported before. The prelimi-

nary analysis of the animal C2 domains suggests that it might be an animal

PLC-δ homolog [149]. fPLCa is present as a singleton in all fungi lineages.

The presence of a second PLC (fPLCb) was not reported before. Most As-

comycota often feature two of these proteins, but fPLCb seems to be lost

independently in Schizosaccharomycetes. Only a few Basidiomycota fungi

contain fPLCb. With further refinement of the HMMs, it might be possible

to identify more fPLCb C2 domains in Basidiomycota.

Additionally, the refined HMMs were able to identify C2 domains (fc2a and

t1 C2 domain) in two proteins with unknown function. Predictions with

Pfam [38] and SMART [39] do not show additional domains besides the C2

domain. The fc2a proteins were found as singletons in most fungi lineages.

Only basal fungi and Basidiomycota possess more of these proteins (for an

overview see table 3.5.1). The t1 protein on the other hand was found as

singletons in basal fungi and Basidiomycota. In Ascomycota, only Pezi-

zomycotina posses this protein, whereas Saccharomycotina and Schizosac-

charomycetes seem to have lost t1 independently (for an overview see table

3.5.1).

Fig. 3.5-30 shows a phylogenetic reconstruction of the fungi C2 domains,

contained in a representative set of 14 fungal species (i.e. Ascomycota, Basid-

101

Dissertation Nickias Kienle

iomycota, and basal fungi species). The C2 domains of the aforementioned

proteins, highlighted by frames, split into distinct branches. Domains that

fall not into these major branches are mostly C2 domains of basal fungi that

were not found in more derived fungi. The tree shows the C2 domains of the

two PKCs (f pkc a and f pkc b) in neighboring branches. This suggests that

these domains are closely related and probably originated from a common

ancestor. The same applies for the C2 domains of the two PLCs (f plc a

and f plc b).

Three of the TCB C2 domains (tcb a, tcb c, and tcb d) are grouped to-

gether in one bigger branch, whereas tcb b and tcb e, each on separate

branches, seem to be more distant. Interestingly, the second C2 domain of

TCB (tcb b) seems to be closely related to the second C2 domain of MUG190

(mug190 b). A closer look revealed that the branch of the first C2 domain

of TCB (tcb a) also contains several mug190 a C2 domains of basal fungi

species. Additionally, TCB and MUG190 both possess N-terminal TMRs

(predicted with TMHMM [150]). This might indicate that both proteins

derived from a common ancestor.

Overall, the refined HMMs were able to confirm several known C2 domains

in fungi proteins (e.g fUnc13, fPLCa, fPKCa, NEDD4), but additionally

they also found novel C2 domains that had not been reported before (e.g.

fPKCb, fPLCa, MUG190). In general, basal fungi contain more proteins

with C2 domains than organisms of more derived lineages. Mostly, these

are duplications of the described proteins, but additional proteins with C2

domains can also be found in these organisms. Interestingly, those C2 do-

mains are not present in more derived fungi. For example, the chytrids

Batrachochytrium dendrobatidis and Spizellomyces punctatus contain the

proteins Intersectin and RAS p21 protein activator. These proteins are not

present in any other fungi, but can be found in other kingdoms. Intersectin

plays a role in endocytic membrane trafficking [151] and RAS p21 protein

102

D
issertation

N
ick

ias
K

ien
le

.98/.71

.42/.00

.52/.71

.5
8
/.
7
1

.6
3
/.
7
1

.53/.71

.43/.71

.48/.71

.4
6/
.7
1

.73/.71

.7
7/
.7
1

.68
/.7
1

.70/.7
1

.47/.71

.4
8
/.
7
1

.93/.71

.69/.71

.74/.71

.8
0
/.
7
1

.78/.71

.57/.71

.5
3/
.7
1

.54/
.71

.40/.71

.58/.71

.87/.71.5
7
/.7
1

.70/.71

.9
8
/.7
1

.38/.71

.87/.71

.49/.
71

.9
3/
.7
1

.57/.71

.69/.71

1.00/.71

.68/.71

.9
7
/.
7
1

.9
9
/.
7
1

.7
0
/.
7
1

PhBl_fPKCa-2
PhBl_fPKCa-1

RhOr_fPKCa-1
RhOr_fPKCa-2

RhOr_fPKCa-3

CoIm_fPKCa-1
AsFl_fPKCa-1
MyGr_fPKCa-1

NeCr_fPKCa-1
SpPu_fPKCa-2 SpPu_fPKCa-1

PoPlc_fPKCa-1

LaBi_fPKCa-1

CrNe_fPKCa-1

MyFi_fPLCb-3TrAt_fPLCb-4
MyGr_fPLCb-3BaDe_TCB-1_2

PhBl_fPKCb-1

SpPu_fPKCb-2

CrNe_fPKCb-1
PoPl_fPKCb-1

LaBi_fPKCb-1
MyGr_fPKCb-1

AsFl_fPKCb-1

CoIm_fPKCb-1

NeCr_fPKCb-1

TrAt_fPKCb-1

ScSc_fPKCb-1

SpPu_RASA-1_0

BaDe_Rasa-1

RhOr_PSD-1
PhBl_PSD-3

RhOr_PSD-2

ScSc_PSD-1_0

NeCr_PSD-1_0
TrAt_PSD-1_0
MyFi_PSD-1

MyGr_PSD-1_0
AsFl_PSD-1

CoIm_PSD-1_0

LaBi_PSD-1

LaBi_PSD-2_0
PoPl_PSD-1_0
CrNe_PSD-1_0

SpPu_PSD-1_0

NeCr_NEDD4a-2

TrAt_NEDD4a-1
NeCr_NEDD4a-1

ScSc_NEDD4a-1
MyGr_NEDD4a-1

CoIm_NEDD4a-1
AsFl_NEDD4a-1

PhBl_NEDD4a-1

RhOr_NEDD4a-2

RhOr_NEDD4a-1

PhBl_NEDD4a-2

SpPu_NEDD4a-1

BaDe_NEDD4a-1

LaBi_NEDD4a-1

PoPl_NEDD4a-1

CrNe_NEDD4-1

LaBi_NEDD4a-2

SpPu_unc13-3_0

PoPl_t1-2
LaBi_t1-1

SpPu_c2-1

AsFl_t1-2

AsFl_t1-1
MyGr_t1-1

MyFi_t1-1

CrNe_t1-1
NeCr_t1-1

TrAt_t1-1

ScSc_t1-1
CoIm_t1-1

SpPu_prc2a-1

AsFl_MUG190-1_0

CoIm_MUG190-1_0

MyGr_MUG190-1_0

MyFi_MUG190-1

TrAt_MUG190-1
NeCr_MUG190-1_0
ScSc_MUG190-1

PoPl_MUG190-1_0

PoPl_MUG190-2_0

CrNe_MUG190-1
MyFi_MUG190-2
TrAt_MUG190-2_0

MyGr_MUG190-2

NeCr_MUG190-2

CrNe_MUG190-2_0

SpPu_t1-1
BaDe_t1-1

LaBi_PSD-2

LaBi_PSD-1_0

PoPl_PSD-1

CrNe_PSD-1

ScSc_PSD-1

AsFl_PSD-1_0
CoIm_PSD-1

MyGr_PSD-1

MyFi_PSD-1_0

TrAt_PSD-1

NeCr_PSD-1

RhOr_PSD-1_0

PhBl_PSD-2

PhBl_PSD-1

SpPu_PSD-1

SpPu_Itsn-1

SpPu_c2-2
PhBl_plc2a-6

RhOr_plc2a-3
RhOr_plc2a-1
BaDe_prc2b-1

SpPu_fc2a-2
PhBl_fc2a-5

PhBl_fc2a-7

PhBl_c2d-8
PhBl_c2d-2

RhOr_c2d-2

RhOr_c2d-1
RhOr_c2d-3

NeCr_TCB-1_0

TrAt_TCB-1_0
AsFl_TCB-1_3

ScSc_TCB-1_1

RhOr_TCB-2

BaDe_TCB-1_1
SpPu_TCB-1_0

PhBl_TCB-1_3

RhOr_TCB-1_3

RhOr_TCB-4_1

CrNe_TCB-1_1
CrNe_TCB-2_1

LaBi_TCB-1_2

PhBl_c2a-4

SpPu_RPGRIP1-like-1

RhOr_t1-3
PhBl_t1-3

SpPu_CCC2-1
SpPu_MUG190-1_1

SpPu_unc13-1_0
BaDe_func13-1

SpPu_SNX-1
BaDe_Pi3k

BaDe_Rasa-1_0

SpPu_RASA-1

SpPu_RASA-3
SpPu_RASA-2

RhOr_fc2a-4

PhBl_fc2a-2
PhBl_fc2a-1RhOr_fc2a-2

LaBi_fc2a-2
PoPl_fc2-1
PoPl_fc2a-1

LaBi_fc2a-1 CrNe_fc2a-1

MyFi_fc2a-1

MyGr_fc2a-1
CoIm_fc2a-1 NeCr_fc2a-1

TrAt_fc2a-1

AsFl_fc2a-1

ScSc_fc2a-1

RhOr_TCB-1

PhBl_TCB-2_1

RhOr_TCB-4

SpPu_Copine-1_0

PhBl_TCB-1
RhOr_TCB-3_1

PhBl_TCB-3_2

RhOr_TCB-2_1

CrNe_TCB-1_3

CrNe_TCB-2

LaBi_TCB-1_1 PoPl_TCB-1_1

NeCr_TCB-1_2

TrAt_TCB-1_3

AsFl_TCB-1

CoIm_TCB-1
ScSc_TCB-1_3

MyGr_TCB-1

MyFi_TCB-1
SpPu_TCB-1

BaDe_TCB-1_3

SpPu_TCB-1_2

BaDe_TCB-1_0

RhOr_MUG190-2_0
RhOr_MUG190-3_0

PhBl_MUG190-2
PhBl_MUG190-1

SpPu_MUG190-1_0

NeCr_TCB-1_1

TrAt_TCB-1

MyFi_TCB-1_1

MyGr_TCB-1_1

AsFl_TCB-1_0

CoIm_TCB-1_0
ScSc_TCB-1_0

RhOr_TCB-1_2

RhOr_TCB-4_3

PhBl_TCB-1_0

PhBl_TCB-2

PhBl_TCB-3

RhOr_TCB-2_3

RhOr_TCB-3_0

LaBi_TCB-1

CrNe_TCB-2_3

CrNe_TCB-1_0

PoPl_TCB-1_0

SpPu_Copine-1

RhOr_TCB-2_0

RhOr_TCB-3_2

PhBl_TCB-3_1

LaBi_TCB-1_0

PoPl_TCB-1_2

CrNe_TCB-1

CrNe_TCB-2_0

AsFl_TCB-1_2

CoIm_TCB-1_2

TrAt_TCB-1_1

MyGr_TCB-1_0

MyFi_TCB-1_2

ScSc_TCB-1_2

NeCr_TCB-1

PhBl_TCB-1_2

PhBl_TCB-2_2

RhOr_TCB-1_0

RhOr_TCB-4_0

BaDe_TCB-1_4

SpPu_TCB-1_3

TrAt_BUD2-1

NeCr_BUD2-1

MyFi_BUD2-1

MyGr_BUD2-1

CoIm_BUD2-1

AsFl_BUD2-1
PhBl_BUD2

RhOr_BUD2-1

PoPl_BUD2-1

SpPu_TCB-1_4
BaDe_TCB-1

TrAt_TCB-1_2

AsFl_TCB-1_1

CoIm_TCB-1_1

ScSc_TCB-1

MyGr_TCB-1_2

MyFi_TCB-1_0

NeCr_TCB-1_3

PhBl_TCB-1_1

PhBl_TCB-2_0

RhOr_TCB-1_1

PhBl_TCB-3_0

RhOr_TCB-3

RhOr_TCB-2_2

RhOr_TCB-4_2

CrNe_TCB-2_2

CrNe_TCB-1_2

PoPl_TCB-1

LaBi_TCB-1_3

SpPu_TCB-1_1

TrAt_MUG190-2

NeCr_MUG190-2_0

MyGr_MUG190-2_0

MyFi_MUG190-2_0

TrAt_MUG190-1_0

NeCr_MUG190-1

MyGr_MUG190-1

AsFl_MUG190-1

ScSc_MUG190-1_0

MyFi_MUG190-1_0

CoIm_MUG190-1

PoPl_MUG190-1

PoPl_MUG190-2

CrNe_MUG190-1_0

CrNe_MUG190-2

SpPu_MUG190-1

RhOr_MUG190-2

RhOr_MUG190-3

PhBl_MUG190-2_0
PhBl_MUG190-1_0

AsFl_fPLCb-2

CoIm_fPLCb-2
MyGr_fPLCb-2

MyFi_fPLCb-2
TrAt_fPLCb-3

NeCr_fPLCb-2
TrAt_fPLCb-2

TrAt_fPLCa-1
NeCr_fPLCa-1

ScSc_fPLCa-1

CoIm_fPLCa-1

AsFl_fPLCa-1

MyGr_fPLCa-1

MyFi_fPLCa-1

PoPl_fPLCa-1
LaBi_fPLCa-2

LaBi_fPLCa-1

BaDe_PLC-1

SpPu_PLCd-1

CrNe_fPLCa-2

SpPu_unc13-3

SpPu_func13-2

MyGr_func13-1
MyFi_func13
CoIm_func13-1

AsFl_func13-1

NeCr_func13-1

TrAt_func13-1

ScSc_func13-1

CrNe_func13-1

CrNe_func13-2

LaBi_func13-1
PoPl_func13-1

RhOr_func13-1

RhOr_func13-2

RhOr_func13-3

PhBl_func13-1
PhBl_func13-2
BaDe_func13-1_0

SpPu_unc13-1

tcb_b

mug190_b

bud2

tcb_d

tcb_c

mug190_a

tcb_a

tcb_e

fc2a

psd_b
mug190_a

t1

nedd4a

psd_a

f_pkc_b

f_pkc_a

f_unc13

f_plc_a

f_plc_b

F
ig
u
re

3
.5
-3
0
:

U
n

ro
o
ted

p
h
y
lo

g
en

etic
C

2
d

o
m

a
in

tree
o
f

1
4

fu
n

g
a
l
sp

ecies.
M

a
jo

r
d

o
m

a
in

g
ro

u
p

s
a
re

m
a
rk

ed
w

ith
th

eir
n

a
m

es.
T

h
e

la
b

els
o
n

th
e

m
a

jo
r

b
ra

n
ch

es
rep

resen
t

th
e

L
ik

elih
o
o
d

M
a
p

p
in

g
(left)

a
n

d
A

U
su

p
p

o
rt

va
lu

es
(rig

h
t)

103

Dissertation Nickias Kienle

activator stimulates the GTPase activity of RAS p21 [152]. Additionally,

Spizellomyces punctatus is the only fungi that possesses a Copine. Copines

have two consecutive C2 domains and a C-terminal domain that might be

important for protein-protein interaction [153]. The existence of proteins

and domains in basal fungi, which cannot be found in more derived fungi

lineages, indicates that the C2 domains in more derived fungi very likely do

not represent the whole proto-eukaryotic repertoire of these domains. This

phenomenon was observed already for fungi SNAREs, as Npsn was thought

to be only present in plants [91] and protists [7], but could be found in

the chytrids Batrachochytrium dendrobatidis and Blastocladiella emersonii

as well. This indicates that Npsn was part of the assumed SNARE reper-

toire of the proto-eukaryotic ancestor, but was later lost in choanoflagellates,

metazoa, and more derived fungi (see section 3.3).

For the thorough reconstruction of the evolutionary history of C2 domains

it is indispensable to include species from other kingdoms into the analysis.

This needs to be done very carefully, since the abundance of C2 domains in

higher organisms ([154, 155, 156, 157, 158] and the C2 domain collection es-

tablished during this thesis) render the computational task very challenging.

As it has been shown for basal organisms of other kingdoms (e.g. animals,

plants) that their SNARE repertoires are rather simple and that expansions

mostly occur in more derived organisms [91, 88, 89, 7], it seem probable that

comparable patterns will also be found for C2 domains. A possible strategy

to analyze the C2 domain proteins would therefore be to focus on more basal

organisms first. In addition, a preliminary inspection indicates that some

lineages of protists do contain a limited number of C2 domain proteins as

well (e.g. Apicomplexa, Heterokonta). Comparable to the strategy used for

the analysis of the repertoire of fungi, these groups should thus be analyzed

separately first.

A more formidable task is the analysis of the evolutionary history of the C2

104

Dissertation Nickias Kienle

domains in animals, as the repertoire appears to be expanded drastically, in

particular in vertebrates.

105

Dissertation Nickias Kienle

106

4 Conclusion & Outlook

The Tracey management system is a flexible basis that facilitates the classi-

fication and analysis of the protein families involved in vesicular trafficking.

In fact, with this system it is easily possible to investigate any domain or

protein family. Although, the basic functionality of the Tracey management

system is now implemented, maintenance and improvement will continue.

The intention of the web interface was to be a universal tool for all project

participants, but eventually also a public source for all classified domains. In

its current version, no public section is implemented and this would there-

fore be the most urgent improvement to the web interface. Additionally,

the main focus, so far, was set to functionality, but only little effort has

been put into the design of the web interface. A more esthetic design would

be more appealing and might thus extend the acceptance and usage of the

public part of the web interface in the field.

The analyses of protein families involved in vesicular trafficking served as

comprehensive tests of the novel management system. Although the con-

ducted analyses showed that the system works well in principal, it is of course

possible that it needs to be extended for additional domain or protein fami-

lies. Our analyses revealed some interesting new facts about the evolutionary

history of the investigated protein families. For example, the fungi SNARE

set remained largely unchanged and only a little over twenty SNAREs could

be found in most fungi. Multicellular members of other kingdoms (e.g. an-

imals, plant) often feature much larger SNARE repertoires and therefore

107

Dissertation Nickias Kienle

the idea was promoted that the SNARE set expansion is generally linked

to the rise of multicellularity [88, 9, 89, 90]. The fact that fungi developed

multicellularity independently, but in contrast to plants and metazoa, do

not exhibit a extended SNARE set suggests that the rise of multicellularity

is not generally linked to an expansion of the SNARE repertoire. Another

interesting finding was the discovery of Npsn in basal fungi. Before this

study, Npsn was thought to be only present in plants [91] and protists [7],

but its discovery in basal fungi suggests that Npsn was part of the assumed

SNARE repertoire of the proto-eukaryotic ancestor, but was lost in animals

and more derived fungi. It would be interesting to include additional basal

fungi to shed more light at the species development closer to the root of this

kingdom.

The analysis of the SNAP family uncovered that α- and γ-SNAP can be

found in most eukaryotic lineages. This indicates that these two SNAP

genes were already part of the assumed proto-eukaryotic SNAP repertoire.

By contrast, β-SNAPs probably arose by duplication of α-SNAP in verte-

brates. Interestingly, the inspected birds seemed to have lost α-SNAP. It is

thought that all SNAPs mediate binding of NSF to the SNARE complex,

in order to initiate SNARE complex disassembly. Regarding this, it would

be of great importance to also investigate the evolutionary history of NSF,

especially with respect to co-evolutionary aspects. NSF belongs to a sub-

group of the AAA+ ATPase family. Preliminary studies have already been

conducted to analyze the entire AAA+ ATPase family [159, 160]. These

could serve as a starting point for a detailed analysis of NSF.

As another family, we started to investigate the evolutionary history of the

C2 domains. This family is rather large and complex, therefore we focussed

first on the C2 domains in fungi. The general fungi set is comprised of only

about 12 different C2 domain proteins (BUD2, MUG190, NEDD4, PSD2,

TCB, fUnc13, two PKCs, two PLCs, fc2a, and t1). A closer look revealed

108

Dissertation Nickias Kienle

that basal fungi often contain additional types of C2 domain proteins than

more derived fungi. Remarkably, some of these types are not present in

more derived fungi, but in animals (Intersectin, RAS p21 protein activator,

and Copine). This suggests that the repertoire of the common ancestor of

fungi and animals, maybe even all eukaryotes, most have been larger than

that of higher fungi.

So far, it is not entirely clear whether the current models are sufficient

enough for the analysis of all C2 domains. The next step is to refine the

models to have highly sensitive and specific predictors that are able to iden-

tify all C2 domains. This task is very complex, since C2 domains are highly

abundant in many species. By analyzing the C2 domains of mainly basal

organisms from all eukaryotic kingdoms, it might be possible to eventu-

ally identify the C2 repertoire of the assumed proto-eukaryotic ancestor.

Subsequently, these basic C2 domains could serve as a starting point for

the refinement of the current models. This has already started, but the

models are still not sensitive enough. Most of the known C2 domains can

be detected already, but the current models still have difficulties finding

certain types of C2 domains (e.g. Calcium activated protein for secretion,

phosphatase and tensin homolog). These C2 domains appear to be more de-

rived. Calcium activated protein for secretion proteins belong to a specific

group of C2 domain proteins that contain Munc13-homology-domains [161].

Recently, it has been proposed that Munc13-homology-domains are only a

part of a larger domain, called the MUN domain [145]. Interestingly, this

domain shows weak, but significant sequence similarity to specific subunits

of complexes involved in vesicle tethering [145]. Analyzing the MUN domain

could complement the analysis of certain types of C2 domain proteins and

subsequently provide deeper insights into the mechanisms of intracellular

vesicle trafficking.

109

Dissertation Nickias Kienle

110

Dissertation Nickias Kienle

References

[1] J. S. Bonifacino and B. S. Glick, “The mechanisms of vesicle budding and
fusion,” vol. 116, pp. 153–66, Jan 2004.

[2] H. Stenmark, “Rab gtpases as coordinators of vesicle traffic,” Nat Rev Mol
Cell Biol, Jul 2009.

[3] R. Jahn and R. H. Scheller, “Snares–engines for membrane fusion,” Nat Rev
Mol Cell Biol, vol. 7, pp. 631–43, Sep 2006.

[4] R. F. G. Toonen and M. Verhage, “Vesicle trafficking: pleasure and pain from
sm genes,” Trends Cell Biol, vol. 13, pp. 177–86, Apr 2003.

[5] J. B. Pereira-Leal and M. C. Seabra, “Evolution of the rab family of small
gtp-binding proteins,” J Mol Biol, vol. 313, pp. 889–901, Nov 2001.

[6] V. L. Koumandou, J. B. Dacks, R. M. R. Coulson, and M. C. Field, “Control
systems for membrane fusion in the ancestral eukaryote; evolution of tethering
complexes and sm proteins,” BMC Evol Biol, vol. 7, p. 29, Jan 2007.

[7] T. H. Kloepper, C. N. Kienle, and D. Fasshauer, “An elaborate classification
of snare proteins sheds light on the conservation of the eukaryotic endomem-
brane system,” Mol Biol Cell, Jun 2007.

[8] J. B. Dacks, P. P. Poon, and M. C. Field, “Phylogeny of endocytic components
yields insight into the process of nonendosymbiotic organelle evolution,” Proc
Natl Acad Sci USA, vol. 105, pp. 588–93, Jan 2008.

[9] J. B. Dacks and M. C. Field, “Evolution of the eukaryotic membrane-
trafficking system: origin, tempo and mode,” J Cell Sci, vol. 120, pp. 2977–85,
Sep 2007.

[10] H. Cai, K. Reinisch, and S. Ferro-Novick, “Coats, tethers, rabs, and snares
work together to mediate the intracellular destination of a transport vesicle,”
Dev Cell, vol. 12, pp. 671–82, May 2007.

[11] C. Gurkan, A. Koulov, and W. Balch, “An evolutionary perspective on eu-
karyotic membrane trafficking,” Origins and Evolution of Eukaryotic En-
domembranes and . . . , Jan 2006.

[12] W. Hong, “Snares and traffic,” vol. 1744, pp. 493–517, Jul 2005.

[13] J. B. Bock, H. T. Matern, and A. A. Peden, “A genomic perspective on
membrane compartment organization,” vol. 409, pp. 839–41, Feb 2001.

[14] D. Fasshauer, R. B. Sutton, A. T. Brunger, and R. Jahn, “Conserved struc-
tural features of the synaptic fusion complex: Snare proteins reclassified as
q- and r-snares,” Proc Natl Acad Sci USA, vol. 95, pp. 15781–6, Dec 1998.

[15] T. Weimbs, S. H. Low, S. J. Chapin, K. E. Mostov, P. Bucher, and K. Hof-
mann, “A conserved domain is present in different families of vesicular fusion
proteins: a new superfamily,” vol. 94, pp. 3046–51, Apr 1997.

[16] M. Veit, T. H. Söllner, and J. E. Rothman, “Multiple palmitoylation of synap-
totagmin and the t-snare snap-25,” FEBS Lett, vol. 385, pp. 119–23, Apr
1996.

111

Dissertation Nickias Kienle

[17] J. A. McNew, M. Sogaard, N. M. Lampen, S. Machida, R. R. Ye, L. Lacomis,
P. Tempst, J. E. Rothman, and T. H. Söllner, “Ykt6p, a prenylated snare
essential for endoplasmic reticulum-golgi transport,” J Biol Chem, vol. 272,
pp. 17776–83, Jul 1997.

[18] D. Zwilling, A. Cypionka, W. H. Pohl, D. Fasshauer, P. J. Walla, M. C. Wahl,
and R. Jahn, “Early endosomal snares form a structurally conserved snare
complex and fuse liposomes with multiple topologies,” EMBO J, vol. 26,
pp. 9–18, Jan 2007.

[19] W. Antonin, D. Fasshauer, S. Becker, R. Jahn, and T. R. Schneider, “Crystal
structure of the endosomal snare complex reveals common structural princi-
ples of all snares,” Nat Struct Biol, vol. 9, pp. 107–11, Feb 2002.

[20] R. B. Sutton, D. Fasshauer, R. Jahn, and A. T. Brunger, “Crystal structure of
a snare complex involved in synaptic exocytosis at 2.4 a resolution,” Nature,
vol. 395, pp. 347–53, Sep 1998.

[21] K. Wiederhold and D. Fasshauer, “Is assembly of the snare complex enough
to fuel membrane fusion?,” J Biol Chem, vol. 284, pp. 13143–52, May 2009.

[22] D. Fasshauer, W. Antonin, V. Subramaniam, and R. Jahn, “Snare assembly
and disassembly exhibit a pronounced hysteresis,” Nat Struct Biol, vol. 9,
pp. 144–51, Feb 2002.

[23] P. I. Hanson and S. W. Whiteheart, “Aaa+ proteins: have engine, will work,”
Nat Rev Mol Cell Biol, vol. 6, pp. 519–29, Jul 2005.

[24] C. Wimmer, T. M. Hohl, C. A. Hughes, S. A. Müller, T. H. Söllner, A. Engel,
and J. E. Rothman, “Molecular mass, stoichiometry, and assembly of 20 s
particles,” J Biol Chem, vol. 276, pp. 29091–7, Aug 2001.

[25] D. O. Clary, I. C. Griff, and J. E. Rothman, “Snaps, a family of nsf attachment
proteins involved in intracellular membrane fusion in animals and yeast,” Cell,
vol. 61, pp. 709–21, May 1990.

[26] J. Furst, R. B. Sutton, J. Chen, A. T. Brunger, and N. Grigorieff, “Elec-
tron cryomicroscopy structure of n-ethyl maleimide sensitive factor at 11 a
resolution,” EMBO J, vol. 22, pp. 4365–74, Sep 2003.

[27] T. M. Hohl, F. Parlati, C. Wimmer, J. E. Rothman, T. H. Söllner, and
H. Engelhardt, “Arrangement of subunits in 20 s particles consisting of nsf,
snaps, and snare complexes,” Mol Cell, vol. 2, pp. 539–48, Nov 1998.

[28] K. G. Fleming, T. M. Hohl, R. C. Yu, S. A. Müller, B. Wolpensinger, A. En-
gel, H. Engelhardt, A. T. Brünger, T. H. Söllner, and P. I. Hanson, “A revised
model for the oligomeric state of the n-ethylmaleimide-sensitive fusion pro-
tein, nsf,” J Biol Chem, vol. 273, pp. 15675–81, Jun 1998.

[29] P. I. Hanson, R. Roth, H. Morisaki, R. Jahn, and J. E. Heuser, “Structure and
conformational changes in nsf and its membrane receptor complexes visual-
ized by quick-freeze/deep-etch electron microscopy,” Cell, vol. 90, pp. 523–35,
Aug 1997.

112

Dissertation Nickias Kienle

[30] L. Coussens, P. J. Parker, L. Rhee, T. L. Yang-Feng, E. Chen, M. D. Wa-
terfield, U. Francke, and A. Ullrich, “Multiple, distinct forms of bovine and
human protein kinase c suggest diversity in cellular signaling pathways,” Sci-
ence, vol. 233, pp. 859–66, Aug 1986.

[31] D. Murray and B. Honig, “Electrostatic control of the membrane targeting
of c2 domains,” Mol Cell, vol. 9, pp. 145–54, Jan 2002.

[32] W. Cho and R. V. Stahelin, “Membrane binding and subcellular targeting of
c2 domains,” Biochim Biophys Acta, vol. 1761, pp. 838–49, Aug 2006.

[33] E. A. Nalefski and J. J. Falke, “The c2 domain calcium-binding motif: struc-
tural and functional diversity,” Protein Sci, vol. 5, pp. 2375–90, Dec 1996.

[34] J. L. Jiménez and B. Davletov, “Beta-strand recombination in tricalbin evo-
lution and the origin of synaptotagmin-like c2 domains,” Proteins, vol. 68,
pp. 770–8, Aug 2007.

[35] J. Pereira-Leal, “The ypt/rab family and the evolution of trafficking in fungi,”
Traffic, Nov 2007.

[36] A. C. Yoshizawa, S. Kawashima, S. Okuda, M. Fujita, M. Itoh, Y. Moriya,
M. Hattori, and M. Kanehisa, “Extracting sequence motifs and the phyloge-
netic features of snare-dependent membrane traffic,” Traffic, vol. 7, pp. 1104–
18, Aug 2006.

[37] J. Dacks and W. Doolittle, “Molecular and phylogenetic characterization of
syntaxin genes from parasitic protozoa,” Mol Biochem Parasitol, Jan 2004.

[38] R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington, O. L.
Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E. L. L. Sonnham-
mer, S. R. Eddy, and A. Bateman, “The pfam protein families database,”
Nucleic Acids Res, vol. 38, pp. D211–22, Jan 2010.

[39] I. Letunic, T. Doerks, and P. Bork, “Smart 6: recent updates and new devel-
opments,” Nucleic Acids Res, vol. 37, pp. D229–32, Jan 2009.

[40] N. Kienle, “Building a Management System for the SNARE-Project,” Mas-
ter’s thesis, University of Tübingen, Germany, 2006.

[41] “Java.” http://java.sun.com.

[42] “NCBI - National Center for Biotechnology Information.” http://www.ncbi.

nlm.nih.gov.

[43] N. Kienle, T. H. Kloepper, and D. Fasshauer, “Differences in the snare evo-
lution of fungi and metazoa,” Biochem Soc Trans, vol. 37, pp. 787–91, Aug
2009.

[44] H. R. Pelham, “Snares and the specificity of membrane fusion,” Trends Cell
Biol, vol. 11, pp. 99–101, Mar 2001.

[45] D. K. Banfield, “Snare complexes–is there sufficient complexity for vesicle
targeting specificity?,” Trends Biochem Sci, vol. 26, pp. 67–8, Jan 2001.

[46] “MySQL.” http://www.mysql.com.

113

http://java.sun.com
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.mysql.com

Dissertation Nickias Kienle

[47] C. Notredame, D. G. Higgins, and J. Heringa, “T-coffee: A novel method
for fast and accurate multiple sequence alignment,” J Mol Biol, vol. 302,
pp. 205–17, Sep 2000.

[48] C. B. Do, M. S. P. Mahabhashyam, M. Brudno, and S. Batzoglou, “Probcons:
Probabilistic consistency-based multiple sequence alignment,” Genome Res,
vol. 15, pp. 330–40, Feb 2005.

[49] K. Katoh, K. ichi Kuma, H. Toh, and T. Miyata, “Mafft version 5: improve-
ment in accuracy of multiple sequence alignment,” Nucleic Acids Res, vol. 33,
pp. 511–8, Jan 2005.

[50] R. C. Edgar and S. Batzoglou, “Multiple sequence alignment,” Curr Opin
Struct Biol, vol. 16, pp. 368–73, Jun 2006.

[51] R. C. Edgar, “Muscle: multiple sequence alignment with high accuracy and
high throughput,” Nucleic Acids Res, vol. 32, pp. 1792–7, Jan 2004.

[52] R. C. Edgar, “Muscle: a multiple sequence alignment method with reduced
time and space complexity,” BMC Bioinformatics, vol. 5, p. 113, Aug 2004.

[53] M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge Unversity
Press, 1983.

[54] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analy-
sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

[55] S. Eddy, HMMER User’s Guide, 2.3.2 ed., 2003.

[56] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic
Local Alignment Search Tool,” J. Mol. Biol, vol. 215, no. 3, pp. 1073–1082,
1990.

[57] W. R. Pearson and D. J. Lipman, “Improved tools for biological sequence
comparison,” Proc. Natl. Acad. Sci. USA, vol. 85, pp. 2444–2448, 1988.

[58] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman, “Gapped blast and psi-blast: a new generation of protein
database search programs,” Nucleic Acids Res, vol. 25, pp. 3389–402, Sep
1997.

[59] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from pro-
tein blocks,” Proc Natl Acad Sci USA, vol. 89, pp. 10915–9, Nov 1992.

[60] M. Gerstein, E. L. Sonnhammer, and C. Chothia, “Volume changes in protein
evolution,” J Mol Biol, vol. 236, pp. 1067–78, Mar 1994.

[61] A. Krogh and G. Mitchison, “Maximum entropy weighting of aligned se-
quences of proteins or DNA,” Proc Int Conf Intell Syst Mol Biol., pp. 215–
221, 195.

[62] S. Henikoff and J. G. Henikoff, “Position-based sequence weights,” J Mol
Biol, vol. 243, pp. 574–8, Nov 1994.

[63] P. R. Sibbald and P. Argos, “Weighting aligned protein or nucleic acid se-
quences to correct for unequal representation,” J Mol Biol., vol. 216, no. 4,
1990.

114

Dissertation Nickias Kienle

[64] L. S. Vinh and A. V. Haeseler, “Iqpnni: moving fast through tree space and
stopping in time,” Mol Biol Evol, vol. 21, pp. 1565–71, Aug 2004.

[65] O. Gascuel, “Bionj: an improved version of the nj algorithm based on a simple
model of sequence data,” Mol Biol Evol, vol. 14, pp. 685–95, Jul 1997.

[66] S. Guindon and O. Gascuel, “A simple, fast, and accurate method to estimate
large phylogenies by maximum likelihood,” Syst Biol, Jan 2003.

[67] K. Strimmer and A. von Haeseler, “Likelihood-mapping: a simple method to
visualize phylogenetic content of a sequence alignment,” Proc Natl Acad Sci
USA, vol. 94, pp. 6815–9, Jun 1997.

[68] J. Felsenstein, “Phylip - phylogeny inference package (version 3.2),” Cladis-
tics, vol. 5, 1998.

[69] M. Sanderson and M. Wojciechowski, “Improved bootstrap confidence lim-
its in large-scale phylogenies, with an example from neo-astragalus (legumi-
nosae),” Syst Biol, vol. 49, pp. 671–685, Dec 2000.

[70] J. Felsenstein and H. Kishino, “Is there something wrong with the bootstrap
on phylogenies? a reply to hillis and bull,” Syst Biol, Jan 1993.

[71] D. Hillis and J. Bull, “An empirical test of bootstrapping as a method for
assessing confidence in phylogenetic analysis,” Syst Biol, Jan 1993.

[72] A. Zharkikh and W. Lit, “Statistical properties of bootstrap estimation of
phylogenetic variability from nucleotide sequences: Ii. four taxa without a
molecular clock,” Journal of molecular evolution, Jan 1992.

[73] H. Shimodaira, “An approximately unbiased test of phylogenetic tree selec-
tion,” Syst Biol, vol. 51, pp. 492–508, Jan 2002.

[74] D. Jones, W. Taylor, and J. Thornton, “The rapid generation of mutation
data matrices from protein sequences,” Bioinformatics, Jan 1992.

[75] H. Shimodaira and M. Hasegawa, “Consel: for assessing the confidence of
phylogenetic tree selection,” Bioinformatics, vol. 17, pp. 1246–7, Dec 2001.

[76] J. Pei and N. V. Grishin, “Al2co: calculation of positional conservation in a
protein sequence alignment,” Bioinformatics, vol. 17, pp. 700–12, Aug 2001.

[77] “XML.” http://www.w3.org/TR/REC-xml.

[78] “NCBI FTP server.” ftp://ftp.ncbi.nih.gov/pub/taxonomy.

[79] “Apache Commons.” http://commons.apache.org.

[80] “GridGain.” http://www.gridgain.com.

[81] “DOE Joint Genome Institute.” http://www.jgi.doe.gov.

[82] “Baylor College of Medicine.” http://www.bcm.edu.

[83] “J. Craig Venter Institute.” http://www.jcvi.org.

[84] “BROAD Institute.” http://www.broadinstitute.org.

[85] “Fungal Genomics Project.” https://fungalgenomics.concordia.ca/

home.

115

http://www.w3.org/TR/REC-xml
ftp://ftp.ncbi.nih.gov/pub/taxonomy
http://commons.apache.org
http://www.gridgain.com
http://www.jgi.doe.gov
http://www.bcm.edu
http://www.jcvi.org
http://www.broadinstitute.org
https://fungalgenomics.concordia.ca/home
https://fungalgenomics.concordia.ca/home

Dissertation Nickias Kienle

[86] E. A. O’Brien, L. B. Koski, Y. Zhang, L. Yang, E. Wang, M. W. Gray,
G. Burger, and B. F. Lang, “Tbestdb: a taxonomically broad database of
expressed sequence tags (ests),” Nucleic Acids Res, vol. 35, pp. D445–51, Jan
2007.

[87] N. Kienle, T. Kloepper, and D. Fasshauer, “Phylogeny of the snare vesicle fu-
sion machinery yields insights into the conservation of the secretory pathway
in fungi,” BMC Evol Biol, vol. 9, p. 19, Jan 2009.

[88] T. Kloepper, C. Kienle, and D. Fasshauer, “Snareing the basis of multicellu-
larity: Consequences of protein family expansion during evolution,” Mol Biol
Evol, Jul 2008.

[89] A. Sanderfoot, “Increases in the number of snare genes parallels the rise of
multicellularity among the green plants,” Plant Physiol, vol. 144, pp. 6–17,
May 2007.

[90] J. B. Dacks and W. F. Doolittle, “Molecular and phylogenetic characteri-
zation of syntaxin genes from parasitic protozoa,” Mol Biochem Parasitol,
vol. 136, pp. 123–36, Aug 2004.

[91] A. A. Sanderfoot, F. F. Assaad, and N. V. Raikhel, “The arabidopsis genome.
an abundance of soluble n-ethylmaleimide-sensitive factor adaptor protein
receptors,” Plant Physiol, vol. 124, pp. 1558–69, Dec 2000.

[92] T. Y. James, F. Kauff, C. L. Schoch, P. B. Matheny, V. Hofstetter, C. J.
Cox, G. Celio, C. Gueidan, E. Fraker, J. Miadlikowska, H. T. Lumbsch,
A. Rauhut, V. Reeb, A. E. Arnold, A. Amtoft, J. E. Stajich, K. Hosaka, G.-H.
Sung, D. Johnson, B. O’Rourke, M. Crockett, M. Binder, J. M. Curtis, J. C.
Slot, Z. Wang, A. W. Wilson, A. Schüssler, J. E. Longcore, K. O’Donnell,
S. Mozley-Standridge, D. Porter, P. M. Letcher, M. J. Powell, J. W. Tay-
lor, M. M. White, G. W. Griffith, D. R. Davies, R. A. Humber, J. B. Mor-
ton, J. Sugiyama, A. Y. Rossman, J. D. Rogers, D. H. Pfister, D. Hewitt,
K. Hansen, S. Hambleton, R. A. Shoemaker, J. Kohlmeyer, B. Volkmann-
Kohlmeyer, R. A. Spotts, M. Serdani, P. W. Crous, K. W. Hughes, K. Mat-
suura, E. Langer, G. Langer, W. A. Untereiner, R. Lücking, B. Büdel, D. M.
Geiser, A. Aptroot, P. Diederich, I. Schmitt, M. Schultz, R. Yahr, D. S. Hi-
bbett, F. Lutzoni, D. J. McLaughlin, J. W. Spatafora, and R. Vilgalys, “Re-
constructing the early evolution of fungi using a six-gene phylogeny,” Nature,
vol. 443, pp. 818–22, Oct 2006.

[93] T. K. Sato, T. Darsow, and S. D. Emr, “Vam7p, a snap-25-like molecule,
and vam3p, a syntaxin homolog, function together in yeast vacuolar protein
trafficking,” Mol Cell Biol, vol. 18, pp. 5308–19, Sep 1998.

[94] C. Ungermann and W. Wickner, “Vam7p, a vacuolar snap-25 homolog, is
required for snare complex integrity and vacuole docking and fusion,” EMBO
J, vol. 17, pp. 3269–76, Jun 1998.

[95] Y. Wada, Y. Ohsumi, and Y. Anraku, “Genes for directing vacuolar morpho-
genesis in saccharomyces cerevisiae. i. isolation and characterization of two
classes of vam mutants,” J Biol Chem, vol. 267, pp. 18665–70, Sep 1992.

116

Dissertation Nickias Kienle

[96] Y. Wada and Y. Anraku, “Genes for directing vacuolar morphogenesis in sac-
charomyces cerevisiae. ii. vam7, a gene for regulating morphogenic assembly
of the vacuoles,” J Biol Chem, vol. 267, pp. 18671–5, Sep 1992.

[97] M. L. Cheever, T. K. Sato, T. de Beer, T. G. Kutateladze, S. D. Emr, and
M. Overduin, “Phox domain interaction with ptdins(3)p targets the vam7
t-snare to vacuole membranes,” Nat Cell Biol, vol. 3, pp. 613–8, Jul 2001.

[98] C. W. Ostrowicz, C. T. A. Meiringer, and C. Ungermann, “Yeast vacuole
fusion: a model system for eukaryotic endomembrane dynamics,” Autophagy,
vol. 4, pp. 5–19, Jan 2008.

[99] W. Wickner, “Yeast vacuoles and membrane fusion pathways,” EMBO J,
vol. 21, pp. 1241–7, Mar 2002.

[100] G. D. Gupta and I. B. Heath, “Predicting the distribution, conservation, and
functions of snares and related proteins in fungi,” Fungal Genet Biol, vol. 36,
pp. 1–21, Jun 2002.

[101] A. Fagarasanu and R. A. Rachubinski, “Orchestrating organelle inheritance
in saccharomyces cerevisiae,” Curr Opin Microbiol, vol. 10, pp. 528–38, Dec
2007.

[102] L. S. Weisman, “Organelles on the move: insights from yeast vacuole inheri-
tance,” Nat Rev Mol Cell Biol, vol. 7, pp. 243–52, Apr 2006.

[103] L. S. Weisman, R. Bacallao, and W. Wickner, “Multiple methods of visual-
izing the yeast vacuole permit evaluation of its morphology and inheritance
during the cell cycle,” J Cell Biol, vol. 105, pp. 1539–47, Oct 1987.

[104] F. Filippini, V. Rossi, T. Galli, A. Budillon, M. D’Urso, and M. D’Esposito,
“Longins: a new evolutionary conserved vamp family sharing a novel snare
domain,” Trends Biochem Sci, vol. 26, pp. 407–9, Jul 2001.

[105] V. Rossi, D. K. Banfield, M. Vacca, L. E. P. Dietrich, C. Ungermann,
M. D’Esposito, T. Galli, and F. Filippini, “Longins and their longin domains:
regulated snares and multifunctional snare regulators,” Trends Biochem Sci,
vol. 29, pp. 682–8, Dec 2004.

[106] W. Wen, L. Chen, H. Wu, X. Sun, M. Zhang, and D. K. Banfield, “Identifica-
tion of the yeast r-snare nyv1p as a novel longin domain-containing protein,”
Mol Biol Cell, vol. 17, pp. 4282–99, Oct 2006.

[107] L. C. Gonzalez, W. I. Weis, and R. H. Scheller, “A novel snare n-terminal
domain revealed by the crystal structure of sec22b,” J Biol Chem, vol. 276,
pp. 24203–11, Jun 2001.

[108] H. Tochio, M. M. Tsui, D. K. Banfield, and M. Zhang, “An autoinhibitory
mechanism for nonsyntaxin snare proteins revealed by the structure of ykt6p,”
Science, vol. 293, pp. 698–702, Jul 2001.

[109] D. R. Scannell, G. Butler, and K. H. Wolfe, “Yeast genome evolution–the
origin of the species,” Yeast, vol. 24, pp. 929–42, Nov 2007.

[110] B. Dujon, “Yeasts illustrate the molecular mechanisms of eukaryotic genome
evolution,” Trends Genet, vol. 22, pp. 375–87, Jul 2006.

117

Dissertation Nickias Kienle

[111] A. M. Neiman, “Prospore membrane formation defines a developmentally
regulated branch of the secretory pathway in yeast,” J Cell Biol, vol. 140,
pp. 29–37, Jan 1998.

[112] A. M. Neiman, “Ascospore formation in the yeast saccharomyces cerevisiae,”
Microbiol Mol Biol Rev, vol. 69, pp. 565–84, Dec 2005.

[113] A. M. Neiman, L. Katz, and P. J. Brennwald, “Identification of domains
required for developmentally regulated snare function in saccharomyces cere-
visiae,” Genetics, vol. 155, pp. 1643–55, Aug 2000.

[114] J. Jäntti, M. K. Aalto, M. Oyen, L. Sundqvist, S. Keränen, and H. Ronne,
“Characterization of temperature-sensitive mutations in the yeast syntaxin 1
homologues sso1p and sso2p, and evidence of a distinct function for sso1p in
sporulation,” J Cell Sci, vol. 115, pp. 409–20, Jan 2002.

[115] M. Oyen, J. Jäntti, S. Keränen, and H. Ronne, “Mapping of sporulation-
specific functions in the yeast syntaxin gene sso1,” Curr Genet, vol. 45,
pp. 76–82, Feb 2004.

[116] D. A. Hattendorf, A. Andreeva, A. Gangar, P. J. Brennwald, and W. I.
Weis, “Structure of the yeast polarity protein sro7 reveals a snare regulatory
mechanism,” Nature, vol. 446, pp. 567–71, Mar 2007.

[117] A. V. Pobbati, A. Razeto, M. Böddener, S. Becker, and D. Fasshauer, “Struc-
tural basis for the inhibitory role of tomosyn in exocytosis,” J Biol Chem,
vol. 279, pp. 47192–200, Nov 2004.

[118] E. S. Masuda, B. C. Huang, J. M. Fisher, Y. Luo, and R. H. Scheller, “To-
mosyn binds t-snare proteins via a vamp-like coiled coil,” Neuron, vol. 21,
pp. 479–80, Sep 1998.

[119] Y. Fujita, H. Shirataki, T. Sakisaka, T. Asakura, T. Ohya, H. Kotani,
S. Yokoyama, H. Nishioka, Y. Matsuura, A. Mizoguchi, R. H. Scheller, and
Y. Takai, “Tomosyn: a syntaxin-1-binding protein that forms a novel com-
plex in the neurotransmitter release process,” Neuron, vol. 20, pp. 905–15,
May 1998.

[120] M. Kagami, A. Toh-e, and Y. Matsui, “Sro7p, a saccharomyces cerevisiae
counterpart of the tumor suppressor l(2)gl protein, is related to myosins in
function,” Genetics, vol. 149, pp. 1717–27, Aug 1998.

[121] F. Wirtz-Peitz and J. A. Knoblich, “Lethal giant larvae take on a life of their
own,” Trends Cell Biol, vol. 16, pp. 234–41, May 2006.

[122] V. Vasioukhin, “Lethal giant puzzle of lgl,” Dev Neurosci, vol. 28, pp. 13–24,
Jan 2006.

[123] D. Fasshauer and R. Jahn, “Budding insights on cell polarity,” Nat Struct
Mol Biol, vol. 14, pp. 360–2, May 2007.

[124] G. D. Gupta, S. J. Free, N. N. Levina, S. Keränen, and I. B. Heath, “Two
divergent plasma membrane syntaxin-like snares, nsyn1 and nsyn2, con-
tribute to hyphal tip growth and other developmental processes in neurospora
crassa,” Fungal Genet Biol, vol. 40, pp. 271–86, Dec 2003.

118

Dissertation Nickias Kienle

[125] M. Valkonen, E. R. Kalkman, M. Saloheimo, M. Penttilä, N. D. Read, and
R. R. Duncan, “Spatially segregated snare protein interactions in living fungal
cells,” J Biol Chem, vol. 282, pp. 22775–85, Aug 2007.

[126] D. A. Fitzpatrick, M. E. Logue, J. E. Stajich, and G. Butler, “A fungal phy-
logeny based on 42 complete genomes derived from supertree and combined
gene analysis,” BMC Evol Biol, vol. 6, p. 99, Jan 2006.

[127] J. E. Galagan, M. R. Henn, L.-J. Ma, C. A. Cuomo, and B. Birren, “Genomics
of the fungal kingdom: insights into eukaryotic biology,” Genome Res, vol. 15,
pp. 1620–31, Dec 2005.

[128] C. P. Kurtzman, “Phylogenetic circumscription of saccharomyces,
kluyveromyces and other members of the saccharomycetaceae, and the
proposal of the new genera lachancea, nakaseomyces, naumovia, vanderwal-
tozyma and zygotorulaspora,” FEMS Yeast Res, vol. 4, pp. 233–45, Dec
2003.

[129] S.-O. Suh, M. Blackwell, C. P. Kurtzman, and M.-A. Lachance, “Phylo-
genetics of saccharomycetales, the ascomycete yeasts,” Mycologia, vol. 98,
pp. 1006–17, Jan 2006.

[130] S. Diezmann, C. J. Cox, G. Schönian, R. J. Vilgalys, and T. G. Mitchell,
“Phylogeny and evolution of medical species of candida and related taxa: a
multigenic analysis,” J Clin Microbiol, vol. 42, pp. 5624–35, Dec 2004.

[131] T. Ohama, T. Suzuki, M. Mori, S. Osawa, T. Ueda, K. Watanabe, and
T. Nakase, “Non-universal decoding of the leucine codon cug in several can-
dida species.,” Nucleic Acids Res, vol. 21, p. 4039, Aug 1993.

[132] Y. Kawaguchi, H. Honda, J. Taniguchi-Morimura, and S. Iwasaki, “The codon
cug is read as serine in an asporogenic yeast candida cylindracea,” Nature,
vol. 341, pp. 164–6, Sep 1989.

[133] T. Ohama, T. Suzuki, M. Mori, S. Osawa, T. Ueda, K. Watanabe, and
T. Nakase, “Non-universal decoding of the leucine codon cug in several can-
dida species,” Nucleic Acids Res, vol. 21, pp. 4039–45, Aug 1993.

[134] P. Novick, C. Field, and R. Schekman, “Identification of 23 complementation
groups required for post-translational events in the yeast secretory pathway,”
Cell, vol. 21, pp. 205–15, Aug 1980.

[135] L. M. Rice and A. T. Brunger, “Crystal structure of the vesicular transport
protein sec17: implications for snap function in snare complex disassembly,”
Mol Cell, vol. 4, pp. 85–95, Jul 1999.

[136] E. Bitto, C. A. Bingman, D. A. Kondrashov, J. G. McCoy, R. M. Bannen,
G. E. Wesenberg, and G. N. Phillips, “Structure and dynamics of gamma-
snap: insight into flexibility of proteins from the snap family,” Proteins,
vol. 70, pp. 93–104, Jan 2008.

[137] S. W. Whiteheart, I. C. Griff, M. Brunner, D. O. Clary, T. Mayer, S. A.
Buhrow, and J. E. Rothman, “Snap family of nsf attachment proteins includes
a brain-specific isoform,” Nature, vol. 362, pp. 353–5, Mar 1993.

[138] E. R. Tulman, C. L. Afonso, Z. Lu, L. Zsak, G. F. Kutish, and D. L. Rock,
“The genome of canarypox virus,” J Virol, vol. 78, pp. 353–66, Jan 2004.

119

Dissertation Nickias Kienle

[139] S. M. Laidlaw, M. A. Anwar, W. Thomas, P. Green, K. Shaw, and M. A.
Skinner, “Fowlpox virus encodes nonessential homologs of cellular alpha-snap,
pc-1, and an orphan human homolog of a secreted nematode protein,” J Virol,
vol. 72, pp. 6742–51, Aug 1998.

[140] H. O. Park, J. Chant, and I. Herskowitz, “Bud2 encodes a gtpase-activating
protein for bud1/rsr1 necessary for proper bud-site selection in yeast,” Nature,
vol. 365, pp. 269–74, Sep 1993.

[141] C. Mart́ın-Castellanos, M. Blanco, A. E. Rozalén, L. Pérez-Hidalgo, A. I.
Garćıa, F. Conde, J. Mata, C. Ellermeier, L. Davis, P. San-Segundo, G. R.
Smith, and S. Moreno, “A large-scale screen in s. pombe identifies seven novel
genes required for critical meiotic events,” Curr Biol, vol. 15, pp. 2056–62,
Nov 2005.

[142] P. Kaliszewski and T. Zo ladek, “The role of rsp5 ubiquitin ligase in regulation
of diverse processes in yeast cells,” Acta Biochim Pol, vol. 55, pp. 649–62, Jan
2008.

[143] D. Voelker, “Phosphatidylserine decarboxylase,” Biochimica et Biophysica
Acta (BBA)-Lipids and Lipid . . . , Jan 1997.

[144] C. E. Creutz, S. L. Snyder, and T. A. Schulz, “Characterization of the yeast
tricalbins: membrane-bound multi-c2-domain proteins that form complexes
involved in membrane trafficking,” Cell Mol Life Sci, vol. 61, pp. 1208–20,
May 2004.

[145] J. Pei, C. Ma, J. Rizo, and N. Grishin, “Remote homology between munc13
mun domain and vesicle tethering complexes,” J Mol Biol, Jun 2009.

[146] R. H. Palmer, J. Ridden, and P. J. Parker, “Cloning and expression patterns
of two members of a novel protein-kinase-c-related kinase family,” Eur J
Biochem, vol. 227, pp. 344–51, Jan 1995.

[147] T. Yoko-o, H. Kato, Y. Matsui, and T. Takenawa, “Isolation and charac-
terization of temperature-sensitiveplc1 mutants of the yeastsaccharomyces
cerevisiae,” Molecular and General . . . , Jan 1995.

[148] J. S. Flick and J. Thorner, “An essential function of a phosphoinositide-
specific phospholipase c is relieved by inhibition of a cyclin-dependent protein
kinase in the yeast saccharomyces cerevisiae,” Genetics, vol. 148, pp. 33–47,
Jan 1998.

[149] M. J. Rebecchi and S. N. Pentyala, “Structure, function, and control of
phosphoinositide-specific phospholipase c,” Physiol Rev, vol. 80, pp. 1291–
335, Oct 2000.

[150] A. Krogh, B. Larsson, G. von Heijne, and E. L. Sonnhammer, “Predicting
transmembrane protein topology with a hidden markov model: application
to complete genomes,” J Mol Biol, vol. 305, pp. 567–80, Jan 2001.

[151] A. Pechstein, O. Shupliakov, and V. Haucke, “Intersectin 1: a versatile actor
in the synaptic vesicle cycle,” Biochem Soc Trans, vol. 38, pp. 181–6, Feb
2010.

[152] A. Wittinghofer, K. Scheffzek, and M. R. Ahmadian, “The interaction of ras
with gtpase-activating proteins,” FEBS Lett, vol. 410, pp. 63–7, Jun 1997.

120

Dissertation Nickias Kienle

[153] J. L. Tomsig and C. E. Creutz, “Copines: a ubiquitous family of ca(2+)-
dependent phospholipid-binding proteins,” Cell Mol Life Sci, vol. 59,
pp. 1467–77, Sep 2002.

[154] M. Craxton, “A manual collection of syt, esyt, rph3a, rph3al, doc2, and dblc2
genes from 46 metazoan genomes–an open access resource for neuroscience
and evolutionary biology,” BMC Genomics, vol. 11, p. 37, Jan 2010.

[155] J. Kopka, C. Pical, A. M. Hetherington, and B. Müller-Röber,
“Ca2+/phospholipid-binding (c2) domain in multiple plant proteins: novel
components of the calcium-sensing apparatus,” Plant Mol Biol, vol. 36,
pp. 627–37, Mar 1998.

[156] S. Martens and H. T. McMahon, “Mechanisms of membrane fusion: disparate
players and common principles,” Nat Rev Mol Cell Biol, vol. 9, pp. 543–56,
Jul 2008.

[157] M. Craxton, “Evolutionary genomics of plant genes encoding n-terminal-tm-
c2 domain proteins and the similar fam62 genes and synaptotagmin genes of
metazoans,” BMC Genomics, vol. 8, p. 259, Jul 2007.

[158] M. Craxton, “Synaptotagmin gene content of the sequenced genomes,” BMC
Genomics, vol. 5, p. 43, Jul 2004.

[159] T. Frickey and A. N. Lupas, “Phylogenetic analysis of aaa proteins,” J Struct
Biol, vol. 146, pp. 2–10, Jan 2004.

[160] L. M. Iyer, D. D. Leipe, E. V. Koonin, and L. Aravind, “Evolutionary his-
tory and higher order classification of aaa+ atpases,” J Struct Biol, vol. 146,
pp. 11–31, Jan 2004.

[161] H. Koch, K. Hofmann, and N. Brose, “Definition of munc13-homology-
domains and characterization of a novel ubiquitously expressed munc13 iso-
form,” Biochem J, vol. 349, pp. 247–53, Jul 2000.

121

Dissertation Nickias Kienle

122

A Contributions

Aligning Sequences and Tracey

All components of the Aligning Sequences (3.1), Tracey Database (3.2.1),
and the Tracey Java Database Package (3.2.2) sections were designed and
implemented in collaboration with Tobias H. Kloepper.

Web Access Manager

The Web Access Manager (3.2.4) was designed in collaboration with and
implemented by Tobias H. Kloepper.

SNARE Proteins in Fungi

Chapter 3.3 SNARE Proteins in Fungi is based on the publication
Phylogeny of the SNARE vesicle fusion machinery yields insights into the
conservation of the secretory pathway in fungi,
Kienle N, Kloepper H. Tobias, and Fasshauer Dirk,
BMC Evol Biol. 2009 Jan 23;9:19.

Phylogenetic Trees

The actual calculations of all phylogenetic trees were conducted by Tobias
H. Kloepper.

Other Contributions

Figure 1.1-4 was kindly provided by Anand Radhakrishnan.

123

Dissertation Nickias Kienle

124

Curriculum Vitae

Personal Information

Name Carl Nickias Kienle

Address Theaterstrasse 26, 37073 Göttingen

Telephone +49 - 551 - 281 3893

E-Mail nkienle@gwdg.de

Date of Birth 22.08.78

Place of Birth Tübingen, Germany

Nationality German

Marital Status not married

Research Experience

since Dec. 2006 Max-Planck-Institute for biophysical
Chemistry, Goettingen

Project Phylogenetic studies of the vesicular fusion
machinery

Supervisor Dr. Dirk Fasshauer

Position PhD student

Oct. 2005 - Nov. 2006 Eberhard Karls University, Tübingen

Project Building a Management System for the
SNARE-Project

Supervisor Prof. Dr. Daniel Huson & Dr. Dirk Fasshauer

Position Diploma student

University Studies

Oct. 2000 - Nov. 2006 Eberhard Karls University, Tübingen

Subject Bioinformatics

mailto:nkienle@gwdg.de
mailto:nkienle@gwdg.de

Apprenticeship

1998 - 2000 Apprenticeship as a butcher in the butcher
shop Egeler in Ammerbuch-Reusten,
Germany. Finished as a journeyman.

Schooling

1995 - 1998 Secondary School - Tübingen, Germany

1989 - 1995 Secondary School - Tübingen, Germany

1985 - 1989 Primary School - Tübingen Germany

Conferences & Workshops

November 2009 Cold Spring Harbor Method Course on
Computational & Comparative Genomics

September 2009 6th international PhD student symposium
Horizons in Molecular Biology, Goettingen
(Poster presentation: Evolution of the SNARE
protein family in fungi)

January 2009 Biochemical Society / Wellcome Trust Focused
Meeting on "Protein Evolution - sequences,
structures and systems", Cambridge (Poster
presentation and selected oral
communication: Evolution of the SNARE
protein family in fungi)

September 2007 4th international PhD student symposium
Horizons in Molecular Biology, Göttingen
(Poster presentation: The SNARE Database)

Teaching Experience

Lecturer
(September 2009)

Advanced Method Course “Introduction to
bioinformatic tools” within the Göttingen
Graduate School for Neurosciences and
Molecular Biology (GGNB)

Supervisor
(August - September 2009)

6 weeks of practical intern with Mrs. Annette
Weizbauer (Classification of the SNAP protein
family)

Lecturer
(July 2009)

Advanced Method Course “Introduction to
bioinformatic tools” within the Göttingen
Graduate School for Neurosciences and
Molecular Biology (GGNB)

Scholarships

2009 GGNB Travel Grant for the Cold Spring Harbor
Method Course on Computational &
Comparative Genomics

Publications

Wiederhold K, Kloepper TH, Walter AM, Stein A, Kienle N, Sørensen JB,
Fasshauer D (2010) A Coiled-Coil Trigger Site is Essential for Rapid Binding of
Synaptobrevin to the SNARE Acceptor Complex. J Biol Chem, Epub ahead of print

Kienle N, Kloepper TH, Fasshauer D (2009) Differences in the SNARE evolution of
fungi and metazoa. Biochem Soc Trans. 2009 Aug;37(Pt 4):787-91.

Kienle N, Kloepper TH, Fasshauer D (2009) Phylogeny of the SNARE vesicle
fusion machinery yields insights into the conservation of the secretory pathway in
fungi. BMC Evolutionary Biology, 9:19

Kloepper TH, Kienle CN, Fasshauer D (2008) SNAREing the basis of
multicellularity: Consequences of protein family expansion during evolution.
Molecular Biology and Evolution; doi: 10.1093/molbev/msn151

Kloepper TH, Kienle CN, Fasshauer D (2007) An elaborate classification of SNARE
proteins sheds light on the conservation of the eukaryotic endomembrane system.
Molecular Biology of the Cell, vol. 18, 3463-3471

	dissertation.pdf
	Introduction
	Intracellular membrane trafficking
	The core fusion machinery
	SNARE complex disassembly
	C2 domain proteins play an important role in neuronal exocytosis

	Classification approach
	SNARE-Project and Management System
	SNARE classification
	SNARE database
	SNARE Java database package
	SNARE web interface

	Aim of this Work

	Material & Methods
	MUSCLE
	HMMER
	Architecture
	HMMER Programs

	Phylogeny
	IQPNNI
	Likelihood-Mapping
	Bootstrapping
	Calculation & evaluation of phylogenetic trees

	SNARE web interface

	Results & Discussion
	Aligning sequences
	Motif Aligner
	Alignment Refiner
	Conservation Filter

	Tracey
	Tracey database
	sequences & genes
	taxonomies
	motifs
	layouts
	p2dMapping

	Tracey Java database package
	Tracey web interface
	Query
	Insert
	Verify
	UserSettings

	WebAccessManager

	SNARE proteins in fungi
	Vam7 is an apomorphy of the fungi lineage
	SNARE changes in the endosomal/vacuolar pathways of the Saccharomycotina
	A whole genome duplication resulted in an increased set of secretory SNAREs in Saccharomyces cerevisiae
	The tomosyn SNARE motif in Saccharomycotina is degenerated
	The Pezizomycotina lineage contains clearly diverged secretory syntaxins
	Fungi phylogeny is recapitulate by SNAREs

	SNAP proteins
	C2 domain proteins in fungi

	Conclusion & Outlook
	References
	Contributions

	cv_20100529.pdf

