Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structural insights into the Calmodulin−Munc13 interaction obtained by cross-linking and mass spectrometry

MPG-Autoren
/persons/resource/persons14989

Dimova,  K.
Department of Molecular Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14926

Rodriguez-Castaneda,  F.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

Griesinger,  C.
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dimova, K., Kalkhof, S., Pottratz, I., Ihling, C., Rodriguez-Castaneda, F., Liepold, T., et al. (2009). Structural insights into the Calmodulin−Munc13 interaction obtained by cross-linking and mass spectrometry. Biochemistry, 48: 10.1021/bi900300r, pp. 5908-5921. Retrieved from http://pubs.acs.org/doi/full/10.1021/bi900300r?prevSearch=&searchHistoryKey=.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-D846-A
Zusammenfassung
Munc13 proteins are essential regulators of synaptic vesicle priming and play a key role in adaptive synaptic plasticity phenomena. We recently identified and characterized the Ca2+-dependent interaction of Munc13 and calmodulin (CaM) as the molecular mechanism linking changes in residual Ca2+ concentrations to presynaptic vesicle priming and short-term plasticity. Here, we used peptidic photoprobes covering the established CaM-binding motif of Munc13 for photoaffinity labeling (PAL) of CaM, followed by structural characterization of the covalent photoadducts. Our innovative analytical workflow based on isotopically labeled CaM and mass spectrometry revealed that, in the bound state, the hydrophobic anchor residue of the CaM-binding motif in Munc13s contacts two distinct methionine residues in the C-terminal domain of CaM. To address the orientation of the peptide during binding, we obtained additional distance constraints from the mass spectrometric analysis of chemically cross-linked CaM−Munc13 peptide adducts. The constraints from both complementary cross-linking approaches were integrated into low-resolution three-dimensional structure models of the CaM−Munc13 peptide complexes. Our experimental data are best compatible with the structure of the complex formed by CaM and a CaM-binding peptide derived from neuronal NO synthase and show that Munc13−1 and ubMunc13−2 bind to CaM in an antiparallel orientation through a 1-5-8 motif. The structural information about the CaM−Munc13 peptide complexes will facilitate the design of Munc13 variants with altered CaM affinity and thereby advance the detailed functional analysis of the role of Munc13 proteins in synaptic transmission and plasticity.