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Deficiency in ubiquitin ligase TRIM2 causes
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TRIM RING finger proteins have been shown to play an important role
in cancerogenesis, in the pathogenesis of some human hereditary
disorders, and in the defense against viral infection, but the function
of the majority of TRIM proteins remains unknown. Here, we show
that TRIM RING finger protein TRIM2, highly expressed in the nervous
system, is an UbcH5a-dependent ubiquitin ligase. We further dem-
onstrate that TRIM2 binds to neurofilament light subunit (NF-L) and
regulates NF-L ubiquitination. Additionally, we show that mice defi-
cient in TRIM2 have increased NF-L level in axons and NF-L-filled
axonal swellings in cerebellum, retina, spinal cord, and cerebral
cortex. The axonopathy is followed by progressive neurodegenera-
tion accompanied by juvenile-onset tremor and ataxia. Our results
demonstrate that TRIM2 is an ubiquitin ligase and point to a mech-
anism regulating NF-L metabolism through an ubiquitination path-
way that, if deregulated, triggers neurodegeneration.
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biquitination of a protein can influence its stability, interac-

tions, activity, or intracellular localization. Three main enzyme
families are involved in ubiquitination: ubiquitin activating en-
zymes, ubiquitin conjugating enzymes, and ubiquitin ligases. Cor-
rect localization, timing and specificity of the ubiquitination reac-
tion are ensured mainly by ubiquitin ligases (E3s). RING finger E3s
are the most abundant E3 class, characterized by the presence of the
cysteine-rich RING finger domain (1). Tripartite (TRIM) RING
finger proteins have been defined based on their conserved mod-
ular structure (RING finger, B-box, coiled-coil domains) as a
subgroup of the RING finger proteins (2). Despite their well
conserved modular structure, no common biological role has yet
been discovered for TRIM proteins. Recently, some members of
the TRIM family have been identified as ubiquitin ligases, involved
in cancerogenesis and the defense against viral infection (3, 4).
Several human diseases have been linked to mutant RING finger
and TRIM E3s. Mutations in the RING finger protein parkin have
been shown to trigger a juvenile form of Parkinson’s disease (PD)
(5). A mutant TRIM37 has been found to cause mulibrey nanism
in human (6) and translocation of the TRIM gene pml has been
identified in patients suffering from acute promyelocytic leukemia
(3). The function of the most of TRIM proteins has not yet been
discovered.

TRIM2, highly expressed in the nervous system, has been linked
to neuronal activity because its expression in hippocampus corre-
lates with the activity of NMDA receptor (7). In addition, it has
been shown to interact with the unconventional motor protein
myosin V (7). In the present study, we demonstrate that TRIM?2 is
an ubiquitin ligase with its activity confined to the RING finger
domain. In addition, we show that TRIM2 interacts with the
neurofilament light subunit (NF-L) and that ubiquitination of NF-L
significantly increases after expression of the full-length TRIM2,
but not TRIM2 ligase dead mutant. To examine the function of
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TRIM2 invivo, we generate a mouse line carrying a gene trap vector
insertion within the Trim2 gene (Trim26T mice). We analyze
TRIM2 expression in the developing and adult nervous system and
demonstrate that mice deficient in TRIM2 have increased NF-L
levels in axons and show juvenile-onset ataxia. Moreover, Trim2ST
mice have swollen axons in several brain areas, including the
cerebellum, retina, and spinal cord. This axonopathy is character-
ized by disorganized intermediate filaments and accumulation of
NF-L in axons and is followed by a progressive neurodegeneration.
Taken together, our results introduce TRIM2 as a ubiquitin ligase
that binds to and regulates NF-L metabolism by ubiquitination.

Results

Generation and Characterization of the Trim26" Mouse Gene Trap Line.
To characterize the function of TRIM?2 in vivo, we took advantage
of a large-scale mouse gene trap (GT) screen performed in our
laboratory (8). In the screen, mutant embryonic stem (ES) cell lines
were generated that carried a randomly integrated promoterless
GT vector containing a 5 splice acceptor site (allowing a vector to
be spliced out as a novel exon) and 3’ polyadenylation signal
(terminating transcription of the targeted allele) (Fig. 14). Genes
interrupted by the GT vector insertion were identified by a 5’
RACE PCR (supporting information (SI) Fig. S1), and selected ES
cell lines were used for generation of mutant mouse lines.

For our analysis, we selected an ES cell line with GT vector
insertion site within the 7rim2 coding sequence as indicated by 5’
RACE PCR sequence (Fig. S1 4 and B). By comparison of the 5’
RACE PCR product with the mouse 7rim2 cDNA and with the
genomic sequence, we determined that the GT vector integrated
inside the Trim2 locus between exons 6 and 7 (Fig. 14). The
insertion site was verified by PCR amplification of the genomic
DNA between exon 6 of Trim2 and the 5’ part of the GT vector (Fig.
S1C) that exactly matched the sequence of intron 6 of Trim2 gene.
The mutant locus generated a predicted 7.0-kb transcript contain-
ing the initial 1,719 bp of Trim2 fused to the RNA transcript of the
gene trap vector (5.3 kb), which was terminated by the vector’s
polyA signal. Northern blot analysis using GT vector specific (lacZ)
and WT 3’ UTR-specific probes (7rim2) and quantified by instant
imager, revealed a residual of ~5% of the WT transcript (=7.2 kb)
in the homozygous mutants (Fig. 1 B and C), probably due to partial
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Fig. 1. Generation and characterization of TRIM2CT mice. (A) Integration site of the GT vector in the Trim2ST mouse line within the Trim2 locus, inside intron 6. (B)
Expression of Trim2 in WT (+/+), Trim2¢T heterozygous (+/—), and homozygous (—/—) mice analyzed by Northern blotting with Trim2 3’ UTR probe (Trim2) and a GT
vector-specific probe (LacZ) (loading control, ethydium bromide-stained gel). (C) Quantification of Trim2 expression from B by instant imager. (D-M) Trim2 expression
in cerebellar Purkinje cells (D-G), deep cerebellar nuclei (H and /, encircled), retina (J and K), and hippocampus (L and M), by p-gal staining of Trim2¢T heterozygous
mice (D, F, H, K, L) and by in situ hybridization using Trim2 probe (E, G, I, J, M). M, molecular layer; PCL, Purkinje cell layer; GL, granule cell layer; GCL, ganglionic cell
layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; Rad, stratum radiatum; Mol, stratum moleculare; DG,

dentate gyrus; CA1-3 hippocampal areas (Scale bars: 200 um in D and E; 100 um in F/, L, and M; and 30 um in J and K.)

elimination of the GT vector by alternative splicing. We designated
this insertional mutation Trim26T,

TRIM2 Expression in the Mouse Nervous System. To characterize the
expression pattern of TRIM2, we used B-galactosidase staining of
the GT vector reporter gene (B-gal) driven by the promoter of
Trim2, and nonradioactive in situ hybridization (ISH) using a
Trim2-specific probe. We detected high Trim2 expression in the
cerebellum, hippocampus, retina, and spinal cord. In the adult
cerebellum, the strongest expression was in Purkinje cells and in the
deep cerebellar nuclei (Fig. 1). In retina, we detected high expres-
sion of Trim2 in the ganglionic cell layer, inner nuclear layer and in
the outer plexiform layer by B-gal staining (Fig. 1). We found
particularly high expression level of Trim2 in the adult hippocam-
pus: in pyramidal cells of CA1-CA3 hippocampal areas and in
granule cells of the dentate gyrus (Fig. 1). Intense -gal staining
found in stratum radiatum of the hippocampus proper and in the
molecular layer of the dentate gyrus corresponds to the dendritic
field of pyramidal and granule neurons respectively (Fig. 1L). Using
B-gal staining, we detected TRIM2 expression also in the devel-
oping nervous system, particularly in the spinal cord, dorsal root
ganglia, hindbrain, and midbrain (Fig. S2).

Trim2ST Mice Develop an Early-Onset Neurodegeneration. Until ~1.5
months of age, the Trim2°T homozygotes were indistinguishable
from the WT and heterozygous littermates. At this age, the
homozygous mice started to show intention tremor, followed by gait
ataxia (Movie S1). In later stages, the mutant mice suffered from
episodes of spontaneous generalized seizures.

Because Trim?2 is expressed in cerebellum (Fig. 1), tremor and
ataxia were indicative of a cerebellar-related phenotype. We there-
fore analyzed cerebella of homozygous mice at several time inter-
vals. In 1-month-old animals, we did not detect significant differ-
ence in cerebellar anatomy or number of Purkinje cells between
homozygous mice and their WT littermates by calbindin D-28K
(Purkinje cell marker) immunostaining (602.0 = 63.1, n = 3;
607.8 = 85.6, n = 3 respectively, midsagittal sections of the vermis)
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(Fig. 2.4 and B). However, starting at approximately postnatal day
50 (P50), the homozygous mice developed a substantial (73%;
2242 + 257, n = 3) and progressive loss of Purkinje cells,
particularly marked in the anterior and posterior lobes of the vermis
(Fig. 2 C and D). In 5-month-old Trim2ST mice, we observed 85%
(125.4 = 20.6, n = 3) decrease in Purkinje cells as compared with
WT mice (839.0 = 31.1, n = 4). The degeneration of Purkinje cells
manifested by the loss of calbindin D-28K immunoreactivity (Fig.
2 A-D) and inositol-3-phosphate receptor (data not shown), was
further supported by hematoxylin/eosin staining showing a deficit
in Purkinje cell somata (Fig. S3). Several caspase-3 immunoreactive
Purkinje cells were detected in 2-month-old, but not 1-month-old,
homozygotes (Fig. S4), indicating that the death of the Purkinje
cells is apoptotic. The deep cerebellar nuclei showed a similar
progressive neurodegeneration in the mutant animals (Fig. 2 B-D
and Fig. S5).

Similar to the cerebellum, retinas of 1-month-old homozygous
mice did not show any detectable histological alterations (Fig. 2 E
and F). However, at 4 months of age, retinas in homozygous mice
displayed decreased thickness of the inner nuclear layer and a
reduced number of ganglionic cells (Fig. 2 G and H). The average
number of ganglionic cells per 100 um of the ganglionic cell layer
was reduced by one-third, from 16.4 to 10.8 in 4-month-old ho-
mozygotes (Fig. 2I). Consistently, the outer plexiform layer
(formed by axodendritic synapses between INL and photorecep-
tors) was also reduced (Fig. 2H), whereas the size of the photore-
ceptor layer was not altered in the mutants.

RING Finger Protein TRIM2 Is a Ubiquitin Ligase. To get an insight into
how TRIM2 deficiency causes neurodegeneration in our animal
model, we first analyzed the function of TRIM2 ir vitro. A common
feature of many RING finger-type ubiquitin ligases is their ability
to autoubiquitinate (9); thus, we decided to test ubiquitination
activity of TRIM2. We synthesized TRIM2 by using the rabbit
reticulocyte lysate TNT reaction in the presence of [3>S]methionin
and incubated the 3°S-labeled TRIM2 with ubiquitin, proteasome
inhibitors, rabbit E1, and a set of E2s (UbcH2, UbcH3, UbcHS5a,

PNAS | August19,2008 | vol. 105 | no.33 | 12017

NEUROSCIENCE


http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/content/vol0/issue2008/images/data/0802261105/DCSupplemental/SM1.mov
http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF5

UbcHS5b, UbcHSc¢, UbcH6, UbcH7, UbcH10) in separate reactions.
In the presence of UbcHS5a, but no other tested E2s, TRIM2
became polyubiquitinated (Fig. 34) indicating that it is able to
function as an ubiquitin ligase in vitro by using UbcH5a as ubiquitin-
conjugating enzyme (E2).

TRIM?2 contains the N-terminal tripartite motif domain (RING
finger and B-box domains, followed by an «-helical coiled-coil
domain), filamin/ABP280 domain, and five NHL repeats at the C
terminus (2, 7) (Fig. 3B). To test whether the RING finger domain
is responsible for the ubiquitination activity of TRIM2, we gener-
ated TRIM2 mutants lacking the C-terminal NHL repeats or the
N-terminal RING finger domain (Fig. 3B). We could detect
the autoubiquitination activity of the full-length TRIM2 and in the
TRIM2 with NHL deletion (Fig. 3C). In contrast, TRIM2 lacking
the RING finger domain was not able to catalyze its autoubiqui-
tination (Fig. 3C), which indicates that the RING finger domain is
necessary for TRIM2 ubiquitination activity.

TRIM2 Interacts with Neurofilament Light Chain. TRIM2 has been
shown to interact with the molecular motor protein myosin V (7)
responsible for transport of smooth endoplasmic reticulum (SR)
into dendritic spines of Purkinje cells (10). By analyzing the
ultrastructure of Purkinje cell dendritic spines of the Trim26T
mutants, we could clearly detect SR in the spines (Fig. S6),
indicating that interaction between TRIM2 and myosin V is not
necessary for transport of SR. Additionally, we did not see any
changes in myosin V level in Neuro2a cell line after Trim2 trans-
fection (data not shown) or any difference in the intensity or
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Fig. 2. Degeneration in Trim2ST homozy-
gous mice. (A-D) Calbindin D-28K immuno-
staining of WT (A) and homozygous (B) cer-
ebellar Purkinje cells at postnatal day P30.
Degeneration of vermal Purkinje cells and
the deep nuclei (encircled) detected in 2- (C)
and 6-month-old (D) mutants (anterior
lobes, arrowhead; posterior lobe, asterisk;
Purkinje cell dendrites, d). (E-H) Nissl stain-
ing of retina in WT and Trim2ST homozygous
mice at P30 (E and F) and P120 (G and H).
Inner nuclear layer, INL; outer plexiform
layer, OPL. (/) Quantification of the number
of ganglionic cells per 100 um of the gangli-
onic cell layer (GCL) in 1- and 4-month-old
mice (n = 3). (Scale bars: 700 um in A-D, 30
pm in E-H.)

P120

distribution of myosin V immunoreactivity in Trim2ST homozygous
mice (Fig. S6), suggesting that myosin V is not a substrate for
TRIM2-catalyzed ubiquitination.

Interestingly, TRIM32, structurally related to TRIM2 (11), has
been shown to bind skeletal myosin but to ubiquitinate actin (12).
The binding partner of TRIM2, myosin V, has been shown to bind
neurofilament light chain (NF-L) and through this interaction to
modulate neurofilament organization in axons (13). Because
changes in NF-L metabolism have been shown to trigger neurode-
generation in mice (14), we tested whether TRIM2 could interact
with NF-L and affect its metabolism. Using TRIM2 expressed in
neuro2a cell line as a bait, we were able to pull down endogenous
NF-L from mouse brain lysate, suggesting that TRIM2 and NF-L
can, indeed, interact (Fig. S74). To analyze the interaction in more
detail, we expressed NF-L together with full-length or truncated
forms of TRIM2 in HeLa cells and tested their binding. In these
experiments, full-length TRIM2 and TRIM2 with deletion of
RBCC domain could pull down NF-L (Fig. 4B), but deletion of the
NHL repeats reduced the binding, and deletion of both the central
region and RBCC domains abolished the NF-L-TRIM2 interaction
(Fig. 4 A and B).

Regulation of NF-L Ubiquitination by TRIM2. Given that TRIM2 is an
ubiquitin ligase and interacts with NF-L, we analyzed whether NF-L
can be ubiquitinated in vitro and whether TRIM2 is involved in the
process. By an in vitro ubiquitination assay, we determined that
NF-L is ubiquitinated in the presence of UbcH5a E2 (Fig. S7B). To
test the role of TRIM2 in the NF-L ubiquitination, we established
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an “in vivo” ubiquitination assay. We transfected HeLa cells with
NF-L, His-tagged ubiquitin, and either full-length c-myc-tagged
TRIM2 or TRIM2 lacking NHL repeats or RBCC domain. After
1 day in culture, we stopped protein degradation by adding MG132
proteasomal inhibitor for 12 h, lysed the cells, and pulled down all
of the His-tag-ubiquitinated proteins with Ni* beads. By subse-
quent NF-L or TRIM2 Western blot analysis, we were thus
detecting only their ubiquitinated forms pulled down with Ni*-
beads. TRIM2 showed the same self-ubiquitination activity in
HelLa cells (Fig. 4C) as observed in the in vitro ubiquitination assay
(Fig. 3C). Similar to the in vitro system (Fig. S7B), we detected a
basal level of ubiquitinated NF-L after its transfection into the
HeLa cells (Fig. 4D), however, coexpression of TRIM2 led to a
significant increase of the NF-L ubiquitination (P(mann-wWhitney) =
0.0078; n = 6; Median = 1.22) (Fig. 4D), whereas coexpression of
the ligase-dead mutant did not have a significant effect on NF-L
ubiquitination (PMann-whinay) = 0.21, n = 6; Median = 0.82).
Overall, the NF-L ubiquitination level was 2.48 times higher (SE =
0.58, n = 6) in the samples transfected with TRIM2 than in the
samples transfected with TRIM2 ligase-dead mutant, which often
led to reduction of NF-L ubiquitination (Fig. 4D), and is consistent
with the function of a dominant-negative construct. We have seen
similar reduction of NF-L ubiquitination using C-terminally trun-
cated TRIM2 (Fig. 4D). Taken together these results demonstrate
that manipulating the level of TRIM2 affects NF-L ubiquitination.

Neurodegeneration in Trim26T Mutant Mice Is Accompanied by Axonal
Swelling and Accumulation of NF-L. To test whether TRIM2 defi-
ciency affects NF-L metabolism in Trim2ST mice, we analyzed the
distribution of NF-L in the mutant brains before and after the onset
of the neurodegeneration. We found increased NF-L immunore-
activity and the presence of sporadic NF-L aggregates in the
cerebellar white matter and granule cell layer of 1-month-old
homozygotes (Fig. 5B), i.e., before the onset of neurodegeneration.
The NF-L aggregates colocalized with a Purkinje cell-specific
marker, calbindin D-28K, indicating that the NF-L accumulated in
swollen axons of Purkinje cells (Fig. 5C). In addition we observed
NF-L-rich axonal swellings in the optic nerve (Fig. 5 D and E),
brainstem, spinal cord (Fig. 5 F and G) and frontal cortex (Fig. S8)
of Trim2°T mutant mice.

Transmission electron microscopy performed in the cerebel-
lum of 1.5-month-old mice confirmed the presence of axonal
swellings, which consisted of the accumulation of disorganized
neurofilaments and microtubules, mitochondria, and vesicles
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(NF-L + 2), or the C-terminally truncated TRIM2 (NF-L + 3).

(Fig. 6). Some swollen axons showed signs of degeneration,
which varied from few degenerating mitochondria to numerous
dense and multivesicular bodies accumulated in the center of the
swelling (Fig. 6). Preembedding immunogold/silver labeling con-
firmed the presence of accumulated NF-L in the axonal dilation

(Fig. 6).

Discussion

In the present study, we demonstrate that TRIM2 is a UbcH5a-
dependent ubiquitin ligase that interacts with NF-L through its
central region. These results suggest that TRIM2 might be respon-
sible for NF-L ubiquitination. In agreement with this hypothesis, we
demonstrate that expression of full-length TRIM2 (but not of the
ligase-dead mutant) significantly increases NF-L ubiquitination.
Moreover, expression of the ligase-dead mutant TRIM2 shows
dominant-negative effect on NF-L ubiquitination. We further dem-
onstrate that TRIM2-deficient mice exhibit juvenile-onset tremor

NF-L/CalbindinD-28K NF-L

Fig. 5. Increased NF-L axonal density and NF-L axonal swellings in Trim2GT
homozygous mice. (A) WT littermate of B. (B) Trim2¢T homozygotes show
increased NF-L level at P30 in cerebellar white matter (arrow) and pathological
accumulation of NF-L (arrows in the Inset). (C) NF-L-filled axonal swellings
colocalize with calbindin D-28K staining of Purkinje cell axons (arrows); d,
remaining Purkinje cell dendrites. (E-G) NF-L-filled axonal spheroids (arrows)
are also present in the optic nerve (E) and the gray matter of spinal cord (G) of
the Trim2CT homozygotes, but not in their WT or heterozygous (D and F)
littermates. (Scale bars: 100 um.)
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Fig.6. Ultrastructure and NF-L immunoelectronmicroscopy of dilated axons
in the deep cerebellar nuclei of Trim26T mice. (A-D) Swollen axons dilated by
the accumulation of neurofilaments, microtubuli, mitochondria, and vesicles.
(A) Dilated axon with clear signs of degeneration, with the accumulation of
dense and multivesicular bodies (arrows) tightly packed (B). In A, numerous
regular-size axons can be observed nearby. (C-F) Preembedding immunoelec-
tronmicroscopy using NF-L antibody. Immunometal particles are associated to
the disorganized neurofilaments in the dilated axons (C and D) or to the
properly oriented parallel neurofilaments in normal axons (E and F). m,
mitochondria; my, myelin; dashed line, separation between the axoplasm and
the ensheathing myelin. (Scale bars: 2.5 um in A; um in C; 500 nm in B; 250 nm
in D and E; and 200 nm in F.)

and ataxia and abnormal accumulation of NF-L in the axons of
some of the neurons most prominently expressing TRIM2. These
pathological changes are followed by progressive neurodegenera-
tion. Together, our results indicate that TRIM2 is an ubiquitin
ligase that binds to and ubiquitinates NF-L and that TRIM2
deficiency leads to neurodegeneration in mice likely by altering
NF-L metabolism with consequent NF-L accumulation in axons
and impairment of axonal transport.

NF-L as a Substrate of TRIM2. TRIM proteins are often found as parts
of multiprotein complexes ubiquitinating one or several of their
binding partners (12, 15, 16). TRIM32, a member of the same
TRIM subfamily as TRIM2 (11), has been shown to bind skeletal
myosin but to ubiquitinate actin. Similarly, TRIM2 has been shown
to bind myosin V, but we could not detect its effect on myosin V.
In contrast, expression of TRIM2 (but not its ligase-dead mutant)
was in our ubiquitination assays consistently increasing NF-L
ubiquitination. Moreover, even though the effect of the mutant
construct was more variable, transfection of the ligase-dead mutant
repeatedly showed a dominant-negative effect on NF-L ubiquiti-
nation. Additional evidence corroborating the view that NF-L is a
substrate for TRIM2-driven ubiquitination comes from our in vivo
data. We have demonstrated that TRIM2 deficiency leads in
1-month-old homozygotes to higher level of NF-L in axons and
NF-L-filled axonal swellings (Fig. 5), which are largely devoid of
ubiquitin immunoreactivity (Fig. S9), indicating that NF-L in the
swollen axons is not ubiquitinated. Ubiquitin immunoreactivity
found in a small number of swollen axons can be attributed to the
hypomorphic phenotype of TRIM2ST mice in which 5% of TRIM2
is still present in the homozygous mice.

Our in vitro ubiquitination assays demonstrated that UbcHSa was
functioning as E2 for both NF-L ubiquitination and TRIM2
autoubiquitination, and that particularly TRIM2 autoubiquitina-
tion was very efficient in the presence of UbcHSa (Fig. 3). These
results imply that both lowering and increasing the UbcH5a level
can have an adverse affect on NF-L ubiquitination—high UbcH5a
level can lead to effective autoubiquitination of TRIM2 (therefore
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lowering NF-L ubiquitination), and low UbcHS5a level can directly
interfere with NF-L ubiquitination (Fig. S7B). To test the effect of
different UbcHS5a levels on NF-L ubiquitination, we have per-
formed NF-L ubiquitination assays in HeLa cells with either
endogenous level of UbcH5a or after overexpression of its WT or
dominant-negative form (Fig. S7C). Overexpression of both con-
structs led to a slight reduction of NF-L ubiquitination, supporting
our previous data and indicating that the level of UbcHS5a is yet
another factor regulating NF-L ubiquitination. Nevertheless, our
data do not rule out the possibility that other E2s can substitute
UbcH5a in NF-L ubiquitination in vivo.

NF-L Inclusions and TRIM2 Expression Pattern. In TRIM2ST mutant
mice, NF-L inclusions were found in neurons that normally express
high levels of TRIM2. This applies to Purkinje cells, deep cerebellar
nuclei neurons, and retinal ganglionic cells. In addition, we have
detected NF-L accumulation in the cortical neurons, which nor-
mally express TRIM2 at a lower level. NF-L inclusions found in the
gray matter of the spinal cord can be linked to the high TRIM2
expression we found there during embryonic development (Fig.
S2). The spinal neuropathy can also partially contribute to the
tremor and ataxia of the TRIM2CT homozygotes, because ataxia
and tremor have been described also in some motor and peripheral
neuropathies affecting spinal cord (17). Despite the high expression
level of Trim?2 in principal hippocampal neurons, we could neither
detect axonal NF-L inclusions nor neurodegeneration in hippocam-
pus. Although the actual cause of such a different outcome of
TRIM2 deletion in hippocampus eludes us at present, it is possible
that NF-L ubiquitination is differentially regulated in a cell-specific
manner. Therefore, the hippocampus may contain compensatory
pathways or molecules involved in the metabolism of neurofila-
ments that are not present in Purkinje or ganglionic cells. Future
studies will have to address this divergence in neurofilament
processing between different neural cells.

NF-L Axonal Inclusions as a Cause of Neurodegeneration. Defects in
the ubiquitin proteasome system have long been implicated in the
pathogenesis of neurodegenerative disorders, but even though toxic
protein accumulations have been found in numerous neuropathies,
relatively few ubiquitin ligases have so far been directly linked to
neurodegeneration. Probably the best analyzed is the RING finger
protein parkin. Mutations compromising its ubiquitin ligase activity
have been found to cause a juvenile form of PD (5). The exact
mechanism how defective parkin triggers dopaminergic neurode-
generation has not been described yet, but because multiple parkin
substrates have been shown to accumulate in the brains of parkin-
null mice and PD patients carrying parkin mutations (18), it has
been speculated that accumulation of the toxic parkin substrates
initiates the neurodegeneration.

NF aggregates have been found in several neurodegenerative
diseases (19). Although perikaryal NF inclusions seem not to affect
neuronal survival (14, 20, 21), axonal NF inclusions, similar to those
found in Trim2ST mutants, are reportedly toxic to neurons, likely
through strangulation of the normal axonal transport (22, 23).
Changes in NF-L metabolism seem to be particularly harmful to
neurons because its overexpression leads to appearance of axonal
neurofilament inclusions, neurodegeneration, and motor dysfunc-
tion (14, 23). Mutations in the NF-L gene have been reported
in patients suffering from Charcot-Marie-Tooth disease type 2
(24), further indicating that alteration in NF-L metabolism is the
etiopathogenic cause rather than the consequence of neurodegen-
eration. In our Trim2ST mutants the appearance of NF-L aggre-
gates preceded the wave of neurodegeneration. Moreover, at the
ultrastructural level, the accumulation of neurofilaments and or-
ganelles in the axoplasm of the Trim2CT mutants was suggestive of
an impaired axonal transport and a functional axotomy. Thus, our
data support the causal link between NF-L accumulation and
neurodegeneration.

Balastik et al.


http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF9
http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF7
http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF7
http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0802261105/DCSupplemental/Supplemental_PDF#nameddest=SF2

Lo L

P

1\

=y

Despite the efforts devoted to the study of neurodegenerative
disorders in recent decades, the cascades of events underlying the
formation and neurotoxicity of NF accumulations are not fully
understood. Our analysis of TRIM2 protein and Trim2¢T mutant
mice uncover an important player in NF-related neurodegenera-
tion and points at the ubiquitination cascade as an important
regulator of NF-L metabolism. Further dissection of the mecha-
nisms that control neurofilament accumulation will lead to better
understanding of processes underlying neurodegeneration.

Materials and Methods

ES Cells and Mice. The Trim2CT ES cell line, with IRESBgeo containing the GT vector
inserted within Trim2 gene, was generated as described (25). The 5'RACE (GIBCO-
BRL) on ES cells RNA amplified a 370-bp fragment (upstream of the insertional
splice acceptor site) that exactly matched the mouse Trim2 sequence (7). The
animals were genotyped by Southern blot analysis and PCR (details in S/ Text). The
Southern blot analysis was performed by using LacZ and Trim2 probes. The LacZ
probe consisted of an Aval fragment of pCH110 plasmid (Amersham Pharmacia).
The Trim2 probe was made of a 1.1-kb EcoRI-Hindlll fragment of Trim2 3’
untranslated region.

Ubiquitination Assays. The in vitro ubiquitination was performed as described
(26). Briefly, TRIM2 or NF-L was synthesized in vitro in the TNT T7 reticulocyte
lysate (Promega) in the presence of [35S]Met. [35S]TRIM2 or [3>SINFL (3 ul) was
incubated with 500 ng/ul E1 (Boston Biochem) and 500 ng/ul of different E2s
(Boston Biochem) in the reaction buffer [50 mM Tris-HCl (pH 7.5), 10 mM MgCly,
0.5 mM DTT, 100 mM ATP, 25 mg/ml ubiquitin (Boston Biochem), 5 mM MG-132
(Boston Biochem), 20 uM ubiquitin aldehyde (Boston Biochem)] in a total volume
of 10 ul at 30°C for 20 min (TRIM2) or 90 min (NF-L).

The in vivo ubiquitination assay was performed in HeLa-tTA cells. The cells
were transfected with His-tagged ubiquitin, NF-L, mTRIM2 (or mARBCC-
TRIM2), and after 1 day in culture, 20 uM MG-132 was added to the media. The
cells were lysed in lysis buffer [6 M urea; 40 mM Tris-HCI (pH 7.4), 20 mM
imidazole, 0.5% Triton X-100] and subjected to the pull-down analysis with
nickel-agarose beads to isolate His-tagged ubiquitin conjugates, followed by
Western blot analysis with anti-NF-L (NR4; Sigma) and anti-c-myc (9E10; Santa
Cruz Biotechnology) antibodies.

Histology and Immunocytochemistry. Mice were intracardially perfused with
ice-cold fixative solution [0.1 M phosphate buffer (pH 7.4), 4% paraformaldehyde
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(PFA), 0.2% picric acid), embedded in paraplast or cryomatrix, and cut sagittally
10 um or 15 um. B-Galactosidase staining was performed as described (27), on
vibratome-cut brain sections (100 um) for 24 h at 30°C. The sections were reem-
bedded in paraplast and cut with microtome (10 um). For immunostaining, the
antibodies were used in the following dilutions: anti-calbindin D-28K (CB-955;
Sigma) 1:50, anti-NF-L (NR4; Sigma) 1:300, anti-calbindin D-28K polyclonal
(Sigma) 1:300, anti-cleaved caspase3 (Cell Signaling Technology) 1:200, anti-
myosin V polyclonal [provided by P. Bridgman, Washington University in St. Louis,
St. Louis, MO (28)] 1:500. The antigens were visualized with ABC universal kit
(Vector) or with secondary fluorescent Alexa Fluor 488/Alexa Fluor 594-
conjugated antibodies (Molecular Probes) 1:300. Fluorescently labeled tissues
were counterstained with Hoechst 33258 (0.2 mg/ml).

Nonradioactive in situ hybridization was performed on 15-um-thick cryostat
sections as described (29). (For details see S/ Text).

Electron Microscopy. Male mice (1.5 months of age) were transcardially perfused
with saline, followed by 4% paraformaldehyde, ~0.2% picric acid in 0.1 M
phosphate-buffer (PB) (pH 7.2-7.4) with 2% glutaraldehyde for structural elec-
tron microscopy (EM) or 0.05% glutaraldehyde for preembedding immunocyto-
chemistry. Brains were removed, rinsed in PB, and sectioned on a vibratome at
70-um thickness. Sections for structural EM were treated with 2% osmium,
contrasted with uranyl acetate (1%), dehydrated, and embedded in Durcupan
ACM (Fluka). The preembedding immunocytochemical procedures were identi-
cal to those described earlier (30). (For details see S/ Text).

Pull-Down Assays. The cells were transfected with NF-L and c-myc-tagged trim2
(orits truncated forms) and harvested at 24 h after transfection, homogenized in
buffer A [50 mM Tris-HCI (pH 7.4), 150 mM Nacl; 0.9% SDS, EDTA-free protease
inhibitors, Roche), and diluted 6 with buffer B [50 mM Tris:HCl (pH 7.4), 150 mM
NadCl, 1% Triton X-100, EDTA-free protease inhibitors, Roche). The lysate was
sonicated 2 times for 20 sec. and spun at 16,000 X g for 10 min at 4°C. The
anti-c-myc agarose beads (Santa Cruz Biotechnology) were incubated overnight
with the lysates, washed six times with buffer B and analyzed by Western
blotting. The pulldown of endogenous NF-L was performed in a similar way (see
SI Text).
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