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SUMMARY

Light is the most potent stimulus for synchro-
nizing endogenous circadian rhythms with ex-
ternal time. Photic clock resetting in mammals
involves cAMP-responsive element binding
protein (CREB)-mediated transcriptional acti-
vation of Period clock genes in the suprachias-
matic nuclei (SCN). Here we provide evidence
for an additional photic input pathway to the
mammalian circadian clock based on Protein
Kinase C a (PRKCA). We found that Prkca-
deficient mice show an impairment of light-
mediated clock resetting. In the SCN of wild-
type mice, light exposure evokes a transient
interaction between PRKCA and PERIOD 2
(PER2) proteins that affects PER2 stability and
nucleocytoplasmic distribution. These post-
translational events, together with CREB-
mediated transcriptional regulation, are key
factors in the molecular mechanism of photic
clock resetting.

INTRODUCTION

Endogenous self-sustained clocks with a period of about

24 hr drive the rhythms of all physiological processes that

are subject to circadian variation (Panda et al., 2002; Re-

ppert and Weaver, 2002). In mammals, the master circa-

dian pacemaker resides in the suprachiasmatic nuclei

(SCN) of the hypothalamus (Ralph et al., 1990). Several

key components of the molecular clockwork have been

identified through a combination of genetic and biochem-

ical studies (reviewed by Lowrey and Takahashi, 2004). At

the basis of the circadian clockwork lies a network of inter-

locked transcriptional and translational feedback loops

(TTLs). Positive regulatory elements are BMAL1 and

CLOCK (or a related protein; see Debruyne et al., 2006)
that heterodimerize and activate the transcription of

Period (Per1 and Per2) and Cryptochrome (Cry1 and

Cry2) genes through binding to E-box enhancer elements

(Gekakis et al., 1998; Jin et al., 1999; Kume et al., 1999).

The PER and CRY proteins interact and translocate to

the nucleus, where they shut down their own transcription

by inhibiting the CLOCK/BMAL1 transcriptional activator

complex (Kume et al., 1999). Another facet of the TTL in-

volves the nuclear orphan receptors REV-ERBa (NR1D1)

(Preitner et al., 2002) and RAR-related orphan receptor

a (RORA, NR1F1) (Sato et al., 2004) that control the

expression of the Bmal1 gene.

A hallmark of the mammalian circadian pacemaker is its

ability to be reset by light, thus allowing organisms to en-

train to temporal variations of natural light conditions. A

light pulse perceived after dusk will delay the pacemaker,

while a pulse applied before dawn will advance the clock.

Photic stimuli are transmitted from the retina to target

neurons in the SCN, where they are transduced to the

molecular clockwork through kinase cascades involving

activation of type A and G kinases, calcium-calmodulin

protein kinase, and mitogen-activated protein kinases

(Butcher et al., 2002; Obrietan and van den Pol, 1998;

Oster et al., 2003; Tischkau et al., 2000; Yokota et al.,

2001). These signaling pathways converge on the cAMP-

responsive element binding protein (CREB) that becomes

phosphorylated at Ser133 and Ser142. Such phosphory-

lation activates CREB, which subsequently translocates

to the nucleus and binds to cAMP-responsive elements

located in the promoters of light-responsive genes includ-

ing Per1 and Per2 (Ding et al., 1997; Gau et al., 2002; Ginty

et al., 1993; Obrietan et al., 1999; Travnickova-Bendova

et al., 2002). The TTL model predicts that CREB-mediated

transcriptional activation of Per genes followed by an in-

crease in PER proteins (Yan and Silver, 2004; although

see Field et al., 2000) shifts the clock. At the behavioral

level altered expression of clock genes is correlated with

changes in locomotor activity rhythms.

It is well established that posttranslational mechanisms

like phosphorylation and protein interactions are critical
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for light-mediated regulation of the core clock. In

Drosophila light induces binding of activated CRY to

TIMELESS (TIM) protein (Busza et al., 2004; Ceriani

et al., 1999; Naidoo et al., 1999). TIM is then phosphory-

lated, enabling JETLAG to target TIM for degradation

through the proteasome pathway (Koh et al., 2006).

Thus, in dipterans photic entrainment involves posttran-

scriptional events, while in mammals it is apparently regu-

lated at the transcriptional level via CREB.

The mammalian protein kinase C (PRKC) family com-

prises three subfamilies: classical, novel, and atypical

(Parker and Murray-Rust, 2004). All of the three classical

PRKCs (PRKCA, PRKCB1/2, PRKCG; previously known

as PKCa, bI/II, and g) are activated by binding of diacylgly-

cerol and Ca2+ to the regulatory domain of the kinase. This

results in the release of a pseudosubstrate site from the

substrate binding cavity and subsequently allows sub-

strate protein binding and phosphorylation (Nakashima,

2002; Newton, 2003; Parekh et al., 2000). Several PRKCS

are expressed in the SCN of mice, including PRKCA (Van

der Zee and Bult, 1995). Pharmacological PRKC inhibitors

and activators both evoke phase advances of neuronal

firing rhythms in hamster SCN slice cultures (Schak and

Harrington, 1999). Although these studies do not uncover

the mechanism of action of PRKCs in the circadian clock,

they raise the possibility that classical PRKCs have a role

in the mammalian circadian timing system. We tested this

hypothesis by taking advantage of the Prkca-deficient

mouse and show that PRKCA is a light-controlled post-

translational regulator of PER2 stability and subcellular

localization.

RESULTS

Prkca-Deficient Mice Display an Impaired Resetting

of the Circadian Clock

As basal PRKC activity in rat suprachiasmatic nucleus-

derived SCN2.2 cells follows a rhythmic pattern peaking

between CT14 and CT22 (Rivera-Bermudez et al., 2003),

and as PRKCA expression is elevated at CT14 in the

SCN of rat (Cagampang et al., 1998), we first investigated

whether transcription of the Prkca gene is under circadian

control. To this end, wild-type mice maintained either in

a regular 12 hr light/12 hr dark cycle (LD 12:12) or in con-

stant darkness (DD) were sacrificed at different times and

the level of Prkca expression in the SCN was determined

by in situ hybridization (ISH). Quantification of the ISH

signal revealed a substantial daily variation of Prkca

transcript levels, both under LD and DD conditions, with

maxima at the beginning of the activity phase (Figures

1A and 1B). The persistence of rhythmic expression in

DD demonstrates that Prkca transcription is under endog-

enous clock control, rather than being driven by the envi-

ronmental light/dark cycle.

Since rhythmic expression of Prkca in the SCN is driven

by the circadian core oscillator, we examined Prkca-

deficient mice for defects in the circadian control of loco-

motor activity. Such mice are devoid of PRKCA protein,
832 Neuron 54, 831–843, June 7, 2007 ª2007 Elsevier Inc.
but are morphologically normal, viable, and fertile (Leitges

et al., 2002). Following entrainment to an LD 12:12 cycle,

Prkca�/� mice and congenic wild-type controls were

released into DD. In LD, all animals displayed normal

entrainment with activity onsets at the beginning of the

dark phase. When released into DD, both wild-type and

mutant mice showed a persistent endogenous activity

rhythm with comparable period lengths (t) of 23.70 ±

0.07 hr (mean ± SEM) for wild-type animals and 23.76 ±

0.05 hr for Prkca�/�mice (Figures 2A and 2B). In constant

light conditions (LL) t is known to increase in nocturnal

animals (Aschoff, 1979). In wild-type controls t was

25.18 ± 0.11 hr in LL of 100 lux, but the average circadian

Figure 1. Rhythmic Expression of Prkca mRNA in the SCN

Upper panels show autoradiographs of Prkca expression in the SCN

under LD (A) or DD (B) conditions. Graphs depict densitometric quan-

tification of the ISH signal. White/gray and black horizontal bars indi-

cate (subjective) day and night, respectively. All data are presented

as mean ± SEM for three different experiments. Scale bars, 200 mm.
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period of Prkca-deficient animals was significantly shorter

than that of wild-type controls (24.91 ± 0.08 hr) under

these conditions (Figures 2C and 2D). The impairment of

lengthening of t in LL provided a first indication that the

regulation of the circadian clock by light is abnormal in

the absence of PRKCA.

This prompted us to test whether Prkca�/�mice exhibit

an abnormal response toward short nocturnal light pulses

that are capable of resetting the phase of the endogenous

clock. Sample actograms (Figures 2E and 2F) and phase

response curves (Figure 2G) reveal that wild-type and

Prkca�/� animals displayed similar phase-shifting re-

sponses to light pulses. However, significant quantitative

differences were observed in the magnitude of phase de-

lays. Exposure to a light pulse at ZT14 (2 hr after ‘‘lights

off’’) caused a delay of 1.01 ± 0.1 hr in wild-type animals;

the phase-shifting response of Prkca�/� mice was only

0.52 ± 0.09 hr. In contrast, a light pulse given 10 hr after

lights off (ZT22, toward the end of the activity phase) led

to comparable phase advances in wild-type (0.61 ±

0.11 hr) and Prkca�/�mice (0.45 ± 0.03 hr). The restriction

of the altered light response to the first half of the activity

phase may reflect the fact that Prkca expression is down-

regulated toward the end of the activity period (Figure 1).

Light-Induced Transcriptional Activation of Core

Clock Genes Is Not Affected in Prkca-Deficient Mice

Since the phase-delay phenotype of Prkca-deficient mice

is reminiscent of that seen in CREBS142A point mutant

mice (Gau et al., 2002), the most parsimonious explana-

tion of the Prkca mutant data is to assume that the kinase

is impinging on the CREB pathway. To investigate this

possibility, we examined the induction of the light-induc-

ible clock genes Per1, Per2, and Dec1 (Shearman et al.,

1997; Albrecht et al., 1997; Honma et al., 2002) in

Prkca�/� mice. As expected, Per1, Per2, and Dec1 gene

expressions were strongly induced in the SCN of light-

exposed wild-type mice (Figure 3). Surprisingly, this was

also the case for Prkca-deficient animals, as evident

from the absence of differences in magnitude or localiza-

tion of gene induction between wild-type and mutant

animals. This result makes a participation of PRKCA in

CREB-mediated clock gene activation less likely, and in-

stead strongly suggests the involvement of an additional,

as of yet unknown pathway by which light can regulate the

circadian clock.

PRKCA Can Bind and Phosphorylate PER2

A number of clock proteins have been shown to interact

with kinases, which indicates that phosphorylation plays

a key role in the molecular mechanism of the circadian

core oscillator (Lowrey et al., 2000; Vanselow et al.,

2006; Gallego et al., 2006; Shim et al., 2007; Xu et al.,

2007). We therefore aimed at identifying clock protein

substrates that bind to, and are phosphorylated by,

PRKCA. We thus coexpressed PRKCA with Myc-tagged

PER2 (PER2Myc), V5-tagged CRY2 (CRY2V5), or both

in COS7 cells (Figure 4A). Notably, PER2 appears an
attractive candidate target because it has been implicated

in the phase-delay mechanism (Albrecht et al., 2001;

Reppert and Weaver, 2001, but also see Bae and Weaver,

2003 for an alternative view), and Prkca-deficient mice

show a phase-delay phenotype. Immunoprecipitation

with PRKCA antibodies, followed by western blot analysis

using Myc antiserum, showed that PRKCA precipitates

together with PER2Myc protein (Figure 4A, lane 4). In con-

trast, CRY2V5 could not be pulled down with the kinase

antiserum when coexpressed with PRKCA alone (lane 5).

However, in line with the observation that PER proteins

strongly interact with cryptochromes (Chaves et al.,

2006; Griffin et al., 1999; Kume et al., 1999; Yagita et al.,

2002), a CRY2V5/PER2Myc/PRKCA complex could be

coprecipitated when all three proteins were expressed

together (lane 7).

We next asked whether PRKCA phosphorylates PER2

and CRY2 in vitro. To this end, PER2Myc and CRY2V5

were expressed in COS7 cells, and resulting proteins

were pulled down with antibodies against the Myc protein

tag. Thereafter, PER2Myc alone or PER2Myc/CRY2V5 were

incubated with recombinant PRKCA and 32P-ATP, as

detailed in the header of Figure 4B. A distinct radioactive

protein of �130 kDa was detected (Figure 4B, lane 1),

which was identified as PER2Myc by western blot analysis

using an anti-Myc antibody (data not shown). This band

was also seen when PER2Myc and CRY2V5 were both

present in the kinase assay, indicating that CRY2 does

not interfere with PER2 phosphorylation (lane 2). Addition

of the PRKC inhibitor bisindolylmaleimide resulted in an

almost complete inhibition of PER2 phosphorylation

(lanes 4 and 5). Phosphorylation of PER2 in the in vitro

kinase assay is mediated by added PRKCA rather than

by endogenous (copurified) kinases, since without exoge-

nous PRKCA, PER2 was not significantly phosphorylated

(Figure 4C). CRY2V5, either alone or in the presence of

PER2Myc, appears not to be subject to PRKCA-mediated

phosphorylation (lanes 2 and 3; expression of CRY2V5

was verified by western blot analysis using V5 antibodies,

data not shown). Taken together, these cell-based assays

suggest that PRKCA engages in a direct interaction with

PER2, but not with CRY2, and that CRY2 was pulled

down because of its association with PER2. Moreover,

PRKCA phosphorylates PER2, but not CRY2. When both

clock proteins were mixed together, presumably resulting

in heterodimers (Field et al., 2000; Hogenesch et al., 1998;

Kume et al., 1999), PER2 was also phosphorylated.

Photic Control of the Interaction between PRKCA

and PER2 in the SCN

We next examined whether the interaction between

PRKCA and PER2, as observed in COS7 cells, also occurs

in the SCN, and more importantly, whether this interaction

is influenced by light, as could be expected from the im-

paired light-resetting phenotype of Prkca�/� mice. To

this end, we exposed mice to light pulses at ZT14, the

time at which the difference in phase shift responses be-

tween wild-type and mutant mice is largest. Protein
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Figure 3. Photic Induction of Per1, Per2, and Dec1 Genes Is Comparable in Wild-Type and Prkca�/� Animals

LD-entrained wild-type and mutant animals were exposed to a 15 min light pulse at ZT14 and sacrificed 45 min later. Upper panels show represen-

tative micrographs of emulsion ISH signal. Bar plots show quantification of mRNA induction by densitometric analysis of X-ray film contact autora-

diographs. The intensity of the signal of wild-type controls not exposed to light at ZT15 was set as 1. All data are mean ± SEM of three animals per

condition and genotype. Scale bars, 200 mm.
extracts were prepared from the excised SCN, and en-

dogenous PER2 was pulled down with a PER2 antiserum.

The resulting immunoprecipitate was evaluated for the

presence of, and the interaction between, PER2 and

PRKCA by western blot analysis.

As shown in Figure 5A, actin levels were the same in all

samples, indicating that the extracts contained compara-

ble amounts of protein. Furthermore, PRKCA protein

levels in the SCN extract were not affected by light expo-

sure, indicating that PRKCA is neither induced nor de-

graded by light-signaling through the retinohypothalamic

tract. PER2 levels were also not significantly changed by

light exposure of the animal (Figure 7C, top panel and

open circles in Figure 7D), which is consistent with previ-

ous reports (Beaulé et al., 2003; Field et al., 2000).

Next, PER2 immunoprecipitates were probed with

PRKCA antibodies in order to detect PER2/PRKCA com-

plex formation. Prior to light exposure, anti-PRKCA

antibodies revealed a weak band at 81 kDa, the predicted

size of PRKCA (Figure 5B, lane 1), indicating that a small

fraction PRKCA interacted with PER2. With progressively

longer light exposure, the intensity of the band represent-

ing PRKCA bound to PER2 became substantially
augmented, peaking at 40 min after the onset of light

exposure and rapidly downregulating thereafter

(Figure 5B, lanes 2–5). As expected, immunoprecipitates

from SCN extracts of Prkca�/� mice were devoid of

a PRKCA band (Figure 5B, lane 6). Figure 5C is a quantita-

tive representation of three independent pull-down exper-

iments and illustrates the consistency of the results. When

animals were not exposed to light (sham control), the

amount of PRKCA-PER2 complex in the SCN (Figures

5D and 5E) was comparable to that seen at ZT14 prior

to applying light. When PRKCA antiserum was used to im-

munoprecipitate proteins from SCN extracts, subsequent

western blot analysis with a PER2 antiserum revealed

a characteristic 130 kDa PER2 band (Figure 5F).

To address the issue of temporal specificity of PER2/

PRKCA complex formation, we exposed mice to light in

the late subjective day (CT8), when both PER2 (Figure 5G,

lane 1, and Field et al., 2000) and PRKCA (Figure 5G, lane

1) are expressed. Pull-downs with PER2 antiserum failed

to produce a band in the subsequent western blot probed

with a PRKCA antiserum (Figure 5H, lanes 2 and 3). Sham

animals yielded identical results (Figure 5H, lanes 4 and 5).

PER2 is neither significantly expressed nor light inducible
Figure 2. Photic Resetting of the Circadian Clock Is Impaired in Prkca-Deficient Mice

(A) Actograms (shading indicates darkness) of wild-type and Prkca�/� animals.

(B) Average free-running period length (t) in DD was 23.70 ± 0.07 hr (mean ± SEM) for wild-type animals (n = 19) and 23.76 ± 0.05 hr (n = 24) for Prkca�/�

mice (p > 0.05).

(C) Actograms of wild-type and Prkca�/� animals maintained in LL of 100 lux.

(D) In LL, mutants had a significantly shorter t (24.91 ± 0.08 hr; n = 11) as compared with wild-type animals (25.18 ± 0.11 hr; n = 10; *p < 0.05).

(E and F) Double-plotted actograms of wild-type and Prkca-deficient mice exposed to a 400 lux/15 min light pulse (red asterisk) either in the early

(ZT14, E) or late (ZT22, F) night. Activity onsets are indicated by red lines; white and black horizontal bars on top indicate day and night, respectively.

(G) Photic phase response curves for wild-type and Prkca�/� animals. Phase shifts at ZT14 were 1.01 ± 0.1 hr in wild-type animals and 0.52 ± 0.09 hr

in Prkca�/�mice. Data are presented as mean ± SEM (*p < 0.05, **p < 0.01; Student’s t test, n = 6 to 8).
Neuron 54, 831–843, June 7, 2007 ª2007 Elsevier Inc. 835
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Figure 4. PRKCA and PER2 Proteins Interact in COS7 Cells

(A) PER2Myc, CRY2V5, and PRKCA were coexpressed in COS7 cells in the combinations noted in the header. Upper panel shows protein input; lower

panel depicts proteins that were immunoprecipitated followed by western blotting with antisera specified on the left margin.

(B) In vitro phosphorylation of PER2Myc by recombinant PRKCA and the effect of CRY2V5 and the PRKC inhibitor bisindolylmaleimide (Bis). Expected

positions of PER2Myc and CRY2V5 are indicated on the right.

(C) Efficient in vitro phosphorylation of PER2EGFP requires the addition of exogenous PRKCA protein.
in the late subjective night (Field et al., 2000; Albrecht et al.,

1997; Shearman et al., 1997; Shigeyoshi et al., 1997; Ta-

kumi et al., 1998; Zylka et al., 1998), precluding interaction

studies at this time. We conclude that PER2 and PRKCA

interact in the SCN. This interaction is transient, light

induced, and restricted to the phase-delay period of the

circadian cycle. Because neither PER2 nor PRKCA con-

centrations in the SCN significantly change as a result of

light exposure, the formation of PER2/PRKCA complexes

is not a consequence of increased transcription or transla-

tion, but reflects a posttranslational process.

PRKCA Regulates the Nucleocytoplasmic

Distribution of PER2

A reduction in phase delay of locomotor activity, as

observed in Prkca-deficient mice, could arise from atten-

uation of the PER/CRY-mediated negative feedback that

these proteins exert on transcription of their own genes

(see Introduction). We therefore speculated that, following

light exposure, cytosolic PRKCA may transiently retain the

PER2 protein outside the nucleus, thus transiently retard-

ing its negative feedback on CLOCK/BMAL1-mediated

transcription. Cultured cells are widely used to study the

dynamics of subcellular distribution of clock proteins

(Tamanini et al., 2005). We therefore transiently expressed

tagged PER2 (PER2Myc or PER2EGFP) with or without

PRKCA in COS7 or U2OS cells. In the absence of PRKCA,
836 Neuron 54, 831–843, June 7, 2007 ª2007 Elsevier Inc.
tagged PER2 was exclusively nuclear in %55% of cells,

while the remaining cells displayed cytoplasmic (25%–

35%) or mixed nuclear and cytoplasmic (20%–25%)

distributions (Figures 6A–6C). Coexpression with PRKCA

resulted in a marked drop (to as low as 10% in COS7 cells)

in the percentage of cells showing an exclusively nuclear

PER2 localization. This effect was abolished when PRKCA

was replaced by an enzymatically inactive mutant form of

the kinase (kdPRKCA). The latter data suggest that kinase

activity is required to retain PER2 in the cytoplasm.

The intracellular localization of PER proteins is regulated

by a nucleocytoplasmic shuttling mechanism involving

homo- and heteromeric complex formation (Chaves

et al., 2006; Yagita et al., 2002). To test whether such shut-

tling is affected by PRKCA, we treated COS7 cells coex-

pressing PER2EGFP and PRKCA with leptomycin B

(LMB), which promotes nuclear accumulation of PER2 by

blocking CRM1-mediated nuclear export (Yagita et al.,

2002). After LMB treatment, the fraction of PER2EGFP-

expressing cells with exclusively nuclear staining became

enriched in a time-dependent manner, with �80% of the

cells showing fluorescence in the nucleus 3 hr after initia-

tion of the treatment (Figures 6D and 6E). In the presence

of PRKCA, PER2EGFP still entered the nucleus, but this

occurred at a reduced efficiency, with only �45% of the

cells exhibiting nuclear green fluorescence 3 hr after

LMB application. These data suggest that PRKCA
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Figure 5. Transient Interaction of PRKCA and PER2 in the SCN Induced by Light Exposure at ZT14

Animals entrained to LD 12:12 were exposed to light pulses (400 lux) of progressively longer duration, starting at ZT14. Sham controls were kept under

the same conditions but did not receive any nocturnal light. (A) Western blotting and probing with PRKCA or actin antisera reveals constant levels of

these proteins in the SCN of wild-type mice (lanes 1–5). No PRKCA signal was detected in Prkca�/� SCN extract (lane 6). (B) Protein extracts were

immunoprecipitated with PER2 antibodies, western blotted, and probed for PRKCA. Note a transient interaction of two proteins peaking at 40 min. (C)

Densitometric quantifications of three independent experiments of the type shown in (B). For calculation of relative signal strength, see Experimental

Procedures. Data are presented as mean ± SEM (*p < 0.05, Student’s t test). (D and E) Without light exposure (sham control), immunoprecipitation of

SCN extracts with PER2 followed by western blotting with PRKCA antiserum yields a weak signal, indicating that PER2-PRKCA interaction is light

evoked. (F) Immunoprecipitation of SCN extracts from light-exposed mice with a PRKCA antiserum followed by western blotting with the PER2 an-

tibody used for immunoprecipitation in the experiments shown in (B)–(E) yields a strong band at t = 40 min (lane 2). Reminiscent of the data shown in

Figure 5B (lane 1), a weak band is seen prior to application of a light pulse. (G and H) Mice kept in DD and exposed to light at CT8 show no interaction

between PER2 and PRKCA (H). Lane 1 represents SCN prior to light exposure. Lanes 2 and 3 are from SCNs of mice exposed to 40 or 80 min of light.

Lanes 4 and 5 are sham controls. The input panel (G) demonstrates that PER2 and PRKCA were both present in the SCN extract.
regulates the kinetics of nuclear import of PER2 protein. A

mechanism in which PRKCA enhances cytoplasmic reten-

tion of PER2 is consistent with the resetting phenotype of

Prkca�/� mice. Without PRKCA, the cytoplasmic pool of

PER2 would be depleted more rapidly, the negative feed-

back shortened, and hence, the light-induced phase delay

reduced.

PRKCA Controls the Stability of PER2

In addition to its regulation of the kinetics of nuclear im-

port, one can envisage additional mechanisms by which

PRKCA may modulate the negative feedback loop of the

circadian clockwork. Casein kinase 13 (CK13) is known

to phosphorylate PER proteins and influence the period

length of the TTL by regulating not only the nuclear import,

but also the stability, of PER proteins (Akashi et al., 2002;

Eide et al., 2005; Takano et al., 2000; Vanselow et al.,

2006; Vielhaber et al., 2000). To test whether PRKCA

affects PER2 stability, HEK293 cells were transfected
with either PER2EGFP alone or PER2EGFP and PRKCA.

After blocking de novo protein synthesis with cyclohexi-

mide (CHX), cellular levels of PER2 were determined by

western blotting (Figure 7A). This data showed that

PRKCA stabilizes PER2. As can be calculated from the

decay curves (Figure 7B), the presence of PRKCA ex-

tended the half-life of PER2EGFP from 12.8 ± 2.3 hr to

38.6 ± 4 hr. These transient expression studies provide ev-

idence that PRKCA stabilizes PER2 protein in cell cultures.

To test whether PRKCA has a similar stabilizing influ-

ence on PER2 in the SCN, we measured PER2 protein

levels after light exposure in Prkca�/� mice. For this we

used the same experimental paradigm as for the analysis

of light-evoked PRKCA/PER2 interaction. Western blot

analysis revealed comparable amounts of PER2 protein

in wild-type and mutant animals at ZT14, prior to exposure

to the light pulse (Figures 7C and 7D). Consistent with pre-

vious reports (Beaulé et al., 2003; Field et al., 2000), light

exposure of wild-type animals did not significantly affect
Neuron 54, 831–843, June 7, 2007 ª2007 Elsevier Inc. 837
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Figure 6. PRKCA Controls Nuclear Import of PER2 Protein

(A–C) Quantitative representation of subcellular distribution of tagged PER2 alone and in the presence of PRKCA or kinase-dead PRKCA (kdPRKCA).

Percentage of COS7 (A and C) or U2OS (B) cells showing nuclear (N), nuclear and cytoplasmic (N/C), or cytoplasmic (C) localization of tagged PER2 is

shown.

(D and E) Blocking nuclear export in COS7 cells with leptomycin B (LMB) leads to a time-dependent enrichment of PER2EGFP in the nucleus. (D) Rep-

resentative micrographs of PER2EGFP (green) and PRKCA (red) immunofluorescence before and after LMB treatment, respectively. (E) Bar plots are

quantifications of experiments as shown in (D). All bar plots are derived from a field of 100 cells in three independent assays.
the amount of PER2 in the SCN. However, western blot

analysis uncovered a marked time-dependent reduction

of PER2 protein in the SCN of Prkca�/� animals

(Figure 7C, quantified in Figure 7D).

Taken together, these data demonstrate that PRKCA

stabilizes PER2 after light exposure in vivo. The reduction

of such stabilization in the absence of PRKCA is consis-

tent with the resetting phenotype of Prkca�/� mice in

that having fewer PER2 molecules in SCN neurons of

light-exposed mice would attenuate the negative feed-

back and hence reduce the magnitude of phase delay.

DISCUSSION

In mammals, photic resetting of the circadian oscillator in

the SCN involves CREB-mediated transcriptional activa-

tion of certain clock genes (Travnickova-Bendova et al.,
838 Neuron 54, 831–843, June 7, 2007 ª2007 Elsevier Inc.
2002). Our current findings, obtained using mice with

a loss-of-function mutation in the protein kinase C a (Prkca)

gene, shed new light on photic entrainment of the mam-

malian circadian clock. We have shown that Prkca�/�

animals fail to properly reset their circadian clock in

response to a light pulse given at ZT14 and that the under-

lying defect does not involve light/CREB-mediated

transcriptional activation. Instead, as discussed in detail

below, we have provided in vitro and in vivo evidence

that PRKCA transmits the light signal through posttransla-

tional mechanisms affecting the negative limb of the TTLs

that lie at the heart of the circadian clock.

PRKCA and CREB Operate by Different Pathways

The Prkca-deficient mice’s attenuation of clock resetting

in response to light exposure during the early night is rem-

iniscent of that observed in the CREBS142A mutant mouse
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Figure 7. PRKCA Stabilizes PER2
(A) Western blotting of HEK293 cell extracts showing the rate of degradation of PER2EGFP in the absence (top panel) and presence (lower panel) of

PRKCA. Duration of cycloheximide (CHX) treatment and antibody used are indicated.

(B) Quantification of western blots (n = 3). PER2EGFP levels were normalized to actin and the amount of PER2EGFP present at the onset of CHX treat-

ment (0 hr) was set to 100%. All data presented are mean ± SEM.

(C) Levels of endogenous PER2 in SCN extracts of wild-type and Prkca�/�mice exposed to a progressively longer light pulse beginning at ZT14. The

PER2 antiserum used detects a single band at �130 kDa.

(D) Quantification of western blots (n = 3). PER2 levels were normalized to those of actin and the amount of PER2 detected at ZT14 was set to 100%.

All data presented are mean ± SEM.
model, raising the possibility that PRKCA, similar to other

kinases, resides in a pathway converging on CREB. In an-

imals homozygous for the CREBS142A point mutation, as

well as in animals in which the CREB signaling cascade

was compromised by other means, a light pulse de-

creases the induction of Per gene transcription (Dziema

et al., 2003; Gau et al., 2002; Oster et al., 2003; Paul

et al., 2003; Yokota et al., 2001). By contrast, we found

that the extent of light induction of three different clock

genes—Per1, Per2, and Dec1—in wild-type and Prkca�/�

mice was very similar. These data led us to conclude

that the CREB pathway is still fully functional in Prkca-

deficient mice and presumably accounts for the residual

phase delay of 30 min seen in Prkca�/� animals, and

that the photic resetting mechanism involving PRKCA is

accordingly different from that mediated by CREB.

PRKCA Functions through Interaction with, and

Protection of, PER2

In search of a mechanism of action of PRKCA in photic

resetting, we discovered a transient interaction between

PRKCA and PER2 in the SCN of light-pulsed mice. It

appears that the amount of PER2/PRKCA complex in
the SCN parallels the magnitude of behavioral phase shift;

the longer the pulse, the more extensive the formation of

PER2/PRKCA complexes, the larger the shift. After

a very long light pulse, however, the amount of PER2/

PRKCA complexes is reduced again. This observation

parallels a basic feature of all known circadian clocks,

which is that even though initially the amplitude of behav-

ioral phase shifts is directly proportional to the overall

quantity of stimulation with light (irradiance), saturation is

observed with longer exposure times (Dkhissi-Benyahya

et al., 2000; Foster et al., 1991; Nelson and Takahashi,

1991; Yoshimura and Ebihara, 1998).

In the absence of PRKCA, the PER2 protein in the SCN

is degraded after exposure of the animal to light. This pro-

cess occurs on a timescale that is similar to that seen for

PER2/PRKCA complex formation, which raises the possi-

bility that the interaction with PRKCA protects PER2 from

being degraded by the proteasome. PRKCA-mediated

stabilization of PER2 was also observed in cultured cells,

albeit the protective effect was less obvious than in the

SCN, possibly due to the presence of the EGFP tag. We

found no evidence that PRKCA is required for PER2

stabilization during the normal circadian cycle. Thus,
Neuron 54, 831–843, June 7, 2007 ª2007 Elsevier Inc. 839
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mechanistically, PER2/PRKCA complex formation comes

into effect only after phase-delaying light pulsing. There

are several examples wherein complex formation of clock

proteins assists stabilization of complex constituents. For

instance, the stability of PER2 during the circadian cycle is

regulated by the formation of a PER2/CRY complex en-

riched in the nucleus (Kume et al., 1999; Shearman

et al., 2000; Yagita et al., 2002). Similarly, the stability

and nuclear localization of CLOCK depends on the inter-

action with BMAL1 (Kondratov et al., 2003). Additional

stabilizing components in a PER2/PRKCA complex may

be CRY proteins.

A Model of PRKCA Function in Photic Regulation

of the Circadian Clock of Mammals

Irrespective of the details of the composition of a PER2/

PRKCA complex, our data led us to suggest the following

scenario through which PRKCA might affect entrainment

of the circadian pacemaker. At the onset of (the subjec-

tive) night, SCN cells express high levels of PER and

CRY that together represent the negative limb of the circa-

dian feedback loop. Providing a light pulse to a mouse at

this time of the day results in the formation of a pool of

PER2/PRKCA (and possibly PER2/CRY/PRKCA) in the

cytoplasm. In this complex, PRKCA stabilizes PER2 as

our biochemical data in Prkca mutant mice show. This

combination of a transient stabilization and cytoplasmic

retention of PER2 has the effect of prolonging the negative

feedback. Hence, reactivation of the positive limb of the

circadian clock (CLOCK and BMAL1) is delayed. At the

behavioral level, this prolongation of the negative feed-

back causes a phase delay on the day following the light

pulse. Our model would predict that if cytoplasmic reten-

tion and stabilization of PER2 were reduced—as is the

case in Prkca�/� mice—the magnitude of light-induced

phase delays should be smaller, which is what we

observed.

PRKCA is not the sole kinase phosphorylating PER pro-

teins (Xu et al., 2007 and references therein), and con-

versely, PERs are not the sole PRKC targets (e.g., Shim

et al., 2007). The emblematic tau hamster carries a point

mutation in the casein kinase 1 epsilon gene (Csnk1e)

and is characterized by a shortened period length (Ralph

et al., 1990) and, as shown in an in vitro assay, increased

degradation of PER1 and PER2 (Gallego et al., 2006). By

contrast, the stabilization of PER2 by PRKCA has no con-

sequences on the period length, but rather plays a role in

photic clock resetting. Glycogen synthase kinase-3b also

phosporylates PER2 in vitro (Iitaka et al., 2005). Whether

this translates into a circadian phenotype is not known.

PRKCA and PRKCG can phosphorylate CLOCK, and

kinase inhibitor studies in NIH3T3 cells suggest that

CLOCK mediates phase resetting in these cells through

the activation of Per1 (Shim et al., 2007).

The clock of Neurospora crassa provides a remarkable

analogy to our finding of a posttranslational role of

a PRKC in photic entrainment (Franchi et al., 2005). During

the dark phase the Neurospora transcription factor
840 Neuron 54, 831–843, June 7, 2007 ª2007 Elsevier Inc.
‘‘white-collar-1’’ (WC1), which regulates expression of

the light-inducible clock gene frequency, is associated

with PRKC. A light pulse evokes a rapid dissociation of

the kinase from WC1, followed by the activation of the

frequency gene (Franchi et al., 2005). Although in mam-

mals, PRKCA binds to the core clock component PER2

as a result of photic stimulation, while in Neurospora,

PRKC dissociates from WC1, regulation is posttransla-

tional in both species and brings about clock resetting.

Taken together, our work affirms the existence of post-

translational mechanisms controlling light entrainment of

the circadian clock in mammals, and thus demonstrates

the evolutionary conservation of this type of regulation

among all organisms that have a circadian clock.

EXPERIMENTAL PROCEDURES

Animals

Behavioral monitoring was performed as described (Jud et al., 2005).

For all experiments 129/Sv wild-type mice and Prkca-deficient mice

of the same genetic background were used. All animals subjected to

behavioral experiments were males of at least 3 months of age. Mice

were sacrificed by cervical dislocation and decapitated under a 15W

safety red light. Animal studies were in compliance with the German

Law on Animal Welfare.

Behavioral Recording

Individually housed Prkca�/�mutant mice and age-matched wild-type

controls were entrained for 8 to 10 days to an LD 12:12 (400 lux) cycle

before transfer to DD or LL (100 lux). Locomotor activity was analyzed

using ClockLab (Actimetrics). To determine the circadian period of the

locomotor activity rhythm, we used c2-periodogram analysis. For the

photic phase-shifting experiments, entrained mice received a light

pulse of 400 lux for the indicated duration at specified time points on

the last night in LD or the first day in DD and were subsequently

released into DD for 7 to 9 days (Aschoff’s type II protocol). Phase

shifts were quantified as described in Oster et al. (2002).

In Situ Hybridization

DNA templates for Prkca (nts 2318-2847; NM_011101) and Dec1 (nts

298-1517; NM_011492) were generated by PCR from mouse brain

cDNA (Yaylaoglu et al., 2005). Templates for Per1 and Per2 were as

described (Albrecht et al., 1997). ISH with 35S-labeled antisense RNA

probes was carried out on 8 mm paraffin coronal sections through

the SCN. Adjacent sections were hybridized with sense probes. Quan-

tification of expression strength was performed using Kodak BioMax

MS film (Albrecht et al., 1997; Oster et al., 2002).

Western Blot and Immunoprecipitation from SCN Tissue

Mice were exposed to a 400 lux light pulse of 0, 10, 20, 40, or 80 min at

ZT14 or CT8, and brains were removed when the pulse was finished.

SCNs were microdissected from 1 mm thick coronal slices. Sham con-

trols were treated identically. SCNs from two mice were pooled and

homogenized in lysis buffer (150 mM NaCl, 20 mM HEPES, 1 mM

MgCl2, 1 mM EGTA, 1 mM DTT, and protease inhibitor cocktail [Sigma]

[pH 7.4]). After centrifugation supernatants were boiled for 10 min in

SDS sample buffer and separated by 8% SDS-PAGE. For immunopre-

cipitation, protein A agarose beads were preincubated for 1 hr at 4�C

with mPER2 antibody (1:50, Alpha Diagnostic International) or with

PRKCA antibody (1:50, Cell Signaling). Thereafter, 20 mg SCN lysate

protein was added, followed by overnight incubation at 4�C, centrifu-

gation, and washing with PBS. Beads were eluted with Triton X-100-

free lysis buffer, and eluates were boiled for 10 min and separated

on 8% SDS-PAGE. After transfer to PVDF membranes and blocking
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of membranes, proteins were detected with the following antibodies:

anti-PER2 antibody, 1:500; anti-PRKCA, 1:1000; anti-actin antibody,

1:2000, Santa Cruz; and secondary goat anti-rabbit antiserum,

1:20,000, Jackson Labs. Detection: Supersignal Westpico or Femto

(Pierce). Signal was quantified using computer-assisted densitometry

(ImageJ). PER2 and PRKCA bands were normalized to those of actin.

Relative strength of PRKCA/PER2 interaction at ZT14 was set as 1.

Western Blots and Immunoprecipitation from Cells

COS7 cells (DMEM, 10% FCS) were seeded in 10 cm dishes at 1.8–2 3

106 and transfected (Lipofectamine PLUS, LifeTech or Effectene, Qia-

gen) 16 hr later with plasmids expressing PER2Myc, CRY2V5, or

PRKCA. Expression vectors were pcDNA3.1/V5-His-TOPO and

pcDNA3.1/Myc-His A (Invitrogen). Twenty-four hours later, cells were

lysed (lysis buffer: 1% Triton X-100, 50 mM Tris [pH 7.5], 150 mM

NaCl, 1 mM EGTA, 1 mM EDTA, 10 mM b-glycerophosphate, 10 mM

b-mercaptoethanol, 1 mM NaF, 10 mg/ml aprotinin, 10 mg/ml leupeptin,

1 mM PMSF, 1 mM Na-orthovanadate). For immunoprecipitations

1 mg of total lysate was incubated with 20 ml of protein G agarose

beads (Roche) for 30 min at 4�C for removing proteins binding nonspe-

cifically. Samples were centrifuged and supernatants were incubated

overnight at 4�C with 1 mg of rabbit polyclonal anti-PRKCA (Santa-

Cruz). Forty microliters of protein G beads (preblocked in 2% BSA/

PBS) in lysis buffer were added to the samples. This mixture was fur-

ther incubated for 2 hr at 4�C and centrifuged, and beads were washed

four times in lysis buffer. Dry beads were resuspended in 2 3 SDS

loading buffer, boiled, centrifuged, and analyzed by SDS-PAGE and

western blotting using PVDF membranes. Sequential detection of

proteins was performed, andfilters were stripped in between with

0.2 N sodium hydroxide. Antibodies were as follows: anti-Myc

antibodies, 1:5000; anti-V5 antibodies, 1:3000, both Invitrogen; anti-

PRKCA antibodies, 1:1000, Santa Cruz; secondary anti-mouse or

rabbit HRP-conjugated, 1:20,000, Jackson Labs. Detection was by

chemiluminescence (Supersignal Westpico, Pierce).

For stability studies of PER2, HEK293 cells (DMEM, P/S, 10% FCS)

were transfected (Fugene, Boehringer) with PER2EGFP (Yagita et al.,

2002) and PRKCA in 60 mm dishes. Cells were trypsinized after 24

hr, equally divided in four 60 mm dishes, and cultured over night.

CHX (in ethanol) was added to the cells (100 mg/ml final concentration)

and after 2, 4, or 6 hr, cells were lysed with 1 3 SDS loading buffer.

PER2EGFP and actin were detected on same western blot by chemilu-

minescence (Renaissance western blot reagent plus, NEN). Antibodies

were as follows: anti-EGFP antibodies, 1:1000, Roche; anti-actin anti-

bodies, 1:3000, Chemicon; secondary anti-mouse HRP-conjugated,

1:1000, Dako.

Cell Culture and Immunofluorescence

Immunofluorescence techniques were performed as described (Yagita

et al., 2002). Proteins were expressed in COS7 or U2OS cells (grown in

McCoy’s 5a medium with 1.5 mM L-glutamine, 10% FCS). The subcel-

lular localization of PER2Myc or PER2EGFP, singly and double trans-

fected with PRKCA or kdPRKCA, was analyzed 24 hr after transfection

and scored in at least two independent experiments. The cellular local-

izations of the proteins did not vary between 24 hr and 48 hr after trans-

fection. Cells were fixed in 4% paraformaldehyde, washed in PBS, and

permeabilized in 0.1% Triton X-100 (10 min each step). Primary anti-

bodies were as follows: mouse anti-Myc (1:650); rabbit anti-PRKCA

(1:250 or 1:1000). Secondary antibodies were as follows: FITC-conju-

gated anti-mouse and TRITC-conjugated anti-rabbit IgG (Sigma). In

the case of COS7 cells expressing PER2EGFP, the secondary antibody

was anti-rabbit Alexa 594 (1:1000, Molecular Probes). LMB (Sigma) dis-

solved in methanol was added to the medium at a final concentration of

10 ng/ml, and cells were incubated for 1.5 hr and 3 hr before fixation.

Kinase Assay

PER2Myc, PER2EGFP, and CRY2V5 proteins alone or in combination

were expressed in COS7 cells and isolated by immunoprecipitation
with anti-Myc or anti-V5 antibodies (1:650) absorbed to protein G aga-

rose beads. Pull-downs were washed twice in kinase buffer (20 mM

Tris [pH 7.5], 2 mM MgCl2, 0.1% NP40, 1 mM Na2VO4, 10 mg/ml

leupeptin, 0.5 mM DTT). The kinase reaction was performed for

30 min at room temperature with recombinant PRKCA, an aliquot of

the pull-down, 100 mM CaCl2, 1 mM ATP, and 5 mCi g32P-ATP

(3000 Ci/mmol, NEN) in presence or absence of 1 mM bisindolylmalei-

mide. The reaction was stopped by adding loading buffer and boiling

for 5 min at 95�C. Twenty-five microliters were loaded into a twelve

percent SDS-PAGE and visualized by autoradiography.

Statistical Analysis

In all experiments, statistical significance, with p < 0.05 as the criterion

of significance, was determined using unpaired two-tailed Student’s

t tests and GraphPad Prism Software (GraphPad Software, San Diego,

CA). (*) and (**) indicate p < 0.05 and p < 0.01 versus control,

respectively.
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