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Abstract

This magnetic resonance imaging (MRI) study describes mapping of the habenulo-interpeduncular pathway in living mice based on

manganese-induced contrast. Six hours after intracerebroventricular microinjection of MnCl2, T1-weighted 3D MRI (2.35 T) at 117 Am
isotropic resolution revealed a continuous pattern of anterograde labeling from the habenula via the fasciculus retroflexus to the

interpeduncular nucleus. Alternatively, the less invasive systemic administration of MnCl2 allowed for monitoring of the dynamic uptake

pattern of respective neural components with even higher reproducibility across animals. Time courses covered the range from 42 min to 24 h

after injection. In conclusion, manganese-enhanced MRI may open new ways for functional assessments of the habenulo-interpeduncular

system in animal models with cognitive impairment.

D 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The habenular complex is a crucial relay structure for the

caudally directed diencephalic conduction system. Several

neuroimaging studies in humans have indicated that it is

critically invol ved in cognition a nd behavi or [1–3]. For

example, functional magnetic resonance imaging (MRI)

recently demonstrated that the habenula takes part in the

reward system [4]. These findings are based on precedi ng

animal studies that support a functional relationship between

the habenul a an d the dopaminergic system [5–7]. In fact,

various rodent models involving the habenula have been

developed which resemble behavioral alterations observed

in psychiatric disorders such as schizophrenia, depression

and drug addiction [8–12] . Acco rdingly, when considerin g

the noninvasiveness of MRI and its combination with

behavioral tests in genetically modified animals, a suitable

MRI technique for investigations of active habenular

neurons in behaving mice turns out to be highly desirable.

Recent advances in neuroimaging of animals offer

MnCl2 as an MRI contrast agent for functional assessments
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of rodent brain [13–18] . Depending on the neurona l u ptake

of paramagnetic Mn2+ ions through calcium channels and

their subsequent axonal transport, T1-weighted MRI

allows for a mapping of active neural pathways at high

spatial resolution and without the susceptibility arti-

facts often encountered in deoxyhemoglobin-based func-

tional MRI.

The purpose of this work was to develop corresponding

approaches for mapping the habenular complex in living

mice by using T1-weighted 3D MRI at isotropic spatial

resolution after either intracerebroventricular microinjection

or systemic administration of MnCl2.

2. Materials and methods

2.1. Intracerebroventricular Mn2+ microinjection

Seven male mice (animals 1–7: C57BL/6J, 9–12 weeks

old, 24–28 g) were obtained from Centre d’Elevage Janvier

(Le Genest St. Isle, France). The animals were individually

housed under conventional conditions in macrolon cages

according to the recommendations of the Society for

Laboratory Animal Science (Germany). Experiments were

performed in accordance with the European Council

Directive (86/609/EEC) and with permission of the animal
aging 24 (2006) 209–215



Fig. 1. Experimental setup for high-resolution 3D MRI of mouse brain in

vivo. Radiofrequency excitation and signal reception were accomplished

with the use of a Helmholtz coil (100 mm) and an elliptical surface coil (20

mm AP, 12 mm left–right), respectively. The arrow denotes the

endotracheal tube. The insert depicts the head holder comprising a nose

cone and bite bar.
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prote ction law enforc ed by the District Gove rnmen t of

Brau nschweig , State of Lower Sa xony.

The bregm a, the sagittal sutur e and the surface of the

skull were used as referen ces for the anter ior–p osterior

(AP) , lateral (L ) and ventr al (V) coordinates , respec tively.

For the imp lantatio n of the cannul a, avert in (1.2%) was

inje cted intraperi toneally (ip, 0.02 ml/g bw) . A set of tw o

guide cannul ae (26-ga uge, C235, Plast ics One, Roa noke,

VA) was placed into the lateral ventr icles (AP = 0 mm ,

L= F 1.0 mm and V = 3.0 mm) in accordan ce with ster eo-

taxi c plates [19]. The c annulae wer e fixed to the skull by

dental cemen t.

Intraventricular injections of MnCl2 (0.25 A l) were
perfor med 4 –5 days after the cannul a surgery using only

the left-hem isphe ric cannul a. MnCl2 (Sigm a, Taufki rchen,

Ger many) was dissolved in ster ile artificial cerebrospin al

fluid (CSF ) on the day of injectio n and prepar ed in three

different concent rations (5 mM: animals 1– 3; 20 mM:

animals 4 – 6; 50 m M: animal 7). The artificial CSF

contai ned NaCl (130 mM) , NaHCO3 (24 mM), MgSO4

(1.5 mM), CaCl2 (2 mM), KCl (3.5 mM), NaH 2PO 4 (1.25

mM) and glucos e (10 mM) adjusted to pH 7.4 and 300

mOsm /kg H2O. The manga nese concentrati ons were chosen

to be well below acute toxi c levels and sufficiently high to

ensure proper MR I contrast. For examp le, in rats intrace-

rebral inje ctions of 1 Al of 500 mM MnCl2 were shown to

be without change, wher eas a concent ration of 1000 mM

MnC l2 caused a signi ficant reduction of n euroche mical

mark ers such as GAB A [20]. On the other ha nd, previ ous

MRI studi es of the hippoc ampal system of mice wer e

succes sfully carri ed out using a dose as low as 0.25 A l of 5
mM MnC l2 [21].

Animal s w er e exposed to an i soflurane anesthesia

(Ab b ott, Wiesba d en, Ger ma ny) and pla ced in a pron e

posit ion. The MnCl2 injection was performed with the use

of a 28-gaug e cannul a connect ed via plastic tubing to a

Ham ilton microsyr inge. The solution (0.25 Al) was admi n-

istered into the left lateral ven tricle by a mic roinjecto r

(CMA/Microdialys is) over a 15-s period. Afterwar ds,

avert in (ip, 1.2%, 0 .02 ml/g bw) was injected to min imize

possi ble stre ss durin g transport ation to the MRI facilit y.

Magnet ic resona nce imaging examinati ons wer e perfor med

at 2 h (animals 4 and 7), 6 h (animals 1–6) and 24 h (animals

4 a nd 5) after MnCl2 adminis tration. For the firs t MRI

meas ureme nt, the implant ed cannul ae wer e remo ved. The

inci sions o f the scalp were covered with lido caine hydro-

chlor ide (2% xyloca ine gel). After each anest hesia , the

anim als were recover ed and becam e norm ally active with

free access to food and wat er.

2.2. Syste mic Mn 2+ adminis tration

Six female mice (animals 8–13, NMRI, 7 weeks old,

28–34 g) recei ved MnC l2 dissolved in dist illed wat er (120

mM, 5 ml/k g b w) via subc utane ous injec tio ns. Th e

solut ion was admi nistered into the ax illary adipose tissue

bila terally. In general , it has been reported that about 0.4%
o f the subcut aneously adminis tered Mn 2+ enter s the brain

[22]. In c omparison to intraperi toneal and intravenous

inje ctions, subcut aneous inje ctions lead to a slower uptake

of Mn 2+ into the systemic c irculation and therefore

min imize acu te effec ts on the cardi ovascular syst em such

a s hypote nsion.

In a first group of a nimals (8–10) MRI exami nations

wer e perfor med before as well as 2, 6 and 24 h after Mn 2+

a dministrat ion. More detailed up take kinetics were studied

in a second group of anim als (11–13) before as well as 42,

1 32, 222, 312 and 402 min after Mn 2+ adminis tration. The

tim e points correspon d to the mid points of respec tive 3D

MR I acquis itions (see below). Whereas anim als 8 to 10

were recovered from anesthesia between each measure-

ments, animals 11 to 13 were kept under anesthesia within

the magnet. All other procedures were as described above.

2.3. Magnetic resonance imaging

For MRI, anesthesia was induced by intraperitoneal

injection of xylazine (14 mg/kg bw) and ketamine (90 mg/

kg bw). The animals were intubated with a purpose-built

polyethylene endotracheal tube (0.58 mm inner diameter,

0.96 mm outer diameter) and artificially ventilated using a

respirator (TSE, Bad Homberg, Germany) with an inspira-

tory time of 0.18 s, a respiratory rate of 80 breaths per

minute and an estimated tidal volume of 0.15–0.25 ml.

Anesthesia was maintained using 0.2–0.6% halothane in a

7:3 mixture of N2O and O2. As demon stra ted in Fig. 1, the

animals were placed in a prone position with their head

fixed on a purpose-built head holder. Heated water was used

to maintain rectal body temperature at 37F18C.
MRI measurements were carried out at 2.35 T using a

MRBR 4.7/400-mm magnet (Magnex Scientific, Abing-
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don, UK) equipped with B-GA20 gradients (200 mm

inner diameter, 100 mT/m maximum strength) and driven

by a DBX system (Bruker Biospin, Ettlingen, Germany).

Radiofrequency excitation and signal reception were

accomplished with the use of a Helmholtz coil (100

mm inner diameter) and an elliptical surface coil (20 mm

AP, 12 mm left–right), respectively. High-resolution 3D

MRI data sets were acquired using a T1-weighted

gradient-echo MRI sequence (rf-spoiled 3D FLASH, TR/

TE=17/7.6 ms, flip angle 258, 32 averages) optimized for

studies of mouse brain at 117 Am isotropic voxel

resolution [23]. The tota l measu ring time for a 3D MRI

scan was 84 min.
Fig. 2. Mn2+-enhanced MRI of the brain of a mouse 6 h after injection of MnC

hemispheric injection site (white dots) is depicted in (left) a coronal and (right) a p

needle tract. Solid vertical lines refer to respective section orientations, while obliq

The anterior parts of the habenulae (Hb) are shown in (left) a coronal oblique

habenula and interpeduncular nucleus (IP). As indicated by a vertical line, the par

retroflexus of both sides (arrowheads) is shown in (left) a coronal oblique section

section 0.35 mm lateral to the midline.
In accordance with resolved anatomic structures, quan-

titative evaluations were based on cross sections obtained by

multiplanar reconstructions from the original 3D MRI data

sets using software supplied by the manufacturer (Para-

Vision, Bruker). Following a strategy outlined by Watanabe

et al. [24], the signal-t o-noise ratio (SNR) , here defin ed as

the mean MRI signal intensity divided by the standard

deviation of the noise, was determined in standardized

regions of interest within enhanced structures. To calculate

percent changes of the SNR after Mn2+ enhancement for

selected regions within the habenulo-interpeduncular path-

way (animals 11–13), values were individually normalized

to the SNR obtained before injection.
l2 (animal 1, 0.25 Al, 5 mM) into the left lateral ventricle. (Top) The left-

arasagittal section 0.8 mm lateral to the midline. Dashed arrows denote the

ue lines indicate the positions of the coronal sections shown below. (Middle)

section together with (right) the connection (arrowheads) between the left

asagittal section is 0.35 mm lateral to the midline. (Bottom) The fasciculus

, while (right) the right fasciculus retroflexus is delineated in a parasagittal
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3. Results an d discus sion

3.1. Intracerebroventr icular Mn 2+ microinjecti on

Fig. 2 demonstra tes that the uptake of Mn 2+ from the

CSF into brain tis sue resul ts in a clear delineatio n of the
Fig. 3. Mn2+-enhanced MRI of the brain of a mouse before as well as 2, 6 and 24

(Left) A coronal and (right) right-hemispheric parasagittal section 0.4 mm lateral t

pathway (arrowheads). Section orientations and anatomic labeling as in Fig. 2.
h abenulae 6 h after a microinject ion of MnCl2 into the left

late ral ventr icle. In terms of soft-ti ssue contr ast, opti mal

e nhancement was achieved after intrac ere broventricular

inje ction of 5 mM MnC l2. Magnet ic resona nce imaging

signa l increases are seen in tissue adjace nt to the ventr icular
 h after subcutaneous injection of MnCl2 (animal 8, 120 mM, 5 ml/kg bw).

o the midline show enhanced structures along the habenulo-inte rpeduncular



Table 1

Signal-to-noise ratio of enhanced structures after subcutaneous MnCl2

Region Area/

mm2

Basal 2 h 6 h 24 h

Habenular

nuclei

0.08 28.9F2.3 68.0F4.4 71.2F1.6 59.5F2.8

Fasciculus

retroflexus

0.40 25.9F2.4 35.1F3.5 41.5F0.7 41.2F3.3

Interpeduncular

nucleus

0.53 23.4F2.9 43.2F7.1 52.3F1.6 47.1F3.5

The data represent mean valuesFS.D. averaged across hemispheres and

animals (n =3, animals 8–10).

Fig. 4. Time courses of relative SNR (mean valuesFS.E.M. averaged across

animals 11–13) within the habenulo-interpeduncular pathway after systemic

MnCl2 administration. The enhancement in the dorsal half of the fasciculus

retroflexus (dFR) close to the habenula (Hb) precedes the Mn2+

accumulation in the ventral half of the fasciculus retroflexus (vFR) closer

to the IP.
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spaces incl uding the low er brainstem an d cerebellum . These

findings indicate that Mn 2+ ions becom e distribu ted by CSF

flow from the late ral ventr icle to the third and fourth

ventricle. Accordingly, adjacent brain tissue m ust be

expected to be well exposed to Mn 2+. Among respec tive

neural compo nents, the most pronoun c ed enhancem ent was

seen in both the left and right habenul a. From the habenul ae,

enhanced fiber bundles (arro wheads in Fig. 2) can be

tracked bila terally across the thalamus to the interpedun-

cular nucleus in the midbrain . In accordan ce with ante-

rograde t racing studies of habenular neurons using

intracellula r tracers [25], this connect ion repres ents the

fasciculus retr oflexus. Its enhancem ent unequi vocally con-

firms the uptake and subseq uent axonal trans port of Mn 2+

by habenu lar neurons . No differences were observ ed for the

connections ipsilateral or contr alateral to the injectio n site.

Bec ause the habenul a is located beneat h the late ral wall

of the t hird ventric le, CS F flow ca n be exploited t o

efficie ntly deli ver Mn2+ to this ne uronal assem bly wi th the

use of a surgical intervent ion far away from the target

structure . In contr ast, direc t intraparen chyma l injec tions [21]

seem inappr opriate in view of the smal l size of the mous e

habenula ( b 0.8 mm in height and width) and the risk of

tis sue d amag e due to ne ed le in sert io n and s ubse qu ent

infusion. On the other hand, it shoul d be noted that the

clear patt ern of enhancem ent found for animal 1 (Fig. 2) was

not achieve d in anima ls 2 and 3 studied wi th the same Mn 2+

concentrati on. In quanti tative terms, the SNR of 38.4 F 12.8
(n = 3) obtained for the enh anced habenul ae reveal s an

insufficient reprod ucibili ty as indicated by the large stand ard

deviation. The situati on was not improved by using higher

MnCl2 concent rations. For examp le, in animals 4 to 6 the

use of 20 mM MnCl2 did not lead to a reprod ucible

enhancemen t of the hab enula. On the other hand, alth ough

the appli cation o f 5 0 mM MnC l2 in anim al 7 resulted in a

robust MRI signal increase in the habenul a, the Mn 2+

contrast was compro mised by strong unspeci fic effects in

tissues adjace nt to ventricul ar spaces .

The observed interindividual variabilit y most likely

results from d ifference s in the Mn 2+ content wi thin the

CSF rather than from funct ional respon se varia nces of

individua l animals. A major reason may be due to the fact

that under in vivo condition s — and in contr ast to what

might be assum ed from histolog ic sections — the choroi d
plexus occup ies consi derable space in the late ral ventr icles.

Thus, despite the use of C57 BL/6J mice which are known

for larger ventricul ar spaces than other stra ins [23,26] , it

appeared beyond the investig ator ’s co ntrol to p osition the

tip of the injectio n needle exclus ively within the narrow

CSF space without contac t to the choroi d plexus. The

uptake of Mn 2+ into the cho roid p lexus may therefore cause

variable concent rations in the CSF (and adjace nt brain

tissu e) of diff ere nt anima ls and g ene rally h amp er the

applica bility of the intr acerebr oventr icular approac h for

functional asses smen ts of habenu lar neurons .

3.2. Sy stemic Mn 2+ adminis tration

As shown in Fig. 3 for 3D MRI acquisitions at different

times after syst emic Mn 2+ admi nistration (animals 8–10),

the use of a high-do se subcut aneous inje ction of MnC l2
unravele d the enti re ne ural pathway from the habenular

complex via the fasci culus retr oflexu s to the inte rpedunc ular

nuclei bilaterally. The concurrent enhancem ent of the

habenul a and fasci culus retroflex us furt her suppor ts the

neurona l uptake of Mn 2+ after systemic adminis tration and

extend s prelimi nary observ ations using low-dos e admi nis-

trations of MnCl2 [18].

Tab le 1 su mm ar iz es SN R v a lue s ob ta in ed f or t he

habenul a, fascicu lus retr oflexus and interpedunc ular nu-

cleus as a function of tim e after systemic admi nistration.

Best results in terms of soft-ti ssue contr ast o f the entire

pathway wer e achieved 6 h after injectio n. At 24 h after

injection the soft-tissue contrast faded. However, in

agreeme nt with previ ous studies [24], such long expo sure

times lead to the enhancement of brain structures such as

hippocampal formation and cerebellum (bottom left and

right of Fig. 3, respec tively).
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Fig. 4 shows time cou rses of the mean SNR withi n

selec ted regio ns of the habenul o-interped uncula r pathw ay

(anim als 11–13). At 132 min after injection, the habenul a

reveal s an SNR increase as large as 30%, wher eas in the

inte rpedunc ular nucleu s such a pronoun ced enhancem ent

was not seen u ntil 312 min after inje ction. Most imp ortantly,

the graph demon stra tes the Mn 2+-indu ced SNR incre ase in

the dorsal part of the fasciculus retroflexus (11% at 132 min

posti njection) to precede the enhancement in the ventr al part

of the tract whi ch reaches similar values not until 312 min

after the injection. Together with the m arked Mn 2+

acc umula tion observed i n t he habenula, th e delaye d

enhancem ent in the ventr al part of the fasciculus retroflex us

clear ly indi cates that the anter ograde axonal transport by

habenul ar neurons contribut es to the Mn 2+ accumu lation in

this tract. The graph also reveal s conditions of unsat urate d

Mn 2+ accum ulat ion in this projection pathway for at least 6

h after adminis tration. Acco rdingly, this perio d may be

exploi ted for functional assessments of speci fic neurona l

popula tion s as de monstrated in the song system of living

canari es [27].

It has been sugges ted that the choroid plexus becom es

the predominan t route for Mn2+ uptake into the central

nervous system at incre ased plasma concent ration [28].

Thu s, together with the findings for intracereb rovent ricular

inje ctions, signi ficant amoun ts of Mn 2+ shoul d be deli ver-

able to the habenul a via ventricular CSF flow after systemi c

admi nistration of a high dose of MnC l2. The procedu re not

only avoids a surgical intervention, but also leads to a

consi derabl y better interindividual reproducibility of en-

hancement patterns than intracerebroventricular microinjec-

tions. The observation of similar findings in all animals

studied is quantitatively supported by the small stand ard

deviat ion values report ed in Table 1.

Hype ractivity of the habenulo-interpeduncular pathway

has been hypothesized to be involved in reduced dopamine

acti vity and thus reward-r elated behavi ors [7]. So far, a

functional characterization of the habenula in a genetic

animal model with altered behavior has been accomplished

using postmortem methods such as cytochrome oxidase

histo chemistry [11]. The met hod presen ted here combi nes

several advantages: (i) MRI is inherently noninvasive and

the exogenous contrast requires only a single subcutaneous

injection, (ii) the information is of a true 3D nature and

available for retrospective reconstructions of arbitrary

sections or surfaces and (iii) the approach may be applied

repeatedly during multiple follow-up studies and combined

with behavioral tests in individual animals. Together,

dynamic Mn2+-enhanced MRI is expected to become a

complementary neuroimaging technique for in vivo studies

of habenular neurons.
4. Conclusions

The results suggest that Mn2+-enhancedMRI may be used

for structural and functional assessments of mouse models
involving disturbances of the descending diencephalic

system. An intracerebroventricular route can be chosen to

highlight the entire habenulo-interpeduncular pathway using

a single dose of only 0.25 Al of 5 mMMnCl2. Systemic Mn2+

administration offers a robust and even less invasive

alternative for a quantifiable evaluation of the habenulo-

interpeduncular system. This strategy is currently applied for

a characterization of synaptic activity in knockout mouse

models of schizophrenia-related genes.
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