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Transition probabilities of a string oscillator subject to impulsive collisions
with a heavy mass point
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Impulsive linear collisions between a string oscillator �a one-dimensional particle in a box� and a
mass point are studied quantum mechanically. In the limit of a very heavy mass point �which
corresponds classically to many collisions during a single encounter� the transition probabilities are
determined exactly. The result permits a discussion of the mixed quantum-classical regime where
the collider becomes almost classical while the oscillator remains quantum mechanical. While the
average transition probabilities Pm→n are well reproduced by the Ehrenfest mean-field
approximation, the prediction for the superimposed high-frequency resonance structure is
qualitatively wrong for a genuine quantum oscillator. Only if the oscillator is also almost classical
and if �m−n�2���m, where � is the mass ratio collider/oscillator, this structure is correctly
predicted by the Ehrenfest approximation. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2084946�
I. INTRODUCTION

Vibrational-translational energy transfer is of central im-
portance in understanding reaction dynamics.1,2 The problem
remains theoretically challenging, since no simple exactly
solvable model has been found which displays the crucial
features of energy transfer. The simplest candidates �a har-
monic oscillator which interacts with the colliding atom ei-
ther by a hard sphere3 or an exponential interaction4� can be
solved only numerically.

In the vibrational-translational energy transfer the depen-
dence of the transition probabilities Prs on two parameters is
of particular interest. The first is the oscillator frequency �
measured with respect to a suitable reference frequency
� /�0 and the second is the ratio

� =
mcoll

mosc
�1�

of collider mass to oscillator mass.
While the frequency is generally of great interest, the

dependence on frequency becomes trivial for systems with
hard-sphere interaction. The reason is that �0 is something
like the inverse duration of a collision, which is zero for
hard-sphere interactions. For such systems the only non-
trivial dependence is on the mass ratio �.

Small � corresponds to light colliders which only
weakly perturb the oscillator. This is the domain of Fermi’s
golden rule which is widely used by experimentalists. As �
increases, the interaction becomes stronger and its duration
becomes longer and longer. For large mass ratios � the in-
teraction comprises multiple collisions and the theoretical
treatment may become rather complicated.

From the numerical studies it is well known that the
dependence of the Prs on � is oscillatory, i.e., that there is a
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sequence of mass ratios �n where Prs vanishes �see Fig. 2�.
This is true classically as well as quantum mechanically. In
the classical picture the quasiperiodic behavior is connected
to the occurrence of multiple collisions during a single en-
counter.

In order to study the effect of a large mass ratio and
�classically� multiple collisions on vibrational-translational
energy transfer, we will choose a model with hard-sphere
interaction.

The natural model here is the model of Shuler and
Zwanzig3 where a harmonic oscillator collides with a mass
point. However, since the numerical procedure suggested by
Shuler and Zwanzig runs into difficulties at large mass ratios,
we will study an even simpler model.

The string oscillator �a one-dimensional particle in a
box� is one of the very simplest quantum-mechanical objects.
Many years ago Widom5,6 initiated the study of vibrational-
translational energy transfer in this model by considering im-
pulsive collisions with an impinging mass point.

While much is known about the string oscillator in the
classical limit,7–9 the quantum model has only been studied
rarely.10 It is the object of the present paper to show that this
model can be solved in the limit of large collider mass. This
opens the possibility of a comparison with the Ehrenfest
mean-field approximation in the mixed quantum-classical re-
gime.

II. THE MODEL

Consider a particle of mass mosc in a box of length L �the
string oscillator�. From the right a particle of mass mcoll im-
pinges on the oscillator. If R and r are the positions of col-

lider and oscillator, respectively, the Hamiltonian reads
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H = −
�2

2mcoll

�2

�R2 −
�2

2mosc

�2

�r2 . �2�

Because the oscillator is confined to the box, the wave func-
tion ��R ,r� must satisfy

��R,0� = ��R,L� = 0. �3�

The additional boundary condition

��r,r� = 0 �4�

signifies the hard-core repulsion.
Similar to Hanson and Werbelow10 we rescale the coor-

dinates by x=��mcoll /moscR /L and y=�r /L and obtain the
Helmholtz equation

−
�2

�x2� −
�2

�y2� = �2� , �5�

with the dimensionless wave number

�2 =
2moscL

2E

�2�2 . �6�

The Helmholtz equation �Eq. �5�� must be satisfied in the
region 0�y�� ,y�x tan 	, with

tan 	 =�mosc

mcoll
= �−1/2, �7�

and must vanish on the boundary �see Fig. 1�.
To the right of

x0 =
�

tan 	
�8�

the solution has the form

�I�x,y� = e−ikmx�m�y� + �
n=0




Rneiknx�n�y� , �9�

where the �n�y� are the normalized eigenfunctions of the

FIG. 1. Equation �5� must be satisfied in the enclosed region and must
vanish on the boundary.
oscillator
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�n�y� =� 2

�
sin ny . �10�

Here km is the wave vector of the incoming particle which
impinges on an oscillator initially in state m. Energy conser-
vation implies

kn
2 + n2 = �2. �11�

Real kn represent outgoing waves which leave the oscillator
in state n. The probability of a transition in which the oscil-
lator changes from state m to state n is

Pm→n =
kn

km
�Rn�2. �12�

III. METHOD OF SOLUTION

In the circular segment Or0A, where

r0 =
�

sin 	
, �13�

the general solution in polar coordinates r and � which sat-
isfies the boundary conditions has the form10

�II�r,�� = �
n=1




AnJn�/	�� r�sin
n��

	
. �14�

Solutions �I and �II overlap in the region x0r0A where they
must be identical. This may be implemented by demanding
that �I and �II as well as their normal derivatives coincide on
a path � which starts on the x axis between x0 and r0 and
ends at point A,

��I�� = ��II��, � ��I

�n
�

�

= � ��II

�n
�

�

. �15�

For � Hanson and Werbelow10 use the line x=x0 and postu-
late Eq. �15� on 2n points on this line. This leads to a system
on 2n linear equations for the Rk and Ak which is solved
numerically.

An alternative approach is to consider for � the circular
segment r0A. On this path we multiply Eq. �15� by
sin�k�� /	� and integrate over � from 0 to 	. This leads to
the linear system

AkJk�/	��r0� =� 2

�	�
n

SknRn + fk
 , �16�

Ak�Jk�/	� ��r0� =� 2

�	�
n

TknRn + gk
 , �17�

with matrices

Skn = 2�1

eiknr0 cos 	x sin�nr0 sin 	x�sin�k�x�dx , �18�

0
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Tkn = 2�
0

1

eiknr0 cos 	x�ikn cos�	x�sin�nr0 sin 	x�

+ n sin�	x�cos�nr0 sin 	x��sin k�x dx �19�

and vectors

fk = 2�
0

1

e−ikmr0 cos 	x sin�mr0 sin 	x�sin�k�x�dx , �20�

g = 2�
0

1

e−ikmr0 cos 	x�− ikm cos�	x�sin�mr0 sin 	x�

+ m sin�	x�cos�mr0 sin 	x��sin k�x dx . �21�

Eliminating the Ak we obtain

�QS − T�R = g − Qf , �22�

where Q is the diagonal matrix with elements

qk = �
Jk�/	� ��r0�
Jk�/	��r0�

. �23�

Truncating Eq. �22� at some finite level n supplies an alter-
native procedure for the numerical solution. For the same
matrix size the accuracy is much higher than in the method
of Hanson and Werbelow.10 The drawback is, however, that
the matrices S and T and vectors f and g must be calculated
numerically.

IV. TRANSITION PROBABILITY FOR LARGE
COLLIDER MASS

If the mass of the collider is much larger than the oscil-
lator mass, the angle 	 is very small, and Eq. �22� may be
solved by expanding in 	.

One finds after a brief calculation

e−iknr0Skn = 
kn + 	Skn
1 + O�	2� , �24�

e−iknr0Tkn = ikn
kn + 	Tkn
1 + O�	2� , �25�

where

Skn
1 = − i�kn�

0

1

x2 sin�n�x�sin�k�x�dx �26�

and

Tkn
1 = 2n�

0

1

x cos�n�x�sin�k�x�dx + iknSkn
1 . �27�

The fk and gk are given by

eikmr0fk = 
km − 	Skm
1 + O�	2� , �28�

eikmr0gk = − ikm
km + 	Tkm
1 + O�	2� , �29�

where m is again the index of the initial state.
Finally, we need the qn for small 	. From Ref. 11 we

obtain for small 	

qn � un + 	 �n + O�	2� , �30�
with
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un = 
 ikn, � � n

− kn tan �n, n � � ,
� �31�

provided that �r0 stays away from the roots of Jn�/	�z�. �n is
given by

�n =
�

	
	��2 − n2 − n arccos

n

�

 −

�

4
. �32�

We now insert Rk=Rk
0+	Rk

1 into Eq. �22� and compare
terms. At order 0

Rk
0 = − e−2ikmr0

um + ikm

um − ikm

mk. �33�

At this order there is only a phase shift without transitions.
At the next order one finds after some algebra for n

�m

Rn
1 = �− 1�n+m4i

�
e−i�km+kn�r0+i��m+�n�

�
mn

�m2 − n2�2

2kmknsmsn + �km
2 + kn

2�cmcn

kn
	 , �34�

with

sn = sin �n, cn = cos �n. �35�

This implies for the transition probabilities

Pm→n =
1

knkm
	 4

�

mn

�m2 − n2�2 �2kmknsmsn

+ �km
2 + kn

2�cmcn�
2

	2 �36�

for n�m. In particular, Pm→n= Pn→m as expected from de-
tailed balance.

Figure 2 shows some transition probabilities Pn→m vs
	−1. The full curves are numerically exact values and the
broken curves correspond to Eq. �36�. For moderate values
of � the broken curves approach the true P1→2 even for quite
large 	 �upper half of Fig. 2�. For other indices Eq. �36�
becomes applicable only for rather small 	 �lower half of

FIG. 2. Transition probabilities vs 	−1. The full curves are numerically exact
values and the broken curves correspond to Eq. �36�. Upper left: P1→2 for
�2=6. The dotted curve which ends at 	−1=0.9 is Widom’s approximation
Ref. 6. Upper right: P1→2 for �2=12. Lower left and right: P1→3 for �2

=12.
Fig. 2�.
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V. COMPARISON WITH THE EHRENFEST
APPROXIMATION

Equation �36� supplies the exact transition probabilities
in the limit of large collider mass. Systems where a part
�typically an oscillator� is studied quantum mechanically,
while the rest is assumed to behave classically, have found
much interest recently �see, for example, Refs. 12 and 13�.

The string model is an attractive toy to study the mixed
quantum-classical dynamics on a very simple but nontrivial
model. It permits an exact discussion of a model where the
limit of large mass is performed on one, but not both of the
particles. It differs from other similar models in the nonana-
lyticity of the interaction potential. As a consequence, the
probability of nonadiabatic transitions decays only algebra-
ically instead of exponentially.14,15

Consider the string model in the limit of large collider
mass. Since the energy is fixed, the collider moves very
slowly. The interaction with the quantum oscillator is only
via the boundary conditions which also change very slowly.
This suggests to compare the exact result of Eq. �36� with the
Ehrenfest mean-field approach �see, for example, Tully12�.

If the collider can be regarded as a classical particle, it
interacts with the quantum oscillator only if its position R�t�
intrudes into the box �0, L� where the oscillator lives. The
oscillator then is subject to a moving wall during the time
interval 0� t�T of intrusion where it satisfies

i�
��

�t
= −

�2

2mosc

�2�

�r2 , �37�

with the boundary conditions

��0,t� = ��R�t�,t� = 0, 0 � t � T . �38�

If initially the oscillator is in state m, adiabaticity indicates
that it remains in this state during intrusion and therefore

��r,t� =� 2

R�t�
sin

m�r

R�t�
e−if�t�, �39�

with

f�t� =
�

2mosc
m2�2�

0

t

R−2�t��dt�. �40�

The function R�t� may be found from energy conserva-
tion

mcoll

2
Ṙ2 +

�2

2mosc

m2�2

R�t�2 = E , �41�

where the second term is the energy eigenvalue of the adia-
batic wave function.16 We write the solution in the form

R�t� = Lz	 �t
��


 , �42�

where

� =
��

moscL
2 �43�

is the characteristic frequency of the undisturbed string os-

cillator and

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to 
z�x� = �1 + �2x2 − 2kmx . �44�

In particular, this implies for the duration of the interaction

�T =
2km

�2
�� . �45�

To determine the transition probabilities we insert the
ansatz

� = �
n

�2

L
an�t�sin

n�r

R�t�
�46�

into Eq. �37�. This leads to

ȧk + i
�

2mosc

k2�2

R�t�2ak = �
n

2�ncknan
Ṙ�t�
R�t�

, �47�

with

ckn = �
0

1

x cos�n�x�sin�k�x�dx . �48�

Denoting ak�t� by ak���, with �=�t /��, and integrating we
obtain

ak���e�i�/2�k2��w��� − ak�0�

= �
n

2�nckn�
0

� z�����
z����

an����e�i�/2�k2��w����d��, �49�

where

w��� = �
0

� d��

z2����
. �50�

On the right side we employ the assumption of adiabaticity.
Then only the term with n=m survives and for k�m,

ak���e�i�/2�k2��w���

= 2�mckm�
0

� z�����
z����3/2ei�/2�k2−m2���w����d��. �51�

The Ehrenfest prediction for the transition probability Pm→k
�E�

is �ak��*��2, where �*=2km /�2. It becomes for large �

Pm→n
�E� = 	 8

�

mn

�m2 − n2�2km cos �m
2

�−1, �52�

with

�m =
�

2
�n2 − m2���w��*� =

�

2m
�n2 − m2��� arctan

km

m
.

�53�

The Ehrenfest prediction has the correct � dependence �re-
2 −1
call that 	 �� for large �� but differs from the exact
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result of Eq. �36� in the prefactor. In particular, detailed bal-
ance is not satisfied. Deviations between numerically exact
quantum calculations and the Ehrenfest prediction have also
been found for other oscillators.17–19

Are there any conditions where the Ehrenfest approxi-
mation to the transition probabilities becomes exact? Appar-
ently it is not sufficient to let the mass of the collider tend to
infinity.

It is well known that large mass is not sufficient for a
particle to be “classical.” From the WKB approximation �or
the uncertainty relation �x�p��� it is obvious that no par-
ticle is classical near turning points. It is also known19 that
the position uncertainty of the classical particle must be
small if the Ehrenfest approximation is to be valid.

In the present case the kinetic energy of the collider
should be large versus the energy of the oscillator. This im-
plies kn�� for all n. Replacing the kn by � one finds that
Eqs. �36� and �52� become identical up to rapidly oscillating
terms with frequency ��� and zero mean. Even if the col-
lider is almost classical, the Ehrenfest approximation pre-
dicts the transition probabilities only in some averaged sense.
It fails to correctly predict the high-frequency resonance
structure for a genuine quantum oscillator.

Are there any conditions �for a large but finite mass ratio
�� where the Ehrenfest approximation is correct also for the
high-frequency structure? This will be the case if ���n−�m�
−�m��1.

A brief calculation yields

���n − �m� − �m� �
�2

4m
�m − n�2�� , �54�

provided that m ,n��. In particular, we must have
Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to 
m � �� �55�

and m and n must be large. The Ehrenfest high-frequency
structure is correct only if the oscillator is almost classical
and if

�m − n�2�� � m . �56�
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