PHYSICAL REVIEW D 78, 044002 (2008)

Final spin from the coalescence of two black holes

Luciano Rezzolla,l’2 Enrico Barausse,3 Ernst Nils Dorband,1 Denis Pollney,l Christian Reisswig,1
Jennifer Seiler,' and Sascha Husa'
'Max-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut, Potsdam-Golm, Germany
2Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA

3SISSA, International School for Advanced Studies and INFN, Via Beirut 2, 34014 Trieste, Italy
(Received 22 December 2007; published 1 August 2008)

We provide a compact analytic formula to compute the spin of the black hole produced by the
coalescence of two black holes following a quasicircular inspiral. Without additional fits than those
already available for binaries with aligned or antialigned spins, but with a minimal set of assumptions, we
derive an expression that can model generic initial spin configurations and mass ratios, thus covering all of
the 7-dimensional space of parameters. A comparison with simulations already shows very accurate
agreements with all of the numerical data available to date, but we also suggest a number of ways in which

our predictions can be further improved.
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The evolution of black hole binary systems is one of the
most important problems for general relativity, and more
recently for astrophysics, as such systems enter the realm
of observation. Recent advances in numerical relativity
have made it possible to cover the entire range of the
inspiral process, from large separations at which post-
Newtonian (PN) calculations provide accurate orbital pa-
rameters, through the highly relativistic merger, to ring-
down. For many studies of astrophysical interest, such as
many-body studies of galactic mergers, or hierarchical
models of black hole formation, however, it is impractical
to carry out evolutions with the full Einstein, or even post-
Newtonian, equations. Fortunately, recent binary black
hole evolutions in full general relativity have shown that
certain physical quantities can be estimated to good accu-
racy if the initial encounter parameters are known. In
particular, this paper develops a rather simple and robust
formula for determining the spin of the black hole remnant
resulting from the merger of rather generic initial binary
configurations.

To appreciate the spirit of our approach it can be con-
venient to think of the inspiral and merger of two black
holes as a mechanism which takes, as input, two black
holes of initial masses M, M, and spin vectors S;, S, and
produces, as output, a third black hole of mass Mg, and
spin Sg,. In conditions of particular astrophysical interest,
the inspiral takes place through quasicircular orbits since
the eccentricity is removed quickly by the gravitational-
radiation reaction [1]. Furthermore, at least for nonspin-
ning equal-mass black holes, the final spin does not depend
on the value of the eccentricity as long as it is not too large
[2]. The determination of My;, and S, from the knowledge
of M|, and S| ,, is of great importance in several fields. In
astrophysics, it provides information on the properties of
isolated stellar-mass black holes produced at the end of the
evolution of a binary system of massive stars. In cosmol-
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ogy, it can be used to model the distribution of masses and
spins of the supermassive black holes produced through the
merger of galaxies (see Ref. [3] for an interesting ex-
ample). In addition, in gravitational-wave astronomy, the
a priori knowledge of the final spin can help the detection
of the ringdown. What makes this a difficult problem is
clear: for binaries in quasicircular orbits the space of initial
parameters for the final spin has seven dimensions (i.e., the
mass-ratio g = M,/M, and the six components of the spin
vectors). A number of analytical approaches have been
developed over the years to determine the final spin, either
exploiting the dynamics of point-particles [4,5] or the PN
approximation [6], or more sophisticated approaches such
as the effective-one-body approximation [7]. Ultimately,
however, computing ag, = Sg, /M%in accurately requires
the solution of the full Einstein equations and thus the use
of numerical-relativity simulations. Several groups have
investigated this problem over the last couple of years
[8-13].

While the recent possibility of measuring accurately the
final spin through numerical-relativity calculations repre-
sents an enormous progress, the complete coverage of the
full parameter space uniquely through simulations is not a
viable option. As a consequence, work has been done to
derive analytic expressions for the final spin which would
model the numerical-relativity data but also exploit as
much information as possible either from perturbative
studies, or from the symmetries of the system [9,11-15].
In this sense, these approaches do not amount to a blind
fitting of the numerical-relativity data, but, rather, use the
data to construct a physically consistent and mathemati-
cally accurate modelling of the final spin. Despite a con-
centrated effort in this direction, the analytic expressions
for the final spin could, at most, cover 3 of the 7 dimensions
of the space of parameters [ 13]. Here, we show that without
additional fits and with a minimal set of assumptions it is
possible to obtain the extension to the complete space of
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parameters and reproduce all of the available numerical-
relativity data. Although our treatment is intrinsically ap-
proximate, we also suggest how it can be improved.

Analytic fitting expressions for ag, have so far been
built using binaries having spins that are either aligned or
antialigned with the initial orbital angular momentum.
This is because in this case both the initial and final spins
can be projected in the direction of the orbital angular
momentum and it is possible to deal simply with the
(pseudo)scalar quantities a;, a,, and ag, ranging between
—1 and +1. If the black holes have equal mass but unequal
spins that are either parallel or antiparallel, then the spin
of the final black hole has been shown to be accurately
described by the simple analytic fit [11]

asn(ay, az) = po + pila; + ay) + paa; + ay)®, (1)

where py = 0.6883 =+ 0.0003, p; = 0.1530 = 0.0004, and
p> = —0.0088 £ 0.0005. When seen as a power series of
the initial spins, expression (1) suggests an interesting
physical interpretation. Its zeroth-order term, in fact, can
be associated with the (dimensionless) orbital angular
momentum not radiated in gravitational waves and
amounting to ~70% of the final spin at most. The first-
order term, on the other hand, can be seen as the contribu-
tions from the initial spins and from the spin-orbit cou-
pling, amounting to ~30% at most. Finally, the second-
order term includes the spin-spin coupling, with a contri-
bution to the final spin which is of ~4% at most.

If the black holes have unequal mass but spins that are
equal and parallel, the final spin is instead given by the
analytic fit [13]

afin(a: v)=a+ s4a21/ + s5aV2 + tpav
+ 2\/§V + tzl/z + t3l/3, (2)

where v is the symmetric mass ratio v = M\M,/(M, +
M,)* and where the coefficients take the values s, =
—0.129 £ 0.012, s5 = —0.384 = 0.261, 1y = —2.686 *
0.065, t, = —3.454 £0.132, and 13 = 2.353 = 0.548.
Although obtained independently in [11,13], expressions
(1) and (2) are compatible as can be seen by considering (2)
for equal-mass binaries (v = 1/4) and verifying that the
following relations hold within the computed error bars

1
po=Vylyh o Los 6
2 16 o4 2 32 8 3)
_ 54
P2 =g

As long as the initial spins are aligned (or antialigned)
with the orbital angular momentum, expression (2) can be
extended to unequal-spin, unequal-mass binaries through
the substitution

a; +a2q2
1+ q2

a—a=

“4)
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To obtain this result, it is sufficient to consider (1) and (2)
as polynomial expressions of the generic quantity

(1+ q)?

SEY ©)

a = Gy

where a,,, = (a;, + a»q*)/(1 + g)* is the total dimension-
less spin for generic aligned binaries. In this way, expres-
sions (1) and (2) are naturally compatible, since
a = (a; + a,)/2 for equal-mass unequal-spin binaries,
and d=a for unequal-mass equal-spin binaries.
Furthermore, the extreme mass-ratio limit (EMRL) of ex-
pression (2) with the substitution (4) yields the expected
result: ag,(a,, a,, v = 0) = a,.

As already commented above, the predictions of expres-
sions (2) and (4) cover 3 of the 7 dimensions of the space of
parameters for binaries in quasicircular orbits; we next
show how to cover the remaining 4 dimensions and derive
an analytic expression for the dimensionless spin vector
ag;, of the black hole produced by the coalescence of two
generic black holes in terms of the mass ratio ¢ and of the
initial dimensionless spin vectors a; ,. To make the prob-
lem tractable analytically, 4 assumptions are needed.
While some of these are very natural, others can be relaxed
if additional accuracy in the estimate of ag, is necessary. It
should be noted, however, that removing any of these
assumptions inevitably complicates the picture, introduc-
ing additional dimensions, such as the initial separation in
the binary or the radiated mass, in the space of parameters.

As a result, in the simplest and yet accurate description
the required assumptions are as follows:

(i) The mass radiated to gravitational waves M,y can be
neglected i.e., Mg, =M = M, + M,. We note that
M q/M =1 — Mg, /M =~ 5-7 X 102 for most of the bi-
naries evolved numerically. The same assumption was
applied in the analyses of [11,13], as well as in [5].
Relaxing this assumption would introduce a dependence
on My, which can only be measured through a numerical
simulation.

(ii) At a sufficiently large but finite initial separation the
final spin vector Sg, can be well approximated as the sum
of the two initial spin vectors and of a third vector ¢

Sin =8, +8, + <. (6)

Differently from Refs. [4,5], where a definition similar to
(6) was also introduced, here we will constrain ¢ by ex-
ploiting the results of numerical-relativity calculations
rather than by relating it to the orbital angular momentum
of a test particle at the innermost stable circular orbit
(ISCO). When viewed as expressing the conservation of
the total angular momentum, Eq. (6) also defines the vector
¢ as the difference between the orbital angular momentum
when the binary is widely separated L, and the angular
momentum radiated until the merger J,,q, i.e., (=1L-

Jrad'
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(iii) The vector € is parallel to L. This assumption is
correct when §; = —S, and g = 1 [this can be seen from
the PN equations at 2.5 order], or by equatorial symmetry
when the spins are aligned with L or when §; = S5, =0
(also these cases can be seen from the PN equations). For
more general configurations one expects that € will also
have a component orthogonal to L as a result, for instance,
of spin-orbit or spin- spln couplings, which will produce in
general a precession of ¢.In practice, the component of ¢
orthogonal to L will correspond to the angular momentum
J::, radiated in a plane orthogonal to L, with a resulting
error in the estimate of |€] which is ~| I 2/1€)? ~
IJradI /(2\/3M | M,)? [16]. Although these errors are small
in all the configurations that we have analyzed, they may
be larger in general configurations. Measuring Jrad via
numerical-relativity simulations, or estimating it via
high-order PN equations, is an obvious way to improve
our approach. A similar assumption was also made in
Ref. [5].

(iv) When the initial spin vectors are equal and opposite
(81 = —98,) and the masses are equal (q = 1), the spin of
the final black hole is the same as for the nonspinning
binaries. Stated differently, equal-mass binaries with equal
and opposite-spins behave as nonspinning binaries, at least
when it comes down to the properties of the final black
hole. While this result cannot be derived from first prin-
ciples, it reflects the expectation that if the spins are the
same and opposite, their contributions to the final spin
cancel for equal-mass binaries. Besides being physically
reasonable, this expectation is met by all of the simulations
performed to date, both for spins aligned with L [11,13]
and orthogonal to L [10]. In addition, this expectation is
met by the leading-order contributions to the spin-orbit and
spin-spin point-particle Hamiltonians and spin-induced
radiation flux [7,17]. A similar assumption is also made,
although not explicitly, in Ref. [5] which, for S;,; = 0,
predicts ¢ = 0 and |ag,| = Lo (e = 0, |ag,|)/M = const
[cf. egs. (12)—(13) in Ref. [5]].

Using these assumptions we can now derive the analytic
expression for the final spin. We start by expressing the
vector relation (6) as

1

g, = m(“l + axg* + €q), @)

where ag, = Sg,/M? [cf. assumption ()], € = €/(M,M,),
a;, = 8;,/M3,, and its norm is then given by

lag,| = )2[|a1|2 + lay)?q* + 2la,lla;1g* cosa

1+
+2(la;| cosB + |aylq® cosy)llg + [€7¢*]/2,
(8)
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where the 3 (cosine) angles «, 8, and 7y are defined by

A

cosB =a, ¢, cosy = da, - L.

()]

cosa = d; * d,,

Because a, || S, and € || L [cf. assumption (iii)], the
angles «, B, and vy are also those between the initial spin
vectors and the initial orbital angular momentum, so that it
is possible to replace d,, with Sl,z and € with L in (9).
Note that @, B, and 7y are well defined if the initial
separation of the two black holes is sufficiently large [cf.
assumption (ii)] and that the error introduced by assump-
tion (iii) in the measure of cosa, cosf3, and cosy is also of
the order of |Jld|/|€|

The angle 6y, between the final spin vector and the
initial orbital angular momentum can be easily calculated
from |ag,|. Because of assumption (iii), the component of
the final spin in the direction of L is [cf. Eq. (7)]

la,|cosB + la,|q? cosy + |€lg
(1+¢g)?

I = P —
aﬁn = Ay €=

., (10)

= alflin /lag,|, and the component orthogonal
1

fin

so that cosfy;,
to the initial orbital angular momentum is a
lag,| sinfy,.

In essence, therefore, our approach consists of consid-
ering the dimensionless spin vector of the final black hole
as the sum of the two initial spins and of a third vector
parallel to the initial orbital angular momentum when the
binaries are widely separated. Implicit in the assumptions
made, and in the logic of mapping an initial state of the
binary into a final one, is the expectation that the length of
this vector is an intrinsic “property’” of the binary, depend-
ing on the initial spin vectors and mass ratio, but not on the
initial separation. This is indeed a consequence of assump-
tion (ii): because the vector € measures the orbital angular
momentum that cannot be radiated, it can be thought of as
the angular momentum of the binary at the ‘“‘effective”
ISCO and, as such, it cannot be dependent on the initial
separation.

A very important consequence of our assumptions is that
ay, for a black hole binary is already fully determined by
the set of coefficients sy4, s, t, f, 3 computed to derive
expression (2). The latter, in fact, is simply the final spin
for a special set of values for the cosine angles; since the
fitting coefficients are constant, they must hold also for
generic binaries.

In view of this, all that is needed is to measure |€| in
terms of the fitting coefficients computed in Refs. [11,13].
This can be done by matching expression (10) with (2)
[with the condition (4)] for parallel and aligned spins (¢ =
B = vy =0), for parallel and antialigned spins (a = 0,
B = v = m), and for antiparallel spins which are aligned
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or antialigned (e« = B=m, y=0ora=y=m, =
0). This matching is not unique, but the degeneracy can be
broken by exploiting assumption (iv) and by requiring that
|€] depends linearly on cosa, cos3, and cosy. We therefore
obtain

el = (1 )2 (la\* + lay*q* + 2]a;llaslg? cosa)
Ssv + 1y + 2
(ﬁ)uallcow +laslq? cosy)

+ 23 + thv + 1302 (11)

We now consider some limits of expressions (8) and
(11). First of all, when ¢ — 0, (8) and (11) yield the correct
EMRL, ie., |an,| = |a;|. Secondly, for equal-mass bi-
naries having spins that are equal and antiparallel, (8)
and (11) reduce to
€l V3,6  n
22 16t ea Po=0687

This result allows us now to qualify more precisely a
comment made before: because for equal-mass black holes
which are either nonspinning or have equal and opposite
spins, the vector |€| does not depend on the initial spins,
expression (12) states that [€|MZ /4 = |€|M?/4 =
|€|M M, is, for such systems, the orbital angular momen-

lag,| = (12)

1.5 _|||| |||||||||||||||||||I|||| TTTT ||||_

5 ®
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FIG. 1 (color online).
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tum at the effective ISCO. We can take this a step further
and conjecture that |€|M,;M, = |€| is the series expansion
of the dimensionless orbital angular momentum at the
ISCO also for unequal-mass binaries which are either
nonspinning or with equal and opposite spins. The
zeroth-order term of this series (namely, the term
2+/3M;M,) is exactly the one predicted from the EMRL.
We note that although numerical simulations do not reveal
the presence of an ISCO, the concept of an effective ISCO
can nevertheless be useful for the construction of
gravitational-wave templates [18,19].

Finally, we consider the case of equal, parallel, and
aligned/antialigned spins (|lay| = |la;|, a =0, B =y =
0, ), for which expressions (10) and (11) become

agn = la;| cosB[1 + v(s4la;| cosB + 1y + ssv)]

v(2\3 + tv + 1,12), (13)
where cosf = *1 for aligned/antialigned spins. As ex-
pected, expression (13) coincides with (2) when
la,| cosB = a and with (1) [through the coefficients (3)]
when g = 1 and 2|a;| cosB = a; + a,. Similarly, (10) and
(11) reduce to (2) for equal, antiparallel and aligned/anti-
aligned spins (|a,| = |la;|, a =0, 8=0,y =, 0or B =
m, v = 0).
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Left panel: rescaled residual for aligned binaries. The circles refer to equal-mass, equal-spin binaries presented

in Refs. [11-13,20-22], triangles to equal-mass, unequal-spin binaries presented in Refs. [11,21], and squares to unequal-mass, equal-
spin binaries presented in Refs. [13,20-22]. Here and in the right panel the “‘binary order number” is just a dummy index labelling the
different configurations. Right panel: the top part reports with asterisks the final spins computed for misaligned binaries. Hexagons
refer to data from Ref. [8] (labeled “RIT”), squares to the data Table I (labeled “AEI”), circles to data from Ref. [23] (labeled
“FAU”), and triangles to data from Ref. [24] (labeled “PSU-UTA”). Note that these latter data points refer to the aligned component

these misaligned binaries.

ag, since this is the only component available from Ref. [24]. The bottom part of this panel shows instead the rescaled residuals for
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FIG. 2 (color online). Using the same data (and convention for
the symbols) as in the right panel of Fig. 1, we here report the
angle between the final spin vector and the initial orbital angular
momentum 6y,. Shown instead with asterisks and circles are the
values predicted for the numerical data (as taken from
Refs. [8,23,24] and from Table I) by our analytic fit (asterisks)
and by the point-particle approach suggested in Ref. [5] (circles).

The only way to assess the validity of expressions (8)
and (11) is to compare their predictions with the numerical-
relativity data. This is done in Figs. 1 and 2, which collect
all of the published data, together with the three additional
binaries computed with the CCATIE code [9] and reported in
Table I. In these plots, the ““binary order number” is just a
dummy index labelling the different configurations. The
left panel of Fig. 1, in particular, shows the rescaled
residual, i.e., (|@gyla — |@sinlpum) X 100, for aligned bi-
naries. The plot shows the numerical-relativity data with
circles referring to equal-mass, equal-spin binaries from
Refs. [11-13,20-22], triangles to equal-mass, unequal-spin
binaries from Refs. [11,21], and squares to unequal-mass,
equal-spin binaries from Refs. [13,20-22]. Although the
data is from simulations with different truncation errors,
the residuals are all very small and with a scatter of ~1%.

A more stringent test is shown in the right panel of
Fig. 1, which refers to misaligned binaries. In the top
part, hexagons indicate the numerical values for |ag,|
from Ref. [8], squares the ones in Table I, circles those
from Ref. [23], and triangles those from Ref. [24]; note that
|

these latter data points refer to the aligned component ag,,
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since this is the only component available from Ref. [24].
The agreement is again very good, with errors of a couple
of percent (see bottom part of the same panel), even if the
binaries are generic and for some the initial and final spins
differ by almost 180° [8].

Finally, Fig. 2 reports the angle between the final spin
vector and the initial orbital angular momentum 6y, using
the same data (and convention for the symbols) as in the
right panel of Fig. 1. Measuring the final angle accurately
is not trivial, particularly due to the fact that the numerical
evolutions start at a finite separation which does not ac-
count for earlier evolution of the orbital angular momen-
tum vector. The values reported in [8] (and the relative
error bars) are shown with hexagons, while the squares
refer to the binaries in Table I, and have been computed
using a new approach for the calculation of the Ricci scalar
on the apparent horizon [25]. Shown with asterisks and
circles are instead the values predicted for the numerical
data (as taken from Refs. [8,23,24] and from Table 1) by
our analytic fit (asterisks) and by the point-particle ap-
proach suggested in Ref. [5] (circles).

Clearly, when a comparison with numerical data is
possible, the estimates of our fit are in reasonable agree-
ment with the data and yield residuals in the final angle
[i.e., (Bsin)sic — (Bfin)num] Which are generally smaller than
those obtained with the point-particle approach of Ref. [5].
However, for 2 of the 3 binaries from Ref. [8] the estimates
are slightly outside the error bars. Note that the reported
angles are relative to the orbital plane at a small initial
binary separation, and thus are likely to be underestimates
as they do not take into account the evolution from asymp-
totic distances; work is in progress to clarify this. When the
comparison with the numerical data is not possible because
0, 1s not reported (as for the data in Ref. [24]), our
approach and the one in Ref. [5] yield very similar
estimates.

In summary, we have considered the spin vector of the
black hole produced by a black hole binary merger as the
sum of the two initial spins and of a third vector, parallel to
the initial orbital angular momentum, whose norm depends
only on the initial spin vectors and mass ratio, and mea-
sures the orbital angular momentum not radiated. Without
additional fits than those already available to model
aligned/antialigned binaries, we have measured the un-
known vector and derived a formula that accounts therefore
for all of the 7 parameters describing a black hole binary
inspiralling in quasicircular orbits. Equations (8) and (11)
encapsulate the near-zone physics to provide a convenient,

TABLE I. Initial parameters of the new misaligned AEI binaries.
aj ay aj a3 a a3 v |ag,| Orin(°)
0.151 0.000 —0.563 0.000 0.000 0.583 0.250 0.692 2.29
0.151 0.000 0.564 0.000 0.151 0.564 0.250 0.846 3.97
0.413 0.000 0.413 0.000 0.413 0.413 0.250 0.815 7.86
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but also robust and accurate over a wide range of parame-
ters, determination of the merger product of rather generic
black hole binaries.

Testing the formula against all of the available numeri-
cal data has revealed differences between the predicted and
the simulated values of a few percent at most. Our ap-
proach is intrinsically approximate and it has been vali-
dated on a small set of configurations, but it can be
improved, for instance, by reducing the y? of the fitting
coefficients as new simulations are carried out; by using

PHYSICAL REVIEW D 78, 044002 (2008)

fitting functions that are of higher-order than those in
expressions (1) and (2); by estimating JrJ;d through PN
expressions or by measuring it via numerical simulations.
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