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We discuss 2d duality transformations in the classical AdS5 � S5 superstring and their effect on the

integrable structure. T-duality along four directions in the Poincaré parametrization of AdS5 maps the

bosonic part of the superstring action into itself. On the bosonic level, this duality may be understood as a

symmetry of the first-order (phase space) system of equations for the coset components of the current. The

associated Lax connection is invariant modulo the action of an soð2; 4Þ-automorphism. We then show that

this symmetry extends to the full superstring, provided one supplements the transformation of the bosonic

components of the current with a transformation on the fermionic ones. At the level of the action, this

symmetry can be seen by combining the bosonic duality transformation with a similar one applied to part

of the fermionic superstring coordinates. As a result, the full superstring action is mapped into itself, albeit

in a different �-symmetry gauge. One implication is that the dual model has the same superconformal

symmetry group as the original one, and this may be seen as a consequence of the integrability of the

superstring. The invariance of the Lax connection under the duality implies a map on the full set of

conserved charges that should interchange some of the Noether (local) charges with hidden (nonlocal)

ones and vice versa.
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I. INTRODUCTION

The integrability of string theory in AdS5 � S5 holds
major promise of a complete solution for its spectrum and
thus for the spectrum of dimensions of gauge invariant
operators of the dual N ¼ 4 supersymmetric Yang-Mills
(SYM) theory. The bosonic AdS5 � S5 sigma model is
classically integrable, being based on the coset
SOð2; 4Þ=SOð1; 4Þ � SOð6Þ=SOð5Þ [1,2]. That property
extends to the full Green-Schwarz (GS) superstring model
based on the supercoset PSUð2; 2j4Þ=ðSOð1; 4Þ � SOð5ÞÞ
[3], as follows from its special �-symmetry structure [4].

The integrability formally implies the existence of an
infinite number of conserved charges and thus of an
infinite-dimensional hidden symmetry algebra of the 2d
string sigma model. In addition to the obvious kinematic
superconformal PSUð2; 2j4Þ symmetry ‘‘seen’’ by a point-
particle limit of the string and corresponding to the stan-
dard local Noether conserved charges, there are also hid-
den ‘‘stringy’’ symmetries and the associated charges.

The integrable structure of a G=H coset sigma model is
naturally defined on a phase space, i.e. in terms of a family
of currents or a Lax connection whose flatness implies the
complete system of first-order differential equations for the

components of the current. This system includes the
Maurer-Cartan part as well as a ‘‘dynamical’’ part which
follows from the standard coset sigma model Lagrangian.
Like in many similar examples (Maxwell equations,

etc.), the first-order system in a sense is more general
than the usual coset model: while it does not directly
follow from a local Lagrangian, it may lead to different
‘‘dual’’ local Lagrangian representations. The latter are
found by a ‘‘phase space reduction’’ procedure—by solv-
ing part of the first-order equations and substituting the
solution into the rest which may then follow from a dual
Lagrangian. Various sigma model dualities can be under-
stood in that way (see, e.g., [5–7]). The dual sigma models
will then be classically equivalent (i.e. their classical solu-
tions will be directly related) and will share the same
integrable structure, i.e. hidden symmetries.
Those of such classical duality transformations which

can be implemented by a change of variables in a path
integral formulation of the theory can then be extended to
the quantum level. They then define quantum-dual sigma
models [7] in the sense that there is a prescription relating
certain quantum correlators in one theory to certain corre-
lators in the dual theory. The well-known example is the
standard 2d scalar duality or T-duality in which case the
path integral transformation relating the two dual theories
may be formulated in terms of gauging an Abelian isome-
try [8,9].
In general, such sigma model dualities do not respect

manifest global symmetries of the theory, that is, symme-
tries seen by a pointlike string. For example, the usual
T-duality in x direction relates the models with target-

*nbeisert@aei.mpg.de
†Also at the Institute for Mathematical Sciences, Imperial

College, London, U.K.
r.ricci@imperial.ac.uk

‡Also at the Lebedev Institute, Moscow, Russia.
a.tseytlin@imperial.ac.uk

xm.wolf@imperial.ac.uk

PHYSICAL REVIEW D 78, 126004 (2008)

1550-7998=2008=78(12)=126004(21) 126004-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.126004


space metrics ds2 ¼ dr2 þ a2ðrÞdx2 and ds2 ¼
dr2 þ a�2ðrÞdx2, so that in the case of S2 when a ¼
sinðrÞ and x is compact, the first model has SOð3Þ symme-
try while the second only SOð2Þ. The two sigma models are
still classically equivalent, i.e. they share the same first-
order formulation and integrable structure. Put differently,
the corresponding 2d field theories (i.e. string models as
opposed to their point-particle truncations) are, in a sense,
equally symmetric.1

A special case is provided by the AdSn sigma model in
Poincaré coordinates (a ¼ er in the above example corre-
sponds toAdS2), where the formal T-duality along all (n�
1) translational directions combined with a simple coordi-
nate transformation r � �r gives back an equivalent
sigma model on the dual AdSn space [11]. This means
that the original and the dual models happen to have
equivalent global Noether symmetries SOð2; n� 1Þ but
realized on different (dual) sets of variables. This
‘‘T-self-duality’’ property of AdS5 was used in [12] to
construct classical solutions for open strings related to
the strong-coupling limit of gluon scattering amplitudes
(see also [13]). It appears also to be related to the ‘‘dual
conformal symmetry’’ of maximally helicity violating
(MHV) amplitudes observed at weak coupling [14,15].2

Since the two dual models are classically equivalent and
also share the same integrable structure, the local Noether
charges of the dual model should be related to hidden
(nonlocal) charges of the original model and vice versa.
One can indeed express the Lax connection in terms of
either original or dual variables and thus, in principle,
relate the charges in the two pictures [19].3 Given that
the sigma model has an infinite number of hidden charges,
the true significance of this ‘‘doubling’’ of a particular
subset of them, i.e. of the Noether symmetry charges, still
remains to be understood.

As was suggested in [19], and this will be one of the
aims of the present paper, one should be able to extend this
construction of the flat currents and associated charges to
the dual of the full AdS5 � S5 superstring model. In the
process, we will show explicitly that the Lax connections
of the original and the dual sigma models are not indepen-
dent but equivalent (in particular, one does not get doubling
of conserved charges).

Very recently, it was suggested [21] that the dual con-
formal symmetry of perturbative N ¼ 4 SYM theory
MHV amplitudes [14] has an extension to the full ‘‘dual
superconformal symmetry’’ if one considers the full set of

supergluon amplitudes. Simultaneously, it was suggested
[22] that, if the T-duality transformation of the AdS5 � S5

superstring action along the four translational directions of
AdS5 [11] is followed by a similar 2d duality transforma-
tion applied to part of the fermionic world-sheet variables
(corresponding to the Poincaré supersymmetry generators
Q but not �Q), then the dual action will take the original
form, i.e. it will be again equivalent to the AdS5 � S5

supercoset GS action. Thus, the dual Noether charges
will again generate the full superconformal group
PSUð2; 2j4Þ.
Below we shall extend the discussion in [19] by showing

that in the bosonic AdSn sigma model the particular 2d
duality corresponding to the T-duality can be realized as a
discrete symmetry of the phase space equations,4 i.e. of the
first-order system of equations for the components of the
SOð2; n� 1Þ=SOð1; n� 1Þ coset current. Furthermore,
this duality can be reinterpreted as a (spectral parameter
dependent) automorphism of the global soð2; n� 1Þ sym-
metry algebra (4.25). This fact then makes the original and
the dual integrable structures equivalent in a precise
manner.
We shall also consider the full AdS5 � S5 superstring

case in the same �-symmetry gauge as in [11]5 in which the
dual action is quadratic in the fermions and explicitly
performs the bosonic duality transformation in the Lax
connection. We shall then follow the idea of [22] and
supplement the bosonic duality by a fermionic duality
transformation to discover that the resulting action (which
is again quadratic in the fermions) can be identified with
the original AdS5 � S5 superstring action written in a
different (complex) �-symmetry gauge (used previously
in [26]).
We shall show that the necessity of the fermionic duality

transformation becomes transparent in the first-order for-
mulation in terms of the supercoset current: the discrete
symmetry of the phase space system which corresponded
to the bosonic T-duality should be extended to act also on
the fermionic components of the currents in order to make
it possible to identify the original and the dual Lax con-
nections upon an action of an automorphism of the
psuð2; 2j4Þ superalgebra (5.23).6 This not only implies

1This is similar to the fate of space-time supersymmetry under
T-duality: it remains a symmetry of the underlying conformal
field theory but may become nonlocally realized (see, e.g., [10]).

2The T-duality on string side seems to be intimately connected
with the relation between the gluon scattering amplitudes and
Wilson loops at strong [12,16] (see also [17]) and weak
[14,15,18] coupling.

3For previous work on the relation between local and nonlocal
charges under T-duality in a different context see, e.g., [20].

4The usual 2d scalar duality dx � �dx or j � �j can be
viewed as a phase space transformation (see, e.g., [23]) that
exchanges momenta @�x with some combinations of coordinates
@�x (or xk�1 � xk in discrete mode representation).

5This ‘‘S-gauge’’ [24,25] is a natural choice for a comparison
with the boundary gauge theory as it corresponds to setting the
fermionic components associated to the superconformal gener-
ators S, �S to zero. It naturally complements the parametrization
of the bosonic part of the supercoset in terms of the coordinates
corresponding to the translational P, dilational D, and the
R-symmetry SUð4Þ generators.

6In general, the duality as a symmetry of the first-order system
should be understood modulo a choice of G=H coset represen-
tative, i.e. local H-symmetry gauge, and a choice of �-symmetry
gauge (and also modulo certain analytic continuation).
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that the resulting ‘‘T-dual’’ model should have the full dual
superconformal symmetry but should also allow one, in
principle, to establish the duality isomorphism on the full
infinite set of conserved charges. In that sense, the dual
superconformal symmetry may be viewed as a conse-
quence of integrability.7

From a broader perspective, this T-duality is just one
particular symmetry of the first-order system for the
AdS5 � S5 superstring. One may consider also other dual-
ity transformations that will lead to equivalent classical
systems; for example, one may mix the fermionic and
bosonic dualities in a different order, etc. These more
general transformations are also worth studying (though
not all of them may have path integral, i.e. quantum,
counterparts) as they may further clarify the structure of
this integrable theory. The special feature of T-duality is
that it preserves the maximal possible global symmetry
group. The existence of such transformation appears to be
deeply rooted in the structure of the superconformal alge-
bra: the possibility to choose the translational subalgebra
as maximal Abelian subalgebra in SOð2; 4Þ (½Pa; Pb� ¼ 0)
together with itsN ¼ 4 Poincaré supersymmetry counter-
part (fQi�;Qj�g ¼ 0 ¼ ½Pa;Q

i��); the invariant meaning
of this 2d duality transformation is that it acts on the
associated four bosonic and eight fermionic 2d fields.

Let us emphasize once more the point (already men-
tioned in [19]) that, given conserved Noether charges in the
original sigma model, we may express them in terms of the
dual variables and thus get a collection of (possibly non-
local) conserved charges in the dual model. The existence
of an additional set of conserved Noether charges in the
dual model which are local in the dual variables and thus
nonlocal in the original variables means that they must
originate from some hidden conserved charges in the origi-
nal model, and this may be viewed as a consequence of its
integrability. This explains the title of the present paper.

The structure of the paper is as follows.
In Sec. II, we make some general comments on 2d

duality transformations in the group G and the coset
G=H bosonic sigma models.

In Sec. III, we review the structure of the AdS5 � S5

superstring sigma model using the supercoset construction.
We shall present the equations of motion in first-order form
and describe two important families of flat currents imply-
ing integrability of this model. Then we shall specialize the
discussion to the standard choice of the basis of generators
of the superconformal algebra, choose a parametrization of
the supercoset adapted to Poincaré coordinates in AdS5

and fix a particular �-symmetry gauge in which the sigma
model action takes a simple form.
In Sec. IV, we follow [11] and transform the superstring

action by applying 2d duality (T-duality) to four scalar
fields corresponding to translational directions of AdS5.
We shall show how to express the flat Lax connection in
terms of the dual variables which implies integrability of
the dual model. We shall then consider the first-order
system of equations for the current and, first ignoring the
fermions, show that the T-duality transformation can be
understood as a symmetry of this system and of the corre-
sponding Lax connection. This means that one does not get
two copies of the integrable structure but rather an auto-
morphism on the space of conserved charges (4.25).
In Sec. V, we show, following the suggestion of [22], that

combining the bosonic duality with a similar duality trans-
formation on half of fermions present in the �-symmetry
gauge-fixed action one gets back the same AdS5 � S5

superstring action but written in a different �-symmetry
gauge (and modulo a certain analytic continuation). This
implies recovering after the duality the full global super-
conformal symmetry. The combined action of bosonic and
fermionic duality transformations will then be understood
more abstractly as a symmetry of the first-order system and
the Lax connection which manifests itself as an automor-
phism of the superconformal algebra: under its action,
original and dual Lax connections get identified (5.23)
(see also Table I).
The first three appendices contain our notation and some

technical details, while the last one contains some com-
ments on the construction of conserved charges in the case
of closed string world sheet.

II. BOSONIC COSET MODELS AND THEIR
DUALITIES

Before turning to the AdS5 � S5 superstring and specif-
ics of T-duality, let us make few general comments about
classical sigma model dualities in the context of the bo-
sonic G=H coset model.
Let us start with the principal chiral model (PCM) based

on

TABLE I. Behavior of the Noether charges under bosonic and
fermionic dualities.

the P� _� charge becomes trivial

the L�� and L _� _� charges go into themselves and remain local

the K� _� charge gets lifted and becomes nonlocal

the D charge goes into itself and remains local

the Ri
j charge goes into itself and remains local

the Qi� charge becomes trivial

the �Q _�
i charge goes into the �Si _� charge and remains local

the S�i charge gets lifted and becomes nonlocal

the �Si _� charge goes into the �Q _�
i charge and remains local

7Conformal invariance and integrability are expected to pro-
mote this classical symmetry to a quantum one. To attempt to
relate it to dual conformal symmetry of the boundary gauge
theory one should combine its action on the ‘‘bulk’’ string
coordinates with action on the vertex operators (inserted at the
boundary or an IR brane [12]) so that the gluon scattering
amplitudes as computed on the string side become invariant.
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L ¼ 1

2
trðj ^ �jÞ; with j ¼ g�1dg and g 2 G:

(2.1)

The corresponding equations of motion written in first-
order form are

djþ j ^ j ¼ 0 and d �j ¼ 0: (2.2)

These two equations (2.2) follow from the condition of
flatness of the following family of currents or Lax connec-
tion, with z as a complex spectral parameter:

jðzÞ ¼ ajþ b �j; with a ¼ � 1

4
ðz� z�1Þ2 and

b ¼ 1

4
ðz2 � z�2Þ: (2.3)

The standard second-order PCM equation is found by
solving the first (Maurer-Cartan) equation in (2.2) as j ¼
g�1dg and then substituting the solution into the second
equation.

Instead, we may construct a dual model [5] by first
solving the second equation in (2.2) as j ¼ �d�, where
� 2 g :¼ LieðGÞ is the dual field and substituting this into
the Maurer-Cartan equation. The resulting equation d �
d�� d� ^ d� ¼ 0 then follows from the dual Lagrangian

~L ¼ 1

2
tr

�
d� ^ �d�þ 2

3
�d� ^ d�

�
: (2.4)

Note that if wewrite g ¼ e� then for small� the relation
between � and � is the same as the usual 2d scalar duality
d� ¼ �d�. If we introduce the dual current ~j ¼ d�, then
the first-order system for the dual model will be8 d�~j�
~j ^ ~j ¼ 0 and d~j ¼ 0, i.e. it will be equivalent to the
original one (2.2) under j � �~j. This transformation will
leave the Lax connection (2.3) invariant provided we sup-

plement it by z � e�=4iz and an overall rescaling by i. Note
that the Noether symmetries of the original and dual sigma
models here are different.

The model (2.4) is sometimes called ‘‘pseudodual’’
[6,27] to reflect the fact that it is not quantum-equivalent
to the original PCM. To construct the quantum-equivalent
‘‘non-Abelian dual’’ of the PCM [7], one has to start with

�L ¼ tr

�
1

2
j ^ �jþ ’ðdjþ j ^ jÞ

�
; (2.5)

where ’ 2 g plays the role of a Lagrange multiplier, and
subsequently integrate out j. The resulting dual model will
again be classically equivalent to the PCM.9 It has equiva-
lent integrable structure but (after we solve for j) will have
smaller Noether symmetry.

Let us now turn to the case of the G=H symmetric space
coset model given by

L ¼ 1

2
trðjð2Þ ^ �jð2ÞÞ; with

j ¼ g�1dg ¼ jð0Þ þ jð2Þ � Aþ jð2Þ;
(2.6)

where we split the current according to the
Z2-decomposition of the Lie algebra g ffi gð0Þ þ gð2Þ �
hþ gð2Þ. The corresponding first-order system may be

written as (r :¼ dþ A)

dAþ A ^ Aþ jð2Þ ^ jð2Þ ¼ 0;

rjð2Þ ¼ 0 and r �jð2Þ ¼ 0;
(2.7)

where the first two equations are the h and gð2Þ components

of the Maurer-Cartan equation. These equations follow
from the flatness of a Lax connection similar to the one
in (2.3)

jðzÞ ¼ Aþ ajð2Þ þ b �jð2Þ; with a ¼ 1

2
ðz2 þ z�2Þ

and b ¼ � 1

2
ðz2 � z�2Þ: (2.8)

Here we observe a formal duality symmetry of this phase
space system and its integrable structure under jð2Þ� i �jð2Þ
and z � e�=4iz. To relate the coset fields, we may define a
nonlocal map g � ~g such that ðg�1dgÞð2Þ ¼ �ð~g�1d~gÞð2Þ.10
One may also consider here an analog of the non-

Abelian duality transformation in the PCM that can be
performed at the path integral level by adding the
Maurer-Cartan equations with the Lagrange multiplier
fields to the action and then solving for the current com-
ponents (for an example in the S2 case, see [29]).
In addition to this formal symmetry, there may be other

‘‘dualities,’’ i.e. linear transformations of the current com-
ponents that map this first-order system into itself and
respect its integrable structure. The T-duality that we are
going to discuss below in the special case of AdS5 ffi
SOð2; 4Þ=SOð1; 4Þ is one of them that has a remarkable
property of being a ‘‘self-duality’’: it maps the system into
an equivalent one with the same SOð2; 4Þ global symmetry.

III. REVIEW OF AdS5 � S5 SUPERSTRING SIGMA
MODEL

We will begin this section with a summary of the super-
coset formulation of the type IIB superstring action on
AdS5 � S5. We will then move on to the discussion of
some aspects of its classical integrability by reviewing
the construction of flat currents. We will also explicitly
construct the Noether currents for the supercoset model in
the parametrization adapted to the standard basis of the

8We assume Minkowski signature on the world sheet.
9Indeed, while the classical equations that follow from (2.5)

will involve an extra field ’, one can easily see that they imply
(2.2). One finds that �j ¼ �r’ and djþ j ^ j ¼ 0 but then
r2 ¼ 0 which leads to d �j ¼ 0.

10One may consider similar formal Hodge duality transforma-
tion also in the superstring case [28].
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superconformal group. These currents will later be our
starting point in the construction of a family of gauge-
invariant flat currents for the T-dual model.

A. Superstring action

As was shown in [3], the type IIB Green-Schwarz su-
perstring action on AdS5 � S5 can be understood as a
sigma model-type action on the coset superspace

G=H ¼ PSUð2; 2j4Þ=ðSOð1; 4Þ � SOð5ÞÞ (3.1)

with the bosonic part being

SOð2; 4Þ=SOð1; 4Þ � SOð6Þ=SOð5Þ ffi AdS5 � S5: (3.2)

The coset (3.1) admits a Z4-grading in the sense that the
subgroup H ¼ SOð1; 4Þ � SOð5Þ of G ¼ PSUð2; 2j4Þ
arises as the fixed point set of an order 4 automorphism
of G [30]. Concretely, this means that at the Lie algebra
level g :¼ LieðGÞ we have (m, n ¼ 0; . . . ; 3)

g ffi M3
m¼0

gðmÞ; with gð0Þ � h :¼ LieðHÞ and

½gðmÞ; gðnÞg � gðmþnÞ:

(3.3)

Here gð0Þ and gð2Þ are generated by bosonic generators

while gð1Þ and gð3Þ by fermionic ones, respectively (for

more details, see Sec. III D below).
To define the superstring action, we consider the map

g: � ! G, where � is a world-sheet surface (with an
arbitrary Lorentzian 2d metric) and introduce the current

j ¼ g�1dg ¼ jð0Þ þ jð1Þ þ jð2Þ þ jð3Þ;

with jð0Þ :¼ A 2 h and jðmÞ 2 gðmÞ: (3.4)

The dynamical 2d fields (string coordinates) will take
values in the coset superspace G=H :¼ fgHjg 2 Gg. The
action that describes them should simultaneously be in-
variant under the global (left) G-transformations of the
form

g � g0g for g0 2 G; (3.5a)

and the local (right) H-transformations of the form

g � gh for h 2 H: (3.5b)

By construction, the current j is invariant under (3.5a).
Under (3.5b), the A part of j in (3.4) transforms as a
connection, A � h�1Ahþ h�1dh, while the jðmÞs with

m ¼ 1; 2; 3 transform covariantly, jðmÞ � h�1jðmÞh.
The superstring action can be written as a sum of kinetic

and Wess-Zumino (WZ) terms [3,26,30],

S ¼ �T

2

Z
�
str½jð2Þ ^ �jð2Þ þ �jð1Þ ^ jð3Þ�; (3.6)

where T ¼
ffiffiffi
	

p
2� is the string tension, � is the Hodge star on�

and str denotes the supertrace on g compatible with the
Z4-grading,

str ðVmVnÞ ¼ 0; Vm 2 gðmÞ; mþ n � 0mod4:

(3.7)

The �-symmetry condition requires that � ¼ �1; in what
follows we shall assume that (the opposite sign choice is
related by parity transformation on �)

� ¼ 1: (3.8)

Note that regardless of the requirement of �-symmetry, the
superstring action (3.6) is integrable [4] only for the same
choice of � ¼ �1. This is not totally surprising since
(i) the bosonic coset model is classically integrable [1]
and (ii) it is local �-symmetry that relates bosons to
fermions and thus extends this property to the fermionic
GS generalization of the bosonic coset model.11

B. Equations of motion

Starting with the Maurer-Cartan equation for the current
(3.4)

djþ j ^ j ¼ 0 (3.9)

and splitting it according to the Z4-grading of the algebra
gives [cf. (2.7)]

dAþ A ^ Aþ jð1Þ ^ jð3Þ þ jð2Þ ^ jð2Þ þ jð3Þ ^ jð1Þ ¼ 0;

rjð1Þ þ jð2Þ ^ jð3Þ þ jð3Þ ^ jð2Þ ¼ 0;

rjð2Þ þ jð1Þ ^ jð1Þ þ jð3Þ ^ jð3Þ ¼ 0;

rjð3Þ þ jð1Þ ^ jð2Þ þ jð2Þ ^ jð1Þ ¼ 0:

(3.10)

Here, for � being a Lie algebra valued p-form on �, we
defined

r� :¼ d�þ A ^ �� ð�Þp� ^ A: (3.11)

The variation of (3.6) over g together with (3.10) then
yields the following field equations:

r �jð2Þ þ jð3Þ ^ jð3Þ � jð1Þ ^ jð1Þ ¼ 0;

jð2Þ ^ ðjð1Þ þ �jð1ÞÞ þ ðjð1Þ þ �jð1ÞÞ ^ jð2Þ ¼ 0;

jð2Þ ^ ðjð3Þ � �jð3ÞÞ þ ðjð3Þ � �jð3ÞÞ ^ jð2Þ ¼ 0:

(3.12)

Equations (3.10) and (3.12) constitute the full system of
superstring equations in first-order form, i.e. the equations
for the superalgebra valued one-form j. This system is
invariant under the bosonic H-gauge transformations and

the fermionic �-gauge symmetry12 (and also 2d repara-
metrizations). This invariance will be important to keep in
mind when discussing the duality transformations later on.

11The same applies also to similar lower-dimensional GS
models constructed in [31].
12Under �-symmetry we have 
�j ¼ d�þ ½j; �� where � ¼
�þ þ �� is a certain combination of self-dual and anti-self-dual
fermionic vector parameters with jð2Þ and also 
ð ffiffiffiffiffiffiffi�g

p
gabÞ 	

�þjð1Þ þ ��jð3Þ (for details see [3,32]).
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Equations (3.12), understood as second-order equations
on g, imply and also are implied by the conservation
condition

d �JN ¼ 0 (3.13)

for the Noether current JN associated with the global
G-symmetry (3.5a) of the action. As follows from the
action (3.6), JN is given by

JN ¼ g

�
jð2Þ � 1

2
�ðjð1Þ � jð3ÞÞ

�
g�1: (3.14)

Note that, like the action itself, JN is invariant under the
H-gauge transformations (3.5b).

To study the ‘‘physical’’ string dynamics, one needs to
take care of the gauge symmetries. The local H-symmetry
(3.5b) can be fixed by making a particular choice of the
coset representative (i.e. the explicit choice of g in terms of
the independent string coordinates); one should also
choose a �-symmetry gauge. We will discuss some par-
ticular choices below. In general, one needs also to add the
equations of motion for the 2d metric (i.e. the Virasoro
constraints) and to fix a 2d reparametrization gauge but this
will not be required for the aims of the present paper.13

C. One-parameter families of flat currents

As was shown in [4], the Z4-grading of the above G=H
supercoset allows for the construction of one-parameter
families of flat currents.14 These (related) families of flat
currents allow in turn for the construction of infinitely
many nonlocal conserved charges à la Lüscher and
Pohlmeyer [1].

Indeed, one may verify that the following combination
of the components of the current in (3.4)

jðzÞ ¼ Aþ zjð1Þ þ 1

2
ðz2 þ z�2Þjð2Þ þ z�1jð3Þ

� 1

2
ðz2 � z�2Þ �jð2Þ; (3.15)

where z is a complex spectral parameter [34] so that jð1Þ ¼
j, satisfies the flatness condition

djðzÞ þ jðzÞ ^ jðzÞ ¼ 0: (3.16)

And vice versa, imposing this flatness condition leads to
the full system (3.10) and (3.12) of first-order equations for
the current j.

Note that, like j itself, the family of currents jðzÞ is not
invariant under the H-gauge transformations (3.5b), i.e. it
depends on a particular choice of representative of the
coset G=H. At the same time, starting with j one may
also construct another family of flat currents

J ðzÞ :¼ g½jðzÞ � jð1Þ�g�1 ¼ g½jðzÞ � j�g�1

¼ gjðzÞg�1 þ gdg�1 (3.17)

that is invariant with respect to (3.5b).15 That requires,
however, the explicit use of g, related to j by j ¼ g�1dg,
so that J itself is nonlocal once expressed in terms of j.
Expanding JðzÞ in powers of w :¼ �2 logðzÞ around zero
(i.e. around z ¼ �1), we get

J ðzÞ ¼ X1
k¼0

wkck ¼ wc1 þOðw2Þ; (3.18)

where c1 is, in fact, the Hodge dual of the Noether current
(3.14),

c1 ¼ �JN ¼ g

�
�jð2Þ � 1

2
ðjð1Þ � jð3ÞÞ

�
g�1: (3.19)

Hence, the flatness of JðzÞ
dJðzÞ þ JðzÞ ^ JðzÞ ¼ 0 (3.20)

implies the conservation law d �JN ¼ 0 and thus also the
second-order equations of motion (3.12) for the
superstring.
Since JðzÞ is flat, we may write

JðzÞ ¼ W�1ðzÞdWðzÞ
) Wðz;�; �;�0; �0Þ ¼ P exp

�Z
C
JðzÞ

�
; (3.21)

where C is a contour on the world sheet � running from
some reference point ð�0; �0Þ to ð�; �Þ and P is the path-
ordering symbol. Provided that appropriate boundary con-
ditions at spatial infinity can be chosen, one can use the
path-ordered exponential W to build an infinite number of
conserved nonlocal charges [1]16 for the superstring.
Let us point out that the flatness conditions (3.16) and

(3.20) are invariant under formal G-gauge transformations
(with parameter g), so that, e.g., JðzÞ is unique up to

J ðzÞ � J0ðzÞ ¼ g�1JðzÞgþ g�1dg; for g 2 G: (3.22)

The power series expansion of J0ðzÞ in w ¼ �2 logðzÞ
around zero is then17

J 0ðzÞ ¼ g�1dgþ wg�1 �JNgþOðw2Þ (3.23)

so that, to zeroth order in w, Eq. (3.20) is automatically
satisfied while to first order we again find d �JN ¼ 0 or the
equations of motion. Below we shall use this gauge free-
dom to achieve a particularly simple form of the currents
suitable for expressing them in terms of the T-dual
variables.

13For a discussion of integrability of the superstring model with
the gauges fixed and the Virasoro constraints imposed, see [32].
14See [33] for the extension to Zm-graded coset (super)spaces.

15The bosonic part of the current JðzÞ is analogous to the Lax
connection of the PCM given in Eq. (2.3) and will reduce to it in
the limit G=H ! G in which H becomes trivial.
16For more details, see, e.g., the review in [35].
17Here g is assumed not to depend on the spectral parameter; if
it does, such a transformation may be interpreted as a ‘‘dressing’’
transformation.
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D. Standard choice of the superconformal algebra basis

Let us now make a specific choice of the basis of
generators of the superconformal algebra g ¼
psuð2; 2j4Þ adapted to the Poincaré parametrization of
AdS5 and thus a natural one for comparison with boundary
conformal gauge theory in R1;3 (see Appendix B for more
details):

p suð2; 2j4Þ ¼ spanfPa; Lab; Ka;D; Ri
jjQi�; �Q _�

i ; S
�
i ;

�Si _�g;
(3.24)

where a; b ¼ 0; . . . ; 3, �;� ¼ 1; 2, _�; _� ¼ _1; _2 , and i; j ¼
1; . . . ; 4. Here P represents translations, L Lorentz rota-
tions, K special conformal transformations, D dilatations,
and R the SUð4Þ-symmetry whileQ and �Q are the Poincaré
supercharges and S and �S their superconformal partners.
We shall assume that the generators P, K, D, L are
Hermitian while Ri

j ¼ �ðRj
iÞy, Qi� ¼ ð �Q _�

i Þy, and S�i ¼
ð �Si _�Þy. Later on, we will also make use of the standard
vector/bispinor index identification fag ¼ f� _�g as dis-
cussed in Appendix A.

In terms of these generators, the Z4-splitting (3.3) is then
given as

h ¼ span

�
1

2
ðPa � KaÞ; Lab; RðijÞ

�
;

gð1Þ ¼ span

�
1

2
ðQi� þ CijS�j Þ;

1

2
ð �Q _�

i þ Cij
�Sj _�Þ

�
;

gð2Þ ¼ span

�
1

2
ðPa þ KaÞ; D; R½ij�

�
;

gð3Þ ¼ span

��i

2
ðQi� � CijS�j Þ;

i

2
ð �Q _�

i � Cij
�Sj _�Þ

�
:

(3.25)

Here, Rij :¼ CikRj
k and in RðijÞ and R½ij� the parentheses

mean normalized symmetrization and the square brackets
mean normalized antisymmetrization. The constant matrix
Cij is an Spð4Þ-metric and has the properties18

Cij ¼ �Cji ¼:
1

2
�ijklC

kl;

Cij ¼ ðCijÞ� and CikC
jk ¼ 
j

i ;

(3.26)

and it may be interpreted as a charge conjugation acting on
SUð4Þ-spinors. We should stress that the particular choice
of Cij will not matter in the end, since physical quantities

will not depend on it.

E. Poincaré parametrization of supercoset
representative

Writing the current (3.4) in the basis (3.24), we get

j ¼ jPa
Pa þ jLab

Lab þ jKa
Ka þ jDDþ jRi

jRi
j

þ iðjQi�Qi� � jQ _�
i

�Q _�
i þ jS�i S

�
i � jSi _� �S

i _�Þ; (3.27)

where the factor of i in front of the fermionic part was
chosen to make j skew-Hermitian. Our aim now is to find
the explicit form of these components in the parametriza-
tion of the supercoset corresponding to the Poincaré form
of the AdS5 � S5 metric:

ds2 ¼ � 1

2
Y2dX� _�dX

_�� þ 1

4Y2
dYijdY

ij: (3.28)

Here, ðX; YÞ ¼ ðX _��; YijÞ represent the 10 independent
bosonic coordinates (see also Appendix A)19

X� _�
:¼ �a

� _�
Xa ¼ ���� _� _
X

_
� ¼ ðX _��Þ�;

Yij ¼ �Yji ¼ 1

2
�ijklY

kl ¼ ðYijÞ�;

Y2 :¼ 1

4
YijY

ij:

(3.29)

The coset representative g 2 G of ½g� 2 G=H adapted to

the metric (3.28) may be chosen as20

gðX; Y;�Þ ¼ BðX; YÞe�Fð�Þ; (3.30a)

with

BðX; YÞ ¼ eiX
_��P� _�ei logðYÞD�ðYÞ ¼ eiX

_��P� _�YiD�ðYÞ;
Fð�Þ ¼ i½Cij���ð
i�þQj� þ 
i��CjkS�k Þ

� Cij� _� _�ð �
 _�þi
�Q

_�
j þ �
 _��iCjk

�Sk
_�Þ�; (3.30b)

where21

�ðYÞ ¼ ð�i
jÞ :¼

1

Y
ðCikYkjÞ: (3.30c)

Here, � ¼ ð
i�� ; �
 _��iÞ represents the 32 independent fermi-
onic coordinates satisfying the following reality condition:


i�� ¼ ð �
 _��iÞy: (3.31)

Then the current may be written as

j ¼ g�1dg ¼ eFjBe
�F þ eFde�F

¼ jBðX; YÞ þ jFðX; Y;�Þ; (3.32a)

where

jB :¼ jðX; Y;� ¼ 0Þ ¼ B�1dB: (3.32b)

A simple calculation shows that

jB ¼ iYdX _��|fflfflffl{zfflfflffl}
¼:jBP� _�

P� _� þ i

Y
dY|{z}

¼:jBD

Dþ 2ið��1Þikd�k
j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼:jB
R
i
j

Ri
j: (3.33)

As reviewed in Appendix C, the fermionic part of the
current can be expressed as [36]

18Here, � denotes complex conjugation and �ijkl is totally
antisymmetric with �1234 ¼ 1.

19Here, �12 ¼ ��21 ¼ � _1 _2 ¼ �� _2 _1 ¼ 1.
20This corresponds to a particular gauge fixing of the local
H-symmetry [cf. (3.25)]. A similar parametrization was used in
[25].
21Notice that ��1 ¼ �y and det� ¼ 1 upon using Eqs. (3.29)
and the reality condition.
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jF ¼ � sinhðMÞ
M

rF� 2

�
F;

sinh2ðM=2Þ
M2

rF
�
; (3.34)

where we have introduced the operators

r
 :¼ d 
 þ½jB; 
� and M2
 :¼ ½F; ½F; 
��: (3.35)

Note that in (3.34), the first term on the right-hand side is
proportional to the fermionic generators of the supercon-
formal algebra, while the second one is proportional to the
bosonic ones.

F. �-symmetry gauge fixing

Having fixed the local H-symmetry gauge in (3.30), let
us now discuss a specific �-symmetry gauge choice [24,25]
that will simplify the structure of the string action and is
natural in the present context. In the notation used in (3.30),
this gauge amounts to setting


i�� ¼ 0 ¼ �
 _��i; (3.36)

so that the fermionic part e�F of g determined by

Fð�Þ ¼ i½Cij���

i�þQj� � Cij� _� _�

�
 _�þi
�Q

_�
j �; (3.37)

does not contain terms with S generators (for that reason
we shall follow [25] and refer to this gauge as ‘‘S-gauge’’).

One may then readily check that in this case M2rF ¼
0. From Eq. (3.34), we deduce

jF ¼ �rF� 1

2
½F;rF�

¼ �iCij���r
i�þQj� þ iCij� _� _�r �
 _�þi
�Q

_�
j

� 1

2
ð �
 _�þir
i�þ �r �
 _�þi


i�
þ ÞP� _�; (3.38a)

where

r
i�þ ¼ d
i�þ þ!i�
j�


j�
þ ; with

!i�
j�

:¼ i

2

�

�ð
i
jjBD

� CkiCjljB
R
l
k
Þ: (3.38b)

Note that r
i�þ ¼ ðr �
 _�þiÞy. Upon substituting the expres-
sions of jBD

and jB
R
i
j
given in (3.33) into (3.38b), one may

recast r
i�þ as

r
i�þ ¼ Y1=2�i
kdðY�1=2ð��1Þkj
j�þ Þ; (3.39)

where �i
j was defined in (3.30c). This then suggests

performing the following fermionic field redefinition:

ð
i�þ ; �
 _�þiÞ � ð
i�; �
 _�
i Þ;


i� :¼ Y�1=2ð��1Þij
j�þ ; with 
i� ¼ ð �
 _�
i Þy:
(3.40)

Then the current j ¼ jB þ jF expressed in terms of the
bosonic coordinates ðX; YÞ and the new 16 independent
fermionic coordinates 
 takes the following form

j ¼ iY

�
dX _�� þ i

2
ð �
 _�

i d

i� � d �
 _�

i 

i�Þ

�
P� _� þ i

Y
dYD

þ 2ið��1Þikd�k
jRi

j � iCij���Y
1=2�i

kd

k�Qj�

þ iCij� _� _�Y
1=2ð��1Þkid �
 _�

k
�Q

_�
j : (3.41)

A particular choice of the coset representative and a
particular �-symmetry gauge fixing makes part of the
global symmetries nonmanifest; the manifest symmetries
left after our gauge choices are the Poincaré translations,
Lorentz rotations, dilatations, SUð4Þ-rotations, and the
Poincaré (or Q, �Q) supersymmetry.
In order to write down the action (3.6) in the S-gauge, we

first need to extract the jðmÞ parts (m ¼ 1; 2; 3) from the

current (3.41) using Eqs. (3.25). We find (H.c. stands for
Hermitian conjugation)

jð1Þ ¼ � i

2
Cij���Y

1=2�i
k


k�ðQj� þ CjlS�l Þ � H:c:;

jð2Þ ¼ i

2
Y� _��ðP� _� þ K� _�Þ þ i

Y
dYD

� 2iCl½ið��1Þj�kd�k
lR½ij�;

jð3Þ ¼ � i

2
Cij���Y

1=2�i
kd


k�ðQj� � CjlS�l Þ � H:c:;

(3.42)

where we defined

� _�� :¼ dX _�� þ i

2
ð �
 _�

i d

i� � d �
 _�

i 

i�Þ: (3.43)

Upon inserting the above expressions into the action (3.6),
we obtain [11]

S ¼ �T

2

Z
�

�
� 1

2
Z2�� _� ^ �� _�� þ 1

4Z2
dZij ^ �dZij

þ 1

2
ð���dZij ^ 
i�d
j� � � _� _�dZ

ij ^ �
 _�
i d

�

_�
j Þ
�
:

(3.44)

In deriving this form of the action, we have used the
invariant form given in (B3) and performed the change of
coordinates Yij � Zij, with

Zij :¼ YCkl�
k
i�

l
j;

ZikZ
jk ¼ Y2
i

j and Z2 ¼ 1

4
ZijZ

ij ¼ Y2:
(3.45)

As a result, the action does not depend on the choice of the
constant matrix Cij.

G. Gauge-fixed form of flat currents

Inserting the expressions (3.42) into (3.15), we immedi-
ately arrive at the �-gauge-fixed version of the family of
flat currents jðzÞ. The construction of the other family of
flat currents JðzÞ given in (3.17) requires more work. First,
notice that we might rewrite (3.17) as
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JðzÞ ¼ ðz� 1ÞJð1Þ þ 1

2
ðz2 þ z�2 � 2ÞJð2Þ þ ðz�1 � 1ÞJð3Þ

� 1

2
ðz2 � z�2Þ � Jð2Þ; (3.46a)

where we have defined

JðmÞ :¼ gjðmÞg�1: (3.46b)

Upon using successively the Baker-Campbell-Hausdorff
formula, we arrive after some rather lengthy algebraic
manipulations at

Jð1Þ ¼ � 1

2
ð �
 _�

i d

i� � ZijX

_��d
i�

j�ÞP� _� þ 1

3!
��
d


j
�
�
k _�ð
j

kð�P _��Þ þ 
ið�
k
ÞP _��Þ þ i

2
Zijd


i�
j�L��

þ i

4
Zijd


i�
j�Dþ iZijd

k�
i�Rk

j þ i

Z
Zijd


i
�Q

j� � i

2Z2
ZijZkl���d


i
�

�

jð�
k�ÞQl� þ 1

2

j�
k�Ql�

�

þ 1

2
� _� _�d


i
�

�
X _�� � i

2
�
 _�
j 


j�

�
�Q

_�
i þ i

2
Zd
i�S

�
i � H:c:; (3.47a)

Jð2Þ ¼
�
iZ�

_
�A _��

� _

þ i

Z
dZ

�
X _�� þ i

2
�
 _�
i 


i�

�
� 1

2Z2
ZikdZkj

�
 _�
i 


j�

�
P� _� � i

2
Z2�� _���


�
X

_�
 � i

2
�

_�
i 


i


�
L��

� i

2
Z2�� _�� _� _


�
X

_
� þ i

2
�

_

i 


i�

�
L _� _� þ

�
i

2
Z2�� _�X

_�� þ i

Z
dZ

�
Dþ i

2
Z2� _��K� _�

þ
�
�� _�Z

ikZjl
�
 _�
k 


l� � i

Z2
ZikdZkj

�
Ri

j þ i

�
Z�� _�B

_��
i� � 1

2Z
dZij


j
�

�
Qi�

� i

�
Z�� _�ðB _��

i� Þy � 1

2Z
dZij �
j _�

�
�Q _�
i � 1

2
ZZij�� _�

�

_�
j S

�
i � 1

2
ZZij�� _�


j� �Si _�; (3.47b)

Jð3Þ ¼
�
i

Z
Zijd


i
�Q

j� � �
 _�
i d


i�P� _� � H:c:

�
� Jð1Þ:

(3.47c)

Here, we have defined

A _��

� _

:¼ 1

2Z
ð1þ X2Z2Þ
 _


_�
�
� þ 1

2
ZX _��X� _


� i

4
Z

�
� _� _�X� _�

�
i _


ið�
�

�Þ

þ 1

3!Z2
Zij �
i _
B

_��
j� � H:c:

�
; (3.47d)

B _��
i�

:¼ � i

Z
Zij

�
�
 _�
k 


k




jð

�Þ
� þ 2



�

�
�
 _�
k 


k




j�

� 1

2

j



k� �
 _�
k

��
; (3.47e)

with X2 :¼ � 1
2X� _�X

_��. Note that we have again per-
formed the change of coordinates (3.45). Also note that
in the final expression of the currents, the Spð4Þ-metric Cij

does not appear as expected in view of SUð4Þ-invariance.
If we set 
i� ¼ 0 ¼ �
 _�

i , the fermionic parts Jð1Þ and Jð3Þ
become identically zero, while the bosonic part Jð2Þ re-

duces to

Jð2Þ ¼ i

2

�
ð1þ X2Z2ÞdX� _� þ Z2X _�
dX
 _�X� _�

þ 2

Z
dZX� _�

�
P

_�� � i

2
Z2dX� _���
X

_�
L��

� i

2
Z2dX� _�� _� _
X

_
�L _� _� þ
�
i

2
Z2dX� _�X

_��

þ i

Z
dZ

�
Dþ i

2
Z2dX� _�K

_�� � i

Z2
ZikdZkjRi

j:

(3.48)

These are precisely the Noether currents for the bosonic
sigma model on AdS5 � S5 in the metric (3.28), i.e. the
Noether currents associated with the Killing vectors of
(3.28) (see also [19]).

IV. DUALITY TRANSFORMATION ON AdS5

COORDINATES (BOSONIC T-DUALITY)

Let us now turn to the discussion of the duality trans-
formation of the superstring sigma model along the four
isometry directions X _�� of AdS5 in the Poincaré coordi-
nates following [11].22 In particular, we will generalize the
results of [19] and explain how to construct families of flat

22Note that we are performing the duality along the noncom-
pact directions, i.e. as in [11], we are concerned here with a
formal sigma model duality. We shall still refer to this as
T-duality. Let us mention that T-duality transformations of
type II superstrings were discussed also, e.g., in [37].
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currents for the T-dual model, making its integrability
manifest.

A. T-duality transformation of the superstring action

To implement the duality along X, let us start with the
first-order form of the action (3.44) (see also [8,9])

S ¼ �T

2

Z
�

�
� 1

2
Z2

�
V _�� þ i

2
ð �
 _�

i d

i� � d �
 _�

i 

i�Þ

�

^�
�
V� _� þ i

2
ð
i�d �
i _� � d
i�

�
i _�Þ
�
þ ~X� _�dV

_��

þ 1

4Z2
dZij ^�dZij þ 1

2
ðdZij ^ 
i�d
j�

� dZij ^ �
 _�
i d

�
j _�Þ
�
; (4.1)

where V is an auxiliary one-form field and the field ~X� _�

(which will become the T-dual coordinate) plays the role
of a Lagrange multiplier imposing the flatness of V, i.e.
dV ¼ 0 ) V ¼ dX. On the other hand, solving for V first
yields

V _�� þ i

2
ð �
 _�

i d

i� � d �
 _�

i 

i�Þ ¼ Z�2 �d ~X _��; (4.2)

and thus the T-dual action written in terms of ~X
_�� becomes

[11]

S ¼ �T

2

Z
�

�
� 1

2Z2
d ~X� _� ^ �d ~X _�� þ 1

4Z2
dZij ^ �dZij

þ i

2
d ~X� _� ^ ð �
 _�

i d

i� � d �
 _�

i 

i�Þ

þ 1

2
ðdZij ^ 
i�d
j� � dZij ^ �
 _�

i d
�
j _�Þ

�
: (4.3)

One observes that the bosonic geometry is again AdS5 �
S5 (to put the bosonic action into the exactly same form one
needs to change coordinates Zij so that Z � Z�1). Also,

the dual action is quadratic in the fermions. Moreover, the
fermionic part of the action is of WZ type and therefore
does not depend on the world-sheet metric.23

Let us remark that the on-shell relation between the
original and dual coordinates is

dX _�� þ i

2
ð �
 _�

i d

i� � d �
 _�

i 

i�Þ ¼ Z�2 �d ~X _��: (4.4)

B. Flat currents for the T-dual model

In general, if the original model is classically integrable,
the same applies to its dual counterpart: the flatness of the
Lax connection gives first-order equations that ‘‘interpo-
late’’ between the original and dual model. Still, it is useful
to find the explicit expression for the flat currents in terms
of the dual coordinates as this may also help clarify the
transformation of the conserved charges under the
T-duality.
For our choice of the Poincaré coordinates and the

�-symmetry gauge, the current j depends on the original
coordinate X _�� only through its differential dX _�� [see
Eq. (3.41)]. The same then applies to the family of flat
currents jðzÞ in (3.15), where the expressions for jð1Þ, jð2Þ,
and jð3Þ are given in (3.42) and

A¼ jð0Þ

¼ i

2
Y� _��ðP� _��K� _�Þ� 2iClðið��1ÞjÞkd�k

lRðijÞ: (4.5)

Then it is straightforward to reexpress jðzÞ in terms of ~X by
using (4.4), i.e. by replacing �� _� with Z�2 �d ~X� _�. The

resulting family of currents~j :¼ jðX � ~XÞ is still flat since
(4.4) holds on-shell. And vice versa, the flatness of ~j will
imply the field equations of the T-dual model.
As already discussed above, the family jðzÞ is not

H-gauge invariant, i.e. it depends on a choice of represen-
tative of G=H. In order to be able to discuss the physical
conserved charges, it is therefore useful to repeat the same
procedure of replacing X by ~X for the other family of flat
currents JðzÞ in (3.17) closely related to Noether charge.
However, unlike jðzÞ, the current JðzÞ which involves g
explicitly depends on X and thus, if dualized directly,
would nonlocally depend on ~X. One can bypass this prob-
lem and get a local expression for JðzÞ in terms of the dual
coordinate ~X by first performing a G-gauge transformation
(3.22) [which preserves the flatness condition (3.20)] with
the following parameter g:

g ¼ eiX
_��P� _� : (4.6)

Then the gauge transformed current is

J0ðzÞ ¼ ðz� 1ÞJ0ð1Þ þ
1

2
ðz2 þ z�2 � 2ÞJ0ð2Þ þ ðz�1 � 1ÞJ0ð3Þ

� 1

2
ðz2 � z�2Þ �J0ð2Þ þ idX _��P� _�|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼g�1g

; (4.7)

with

J0ðmÞ :¼ g�1JðmÞg¼ g0jðmÞg0�1; with g0 ¼ g�1g; (4.8)

where g is given by (3.30) in the S-gauge (3.36).24 Then23Note that when integrating out V� _� in the path integral, one

picks up a factor ��1=2
B involving the functional determinant

�B ¼ ��2�Z
16ð�Þ (in units where T ¼ �2) which needs to be

regularized. Using heath kernel methods, this amounts to adding
the term �8

R
� dvolRð2Þ logðZÞ to the action (4.3) (cf. [8,38]),

Rð2Þ being the scalar curvature of �.

24Note that J0ðzÞ is invariant under the H-gauge transformations
(3.5b): under such transformations g � g and g0 � g0h and thus
g0jðmÞg0�1 � g0hðh�1jðmÞhÞh�1g0�1 ¼ g0jðmÞg0�1 and g�1dg �
g�1dg.
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g0 ¼ gðX ¼ 0; Y; 
þ; 
� ¼ 0Þ and thus [cf. Eqs. (3.47)]

J0ð1Þ ¼ � 1

2
�
 _�
i d


i�P� _� þ 1

3!
��
d


j
�
�
k _�ð
j

kð�P _��Þ þ 
ið�
k
ÞP _��Þ þ i

2
Zijd


i�
j�L�� þ i

4
Zijd


i�
j�D

þ iZijd

k�
i�Rk

j þ i

Z
Zijd


i
�Q

j� � i

2Z2
ZijZkl���d


i
�

�

jð�
k�ÞQl� þ 1

2

j�
k�Ql�

�
� i

4
� _� _�d


i
�
�
 _�
j 


j� �Q
_�
i

þ i

2
Zd
i�S

�
i � H:c:; (4.9a)

J0ð2Þ ¼
�
iZ�

_
�A _��

� _

� 1

2Z
dZ �
 _�

i 

i� � 1

2Z2
ZikdZkj

�
 _�
i 


j�

�
P� _� � 1

4
Z2�� _���
 �


_�
i 


i
L�� þ 1

4
Z2�� _�� _� _


�

_

i 


i�L _� _�

þ i

Z
dZDþ i

2
Z2� _��K� _� þ

�
�� _�Z

ikZjl
�
 _�
k 


l� � i

Z2
ZikdZkj

�
Ri

j þ i

�
Z�� _�B

_��
i� � 1

2Z
dZij


j
�

�
Qi�

� i

�
Z�� _�ðB _��

i� Þy � 1

2Z
dZij �
j _�

�
�Q _�
i � 1

2
ZZij�� _�

�

_�
j S

�
i � 1

2
ZZij�� _�


j� �Si _�; (4.9b)

J0ð3Þ ¼
�
i

Z
Zijd


i
�Q

j� � �
 _�
i d


i�P� _� � H:c:

�
� J0ð1Þ; (4.9c)

where here

A _��

� _

:¼ 1

2Z

 _


_�
�
� � i

4!Z
ðZij �
i _
B

_��
j� � H:c:Þ; (4.9d)

B _��
i�

:¼ � i

Z
Zij

�
�
 _�
k 


k




jð

�Þ
� þ 2



�

�
�
 _�
k 


k




j�

� 1

2

j



k� �
 _�
k

��
: (4.9e)

Note that the bosonic truncation of the gauge transformed
current J0ðzÞ is given by

J0ðzÞ ¼ 1

2
ðz2 þ z�2 � 2ÞJ0ð2Þ þ

1

2
ðz2 � z�2Þ �J0ð2Þ

þ idX _��P� _�;

J0ð2Þ ¼
i

2
ð1þ Z2ÞdX� _�P

_��
þ þ i

2
ð1� Z2ÞdX� _�P

_���

þ i

Z
dZD� i

Z2
ZikdZkjRi

j; (4.10)

where P _��
� :¼ 1

2 ðP _�� � K _��Þ. Up to a rotation by a con-
stant matrix, these are the same gauge transformed currents
as found directly in Ref. [19] without referring to the coset
nature of the AdS space.

Finally, using the duality relation in Eq. (4.4), we find
the expressions for the currents in terms of the T-dual
coordinates:

~Jðz; ~X; Z;�Þ :¼ J0ðz;Xð ~XÞ; Z;�Þ; (4.11)

i.e.

~JðzÞ ¼ ðz� 1Þ~Jð1Þ þ 1

2
ðz2 þ z�2 � 2Þ~Jð2Þ

þ ðz�1 � 1Þ~Jð3Þ � 1

2
ðz2 � z�2Þ �~Jð2Þ

þ i

Z2

�
�d ~X _�� � i

2
Z2ð �
 _�

i d

i� � d �
 _�

i 

i�Þ

�
P� _�;

(4.12a)

with

~J ðmÞ :¼ J0ðmÞð�� _� � Z�2 �d ~X� _�Þ: (4.12b)

Note that ~JðzÞ is flat since the duality relation (4.4) holds
on-shell. Having expressed the Lax connection in terms of
the dual coordinates, one can in principle derive an infinite
set of nonlocal charges in the T-dual model by using (3.21).

C. Bosonic duality as a symmetry of first-order system
and Lax connection

With a motivation to eventually shed some light on how
conserved charges of the original and T-dual models are
related, let us go back to the purely bosonic sigma model
on AdS5 ffi SOð2; 4Þ=SOð1; 4Þ.25 We shall ignore the de-
coupled 5-sphere part here. As was shown in [19], the
T-duality applied to the bosonic AdSn model generically
maps conserved local charges into nonlocal ones and vice
versa. To make this more precise it is desirable to describe
T-duality as a formal algebraic transformation on the phase
space, i.e. on the components of the current subject to first-
order equations.
Let us begin by recalling the Z2-automorphism of the

conformal g ¼ soð2; 4Þ algebra (cf. Appendix B)

25The subsequent discussions can of course be applied to the
AdSn case.
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�ðP� _�Þ ¼ �K� _�; �ðK� _�Þ ¼ �P� _�;

�ðL��Þ ¼ L�� and �ðDÞ ¼ �D:
(4.13)

Then we may define the projectors

P ð0Þ :¼ 1

2
ð1þ�Þ and P ð2Þ :¼ 1

2
ð1��Þ; (4.14)

so that

g ffi h � gð2Þ; with h ¼ P ð0ÞðgÞ and

gð2Þ ¼ P ð2ÞðgÞ:
(4.15)

Correspondingly, the current j ¼ g�1dg, for g 2 SOð2; 4Þ,
decomposes as

j ¼ Aþ jð2Þ; with P ð0ÞðjÞ ¼ A and P ð2ÞðjÞ ¼ jð2Þ:
(4.16)

The Maurer-Cartan equations and the equations of motion
are the same as in (2.7) or found by setting jð1Þ ¼ 0 ¼ jð3Þ
in (3.10) and (3.12)

dAþ A ^ Aþ jð2Þ ^ jð2Þ ¼ 0;

rjð2Þ ¼ 0 and r �jð2Þ ¼ 0:
(4.17)

For the choice of the AdS5 part of the coset representative

in (3.30), i.e. g ¼ eiX
_��P� _�YiD, we have

j¼ jPþ jD; with jP ¼ iYdX _��P� _� and jD ¼ i

Y
dYD:

(4.18)

In this parametrization, Eqs. (4.17) read explicitly as

djP þ jD ^ jP þ jP ^ jD ¼ 0;

djD ¼ 0;

d �jP � jD ^ �jP � �jP ^ jD ¼ 0;

d �jD � 1

2
jP ^ ��ðjPÞ � 1

2
��ðjPÞ ^ jP ¼ 0:

(4.19)

Here, �ðjPÞ ¼ �ðjP _��P _��Þ ¼ jP _���ðP _��Þ ¼ �jP _��K _��.
The T-duality along the four isometry directions X _��

corresponds to replacing ðX _��; YÞ by the dual fields
ð ~X _��; ~YÞ according to26

d ~X _�� ¼ Y2 �dX _�� and ~Y ¼ Y�1: (4.20)

Therefore, the components of the dual current ~j ¼ ~jP þ ~jD
are defined in terms of ð ~X _��; ~YÞ in exactly the same way
that j in (3.32a) is defined in terms of ðX _��; YÞ. It can then
be expressed in terms of the original coordinates as fol-
lows:

jP ¼ iYdX _��P� _� ¼ i ~Y �d ~X _��P� _� ¼ �~jP;

jD ¼ i

Y
dYD ¼ � i

~Y
d ~YD ¼ �~jD:

(4.21)

The key point is that under this transformation, i.e.

jP � ~jP ¼ �jP and jD � ~jD ¼ �jD; (4.22)

the set of first-order equations (4.19) is invariant; in par-
ticular, the Maurer-Cartan equation for jP is interchanged
with its equation of motion. Thus, we may forget about
particular solutions for j in terms of X or ~X and view the
duality as a symmetry of the phase space equations (4.19).
The family of flat currents (3.15) here takes the form

jðzÞ ¼ 1

4
ðzþ z�1Þ2jP � 1

4
ðz� z�1Þ2�ðjPÞ

� 1

4
ðz2 � z�2Þ �ðjP ��ðjPÞÞ þ 1

2
ðz2 þ z�2ÞjD

� 1

2
ðz2 � z�2Þ �jD (4.23)

and its flatness condition implies the set of Eqs. (4.19).
Given the fact that after the T-duality (combined with Y �
~Y ¼ Y�1) we obtain the very same AdS5 sigma model, the
corresponding expression for jðzÞ in the T-dual model
should be the same as (4.23) with ðX _��; YÞ � ð ~X _��; ~YÞ.
However, by applying the current duality transformation
(4.22) to jðzÞ, we find

~jðzÞ ¼ 1

4
ðzþ z�1Þ2 �jP � 1

4
ðz� z�1Þ2 ��ðjPÞ

� 1

4
ðz2 � z�2ÞðjP ��ðjPÞÞ � 1

2
ðz2 þ z�2ÞjD

þ 1

2
ðz2 � z�2Þ �jD; (4.24)

which does not seem to be the same as (4.23) despite the
fact that Eqs. (4.19) are invariant under (4.22).
Superficially, that may seem to imply that there are two
independent Lax connections with inequivalent monod-
romy matrices, Yangians, etc.
This, of course, is not the case: the Lax connections

(4.23) and (4.24) are actually related by a (spectral parame-
ter dependent) Z2-automorphism of the Lie algebra g
defined as follows (T 2 g):

T � UzðTÞ :¼ Uz�ðTÞU�1
z ; with

Uz :¼
�
z� z�1

zþ z�1

�
iD
: (4.25)

This implies the following action on the components of the
current:

26Here, the field Y appears instead of Z when compared with
(4.4) since we dropped the S5 part and so the field redefinition
(3.45) is not needed.
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UzðjPÞ ¼ z� z�1

zþ z�1
�ðjPÞ;

Uzð�ðjPÞÞ ¼ zþ z�1

z� z�1
jP and

UzðjDÞ ¼ �jD; (4.26)

and it is easy to verify that this automorphismmaps the two
Lax connections into each other

U zðjðzÞÞ ¼ ~jðzÞ: (4.27)

Thus the T-duality for the bosonic sigma model can be
abstractly understood as a symmetry of the Lax connection
(integrable structure) induced by the automorphism of the
conformal algebra soð2; 4Þ. This symmetry then implies a
certain map of conserved charges. We shall make few
comments on conserved charges at the end of Sec. VC
and in Appendix D. The present formulation makes the
analysis done in [19] more transparent.

Finding an analogous automorphism once the fermions
are included may not seem straightforward at first glance.
One reason is that a particular �-symmetry gauge choice
makes some of the superisometries nonmanifest. For ex-
ample, in the T-dual action (4.3) the original supersymme-
try transformations reduced to fermionic shifts of 
i� and
�
 _�
i (the T-dual bosonic coordinates ~X _��, being related to

supersymmetric invariants, were not transforming).
Furthermore, the above construction of the automorphism
(4.25) relied on the fact that after the T-duality we obtain
the very same sigma model action.

In the next section, we will extend the above consider-
ations by combining the bosonic duality transformation
with a certain fermionic one [22]. This appears to require
one to supplement the transformation (4.22) by a certain
transformation (not involving the Hodge star) of the fer-
mionic components of the current that should produce a
symmetry of the full first-order system (3.10) and (3.12)
written in the H-symmetry gauge (3.30).

It also appears necessary to consider a different
real form of the complexified superconformal algebra.
To repeat the above argument about the invariance of
the Lax connection under the duality, we will then
construct an extension of the Z2-automorphism (4.25)
to a Z4-automorphism of the full superconformal
algebra.

V. FERMIONIC DUALITY TRANSFORMATION
AND SELF-DUALITY OF THE SUPERSTRING

The action (4.3) obtained from the gauge-fixed AdS5 �
S5 superstring action (3.44) by the duality transformation
applied to the four bosonic coordinates X has manifest

conformal symmetry but not the full superconformal sym-
metry. Part of the supersymmetry became nonmanifest due
to the �-symmetry gauge choice27 but part was made
nonlocal (or trivial) as a result of the duality transforma-
tion. Since the duality is an equivalence transformation at
the full 2d field theory level, the original global symmetry
and the associated conserved charges should not actually
disappear but they may become effectively nonlocal and
thus hidden (and indeed not visible in the point-particle
limit of the action).
One may ask if one may to recover the original global

symmetry in a manifest way, i.e. also at the point-particle
level, by combining the bosonic duality transformation
with a similar one applied to fermions. This is indeed
possible following the suggestion of [22]. As we will
show below, starting with the action (4.3) obtained by the
bosonic duality and applying a duality transformation to
the fermionic coordinates 
i� (but not to their conjugates
�
 _�
i ), one finds the action that can be interpreted as the

original AdS5 � S5 superstring action written in a different
�-symmetry gauge. That means that the combination of the
bosonic and the fermionic world-sheet duality transforma-
tions maps not only the bosonic AdS5 � S5 part, but the
full superstring action into an equivalent action. As a
result, we find the full global superconformal group now
acting (modulo a compensating �-symmetry transforma-
tion) on coordinates of the dual action.
The fact that the fermionic duality is performed along

the complex (chiral) fermionic coordinates implies that the
resulting action is not Hermitian. Indeed, to interpret it as a
�-symmetry gauge-fixed version of the AdS5 � S5 super-
string action, we will need to formally complexify the
action and choose a special �-symmetry (previously con-
sidered in [26]).
We shall start with a discussion of the superstring action

in this complex gauge and then show that this action
becomes equivalent to the action (4.3) in the S-gauge
upon application of a fermionic duality transformation.
This combined action of bosonic and fermionic dualities
thus maps the AdS5 � S5 sigma model into itself.28

We shall then explain the reason for the fermionic dual-
ity transformation by arguing that its combined action with
the bosonic duality is eventually a symmetry of the first-
order system and of the Lax connection of the superstring
model (generalizing a similar symmetry of the bosonic
model discussed in Sec. IVC).

27To recover it one needs to combine the symmetry trans-
formation with a compensating �-symmetry transformation as
in, e.g., the usual light-cone gauge in flat space.
28This means, in particular, that this duality transformation
induces a map on the space of solutions of the classical sigma
model equations of motion. More precisely, we may interpret
this T-duality as a dressing transformation acting on the space of
solutions, like a Bäcklund transformation (see, e.g., [39]).
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A. Superstring action in a complex �-symmetry gauge

Let us go back to our choice of the coset representative
(3.30). Instead of choosing the real S-gauge (3.36) where

i�� and its conjugate �
 _��i are set to zero, we may also
consider the following gauge:


i�� ¼ 0 ¼ �
 _�þi: (5.1)

More precisely, to be able to choose such a gauge requires a
complexification of the AdS5 � S5 action, i.e. a relaxation
of the reality condition (3.31). A similar gauge appeared
earlier in [26] where the authors considered the superstring
action for a different (Wick rotation related) slice of the
complexified version of the AdS5 � S5 coset superspace
(3.1). A need for such complexification or analytic con-
tinuation seems intimately related to the notion of dual
superconformal symmetry (cf. [21]).29

In this gauge, the fermionic part of the coset representa-

tive g ¼ BðX; YÞe�Fð�Þ in (3.30) becomes [cf. (3.37)]

Fð�Þ ¼ i½Cij���

i�þQj� þ � _� _�

�
 _��i
�Si

_�Þ�; (5.2)

so that we get a mixture of Q and �S generators while the �Q
and S parts are gauged away (we shall thus refer to this
gauge as �QS-gauge).

An interesting feature of this gauge (observed in [26]) is
that here the superstring action becomes quadratic in the
fermions even before T-duality in X as in [11].30 Indeed,
one may easily verify that here the current j in (3.32a)
becomes simply [cf. (3.34)]

j ¼ jB �rF: (5.3)

Going through the same steps as in Sec. III F, we then find

j ¼ iYdX _��P� _� þ i

Y
dYDþ 2ið��1Þikd�k

jRi
j

� iY1=2�j
iðd�j� þ idX� _�

�#
_�
j ÞQi�

þ i� _� _�Y
�1=2�j

id
�#

_�
j
�Si _�; (5.4a)

where we have defined

��i :¼ Y�1=2Cikð��1Þkj
j�þ and

�# _�
i :¼ Y1=2ð��1Þji �
 _��j:

(5.4b)

Extracting the jðmÞ parts from the above current, the super-

string action (3.6) is then found to take the following
explicit form:

S ¼ �T

2

Z
�

�
� 1

2
W2dX� _� ^ �dX _�� þ 1

4W2
dWij ^ �dWij

þ 1

2
���Wijðd�i� þ idX� _�

�# _�
i Þ ^ ðd�j� þ idX� _


�#
_

j Þ

� 1

2W2
� _� _�W

ijd �# _�
i ^ d �#

_�
j

�
: (5.5)

In deriving this expression, we have used the invariant
form (B3) and the identity Cik�

k
j ¼ �Cjk�

k
i and re-

placed Yij by the SUð4Þ ‘‘rotated’’ coordinates Wij [simi-

larly to Yij � Zij in (3.45), recall that �i
j ¼ Y�1CikYkj]

Yij � Wij :¼ YCklð��1Þkið��1Þlj and

W2 ¼ 1

4
WijW

ij ¼ Y2:
(5.6)

B. Fermionic duality transformation

Let us now go back to the T-dual action (4.3) found after
the bosonic duality transformation X � ~X in the super-
string action (3.44) in the S-gauge and show that after the
2d duality applied to the fermionic coordinates 
i� (but not
to their conjugates �
 _�

i ) one finds precisely the non-
Hermitian action (5.5) in the �QS-gauge (5.1).
We begin with the following first-order form of the

action (4.3):

S ¼ �T

2

Z
�

�
� 1

2Z2
d ~X� _� ^ �d ~X _�� þ 1

4Z2
dZij ^ �dZij

� i ~X� _�d �
 _�
i ^V i� � 1

2
ZijV i� ^V j

�

� ~
i� ^ dV i� þ 1

2
Zijd �
 _�

i ^ d �
j _�

�
; (5.7)

where we observed that since (4.3) depends on 
i� only
through its differential we can replace d
i� byV i� adding
the constraint dV i� ¼ 0 with the fermionic Lagrange

multiplier ~
i�. The variation with respect to the gauge
potential V i� yields

V i� ¼ � 1

Z2
Zij���ðd~
j� � i ~X� _�d �
 _�

j Þ: (5.8)

Note that the on-shell relation

d
i� ¼ � 1

Z2
Zij���ðd~
j� � i ~X� _�d �
 _�

j Þ (5.9)

here is different compared to the bosonic duality case (4.4)
in that it does not involve the Hodge duality operation. This
has to do with a peculiarity of the above GS action31 where

29From the field theory point of view, this complexification
seems to be related to the PCT self-conjugacy of the N ¼ 4
SYM multiplet which admits a holomorphic description in the
on-shell superspace [21].
30The usual Hermitian AdS5 � S5 action in a real �-symmetry
gauge can be at best made quartic in the fermions [24,25].

31For example, if we compare the two model Lagrangians L ¼
fd
 ^ d
 and ~L ¼ f�1d~
 ^ d~
 where 
 and ~
may carry indices
and f is a (symmetric) matrix depending on world-sheet coor-
dinates then the dual equations of motion df ^ d
 ¼ 0 and
df�1 ^ d~
 ¼ 0 are first-order in fermions (as is standard for
the GS string).
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the fermions which we dualize appear only in the WZ
term.32

Substituting V i� in (5.8) into (5.7), we end up with the
fermionic dual of this action

S ¼ �T

2

Z
�

�
� 1

2Z2
d ~X� _� ^ �d ~X _�� þ 1

4Z2
dZij ^ �dZij

� 1

2Z2
Zij���ðd~
0i� þ id ~X� _�

�
 _�
i Þ ^ ðd~
0j� þ id ~X� _


�

_

j Þ

þ 1

2
Zijd �
 _�

i ^ d �
j _�

�
; (5.10)

where we have performed the following fermionic field
redefinition:

~
 0
i�

:¼ ~
i� � i ~X� _�
�

_�
i : (5.11)

Comparing now the actions (5.5) and (5.10), we conclude
that they coincide provided we make the following field
identifications:

X _�� � ~X _��; Wij � Z�2Zij; W ¼ Y � Z�1;

�i� � �i ~
0i�; �# _�
i � �
 _�

i : (5.12)

We conclude that a combination of the bosonic duality [11]
and the fermionic duality [22] transformations relates the
AdS5 � S5 superstring action in the supercoset parametri-
zation (3.30) and in the �-symmetry S-gauge (3.36) to the
same action in the �-symmetry �QS-gauge (5.1) (modulo
the necessity of complexification in the transformation
process).33

This implies that the original AdS5 � S5 action after
bosonic and fermionic dualities has an equivalent (in a
complexified sense) superconformal PSUð2; 2j4Þ global
symmetry group, modulo the fact that some of the super-
symmetries are not manifest due to a special �-symmetry
gauge choice. In particular, as discussed in [19] and above,
(part of34) the corresponding Noether charges of the dual

model should have their origin in the hidden charges of the
original model and vice versa.
In the remainder of this section, we shall explain the

need for the fermionic duality transformation from a more
general point of view: we will show that the combined
action of the bosonic and fermionic dualities leaves the
superstring first-order system of equations and Lax con-
nection invariant, generalizing what we have done in the
bosonic case in Sec. IVC

C. Combined bosonic/fermionic duality as a symmetry
of the Lax connection

For the bosonic AdS5 sigma model we have shown that
the action of T-duality can be interpreted as a symmetry of
first-order system of equations combined with a particular
automorphism of the conformal group. In this section we
show how to extend that symmetry to the full superstring
by relating it to an automorphism of the superconformal
algebra.
To start with, we need to extend the action of the

operator � used in Sec. IVC to the full set of the super-
conformal generators

�ðP� _�Þ ¼ �K� _�; �ðK� _�Þ ¼ �P� _�;

�ðDÞ ¼ �D; �ðL��Þ ¼ L��;

�ðR½ij�Þ ¼ �R½ij�; �ðRðijÞÞ ¼ RðijÞ;

�ðQi�Þ ¼ iCijS�j ; �ð �Q _�
i Þ ¼ iCij

�Sj _�;

�ðS�i Þ ¼ �iCijQ
j�; �ð �Si _�Þ ¼ �iCij �Q _�

j :

(5.13)

It is easy to verify that � is a Z4-automorphism of the
psuð2; 2j4Þ algebra.
We can then introduce the following projectors

P ð0Þ :¼ 1

4
ð1þ�þ�2 þ�3Þ;

P ð1Þ :¼ 1

4
ð1� i���2 þ i�3Þ;

P ð2Þ :¼ 1

4
ð1��þ�2 ��3Þ;

P ð3Þ :¼ 1

4
ð1þ i���2 � i�3Þ;

(5.14)

which give the Z4-decomposition of the algebra

g ðmÞ ¼ P ðmÞðgÞ (5.15)

presented in (3.25). From the above analysis we know that
the superstring action in the S-gauge is mapped under the
combined action of the bosonic and fermionic dualities
into the superstring action in the �QS complex gauge. To
understand this relation from more general perspective, let
us start by presenting the Z4-decomposition of the currents
in the S-gauge

32Let us mention that since the fermionic duality can be
performed via a Gaussian path integral, it can be promoted to
a duality of the quantum sigma model. In particular, when
performing this duality at the path integral level, one picks up
a factor �1=2

F involving the functional determinant �F ¼
��2�Z

16ð�Þ. Notice that this is the very same functional deter-
minant which already appeared in the bosonic case (see foot-
note 23). For the combination of bosonic and fermionic dualities
to be promoted to a quantum symmetry of the GS string on
AdS5 � S5, the fermionic determinant should then be regular-
ized the same way as the bosonic one, so that ��1=2

B �1=2
F ¼ 1 at

the end.
33Let us note also that one may consider more general combi-
nations of the bosonic and fermionic dualities. For example, one
may first perform the fermionic duality and then the bosonic one;
the resulting action will be different (and much more compli-
cated). One may also consider combining these dualities with
linear field redefinitions, getting an analog of the usual Oðd; dÞ
duality group.
34The Lorentz and the R-symmetry SOð6Þ symmetries are
shared by the dual models.
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jð0Þ ¼ A ¼ 1

2
ð1þ�ÞðjP þ jRÞ;

jð1Þ ¼ 1

2
ð1� i�ÞðjQ þ j �QÞ;

jð2Þ ¼ 1

2
ð1��ÞðjP þ jR þ jDÞ;

jð3Þ ¼ 1

2
ð1þ i�ÞðjQ þ j �QÞ:

(5.16)

As follows from (4.4) and (5.9), the combined duality is
equivalent to the following action on the superstring fields:

dX
_�� þ i

2
ð �
 _�

i d

i� � d �


_�
i 


i�Þ ¼ Z�2 �d ~X _��;

d
i� ¼ � 1

Z2
Zij���ðd~
j� � i ~X� _�d �
 _�

j Þ:
(5.17)

In order to be able to compare currents before and after the
duality, let us also change coordinates according to

Zij � ~Y�2CikCjl
~Ykl; with ~Y2 ¼ 1

4
~Yij

~Yij ¼ Z�2;

~
i� � �ið�i� þ i ~X� _�
�#

_�
i Þ and �
 _�

i � �i �# _�
i : (5.18)

Upon applying the duality and the coordinate transforma-
tion as above, we can relate the components of the current
in the S-gauge, j ¼ jP þ jD þ jR þ jQ þ j �Q, to the dual

one in the �QS-gauge, ~j ¼ ~jP þ ~jD þ ~jR þ ~jQ þ ~j �S, as fol-

lows [see also (3.41) and (5.4a)]:

jP ¼ iY� _��P� _� ¼ ~Y �d ~X _��P� _� ¼ �~jP; jD ¼ i

Y
dYD ¼ � i

~Y
d ~YD ¼ �~jD;

jRa
¼ �2iCl½ið��1ðYÞÞj�kd�ðYÞklR½ij� ¼ 2iCl½ið��1ð ~YÞÞj�kd�ð ~YÞklR½ij� ¼ �~jRa

;

jRs
¼ �2iClðið��1ðYÞÞjÞkd�ðYÞklRðijÞ ¼ �2iClðið��1ð ~YÞÞjÞkd�ð ~YÞklRðijÞ ¼ ~jRs

;

jQ ¼ �iCij���Y
1=2�ðYÞikd
k�Qj� ¼ ~Y1=2�ð ~YÞjiðd�j� þ id ~X� _�

�#
_�
j ÞQi� ¼ �i~jQ;

j �Q ¼ iCij� _� _�Y
1=2ð��1ðYÞÞkid �
 _�

k
�Q

_�
j ¼ Cij� _� _�

~Y�1=2�ð ~YÞkid �# _�
k
�Q

_�
j ¼ ��ð~j �SÞ:

(5.19)

Here, Ra represents R½ij� while Rs represents RðijÞ. We can
therefore formally summarize the action of the combined
bosonic and fermionic dualities [including the coordinate
transformation (5.18)] on the current as

jP � ~jP ¼ �jP; jD � ~jD ¼ �jD;

jRa
� ~jRa

¼ �jRa
; jRs

� ~jRs
¼ jRs

;

jQ � ~jQ ¼ ijQ; j �Q � ~j �S ¼ �ðj �QÞ:
(5.20)

The family of flat currents or Lax connection in the S-
gauge is

jðzÞ ¼ jBðzÞ þ 1

2
ðzþ z�1ÞðjQ þ j �QÞ �

i

2
ðz� z�1Þð�ðjQÞ

þ�ðj �QÞÞ; (5.21)

where jBðzÞ is formally the current in (4.23), with jP given
in (3.41). Upon applying the duality transformation (5.20),
we obtain the dual flat current family

~jðzÞ ¼ ~jBðzÞ þ i

2
ðzþ z�1ÞðjQ � i�ðj �QÞÞ

þ 1

2
ðz� z�1Þð�ðjQÞ þ ij �QÞ; (5.22)

where ~jBðzÞ is the current in (4.24).
As in the bosonic case, we obtain two seemingly differ-

ent Lax connections. However, one can show that the two
Lax connections (5.21) and (5.22) are again related by a

spectral parameter dependent automorphism of the super-
conformal algebra. Indeed, we can define the following
Z4-automorphism:

T � UzðTÞ :¼ Uz�ðTÞU�1
z ; with

Uz :¼
�
z� z�1

zþ z�1

�
iðBþDÞ

; (5.23)

where T is a generic generator of the superconformal
algebra and B generates a Uð1Þ-automorphism, with non-
vanishing (anti)commutators being

½B; Q� ¼ i

2
Q; ½B; S� ¼ � i

2
S;

½B; �Q� ¼ � i

2
�Q; ½B; �S� ¼ i

2
�S

(5.24)

and �ðBÞ ¼ �B.
If we define

fðzÞ :¼ z� z�1

zþ z�1
; (5.25)

we can represent the explicit action of the automorphism
Uz on the generators as follows:
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UzðP� _�Þ ¼ fðzÞ�ðP� _�Þ; UzðK� _�Þ ¼ f�1ðzÞ�ðK� _�Þ;
UzðDÞ ¼�ðDÞ; UzðRj

i Þ ¼�ðRj
i Þ;

UzðL��Þ ¼�ðL��Þ; UzðL _� _�Þ ¼�ðL _� _�Þ;
UzðQi�Þ ¼ fðzÞ�ðQi�Þ; UzðS�i Þ ¼ fðzÞ�1�ðS�i Þ;
Uzð �Q _�

i Þ ¼�ð �Q _�
i Þ; Uzð �Si _�Þ ¼�ð �Si _�Þ: (5.26)

The action of this automorphism on the bosonic generators
fP; L;K;Dg of the soð2; 4Þ algebra reduces to the action of
the Z2-automorphism considered before in Sec. IVC.
Altogether, we end up with

~jðzÞ ¼ UzðjðzÞÞ: (5.27)

The conclusion is that we may interpret the combined
action of the bosonic and the fermionic dualities as a
symmetry of the first-order superstring system of equations
induced by the above automorphism of the (complexified)
psuð2; 2j4Þ algebra.

Furthermore, since the Noether charges may be derived
from the flat current jðzÞ near z ¼ �1 [see Eqs. (3.17) and
(3.21) and also Appendix D for more details], Eq. (5.23)
suggests that the Noether charges associated with the gen-
erators of the superconformal algebra behave under the
combined action of the bosonic and fermionic dualities as
shown in Table I (modulo the issue of boundary
conditions).

This is an immediate consequence of the fact that f goes
to zero near z ¼ �1 while f�1 diverges as can be seen
from the respective expansions around z ¼ �1

fðzÞ¼�ðz�1ÞþOððz�1Þ2Þ	0 for z!�1;

f�1ðzÞ¼� 1

z�1
þ1

2
þOððz�1ÞÞ	� 1

z�1
for z!�1:

(5.28)

We can understand the behavior of P� _� and Qi� under

T-duality also by observing that they do not act on the dual

coordinates ~X� _� and ~
i� given in Eq. (5.17). This is what

we mean by ‘‘trivial’’ in Table I. The resulting picture is in
agreement with the conclusion announced in [22].
Remarkably, similar relations for the generators of the
original and dual superconformal symmetry when acting
on supergluon amplitudes appear also on the gauge theory
side [21].35

Let us add that the automorphism (5.23) can, in princi-
ple, be used to obtain a map between the full set of

conserved charges (local and nonlocal ones) before and
after the duality.
It would be useful to give a more covariant version of the

above analysis in which the �-symmetry would not be
fixed. This would make the global symmetries more mani-
fest and would further clarify the mapping between the
conserved charges in the two dual models. It would also be
interesting to understand further the meaning of complex-
ification of the superconformal algebra which was required
in our string theory considerations and which apparently is
also playing an important role on the dual gauge theory
side [21] (being related to a possibility of having a chiral
on-shell superspace description of the scattering ampli-
tudes for the PCT self-conjugate N ¼ 4 SYM multiplet).
Needless to say, the major outstanding problem is to

understand the precise relation between the superstring
symmetries in the bulk and the symmetries of the super-
gluon scattering amplitudes in the boundary gauge theory.
This would presumably require defining the IR-regularized
amplitudes in terms of correlators of open-string vertex
operators inserted on an IR D3-brane as in [12] (see also
[40] for a review). For that, one would have to specify, in
particular, the boundary conditions for the open strings
stretching in the bulk of AdS5 and ending on the IR brane.
The presence of the IR regulator would break the (dual)
superconformal symmetry, but in an anomalous, i.e. ‘‘con-
trolled,’’ way [21]: it will still lead to highly nontrivial
constraints on the finite parts of the amplitudes.36
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APPENDIX A: SPINOR CONVENTIONS

1. Four-dimensional spinor conventions

We mostly follow the conventions of Wess and Bagger
[41]. Consider 4-dimensional Minkowski space R1;3 with
metric ð�abÞ ¼ diagð�1; 1; 1; 1Þ and coordinates Xa,
where a; b; . . . ¼ 0; . . . ; 3. We shall adopt the convention
ðc �Þy ¼ �c _� (we shall use y to denote Hermitian conju-

35Some generators act trivially and some do not act linearly as
they are realized as second-order differential operators [21]. In
this reference, the amplitudes are discussed in a chiral super-
space. An equivalent choice would have been to consider an
antichiral superspace. In the present discussion this change
would amount to choosing a Q�S-gauge rather than a �QS-gauge
and to performing the fermionic duality along the �
- instead of
the 
-directions.

36In [21], the superconformal algebra is extended by a central
charge which is suggested to be related to the helicity of the
particles participating in the scattering process. To recover this
central extension in the present approach, one has, presumably,
to consider the action of the superconformal algebra on the
(super)gluon vertex operators which define the scattering ampli-
tude on the string theory side.
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gation on Grassmann algebra elements), where �;�; . . . ¼
1; 2 and _�; _�; . . . ¼ _1; _2.

Let ð�aÞ :¼ ð�a
� _�

Þ :¼ ð�12; ~�Þ. Here, ~� ¼ ð�1; �2; �3Þ
are the Pauli matrices. Then we define ��a _�� :¼
� _� _���
�a


 _�, with ����
�� ¼ 
�

�, � _� _��
_� _� ¼ 
 _�

_� and

�12 ¼ ��21 ¼ � _1 _2 ¼ �� _2 _1 ¼ 1. Next we introduce

X� _�
:¼ �a

� _�
Xa , Xa ¼ � 1

2
��a _��X� _�; (A1)

where Xa ¼ �abXb. Explicitly, this reads as

ðX _��Þ ¼ X0 � X3 �X1 þ iX2

�X1 � iX2 X0 þ X3

� �
: (A2)

The Minkowski space line element is then given by

ds2 ¼ � detðdX _��Þ ¼ � 1

2
���� _� _
dX

_��dX
_
�

¼ � 1

2
dX� _�dX

_��: (A3)

From the Hermiticity of �a and ��a, i.e. �a ¼ ð�aÞy and
��a ¼ ð ��aÞy it follows that

X� _� ¼ ðX� _�Þ� and X _�� ¼ ðX� _�Þ�: (A4)

2. Six-dimensional spinor conventions

Consider 6-dimensional Euclidean space R6 with metric

rs and coordinates Y

r, where r; s; . . . ¼ 1; . . . ; 6. Then we

take the �r and ��r matrices as antisymmetric 4� 4 ma-
trices,

�r ¼ ð�r
ijÞ; �r

ij ¼��r
ji; ��rij :¼ 1

2
�ijkl�r

kl; (A5)

for i; j; . . . ¼ 1; . . . ; 4 and �ijkl is totally antisymmetric in
its indices with �1234 ¼ 1.
Next we introduce

Yij :¼ �r
ijYr , Yr ¼ 1

4
��rijYij: (A6)

Furthermore, by virtue of (A5) and ��rij ¼ ð�r
ijÞ� we have

Yij ¼ 1

2
�ijklYkl and Yij ¼ ðYijÞ�: (A7)

The line element of R6 in these coordinates is given by

ds2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðdYijÞ

q
¼ 1

8
�ijkldY

ijdYkl ¼ 1

4
dYijdY

ij: (A8)

APPENDIX B: SUPERCONFORMAL ALGEBRA

1. Commutation relations

The nontrivial (anti)commutation relations among the
generators of the superconformal algebra psuð2; 2j4Þ are

fQi�; �Q
_�
j g ¼ �
i

jP
_��; fS�i ; �Sj _�g ¼ �
j

iK
_��; fQi�; S�j g ¼ �i
i

j

�
L�� þ 1

2
���D

�
þ 2i���Rj

i;

½Ri
j; S�k � ¼ � i

2
ð
j

kS
�
i � 1

4

i
jS

�
k Þ; ½L��; S�i � ¼ i��ð�S�Þi ; ½P _��; S�i � ¼ ��� �Q _�

i ; ½D; S�i � ¼ � i

2
S�i ;

½Ri
j; Qk�� ¼ i

2
ð
k

iQ
j� � 1

4

j
iQ

k�Þ; ½L��;Qi�� ¼ i��ð�Qi�Þ; ½K _��;Qi�� ¼ ��� �Si _�; ½D;Qi�� ¼ i

2
Qi�;

½Ri
j; Rk

l� ¼ i

2
ð
l

iRk
j � 
j

kRi
lÞ; ½D;P _��� ¼ iP _��; ½D;K _��� ¼ �iK _��; ½L��; P _�
� ¼ i�
ð�P _��Þ;

½L��; K _�
� ¼ i�
ð�K _��Þ; ½L��; L
�
� ¼ �2i
ð�

ð�L

Þ
�Þ; ½P _��; K _�
� ¼ �ið� _� _�L�
 þ ��
L _� _� þ ��
� _� _�DÞ:

(B1)

In writing these expressions, we have made use of the 4d
vector index identification fag ¼ f� _�g. In particular, this
implies that the rotation generators decompose into the
self-dual and anti-self-dual parts

Lab $ L� _�� _
 ¼ � 1

2
ð� _� _
L�� þ ���L _� _
Þ;

L�� ¼ L��; L _� _� ¼ ðL��Þy:
(B2)

2. Invariant form

The nonvanishing components of the invariant form of
psuð2; 2j4Þ compatible with the above choice of the basis
of the algebra are

strðP� _�K� _
Þ ¼ ���� _� _
;

strðDDÞ ¼ �1;

strðL��L�
Þ ¼ ���ð��
Þ�;

strðRi
jRk

lÞ ¼ 1

4

�

l
i


j
k �

1

4

i
j


l
k

�
;

strðQi�S�j Þ ¼ 
i
j�

��:

(B3)

3. Z4-grading of the algebra

With the above choice of the generators, the
Z4-decomposition (3.3) is not manifest. To find a manifest
realization of the grading, let us start from the bosonic part
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of the algebra, in particular, from soð6Þ ffi suð4Þ ¼
spanfRi

jg. Since S5 ffi SOð6Þ=SOð5Þ ffi SUð4Þ=Spð4Þ, we
may pick some Spð4Þ-metric Cij with

Cij ¼ �Cji ¼:
1

2
�ijklC

kl;

Cij ¼ ðCijÞ� and CikC
jk ¼ 
j

i :

(B4)

Without loss of generality, C ¼ ðCijÞ may be chosen as

C ¼
0 1 0 0
�1 0 0 0
0 0 0 �1
0 0 1 0

0
BBB@

1
CCCA: (B5)

A particular choice of Cij induces an isomorphism (non-

canonical) between the 15-dimensional bivector represen-
tation 6 ^ 6 of soð6Þ ffi suð4Þ and the sum of the 5-
dimensional vector representation 5 of soð5Þ ffi spð4Þ �
soð6Þ and the 10-dimensional bivector representation 5 ^
5, i.e. 6 ^ 6 ffi 5 � 5 ^ 5. Explicitly, we then have

Rij :¼ CikRj
k|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼̂6^6

¼ C½ikRj�
k

|fflfflffl{zfflfflffl}
¼̂5

þ CðikRjÞ
k

|fflfflffl{zfflfflffl}
¼̂5^5

: (B6)

Note that C½ikRj�
k represents the 5 because of Ri

i ¼ 0. We

shall use the notation

RðijÞ :¼ CðikRjÞ
k and R½ij� :¼ C½ikRj�

k; (B7)

where parentheses mean normalized symmetrization and
square brackets mean normalized antisymmetrization.
Then RðijÞ 2 h and R½ij� 2 gð2Þ.

Next, consider soð2; 4Þ ffi suð2; 2Þ which is generated
by Pa, Lab, Ka, D. Then 1

2 ðPa � KaÞ and Lab are the

remaining generators of h while 1
2 ðPa þ KaÞ and D are

the remaining generators of the bosonic coset part gð2Þ,
respectively. One may proceed similarly with the fermionic
generators. Eventually, one finds that the Z4-splitting is
given by (3.25).

APPENDIX C: FERMIONIC CURRENT

Here, we shall briefly review the derivation of Eq. (3.34).
The bosonic current jB was already given. To get a handle
on the fermionic one jF, let us consider the one-parameter
family (t 2 R)

jðtÞ :¼ etFjBe
�tF þ etFde�Ft; with jðt ¼ 0Þ ¼ jB:

(C1)

This then implies

@tjðtÞ ¼ eFtð�rFÞe�tF; with r
 ¼ d 
 þ½jB; 
�
(C2)

and so ðjðt ¼ 1Þ ¼ j)

jðtÞ ¼ jB þ
Z t

0
dt0et0Fð�rFÞe�t0F ) jF

¼
Z 1

0
dt0et0Fð�rFÞe�t0F: (C3)

Upon recalling the formula etABe�tA ¼ P
n
tn

n! ½A; B�ðnÞ,
where ½A; B�ðnÞ :¼ ½A; ½A; B�ðn�1Þ� with ½A; B�ð0Þ :¼ B, we
find

jF ¼ X
n

1

ðnþ 1Þ! ½F;�rF�ðnÞ

¼ X
n

1

ð2nþ 1Þ! ½F;�rF�ð2nÞ þX
n

1

ð2nþ 2Þ!
�½F;�rF�ð2nþ1Þ: (C4)

Using the definition (3.35), then a short calculation reveals
that

X
n

1

ð2nþ 1Þ! ½F;�rF�ð2nÞ ¼ � sinhðMÞ
M

rF; (C5a)

X
n

1

ð2nþ 2Þ! ½F;�rF�ð2nþ1Þ ¼ �2

�
if;

sinh2ðM=2Þ
M2

rF
�
:

(C5b)

Altogether, we then obtain (3.34).

APPENDIX D: COMMENTS ON CONSERVED
CHARGES

Let us make some comments on the construction of
conserved charges for the bosonic sigma model discussed
in Sec. IVCWhile having in mind the relation to scattering
amplitudes in the dual SYM theory, it would be natural to
discuss the T-duality acting on the open strings as in [12].
Here we shall formally assume that the string coordinates
are periodic in the spatial world-sheet direction � as would
be the case in the closed string sector of the theory.
We have seen in Sec. III C that conserved charges follow

directly from the current JðzÞ. An alternative route to find
them is to consider the parallel transport of the Lax con-
nection jðzÞ

Mðz;�; �;�0; �0Þ :¼ P exp

�Z �;�

�0;�0

jðzÞ
�
: (D1)

A candidate conserved charge is given by the following
composition of parallel transports

QðzÞ :¼ Mðz;�0; �0;�þ 2�; �Þ@M
@z

ðz;�þ 2�; �;�; �Þ
�Mðz;�; �;�0; �0Þ: (D2)

Assuming that the Lax connection is periodic, jðz;�þ
2�; �Þ ¼ jðz;�; �Þ, the charge obeys the following differ-
ential equation
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d

d�
QðzÞ ¼ Mðz;�0; �0;�þ 2�; �Þ

�
�
@j

@z
ðz;�; �Þ;Mðz;�þ 2�; �;�; �Þ

�

�Mðz;�; �;�0; �0Þ: (D3)

In other words, the charge is conserved if the commutator
on the right-hand side vanishes. The charges QðzÞ and the

dual charges ~QðzÞ are related through (4.27), though not in
an obvious way.

Generically, the commutator can vanish only at specific
values of z, in particular, at z ¼ �1,�i (see [34]). The Lax
connection at z ¼ �1 can be easily integrated

Mð�1;�; �;�0; �0Þ ¼ P exp

�Z �;�

�0;�0

j

�

¼ gð�; �Þ�1gð�0; �0Þ: (D4)

In particular, due to the assumed periodicity of g, one finds

Mð�1;�þ 2�; �;�; �Þ ¼ gð�þ 2�; �Þ�1gð�; �Þ ¼ 1;

(D5)

and therefore the charge at z ¼ �1 is manifestly con-
served, d

d�Qð�1Þ ¼ 0. This charge is the standard

Noether charge for the soð2; 4Þ symmetry [see also
Eqs. (3.18) and (3.19)]

Qð�1Þ ¼ �gð�0; �0Þ�1

�I
�JN

�
gð�0; �0Þ; with

JN ¼ gjð2Þg�1;

(D6)

i.e. JN is the bosonic Noether current (3.48).

Consider now the dual charge ~QðzÞ at z ¼ �1. By
similar arguments it is conserved if ~Mð�1;�þ
2�; �;�; �Þ commutes with @z~jð�1;�; �Þ. However, this
crucially depends on the periodicity of the dual coordinates
~X _��

~Mð�1;�þ 2�; �;�; �Þ ¼ ~gð�þ 2�; �Þ�1~gð�; �Þ
¼ exp½i ~Yð�Þ�1ð ~X _��ð�þ 2�Þ

� ~X _��ð�ÞÞP� _��: (D7)

In terms of the original coordinates this expression reads

~Mð�1;�þ 2�; �;�; �Þ ¼ exp

�
�2Y

I
��ðJN;KÞ

�
;

(D8)

where JN;K is the projection of the Noether current (3.48)

along the K generator and � is the Z2-automorphism
defined in Eq. (4.13). Thus the dual conformal symmetry
acting on ~X _�� coordinates is manifest only if the Noether
charge of the original model satisfies

I
��ðJN;KÞ ¼ 0; (D9)

i.e. the total momentum
H
d�Y2@�X� _� vanishes.

To understand the meaning of this conclusion, let us
recall that in the standard discussions of T-duality one
usually assumes the compactness of the isometry direction
along which the duality is performed. Provided the original
X and the dual ~X coordinates are periodic with radii a and

~a ¼ �0
a , the T-duality is then a symmetry of the spectrum of

underlying conformal field theory: it interchanges the
Kaluza-Klein momenta with the winding mode numbers.
Viewing the noncompact isometry case as a limit of the
compact one means that to preserve this symmetry one
may assume that the dual coordinate is compactified on a
circle of vanishing radius, ~a ! 0: then all finite-mass
momentum modes are mapped into finite-mass winding
modes (see Ref. [9]). A possible alternative is to restrict
consideration to a subsector of states that do not carry
momentum in the noncompact isometric X direction;
then their duals are not required to have a winding in ~X
and thus ~X may also be assumed to be noncompact. Indeed,
Eq. (D9) may be interpreted as such zero X momentum or
zero ~X winding condition.
Since the T-duality along all the four translational

isometries of the AdS5 space acts also on the time direc-
tion, it is not clear, even assuming the above zero-
momentum condition, if this duality may have some useful
implications for the closed string spectrum of the super-
string theory. Given a close relation between the T-self-
duality of the AdS5 � S5 sigma model and its integrability
that we uncovered above, one may still expect some con-
nection between the duality and the closed string spectrum,
but that probably requires a certain complexification of the
set of charges that label string states (in addition to a
constraint on their values implied by the above discussion).
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B457, 3 (1995); K. Sfetsos, Nucl. Phys. B463, 33 (1996);
T. Curtright, T. Uematsu, and C.K. Zachos, Nucl. Phys.
B469, 488 (1996).

[11] R. Kallosh and A.A. Tseytlin, J. High Energy Phys. 10
(1998) 016.

[12] L. F. Alday and J.M. Maldacena, J. High Energy Phys. 06
(2007) 064; L. F. Alday and J.M. Maldacena, J. High
Energy Phys. 11 (2007) 068.

[13] M. Kruczenski, R. Roiban, A. Tirziu, and A.A. Tseytlin,
Nucl. Phys. B791, 93 (2008).

[14] J.M. Drummond, J. Henn, V. A. Smirnov, and E.
Sokatchev, J. High Energy Phys. 01 (2007) 064; J.M.
Drummond, G. P. Korchemsky, and E. Sokatchev, Nucl.
Phys. B795, 385 (2008); J.M. Drummond, J. Henn, G. P.
Korchemsky, and E. Sokatchev,Nucl. Phys. B795, 52
(2008); arXiv:0712.1223; arXiv:0803.1466.

[15] Z. Bern, M. Czakon, L. J. Dixon, D.A. Kosower, and V.A.
Smirnov, Phys. Rev. D 75, 085010 (2007); Z. Bern, J. J.M.
Carrasco, H. Johansson, and D.A. Kosower, Phys. Rev. D
76, 125020 (2007); Z. Bern, L. J. Dixon, D. A. Kosower,
R. Roiban, M. Spradlin, C. Vergu, and A. Volovich, Phys.
Rev. D 78, 045007 (2008).

[16] Z. Komargodski, J. High Energy Phys. 05 (2008) 019.
[17] A.M. Polyakov, Int. J. Mod. Phys. A 14, 645 (1999); Phys.

At. Nucl. 64, 540 (2001).
[18] A. Brandhuber, P. Heslop, and G. Travaglini, Nucl. Phys.

B794, 231 (2008); J. McGreevy and A. Sever, J. High
Energy Phys. 08 (2008) 078.

[19] R. Ricci, A.A. Tseytlin, and M. Wolf, J. High Energy
Phys. 12 (2007) 082.

[20] M. Hatsuda and S. Mizoguchi, J. High Energy Phys. 07
(2006) 029.

[21] E. Sokatchev, in Proceedings of the Conference on
‘‘Wonders of Gauge Theory and Supergravity, Paris,
June 2008 (unpublished); G. Korchemsky, in
Proceedings of the Conference on ‘‘Wonders of Gauge
Theory and Supergravity, Paris, June 2008 (unpublished);
J.M. Drummond, J. Henn, G. P. Korchemsky, and E.
Sokatchev, arXiv:0807.1095.

[22] N. Berkovits, in Proceedings of the Conference on
‘‘Wonders of Gauge Theory and Supergravity, Paris,
June 2008 (unpublished), based on work in preparation
with J.M. Maldacena.

[23] A. Giveon, M. Porrati, and E. Rabinovici, Phys. Rep. 244,
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