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Template-based searches for gravitational waves are often limited by the computational cost associated

with searching large parameter spaces. The study of efficient template banks, in the sense of using the

smallest number of templates, is therefore of great practical interest. The traditional approach to template-

bank construction requires every point in parameter space to be covered by at least one template, which

rapidly becomes inefficient at higher dimensions. Here we study an alternative approach, where any point

in parameter space is covered only with a given probability �< 1. We find that by giving up complete

coverage in this way, large reductions in the number of templates are possible, especially at higher

dimensions. The prime examples studied here are random template banks in which templates are placed

randomly with uniform probability over the parameter space. In addition to its obvious simplicity, this

method turns out to be surprisingly efficient. We analyze the statistical properties of such random template

banks, and compare their efficiency to traditional lattice coverings. We further study relaxed lattice

coverings (using Zn and A�
n lattices), which similarly cover any signal location only with probability �.

The relaxed A�
n lattice is found to yield the most efficient template banks at low dimensions (n & 10),

while random template banks increasingly outperform any other method at higher dimensions.
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I. INTRODUCTION

Detection methods based on matched filtering are
widely used in searches for gravitational waves (GWs) in
the data of ground-based detectors (LIGO [1–3], GEO
[4,5], VIRGO [6], TAMA [7]) as well as being among
those proposed for future space-based detectors [8].
These methods can be applied when the signals being
searched for have predictable waveforms, usually parame-
terized by unknown waveform parameters. Examples of
this are searches for ‘‘continuous’’ gravitational waves
(quasimonochromatic, long-duration signals) and binary
inspirals. Matched filtering consists of processing the
data with multiple waveforms (templates), each corre-
sponding to a different set of waveform parameters. The
early theoretical foundations for choosing a discrete set of
templates from the continuous family were laid in [9,10].
The spacing between different templates is based on a
metric in the space of signal parameters, first introduced
in [11–14]. The metric defines a distance measure directly
related to the loss in the matched filter signal-to-noise ratio
for a given template and signal. Using the metric, a tem-
plate bank (often in the form of a lattice) can be placed on
the space such that the loss in signal-to-noise ratio between
any putative signal and at least a single template in the
bank is less than a predefined maximum value. We define
the efficiency of a template bank by counting how many
templates are necessary to obtain a given coverage.

Template placement for gravitational-wave data analysis
has proven to be a complicated and involved procedure
even in the relatively low-dimensional spaces already
searched [15–24]. Here we discuss the possibility of adopt-
ing a seemingly far less complicated template placement
method whereby we randomly position templates within
our search space rather than placing them on a lattice.
It has recently been shown [25] that constructing optimal

template banks can be interpreted as an instance of the
mathematical sphere covering problem, and that results
from this field of research can usefully be applied to
template banks. For instance, the hypercubic Zn lattice
covering is known to become extremely inefficient at
higher dimensions compared to other lattices, in particular,
the A�

n lattice, which provides a highly efficient covering
for dimensions up to n & 24 [26].
In practice, however, constructing lattice-based template

banks often turns out to be problematic, especially in
higher dimensions, due to the difficulties associated with
adapting lattice coverings to curved parameter spaces and
performing coordinate transformations to avoid nonconst-
ant metric components. Furthermore, even the best lattice
covering becomes increasingly inefficient at higher dimen-
sions (n * 10, say), which makes this approach increas-
ingly unsuitable for problems involving high-dimensional
parameter spaces.
A radically different approach to template-bank con-

struction consists in relaxing the strict requirement of
complete coverage for a given mismatch, and instead re-
quire coverage only with a certain confidence �< 1. This*chris.messenger@aei.mpg.de
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is a natural step for searches that employ statistical detec-
tion techniques which always involve a finite false-
dismissal probability. Connected to this idea are new types
of template banks, commonly referred to as ‘‘stochastic,’’
which have recently been studied and applied by various
groups [27–30]. Stochastic template banks are constructed
by randomly placing templates on the parameter space,
accompanied by a ‘‘pruning’’ step in which ‘‘superfluous’’
templates, which are deemed to lie too close to each other,
are removed.

Here we study an even simpler approach, which we refer
to as ‘‘random template banks,’’ in order to distinguish it
from stochastic banks. This method consists of placing the
right number of templates randomly, with probability den-
sity dependent on the metric determinant and without any
additional pruning steps. Apart from the practical advan-
tage of relative simplicity, this allows one to analyze the
properties of such random template banks analytically and
in great detail. For example, we can explicitly determine
the number of templates NR required to achieve any
desired level of coverage confidence�. This paper presents
the first detailed study of the properties of such template
banks, and an explicit comparison of their efficiency to
traditional full-coverage lattice template banks.

Despite their simplicity, random template banks are
found to achieve astonishing levels of efficiency compared
to traditional template banks, especially at higher dimen-
sions. They outperform even the highly efficient A�

n lattice
in dimensions above n� 6–7 for covering confidences �
in the range of 90%–95%.

As a by-product of this study, we also analyze the
properties of ‘‘relaxed lattice’’ coverings, which share a
fundamental feature with random template banks: for any
signal location, the nominal covering mismatch is guaran-
teed only with probability �< 1. This results in a coarser
lattice and therefore a reduction of the number of tem-
plates. We find that these relaxed lattices generally result in
the most efficient template banks at dimensions up to n�
11, where random template banks start to dominate.

The plan of this paper is as follows: First we review the
general template-bank problem and traditional lattice-
based template banks in Sec. II. In Sec. III, we present a
detailed analysis of random template banks: We calculate
their template densities, and compare them to traditional
lattice coverings, and we investigate some of the relevant
statistical properties of random template banks. In Sec. IV,
we describe a modification to traditional lattice template
banks, termed relaxed lattice covering. Section V provides
a summary and discussion of the results.

II. TRADITIONAL TEMPLATE-BANK
CONSTRUCTION

In this section, we briefly review some fundamental
concepts used in constructing template banks, namely,
the parameter-space metric [11,12,31] and lattice cover-

ings [13,14,25]. One key feature of traditional template
banks is that they require complete coverage of the pa-
rameter space, i.e. no point in parameter space is allowed to
be further away from its closest template than a given
maximal mismatch.
Consider an n-dimensional parameter space Sn, with

coordinates f�igni¼1. Each point � describes a set of pa-
rameters of a signal model, which we assume to be an
accurate description of the true signal family sðt;�Þ.
Assume we measured data xðtÞ containing a signal
sðt;�sÞ in addition to Gaussian additive noise nðtÞ, i.e.
xðtÞ ¼ nðtÞ þ sðt;�sÞ. Typically one constructs a detection
statistic of the data, Xð�; xÞ, say, which is a scalar repre-
senting the probability that a signal with parameters � is
present in the data xðtÞ. Because of the random noise
fluctuations nðtÞ, X is a random variable, but with the
property that its expectation value �Xð�;�sÞ � E½Xð�; xÞ�
has a maximum at the true location of the signal � ¼ �s.
We can define a notion of mismatch, or squared length of a
parameter offset �� ¼ �� �s, as the relative loss in the
expected detection statistic due to this offset, i.e.

mð��;�sÞ ¼ 1� �Xð�;�sÞ
�Xð�s;�sÞ ¼ gijð�sÞ��i��j þ . . . ; (1)

where we use automatic summation over repeated indices
i, j and the metric tensor gij is defined via Taylor expan-

sion of the mismatch m in the small offset ��. Note that in
defining the metric in this way we are restricted to local
distance measures and therefore also to mismatch values
m � 1. Using this definition of the metric, the proper
volume of the parameter space Sn can now be expressed as

VSn
¼

Z
Sn

dV; with dV � ffiffiffi
g

p
dn�; (2)

where g � detgij is the determinant of the metric gij.

A common approach to the problem of parameter-space
covering is to use a lattice of templates. Template-based
searches are often computationally expensive due to the
large number of templates required, therefore much effort
has gone into identifying the most efficient covering,
namely, the lattice that requires the fewest templates to
achieve complete coverage of the parameter space [25].
Note that constructing lattice template banks in curved
parameter spaces is highly impractical, and most of the
following results implicitly assume that the parameter-
space metric gij is flat, i.e. we can find coordinates in

which gij is constant (i.e. independent of parameter-space

location �).
A parameter-space point � is considered to be ‘‘cov-

ered’’ by a template �ðkÞ if its squared distance to the

template is smaller than the given nominal mismatch m�,
i.e.

gij��
i
ðkÞ��

j
ðkÞ <m�; with ��ðkÞ � �� �ðkÞ: (3)
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This is equivalent to saying that � lies within the
n-dimensional sphere of radius R ¼ ffiffiffiffiffiffi

m�
p

centered on the

template �ðkÞ. The construction of efficient (complete)

template banks is therefore an instance of the sphere cover-
ing problem, which asks for the sphere arrangement requir-
ing the smallest number of overlapping spheres to
completely cover an n-dimensional (Euclidean) space
[25,26].

A key quantity used in assessing the efficiency of a given
sphere covering is its thickness. The thickness� is defined
[26] as the average number of n-dimensional spheres
(templates) covering any point in the parameter space.
For a complete coverage, the thickness therefore satisfies
by definition� � 1 (where in practice equality can only be
attained for n ¼ 1, in higher dimensions there will always
be some overlap between spheres). For a lattice covering,
the thickness can be conveniently expressed as

� ¼ Vnm
n=2
�

V�ðm�Þ ; (4)

where Vn is the volume enclosed by an n-dimensional unit
sphere,1 namely,

Vn ¼ �n=2

�ðn=2þ 1Þ ; (5)

and V� is the volume of a fundamental region of the lattice
�, with covering radius R ¼ ffiffiffiffiffiffi

m�
p

. Note that under a linear

rescaling c, lengths change like R0 ¼ cR, mismatches like
m0 ¼ c2m, and lattice volumes like V 0

� ¼ cnV�. Therefore

we see from Eq. (4) that the thickness� is a scale-invariant
property, characterizing the geometric structure of a cover-
ing. In particular � is independent of mismatch m�. A
special instance of a fundamental lattice region is the
Voronoi cell (also known as the Wigner-Seitz cell), which
is the set of points that are closer to a given template than to
any other template. Let us also define at this point the
volume covered by a single template as

VT � Vnm
n=2
� : (6)

In the following, it will also be useful to introduce the
normalized thickness,

� � �

Vn

; (7)

which corresponds to the number of templates per unit
volume in the case of m� ¼ 1. Like the thickness �, this
is a scale-invariant property of a covering, independent of
mismatch m�. As shown in [25], the total number of
templates N of a covering can be expressed in terms of

the normalized thickness as

N ¼ �m�n=2
� VSn

; (8)

which shows that the total number of templates is propor-
tional to the normalized thickness.
In the following, we will focus on two lattices, namely,

theZn (hypercubic) and the A
�
n lattice, known, respectively,

for their simplicity and covering efficiency. The normal-
ized thickness is known analytically for both lattices,
namely,

�Zn
¼ nn=2

2n
; (9)

�A�
n
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p �

nðnþ 2Þ
12ðnþ 1Þ

�
n=2

: (10)

In the following, we will mostly use the normalized thick-
ness for comparing different covering strategies, since it is
proportional to the total number of templates [Eq. (8)],
which is the quantity we wish to minimize in order to
reduce the computational cost of searching a parameter
space.

III. RANDOM TEMPLATE BANKS

We now investigate the properties of a new type of
template bank, which we call the ‘‘random template
bank,’’ which consists of NR templates placed randomly
with uniform probability distribution (per proper volume)
over the parameter space Sn. Note that contrary to the
lattice template banks discussed in the previous section,
nothing in the following requires the parameter-space met-
ric gijð�Þ to be constant or flat. The only practical assump-

tion wewill make for simplicity is that the metric curvature
radius has to be large compared to the covering radius of
one template, so we can neglect metric curvature in the
expression for the volume of a single template given by
Eq. (6). Some practical issues arising from nonconstant
metrics will be discussed in Sec. III E.

A. Number of required random templates NR

Let us select a point �s 2 Sn which we assume to be the
location of a signal. We assume that the covering sphere
with radius R ¼ ffiffiffiffiffiffi

m�
p

centered on �s does not intersect the

boundary of the parameter space Sn, which allows us to
neglect boundary effects in the following discussion. Now
consider a single randomly placed template with uniform
probability distribution (per proper volume). What is the
probability that this template does not cover (‘‘miss’’) the
point �s? This is equivalent to the probability that the
template does not fall within the covering sphere of radius
R centered on �s. The probability of falling within this
volume is VT=VSn

, and so the answer is simply

1We are using the geometers convention with respect to the
definition of the n-dimensional sphere (or n-sphere) where the 1-
sphere represents two points on a line, the 2-sphere is a circle,
etc.
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Pðmissðm�ÞjSn; NR ¼ 1Þ ¼ 1� Vnm
n=2
�

VSn

: (11)

If we were to placeNR templates randomly in this way, the
probability that none of the templates cover the point �s is
therefore

Pðmissðm�ÞjSn; NRÞ ¼
�
1� Vnm

n=2
�

VSn

�
NR

; (12)

since in this construction each template location is inde-
pendent of all previously placed templates. It follows that
the probability that the point �s is covered (‘‘hit’’) by at
least one template is

Pðhitðm�ÞjSn; NRÞ ¼ 1�
�
1� Vnm

n=2
�

VSn

�
NR

: (13)

This expression shows that the probability of an (unknown)
signal location �s 2 Sn being covered by this random
template bank is always <1 and we would require NR !
1 templates to achieve certain complete coverage.
However, we can relax the requirement on certainty of
coverage and instead ask how many randomly placed
templates do we need in order to obtain a probability �
that an (unknown) signal location �s would be covered.
This is simply given by the solution to
Pðhitðm�ÞjSn; NRÞ ¼ �, which yields

NRð�;m�;SnÞ ¼ lnð1� �Þ
lnð1�mn=2

� Vn=VSn
Þ : (14)

In practice we will mostly be interested in ‘‘large’’ parame-
ter spaces, in the sense that the parameter-space volume
VSn

is very large compared to the volume VT of one

template, and we can therefore Taylor expand Eq. (14) in

the small quantity mn=2
� Vn=VSn

� 1, which yields

NRð�;m�;SnÞ � 1

Vn

ln

�
1

1� �

�
m�n=2

� VSn
; (15)

where the neglected higher-order terms in the expansion
correspond to corrections to NR of order Oðlnð1� �Þ=2Þ.
We see that for a given parameter-space volume VSn

, the

two parameters m� and � completely determine the num-
ber NR of random templates we need to place randomly on
the parameter space Sn. We therefore introduce the nota-
tion �Rnðm�Þ to denote an n-dimensional random tem-
plate bank with nominal mismatch m� and covering
confidence �. An illustrative example of a two-
dimensional random template bank 0:9R2ð0:1Þ is shown
in Fig. 1 for a nominal mismatch of m� ¼ 0:1, covering
confidence � ¼ 0:9, and a parameter-space volume VSn

requiring NR ¼ 100 templates. By comparing Eq. (15) to
the general expression in Eq. (8), we can directly read off

the normalized thickness �Rð�Þ of a random template
bank, namely,

�Rð�Þ ¼ 1

Vn

ln

�
1

1� �

�
; (16)

and from Eq. (7) we obtain the corresponding thickness
�Rð�Þ as

�Rð�Þ ¼ ln

�
1

1� �

�
: (17)

This expression reveals a very special property of random
template banks compared to any lattice covering [e.g. see
Eq. (9) and (10)], namely, the thickness �R only depends
on the covering confidence �, and is independent of the
dimension n.
Figure 2 shows a comparison between the normalized

thickness � of the hypercubic (Zn) lattice covering, the A
�
n

lattice covering and random template banks �Rn with
different covering confidences �. We see that random
template banks beat the efficiency of the A�

n lattice (which
is the best, or close to the best lattice covering currently
known for dimensions up to n < 24 [25]) at sufficiently
high dimension n, namely, in n ¼ 10 for 0:99Rn, n ¼ 7 for

FIG. 1. Example realization of a random template bank
0:9R2ð0:1Þ in n ¼ 2 dimensions (using periodic boundary con-

ditions), with an arbitrarily chosen nominal mismatch m� ¼ 0:1
and a covering confidence � ¼ 0:9. The parameter-space vol-
ume VSn

was chosen such that the resulting number of templates

is NR ¼ 100. Template locations are indicated by crosses and
template boundaries (corresponding to the covering radius R ¼ffiffiffiffiffiffi
m�

p
) are shown as black circles. The covered and uncovered

volumes are shaded grey and white, respectively.
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0:95Rn, and n ¼ 6 for 0:90Rn. Even more surprisingly,
random template banks beat the theoretical lower bound
(‘‘Coxeter-Few-Rogers bound’’ [26]) on the thickness of
any covering. This is possible because random template
banks do not provide a covering in the strict sense, as they
leave some fraction of parameter space uncovered.

B. Distribution of mismatches

Taking the derivative of Eq. (13) with respect to the
nominal mismatch m�, we obtain the probability density
function (pdf) for signal mismatches m in a random tem-
plate bank of given NR and VSn

, namely,

pdf ðmjNR;SnÞ ¼ nNRVnm
n=2�1

2VSn

�
1� Vnm

n=2

VSn

�
NR�1

;

(18)

which describes the probability of finding a template
within the mismatch interval ½m;mþ dm� of some loca-
tion �s. This expression is somewhat inconvenient, how-
ever, as it depends on ‘‘extensive’’ parameter-space
properties, namely, the total number of templates NR and
the parameter-space volume VSn

.

In order to rewrite this purely in terms of the ‘‘intensive’’
parametersm� and�, let us first note that for given nominal
mismatch m� and covering confidence �, we can rewrite

the required number of templates given by Eq. (15) as

NR ¼ �Rð�Þm�n=2
� N 0; with N 0 �

VSn

Vn

; (19)

where we defined N 0 as the parameter-space volume VSn

measured in units of the unit-sphere volume Vn. Using this
expression, we can write the probability of a point being
covered within mismatch m in a random template bank
�Rðm�Þ, using Eq. (13), as

PðhitðmÞj�Rnðm�ÞÞ ¼ 1�
�
1�mn=2

N 0

�
N 0�Rm�n=2

�
(20)

and using the assumption of a large parameter-space vol-
ume VSn

, namely, N 0 	 1, we can express this as

PðhitðmÞj�Rnðm�ÞÞ � 1� e��R ~mn=2
; (21)

where we defined ~m as the mismatch m measured in units
of the nominal mismatch m�, i.e.

~m � m

m�
: (22)

Note that we obviously find Pðhitðm�Þj�Rnðm�ÞÞ ¼ �.
Contrary to Eq. (20), this expression for PðhitÞ only de-
pends on the parameters ~m and �. The interpretation of
Eq. (21) is as follows: Given a random template bank
�Rnðm�Þ constructed for nominal mismatchm� and cover-
ing confidence �, what is the probability of a signal loca-
tion being covered with a mismatch of at most m? By
differentiating this with respect to the relative mismatch
~m we obtain the probability density function of a template
falling within the mismatch interval ½ ~m; ~mþ d ~m� of a
signal, namely,

FIG. 3. Probability distribution Eq. (23) of relative mismatches
~m ¼ m=m� in random template banks 0:95Rn of dimension n ¼
1, 2, 3, 6, 12.

FIG. 2 (color online). Normalized thickness � as a function of
dimension n for hypercubic (Zn) and A

�
n lattice covering, and for

random template banks �Rn with different choices of covering
confidence � ¼ 0:99, 0.95, 0.90. Also plotted is the Coxeter-
Few-Rogers bound (CFR), which is a theoretical lower bound on
the thickness of any strict (� ¼ 1) covering.
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pdf ð ~mj�RnÞ � d

d ~m
PðhitðmÞj�Rnðm�ÞÞ

¼ n

2
�R ~mn=2�1e��R ~mn=2

: (23)

Figure 3 shows a plot of the mismatch pdf for random
template banks 0:95Rn in different dimensions n. We can
see in this plot that at higher dimensions the bulk of the
mismatch probability shifts to the higher end of relative
mismatches ~m. This shows that random template banks
become more efficient as the number of dimensions grows.
The reason for this is that a bank that yields mismatch
distributions peaked at lower values of the relative mis-
match must be more densely populated than a bank with
mismatch distribution peaked at higher values of the rela-
tive mismatch, assuming both banks satisfy the same
maximal-mismatch constraint (at given confidence).

C. Spatial parameter-space coverage

In our discussion of random template banks so far we
have focused on the probability � that an (unknown) signal
location �s is covered by a template. If we were to con-
struct a number of random template banks, this ‘‘confi-
dence’’ therefore describes the fraction of template banks
in which �s would be covered. A somewhat related, yet
different, question is as follows: Given a realization of a
random template bank �Rnðm�Þ, what is the fraction C of
parameter space that is actually covered? This spatial
coverage C, as a property of an individual random-tem-
plate-bank realization, is a random variable, and in the
following we will analyze some of its relevant statistical
properties.

For a given random-template-bank realization, we de-
fine the function fð�Þ on the parameter space Sn as

fð�Þ ¼
�
1 if � is covered

0 otherwise;
(24)

describing whether a point � is covered (hit) or not (miss)
within mismatch m�. Using this we can express the spatial
coverage fraction C as

C ¼ 1

VSn

Z
Sn

fð�ÞdV; (25)

where dV ¼ ffiffiffi
g

p
dn� is the volume element associated with

dn�. Given any point � 2 Sn the expectation value of fð�Þ
over an ensemble of template banks is given by

E½fð�Þ� ¼ X1
j¼0

jPðfð�Þ ¼ jÞ ¼ Pðhitðm�Þj�Rnðm�ÞÞ ¼ �;

(26)

where we used the fact that the probability of any point �
being covered in �Rnðm�Þ is by construction given by the
covering confidence �. Using this we can express the
expectation value of the spatial coverage C as

E½C� ¼ 1

VSn

Z
Sn

E½fð�Þ�dV ¼ �; (27)

showing that the expected spatial coverage C is equal to the
covering confidence �. Note that this result holds true
despite the obvious existence of correlations in fð�Þ be-
tween neighboring points.
However, the question of the variance in spatial cover-

age C over an ensemble of random template banks is
substantially complicated by these spatial correlations, as
we need to evaluate the following integral:

Var ½C� ¼ 1

V2
Sn

�Z
Sn

dV
Z
Sn

dV0E½fð�Þfð�0Þ�
�
� �2:

(28)

Since we do not have a good handle on the spatial corre-
lations in fð�Þ for a given realization of �Rn, we try to find
some reasonable approximations. First, we approximate
the above integral as a discrete sum over finite volume
elements �V. In addition, we assume that fð�Þ in each
volume element �V is completely uncorrelated with fð�0Þ
in any other volume element, and that fð�Þ is perfectly
correlated within each volume element. Applying these
approximations yields the following estimate for the vari-
ance:

Var ½C� � �V

VSn

�ð1� �Þ: (29)

We have found that a reasonably good semiempirical
‘‘guess’’ for the number NI of independent ‘‘uncorrelated’’
volume elements in Sn seems to be

NI � 2nNR; and �V ¼ VSn

NI

: (30)

Note that we do currently not have a good theoretical
understanding of this number, however, it seems to yield
a reasonably good quantitative agreement with the
Monte Carlo results on the coverage, as well as the
worst-case mismatch discussed in the next section. We
therefore present the analytic estimate as a useful indicator
of the general behavior and trends at higher dimensions.
Substituting this into Eq. (29), we obtain the following
rough estimate for the coverage variance:

Var ½C� � �ð1� �Þ
2nNR

: (31)

A key feature to notice is the inverse proportionality of the
variance to the number of templatesNR and the parameter-
space dimension n. In Fig. 4, we show example distribu-
tions of the spatial coverage C, obtained through numerical
simulations, and compare them to Gaussian distributions of
mean � and variance given by Eq. (31). Each simulation
used 2000 random-template-bank realizations (parameter-
space volumes were computed as a function of NR and �
and edge effects removed using periodic boundary condi-
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tions). AMonte Carlo integration using 5
 105 points was
then performed on each realization to compute the spatial
coverage C. These simulations become very computation-
ally intensive as the dimensionality of the space increases
and hence we limited our test scenarios to n � 6 andNR ¼
104. The Gaussian distributions using mean E½C� and
variance Var½C� seem to agree quite well with the results
from the Monte Carlo simulations for the range of dimen-
sions considered.

D. Expected worst-case mismatch

A related question to the spatial coverage C is the worst-
case mismatch mw found in an individual realization of
�Rnðm�Þ, i.e. the ‘‘deepest hole’’ in the template bank. As
seen in the previous section, a fraction 1� C of the pa-
rameter space Sn will have mismatch m>m�. Within this
uncovered fraction there will be a worst-case location with
the largest value mw of mismatch. Similar to C, the worst-
case mismatch mw is a random variable dependent on a
given realization of �Rnðm�Þ, and in this section we
analyze the statistical properties of mw over an ensemble
of random-template-bank realizations.

The geometrical definition of the minimal mismatch
mð�Þ in any parameter-space point � for a given random
template bank can be expressed as

mð�Þ ¼ min
NR

k¼1
fgij��i

ðkÞ��
j
ðkÞg; (32)

where k indexes the NR random templates �ðkÞ and

��ðkÞ ¼ �� �ðkÞ. The worst-case mismatch mw on the

space Sn is therefore

mw � max
Sn

fmð�Þg: (33)

Note that this is in fact the definition of the ‘‘covering
mismatch’’ (or covering radius, squared) of a set of tem-
plates [26], and for lattices and other complete (� ¼ 1)
coverings, this will be equal to the nominal mismatch, i.e.
mw ¼ m�. In the case of random template banks, however,
we control the nominal mismatch m�, but the worst-case
mismatch could take on arbitrarily large values mw >m�.
One very interesting approach to answering this question
would be to use the fact that all ‘‘local’’ worst-case mis-
matches occur at Voronoi cell vertices [32] (being the so-
called ‘‘holes’’ of the covering). For a given number of
random templates (or ‘‘Voronoi seeds’’) the expectation
value of the number of vertices is known [33]. This would
be a good start to defining a finite set of points for which to
draw random mismatch values. The problem with this
approach, however, is that the vertex density grows expo-
nentially with dimension, and vertex mismatch values
therefore will become highly correlated due to their rela-
tive ‘‘closeness.’’ In addition, while we know the mismatch
distribution [see Eq. (23)] at randomly selected points �,
the mismatch distribution on Voronoi vertices (being very
special points) is different, and a complicated function of
pdfð ~mj�RnÞ.
We therefore employ a more direct and crude approach,

namely, using the semiempirical guess Eq. (30) for the
number NI of statistically ‘‘independent’’ locations in Sn,
together with the known mismatch distribution of Eq. (23).
A linear rescaling of the whole template space will affect
all mismatches equally, and therefore it will be more useful
in the following to consider the relative worst-case mis-
match ~mw � mw=m�, i.e. mw measured in units of the
nominal mismatch m�.
The probability that the largest (relative) mismatch ~m of

NI independent trials falls within the interval ½ ~mw; ~mw þ
d ~m� can be expressed as

pdf ð ~mwj�;NIÞd ~m ¼ NI

1

� �
p1p

NI�1
0 ; (34)

where p1 is the probability of the mismatch in a single trial
falling within ½ ~mw; ~mw þ d ~m�, i.e.

p1 � pdfð ~mwj�RnÞd ~m; (35)

and p0 is the probability of the mismatch in a single trial
falling within ½0; ~mw�, i.e.

p0 � PðhitðmwÞj�Rnðm�ÞÞ: (36)

Using Eq. (23) this can be rewritten as

pdfð ~mwj�Rn; NIÞ ¼ d

d ~m

�������� ~mw

Pðhitj ~m;�ÞNI

¼ n

2
�RNI ~m

n=2�1
w e��R ~mn=2

w


 ð1� e��R ~mn=2
w ÞNI�1: (37)

FIG. 4. Results of Monte Carlo simulations of spatial coverage
C for realizations of 0:9Rn random template banks in n ¼
1; . . . ; 6 dimensions, using NR ¼ 104 templates. The histograms
show the distribution of measured coverages C, the solid black
curves show a Gaussian distribution of mean � and variance
given by Eq. (31), and the dashed black lines indicate the mean
values of the measured distributions.
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Using this expression we can easily compute quantiles of
the worst-case mismatch distribution, namely, from

Pð ~mw � ~mj�;NIÞ ¼
Z ~m

0
pdfð ~mwj�;NIÞd ~mw

¼ ð1� e�R ~mn=2ÞNI ; (38)

so, for example, we obtain the median worst-case mis-
match as

~m 50%
w ¼

�
� 1

�R
lnð1� 2�1=NIÞ

�
2=n

: (39)

Using the semiempirical guess, given in Eq. (30), for the
number NI of independent parameter-space points in Sn,
we obtain quantitative estimates for the distribution of the
worst-case mismatch. Figure 5 shows a few example worst-
case mismatch distributions, comparing the analytical es-
timate of Eq. (37) to the results of Monte Carlo simula-
tions. These simulations were run with 2000 random-
template-bank realizations of a 0:9Rn bank containing
NR ¼ 104 templates each. The predicted distributions dif-
fer slightly from the simulations, but this should be ex-
pected given our crude estimation of NI. With the
exception of n ¼ 1, the analytical expression tends to
slightly underestimate the worst-case mismatch values.
Nevertheless, our rough estimate seems to capture the
overall trend to smaller values of E½ ~mw� and Var½ ~mw�
with increasing dimension n. This behavior is also illus-
trated in Fig. 6, where we have plotted the analytic expec-
tation value and variance [computed from Eq. (37)] of ~mw

as a function of dimension n for various covering confi-

dences � and numbers of templates NR. We see that in
higher dimensions the expectation value of the relative
worst-case mismatch asymptotically approaches unity.
We also see that as the number of templates NR increases,
corresponding to a larger number of mismatch ‘‘trials,’’ we
obtain an increase in the expected value of ~mw. In addition,

we see that the standard deviation �½ ~mw� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½ ~mw�

p
decreases both with increasing number of template NR
as well as with higher dimension n, so that worst-case
mismatches become both smaller and more tightly con-
strained in these limits. For example, as shown in Fig. 5, for
n ¼ 6 our Monte Carlo simulations give the mean value of
~mw as 1.81 (i.e. on average the worst-case mismatch is 1.81
times larger than the nominal mismatch) with a standard
deviation of 0.06 for a random template bank containing
NR ¼ 104 templates with a covering confidence � ¼ 0:9.
In using such a template bank one would therefore expect
with >99% (3�) confidence that the largest mismatch is

FIG. 5. Results of Monte Carlo simulations of (relative) worst-
case mismatch ~mw for realizations of 0:9Rn random template
banks in n ¼ 1; . . . ; 6 dimensions, using NR ¼ 104 templates.
The histograms show the distribution of measured (relative)
worst-case mismatches ~mw, the solid black curves show the
estimated distribution Eq. (37) and the dashed black lines
indicate the mean values of the measured distributions.

FIG. 6. Statistical properties of the worst-case mismatch ~mw in
random template banks as function of dimension n, covering
confidence � and number of templates NR. This plot shows the
expectation value E½ ~mw� and standard deviation �½ ~mw� derived
from the theoretical estimate Eq. (37). The upper panel shows
the case for NR ¼ 104 templates, while the lower panel is for
NR ¼ 108.
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smaller than 1:99m�. We should also note that despite our
rather crude estimate for the number of independent
parameter-space locationsNI, our model is able to estimate
the mean value of ~mw to within � 10% of the values
obtained from our simulations. This is in fact one of the
key results from this investigation; although random tem-
plate banks by construction only provide incomplete cover-
age, C< 1, the actual worst-case mismatch mw in the
uncovered regions is not expected to be substantially larger
than the nominal mismatch m�, especially at higher
dimensions.

E. Practical issues in curved parameter spaces

As noted in the beginning of the section, the random
template bank results apply without modification to curved
parameter spaces and nonconstant metrics. In order to
construct such a template bank in practice, however, we
need to generate a uniform random sampling in proper
volume, which for nonconstant metrics can be nontrivial. In
order to see how to take account of nonconstant metric
components gijð�Þ in the random template placement, we

note that Eq. (15) specifies a constant uniform probability
density �R of templates, namely,

�R ¼ NR

VSn

¼ dNR

dV
¼ 1ffiffiffi

g
p dNR

dn�
: (40)

In other words, the nonconstant template ‘‘pseudodensity’’
�̂Rð�Þ in coordinate space satisfies

�̂Rð�Þ � dNR

dn�
¼

ffiffiffiffiffiffiffiffiffiffi
gð�Þ

q
�R ¼

ffiffiffiffiffiffiffiffiffiffi
gð�Þ

q
�Rm�n=2

� ; (41)

which specifies the required random sampling density in
coordinate space.

There are various sophisticated and efficient methods for
sampling from nonuniform distributions: Markov-Chain-
Monte-Carlo (MCMC) methods, importance resampling,
and rejection sampling are a few examples. In each of these
sampling methods it is sufficient to know the density
�̂Rð�Þ (and hence the metric determinant) only up to
some normalizing constant factor. However, one must
know NR, the total number of random templates to draw,
which requires accurate knowledge of the proper volume,
defined by Eq. (2), and therefore ultimately one must also
have accurate knowledge of the metric determinant.

The simplest method, applicable for slowly varying
template densities is to decompose the parameter space

Sn into smaller patches SðjÞ
n , which are small enough so

they can be approximated by a constant metric, and sam-
pling it uniformly with template density given by Eq. (41)
evaluated at the center of each patch.

IV. RELAXED LATTICES

In the previous section we saw that random template
banks �Rn will outperform any covering at sufficiently

high parameter-space dimension. One of the key features
of random template banks, however, is that they do not
actually provide a strict covering: any point is only covered
with probability �< 1. This allows random template
banks to beat even the theoretical (Coxeter-Few-Rogers)
lower bound on the thickness of coverings. In higher
dimensions it seems to get extremely expensive (in terms
of number of templates) to cover the ‘‘last few percent’’ of
a parameter space. Relaxing the requirement of complete
coverage therefore allows enormous gains in efficiency.
We can now apply this insight to lattice coverings, by

relaxing the strict ‘‘minimax’’ prescription and instead
requiring a mismatch m� only with probability �< 1.
This allows us to use a larger maximal mismatch mmax >
m� for the n-dimensional covering lattice �nðmmaxÞ,
thereby reducing the required number of templates. The
relation between these quantities is given by

� ¼
Z m�

0
pdfðmj�nðmmaxÞÞdm; (42)

where pdfðmj�nðmmaxÞÞ is the probability distribution of
mismatches m for sampled points within a lattice
�nðmmaxÞ. A uniform linear rescaling of the whole tem-
plate space will affect all mismatches equally, and there-
fore it will be more useful to introduce the relative
mismatch m̂ � m=mmax, which is invariant under rescal-
ings. Note that contrary to Sec. III, here we use a relative
mismatch defined with respect to mmax of the lattice, while
the nominal mismatch m� is a priori unknown and will be
determined from Eq. (42). In Sec. III, a relative mismatch
~m � m=m� was used because there was no strict maximal
mismatch in this case and we directly prescribed the nomi-
nal mismatch m�. The probability distribution of m̂ is
pdfðm̂j�nÞ ¼ mmax pdfðmj�nðmmaxÞÞ, such thatR
1
0 pdfðm̂j�nÞdm̂ ¼ 1. We can therefore restate Eq. (42)

in the more useful form

� ¼
Z m̂�

0
pdfðm̂j�nÞdm̂; (43)

where we defined the ‘‘effective’’ relative mismatch m̂� �
m�=mmax < 1, which is determined by the lattice mismatch
distribution pdfðm̂j�nÞ and the covering confidence �. We
define the linear relaxation factor r for the relaxed lattice
��n as

rð��nÞ �
ffiffiffiffiffiffiffiffiffiffiffi
mmax

m�

s
¼ m̂�1=2

� > 1: (44)

For a given nominal mismatchm� and covering confidence
�, the relaxation factor determines the maximal covering
mismatch mmax of the lattice as

mmax ¼ m�r2ð��nÞ; (45)

which defines the ‘‘relaxed lattice’’ as ��ðm�Þ � �ðmmaxÞ.
The normalized thickness ��n

ð�Þ of a relaxed lattice ��n

is thereby reduced to
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��n
ð�Þ ¼ ��n

rnð��nÞ ; (46)

with respect to the thickness ��n
¼ ��n

ð� ¼ 1Þ of a tradi-
tional covering lattice. Note that contrary to random tem-
plate banks, the spatial coverage fraction C of relaxed
lattices is not a random variable and corresponds exactly
to the covering confidence, i.e. C ¼ � and Var½C� ¼ 0.
Furthermore, the worst-case mismatch is also exactly
known, namely, mw ¼ mmax.

As seen in Eqs. (43) and (44), the relaxation factor
rð��nÞ is determined from the mismatch distribution
pdfðm̂j�nÞ. The distribution of mismatches depends
strongly on the type of lattice �n and the dimension n.
Unfortunately, these mismatch distributions are generally
not known analytically, and we need to resort to
Monte Carlo simulations to determine them.

In order to sample the lattice mismatch distribution, we
uniformly pick points in parameter space, then find the
closest lattice template and determine its relative mismatch
m̂ ¼ m=mmax. For finding the closest template, we use an
elegant and efficient method described in [34], which is
based on the ‘‘fast quantizing’’ algorithms available for
many well-known lattices (see [26,35], Chapter 20). Here
we focus on two lattices only: the simple but inefficient
hypercubic lattice Zn, and the highly efficient covering
lattice A�

n. Some resulting sampled mismatch distributions
are shown in Figs. 7 and 8 for different dimensions n. The
Monte Carlo simulations used 106 sampling points for each
lattice �n (except for A�

n in n ¼ 18, 19, where 105 points
were used), and the mismatches were binned into 1000
mismatch bins. The ‘‘jitter’’ seen in Figs. 7 and 8 illustrates
the intrinsic sampling fluctuation in these simulations. We
note the qualitative similarity in n ¼ 6 and n ¼ 12 be-
tween the mismatch distributions of the A�

n lattice shown in
Fig. 8 and the corresponding distributions for the random

template bank 0:95Rn shown in Fig. 3. In lower dimensions
n ¼ 1, 2, 3, where Rn is substantially less efficient than
A�
n, its mismatch pdf looks quite different from that of A�

n.
We also note that the A�

n mismatch pdf peaks at slightly
higher values of relative mismatch in n ¼ 6 than 0:95Rn,
and at slightly lower values than 0:95Rn in n ¼ 12. This
agrees with A�

n being more efficient than 0:95Rn in n ¼ 6,
and less efficient in n ¼ 12, as seen in Fig. 2. These
qualitative observations illustrate the close relation be-
tween the shape of the mismatch distribution and the
efficiency of the corresponding covering.
The resulting relaxation factors rð��nÞ for covering

confidences � ¼ 0:99, 0.95, 0.90 obtained via Eq. (44)
are shown in Fig. 9. The errors on the relaxation factors
were determined using a jackknife estimator (see [34],
using 100 subsets) and are found to be below 0.04% in
all cases. We see in Fig. 9 that the hypercubic (Zn) lattice

FIG. 8. Results of Monte Carlo simulations (each using 106

points) of the distribution of relative mismatches m̂ in A�
n lattices

in dimensions n ¼ 1, 2, 3, 6, 12.

FIG. 7. Results of Monte Carlo simulations (each using 106

points) of the distribution of relative mismatches m̂ in hyper-
cubic (Zn) lattices in dimensions n ¼ 1, 2, 3, 6, 12.

FIG. 9 (color online). Linear relaxation factors rð��Þ for Zn

and A�
n lattices and covering confidence � ¼ 0:90, 0.95, 0.99.
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can be relaxed substantially more than the A�
n lattice, which

is also apparent from the pdfs in Fig. 7 and 8: the mismatch

distribution of Zn is much more ‘‘wasteful,’’ as it increas-
ingly concentrates around m̂ ¼ 1=3. The A�

n lattice on the
other hand, which is a highly efficient covering lattice, has
the bulk of mismatches concentrated closer to the maximal
mismatch m̂ ¼ 1.
In Fig. 10 and Table I, we show the resulting covering

thickness ��n
ð�Þ of the relaxed �Zn and �A�

n lattices in

comparison to random template banks �Rn. We see that
while relaxed lattices are substantially more efficient than
traditional complete-coverage lattices, at higher dimen-
sions the random template banks eventually still outper-
form them. At low dimensions, n & 10, say, the relaxed
�A�

n lattice provides the most efficient covering we have
found so far. However, having studied only relaxed Zn and
A�
n lattices so far, it is conceivable that other lattices, while

not necessarily very good covering lattices, could provide
an even better relaxed lattice than �A�

n. More work is
required to study this possibility.

V. DISCUSSION

Our results show that giving up deterministic certainty
of coverage of a parameter space can result in large gains in
efficiency, by substantially reducing the number of re-
quired templates. The prime example of such a relaxed
covering is the random template-bank construction, which
we defined as templates placed randomly with uniform
probability distribution (per proper volume) over the pa-
rameter space. Such a random template bank �Rnðm�Þ
covers any signal location (excluding boundary effects)
within mismatch m� with probability �< 1. We have
found that the template density of these random template
banks can be significantly lower than that of even the most
efficient (complete) covering, and that this advantage in-
creases in higher parameter-space dimensions.
The exclusion of boundary effects in the random tem-

plate bank analysis is valid for situations in which the
projected length scale of the templates in each of the search
dimensions is much smaller than the width of the parame-

FIG. 10 (color online). Normalized thickness � as function of
dimension n for strict lattice covering �n, relaxed lattices ��n

and random template banks �Rn for values � ¼ 0:99, 0.95, 0.90
of covering confidence. The upper panel is for the Zn lattice,
while the lower panel shows the case of the A�

n lattice.

TABLE I. Normalized thickness � in dimensions n � 19 for traditional lattice covering (1:0Zn,
1:0A�

n), relaxed lattice covering
ð�Zn;

�A�
nÞ, and random template banks (�Rn) with covering confidences � ¼ 0:99, 0.95, 0.90, respectively. Boldface indicates the

lowest thickness at given covering confidence � and dimension n.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1:0Zn 0:50 0.50 0.65 1.0 1.7 3.4 7.1 16 38 98 261 729 2
 103 6
 103 2
 104 7
 104 2
 105 8
 105 3
 106

1:0A�
n 0:50 0:38 0:35 0:36 0:40 0:49 0:65 0:90 1:3 2:1 3:3 5:6 9:9 18 34 65 130 266 559

0:99Zn 0:49 0.43 0.43 0.49 0.63 0.86 1.3 2.0 3.2 5.5 10 19 36 73 149 322 699 2
 103 4
 103

0:99A�
n 0:49 0:35 0:29 0:28 0:30 0:35 0:44 0:59 0:83 1:3 2:0 3:2 5.5 9.7 18 33 65 131 268

0:99Rn 2.3 1.5 1.1 0.93 0.87 0.89 0.97 1.1 1.4 1.8 2.4 3.4 5:1 7:7 12 20 33 56 99

0:95Zn 0:48 0.36 0.33 0.35 0.42 0.54 0.75 1.1 1.8 2.9 5.0 8.9 16 32 63 130 274 590 1
 103

0:95A�
n 0:48 0:31 0:26 0:24 0:25 0:29 0:36 0:47 0:66 0:98 1:5 2.5 4.2 7.3 13 25 47 95 192

0:95Rn 1.5 0.95 0.72 0.61 0.57 0.58 0.63 0.74 0.91 1.2 1.6 2:2 3:3 5:0 7:9 13 21 36 64

0:90Zn 0:45 0.31 0.28 0.28 0.33 0.41 0.55 0.80 1.2 2.0 3.3 5.8 10 20 38 77 160 339 748
0:90A�

n 0:45 0:29 0:23 0:21 0:22 0:25 0:31 0:40 0:56 0:82 1.3 2.0 3.4 5.9 11 20 38 75 150
0:90Rn 1.2 0.73 0.55 0.47 0.44 0.45 0.49 0.57 0.70 0.90 1:2 1:7 2:5 3:8 6:0 9:8 16 28 49
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ter space in the corresponding dimension. We should note
that boundary effects have also been excluded in the cal-
culation for the lattice coverings (traditional and relaxed)
and in practice boundary effects will be equally problem-
atic for all template bank strategies. In fact, many of the
practical problems in template placement are often related
to treating boundaries correctly, and while the nature of the
boundary problems is somewhat different for random tem-
plate banks, its correct treatment still requires further work.

Other studies have recently started to investigate a some-
what different random template placement strategy, re-
ferred to as stochastic template banks [27–30]. The key
difference of these methods is that they involve a ‘‘pruning
stage’’ in the random template placement, which is aimed
to remove templates that are too close to each other. Albeit
not yet completely quantified, these methods could poten-
tially produce even more efficient template banks for
equivalent coverage, at the cost of being somewhat less
‘‘simple.’’ However, it currently seems unclear how much
efficiency can be gained by such a pruning step, especially
in higher dimensions. These are interesting open questions
for further investigations.

Relaxed coverings do not provide complete coverage of
the template parameter space. Applying such a scheme
therefore affects the final results as an additional uncer-
tainty. For gravitational-wave searches such uncertainty
can be well maintained at a level comparable to other
uncertainties of the problem—typically of the order of a
few percent—hence not significantly affecting the overall
degree of confidence of the result.

In computationally limited searches, relaxed template
banks allow significant reductions in computational cost.
Through the reinvestment of this saved computational cost,
this can yield an increase in sensitivity and breadth of the
search.

We have investigated some of the relevant statistical
properties of random template banks, in particular, the
spatial parameter-space coverage fraction C and the
worst-case mismatch mw expected in individual template-
bank realizations. We have performed Monte Carlo simu-
lations to determine the statistical distribution of these
quantities, and we have found a rough analytical estimate,
which shows reasonably good agreement with the numeri-
cal results. These results show that the variance of the
spatial coverage fraction C is inversely proportional to

both the dimensionality of the space and the number of
random templates. More importantly, the worst-case mis-
match mw >m� is found to be typically of the same order
of magnitude as the prescribed nominal mismatch m�, and
is rapidly approaching m� with increasing dimension n. At
n ¼ 4, for example, the largest mismatch for NR ¼ 108

templates and � ¼ 0:9 has an expected value of �3m�
with a standard deviation of 0:09m� (see Fig. 6). At n ¼
12, the distribution peaks at even lower values, with an
expectation value of �1:5m� and a low standard deviation
of 0:014m�. Even though the coverage at the nominal
mismatch m� only holds in a statistical sense defined by
the confidence �, in practice, at dimensions greater than
n ¼ 11, the worst-case loss is within a factor of 1.5 of the
nominal value, with very high confidence.
Inspired by these results, we have also investigated the

properties of relaxed lattice coverings, which follow the
analogous prescription of a nominal covering mismatch
m�, achieved with probability �< 1 for any signal loca-
tion. This leads to lattices with larger maximal mismatch
mmax >m�, thereby reducing the required number of tem-
plates. We have analyzed the properties of relaxed Zn and
A�
n lattices, and we have found that the relaxed �A�

n lattice
provides the most efficient covering found so far for n &
10, for covering confidences � � 0:90. In higher dimen-
sions, however, random template banks outperform any
other method considered so far, including relaxed lattice
coverings.
Possibly the greatest advantage of random template

banks for ‘‘real-world’’ applications, however, is their
practical simplicity. Constructing lattice template banks
is notoriously difficult, especially regarding the handling
of curved parameter spaces and nonconstant metrics.
Random template banks, on the other hand, are nearly
trivial to construct, even in spaces with nonconstant met-
rics: one only needs to adjust the spatial probability density
according to the metric determinant.
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