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1 INTRODUCTION

ABSTRACT

An increase in the central density of a neutron star may trigger a phase transition from hadronic
matter to deconfined quark matter in the core, causing it to collapse to a more compact hybrid
star configuration. We present a study of this, building on previous work by Lin et al.. We
follow them in considering a supersonic phase transition and using a simplified equation of
state, but our calculations are general relativistic (using 2D simulations in the conformally flat
approximation) as compared with their 3D Newtonian treatment. We also improved the treat-
ment of the initial phase transformation, avoiding the introduction of artificial convection. As
before, we find that the emitted gravitational wave spectrum is dominated by the fundamental
quasi-radial and quadrupolar pulsation modes but the strain amplitudes are much smaller than
suggested previously, which is disappointing for the detection prospects. However, we see
significantly smaller damping and observe a non-linear mode resonance which substantially
enhances the emission in some cases. We explain the damping mechanisms operating, giving a
different view from the previous work. Finally, we discuss the detectability of the gravitational
waves, showing that the signal-to-noise ratio for current or second generation interferometers
could be high enough to detect such events in our Galaxy, although third generation detectors
would be needed to observe them out to the Virgo cluster, which would be necessary for having
a reasonable event rate.

Key words: hydrodynamics — relativity — methods: numerical — stars: neutron — stars:
oscillations — stars: rotation.

‘hybrid quark star’ (HQS) when referring to these objects] would
generally be more compact than the progenitor standard NS, and

The existence of compact stellar objects partially or totally consist-
ing of matter in a deconfined quark phase was already predicted long
ago (Itoh 1970; Bodmer 1971; Witten 1984). Such stars are thought
likely to originate as a result of the conversion of purely hadronic
matter in the interior of a neutron star (NS) into a deconfined quark
matter phase when the density exceeds a certain threshold (for a
review, see e.g. Weber 1999; Glendenning 2002). We focus here on
cases where the conversion occurs only in the core of the NS, while
the outer parts remain unchanged. The theory of dense nuclear mat-
ter predicts that such compact stars [hereafter we will use the term
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their equilibrium radii would be smaller by up to 20 per cent. The
potential energy W released by the phase transition is expected to
be of the order of

M?* AR 5
AW ~ — — ~ 107" erg,

R R
where R and M are the typical radius and mass of the NS, respec-
tively, and A R is the decrease in radius.

A first-order phase transition is expected to be the most inter-
esting case as far as the dynamics and structure of the star are
concerned. Such a transition would proceed by the conversion of
initially metastable hadronic matter in the core into the new de-
confined quark phase (Zdunik et al. 2007, 2008). The metastable
phase could be formed as the central density of the NS increases
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due to mass accretion, spin-down or cooling. This could happen
soon after the birth of the NS in a supernova or it could occur for
an old NS accreting from a binary companion. The first of these
channels is likely to give the higher event rate but the second is also
interesting. In the widely accepted scenario for the formation of
millisecond pulsars, where an old NS is spun up by accretion from
a binary companion, the amount of spin-up would be directly re-
lated to the amount of mass accreted (Burderi et al. 1999), meaning
that there would be a population of rapidly rotating NSs with rather
high mass (and hence high central densities). Recent observational
data seem to confirm that a significant proportion of millisecond
pulsars do indeed tend to be high-mass objects (Freire et al. 2008)
which would then be candidates for undergoing (or having under-
gone) a phase-transition-induced collapse of the type which we are
discussing here. While some significant proportion of the poten-
tial energy release given by equation (1) would probably go into
neutrino emission, a significant proportion might also go into pul-
sations of the newly formed HQS, if the conversion process to the
new phase is rapid enough, and this could be an interesting source
of gravitational waves (GWs; see Marranghello et al. 2002; Miniutti
et al. 2003; Lin et al. 2006). If detected, these GW signals, and in
particular the identification of quasi-normal mode frequencies in
their spectrum, could help to constrain the properties of matter at
the high densities encountered here. For non-rotating cold NSs with
various compositions, the related theory of asteroseismology has
already been formulated in recent years (Andersson & Kokkotas
1998; Kokkotas, Apostolatos & Andersson 2001; Benhar, Ferrari &
Gualtieri 2004).

A problem for making any detailed studies of phase-transition-
induced collapse is that the description of the physics of the phase
transition remains very uncertain and controversial (for a recent
review see Horvath 2007). Drago, Lavagno & Parenti (2007) dis-
cussed possible modes of burning of hadronic matter into quark
matter in the framework of relativistic hydrodynamics using a mi-
crophysical equation of state (EOS). They found that the conversion
process always corresponds to a deflagration and never to a detona-
tion. They also argued that hydrodynamical instabilities can develop
at the burning front. They estimated the corresponding increase in
the propagation velocity of the phase transition and noted that, al-
though the increase is significant, it is not sufficient to transform the
deflagration into a detonation in essentially all realistic scenarios.
On the other hand, Bhattacharyya et al. (2006) considered the tran-
sition as being a two-step process, in which the hadronic matter is
first converted to two-flavour u and d quark matter, which then sub-
sequently transforms into strange quark matter (u, d and s quarks) in
a second step. They used the relativistic hydrodynamic equations to
calculate the propagation velocity of the first front and found that,
in this first stage, a detonation wave develops in the hadronic matter.
After this front passes through, leaving behind two-flavour matter,
a second front is generated which transforms the two-flavour matter
to three-flavour matter via weak interactions. The time-scale for the
second conversion is ~100s, while that for the first step is about
1 ms.

Against this background, Lin et al. (2006; hereafter referred to
as LCCS) carried out a first study of GW emission by a phase-
transition-induced collapse of a rotating NS to an HQS, using a
very simplified model for the microphysics and treating the phase
transition as occurring instantaneously. On the basis of 3D calcu-
lations using Newtonian gravity and hydrodynamics, they obtained
waveforms of the emitted GWs for several collapse models, and
found that the typical predicted dimensionless GW strain / ranged
from 3 to 15 x 10723 for a source at a distance of 10 Mpc. The
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corresponding energy E,,, carried away by the GWs was found to
be between 0.3 and 2.8 x 10°! erg. They also determined the modes
of stellar pulsation excited by the collapse and showed that the
spectrum of the emitted GWs was dominated by the fundamental
quasi-radial and quadrupolar pulsation modes of the final star. They
suggested that the damping of the stellar pulsations observed in
their calculations was due to the production of shock waves leading
to the development of differential rotation, which proceeds on a
time-scale of about 5 ms for typical collapse models.

The study by LCCS treated the conversion process as being in-
stantaneous, and this was mimicked by replacing, at the initial time,
the EOS describing the hadronic nuclear matter in the core (with
which the initial equilibrium model had been built) by one describ-
ing a central zone of deconfined quarks surrounded by a region of
mixed phase. The material outward of this remained in the original
hadronic phase. In a first-order phase transition that proceeds via
a detonation, the conversion front propagates supersonically with
respect to the matter ahead of it. The sound speed in the stellar
interior typically has a value of the order of 0.3-0.5¢. Assuming
that the quark matter core has a radius of about R ~ 5km, a rough
estimate for the time-scale of a supersonic conversion gives 7 ~
R/v ~ 0.05ms. Clearly, this value is not much smaller than the
dynamical time-scale of an NS and so one does not know, a priori,
the impact that the properties of the conversion would have for the
subsequent stellar dynamics taking place on similar time-scales.
Therefore, one should first check how the dynamics of the star after
the phase transition would depend on the finite propagation velocity
of the front, and we do this here.

LCCS represented the hadronic matter by means of a polytropic
EOS, initially having an adiabatic index y = 2. When the phase
transition was triggered (by changing the EOS in the central re-
gions, reducing the pressure support), they also replaced the original
hadronic EOS by a softer ideal gas type of EOS (with y then ranging
from 1.95 to 1.75 depending on the model), which artificially low-
ered the pressure outside the deconfined quark matter core as well
(see their equation 44). The lowering of the adiabatic index also
in the outer regions leads to an increased release of gravitational
binding energy and is hard to motivate on physical grounds.

Although the study by LCCS was an important step forward, it
was clearly using an extremely simplified model for the physics of
the NS matter and of the phase transition (as well as not including
emission processes other than GW emission) and one must question
how closely it represents such processes occurring in real NSs.
Since the full problem is complex and involves some input physics
which is very incompletely known at present, the only way to make
progress at this stage is, indeed, to work in terms of simplified
models but making improvements where possible. The strategy of
this paper is to take the work of LCCS as a starting point and then to
take some steps forward in the direction of including further aspects.
In particular, the effects of general relativity (GR) certainly play an
important role in such studies: for instance, the total rest mass of
a typical Newtonian NS may be almost twice as large as that of
its counterpart in GR with the same central density and the same
EOS. The impact of GR is even more pronounced if the star is near
to the maximum mass limit. Therefore, one expects the Newtonian
and GR descriptions of NS collapse to differ significantly, thus
necessitating a proper treatment of the GR effects.

In this study we extend the previous work of LCCS in a number of
ways: (i) we take into account the effects of GR; (ii) we modify the
EOS of the stellar matter only in regions which undergo the phase
transition and take care to avoid introducing spurious convection;
(iii) we consider a larger set of physical models for different values
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of the stellar parameters and different properties of the stellar mat-
ter; (iv) we study the effect of introducing a finite time-scale for the
initial phase transformation which destabilizes the core rather than
treating it as occurring instantaneously. Our model for the HQS is
based on that of LCCS. The numerical hydrodynamics simulations
are here performed in axisymmetry using the conformal flatness ap-
proximation to GR. While our model remains extremely simplified,
we believe that these modifications do represent valid and signifi-
cant steps forward. We feel, however, that we should caution against
making further elaborate extensions of the hydrodynamics (e.g. to
3D GR hydrodynamics or GR magnetohydrodynamics) until such
time as one has the possibility of including a greatly improved treat-
ment of the microphysics and emission processes so that the models
come closer to those of real NSs.

This article is organized as follows. In Section 2 we summarize
the numerical methods used, while in Section 3 we introduce the
models investigated. In Section 4 we validate our code by perform-
ing a comparison with the Newtonian models of LCCS. In Section 5
we discuss the results of our simulations of GR models and their de-
pendence on the various parameters, and in Section 6 we conclude
with a summary. In Appendix A we examine the impact on the
collapse dynamics of considering a finite time-scale for the initial
phase transformation, and in Appendix B we present our method
for determining the damping times for the emitted gravitational
radiation waveforms.

Unless otherwise noted, we choose geometrical units for all phys-
ical quantities by setting the speed of light and the gravitational
constant to one, ¢ = G = 1. Latin indices run from 1 to 3, Greek
indices from O to 3.

2 NUMERICAL METHODS

We construct our initial rotating NS equilibrium models using a
variant of the self-consistent field method described by Komatsu,
Eriguchi & Hachisu (1989a) (KEH hereafter), as implemented in
the code rns (Stergioulas & Friedman 1995). This code solves
the GR hydrostationary equations for rotating matter distributions
whose pressure obeys an EOS given by a polytropic relation (see
equation 11 below). The resulting equilibrium models, which we
choose to be rotating uniformly, are taken as initial data for the
evolution code.

The time-dependent numerical simulations were performed with
the coconut code developed by Dimmelmeier, Font & Miiller
(2002a,b) with a metric solver based on spectral methods as de-
scribed in Dimmelmeier et al. (2005). The code solves the GR field
equations for a curved space—time in the 3 + 1 split under the
assumption of the conformal flatness condition (CFC) for the three-
metric. The hydrodynamics equations are formulated in conserva-
tion form, and are evolved with high-resolution shock-capturing
schemes.

In the following subsections, we summarize the mathematical
formulation of the metric and hydrodynamic equations, and the
numerical methods used for solving them.

2.1 Metric equations

We adopt the ADM 3 + 1 formalism of Arnowitt, Deser & Misner
(1962) to foliate a space—time endowed with a four-metric g,,, into
a set of non-intersecting space-like hypersurfaces. The line element
is then given by

ds? = g, dx¥dx” = —a? df* + y;;(dx’ + B de)(dx/ + g7 dr), (1)

where « is the lapse function, 8 is the space-like shift three-vector
and y;; is the spatial three-metric.

In the 3 + 1 formalism, the Einstein equations are split into evo-
lution equations for the three-metric y;; and the extrinsic curvature
K;;, and constraint equations (the Hamiltonian and momentum con-
straints) which must be fulfilled at every space-like hypersurface.

The fluid is generally specified by means of the rest-mass density
p, the four-velocity u*, and the pressure P, with the specific enthalpy
defined as h = 1 + € + P/ p, where ¢ is the specific internal energy.
The three-velocity of the fluid as measured by an Eulerian observer
is given by v = i/ /(a u°) + B/, and the Lorentz factor W = au°
satisfies the relation W = 1/4/1 — v;v'.

Based on the ideas of Isenberg (1978) and Wilson, Mathews &
Marronetti (1996), and as done in the work of Dimmelmeier et al.
(2002a,b), we approximate the general metric g,, by replacing the
spatial three-metric y;; with the conformally flat three-metric

Yij = ¢4J7ijv (2)
where 7;; is the flat metric and ¢ is a conformal factor. In this
CFC approximation, the ADM equations for the space—time metric
reduce to a set of five coupled elliptic non-linear equations for the
metric components,

. KiK'
A¢p = —21¢* (ohW? — P) — ¢5-’T,

7K, K
.
167 ph W' 4 29KV, (wgp~®) — 3V VBt )

Alag) = 2na¢’ [ph(BW? — 2) + 5P] + ag’

Ap

where the maximal slicing condition, K} = 0, is imposed. Here Vi
and A are the flat space Nabla and Laplace operators, respectively.
For the extrinsic curvature we have the expression
1 2 n

K= o ViB;i +V;Bi — g)/ijvklg , “4)
which closes system (3).

We rewrite the above metric equations in a mathematically equiv-
alent form by introducing an auxiliary vector field W' and obtain

kyki
s

A¢p = —21¢* (phW?* — P) — ¢~
Alag) = 2mag® [ph(BW?* —2) + 5P] + a¢*7”{”%,

Ap =2V; (209 K") — ! ViV B,

W

o R A
AW = 8mgp  ph W' — gvvk wk, (%)

where the flat space extrinsic curvature is given by
o A ~ 2. -
Kij = GiW; + VWi = 9, %W 6)

and relates to the regular extrinsic curvature as K;; = ¢*>K;; and
Kl = ¢'°K'/ The advantages of this new formulation of the metric
equations will be discussed in a future publication.

Note that the metric equations do not contain explicit time deriva-
tives, and thus the metric is calculated by a fully constrained ap-
proach, at the cost of neglecting some evolutionary degrees of free-
dom in the space—time metric (e.g. dynamical GW degrees of free-
dom).

The accuracy of the CFC approximation for isolated compact
stellar objects has been tested in various works, both in the context
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of stellar core collapse and for equilibrium models of NSs (for a de-
tailed comparison between the CFC approximation of GR and full
GR, see Ott et al. 2007, and references therein). In particular, Dim-
melmeier et al. (2006b) compared collapse simulations of rotating
massive stellar cores in the CFC approximation with the full GR
calculations of Shibata & Sekiguchi (2005). Although such massive
stellar cores are rather unmotivated astrophysically, they are nice
toy models where the space—time dynamics during collapse is vio-
lent, similar to what is expected in the case of the collapse of NSs to
HQS:s. For example, some models almost collapse to black holes,
with the value of the lapse function reaching 0.29. The comparison
by Dimmelmeier et al. (2006b) reveals very good agreement be-
tween the CFC and full GR calculations. We thus conclude that the
space—time of rapidly rotating NS models (whether uniformly or
differentially rotating) is still very well approximated by the CFC
metric (2). The accuracy of the approximation is expected to de-
grade only in extreme cases, such as a rapidly rotating black hole,
a self-gravitating thin disc or a compact binary system.

2.2 General relativistic hydrodynamics

The hydrodynamic evolution of a standard relativistic perfect fluid
is determined by the local conservation equations

V' =0, V,T" =0, %

where J# = pu' is the rest-mass current, and V,, denotes the co-
variant derivative with respect to the four-metric g,,. Following
Banyuls et al. (1997), we introduce a set of conserved variables in
terms of the primitive (physical) variables (p, v;, €):

D =pW, S; = phW?y;, T =phW?—P —D.

Using these, the local conservation laws (7) can be written as a
first-order, flux-conservative hyperbolic system of equations,

o./yU 0o —gF'

with the state vector, flux vector and source vector being

U =[D,S;, 7],
F' = [D¥', $;9' + 8/ P, 0" + PV'],

L ,.,08uw i . O
[0, ST T (K,-,-ﬁ B — B —)

S . -
2 0x/ 0x/

4+ 7% 2[(.,/31' _6701 +TVK,. )
ij axj ijl»

respectively.! Here 9" = v — B/ /o, and \/—g = a./y, with g =
det(g,,) and y = det(y;;); the I‘fw are the Christoffel symbols
associated with g, .

The system of hydrodynamic equations (8) is closed by an EOS,
which relates the pressure to some thermodynamically independent
quantities; in our case P = P (p, €).

2.3 Numerical methods for solving the metric
and hydrodynamics equations

The hydrodynamic solver performs the numerical time integration
of the system of conservation equations (8) using a high-resolution

! Note that here we use an analytically equivalent reformulation of the energy
source term as compared with the one presented in e.g. Dimmelmeier et al.
(2002a).
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shock-capturing (HRSC) scheme on a finite-difference grid. In (up-
wind) HRSC methods, a Riemann problem has to be solved at each
cell interface, which requires the reconstruction of the primitive
variables (p, v, €) at these interfaces. We use the PPM method
for making the reconstruction, which yields third-order accuracy
in space for smooth flows and away from extrema. The numerical
fluxes are computed by means of Marquina’s approximate flux for-
mula (Donat et al. 1998). The time update of the state vector U is
done using the method of lines in combination with a Runge—Kutta
scheme having second-order accuracy in time. Once the state vec-
tor has been updated in time, the primitive variables are recovered
using an iterative Newton—Raphson method. To numerically solve
the elliptic CFC metric equations (3) we utilize an iterative non-
linear solver based on spectral methods. The combination of HRSC
methods for the hydrodynamics and spectral methods for the met-
ric equations within a multidimensional numerical code has been
presented in detail in Dimmelmeier et al. (2005).

The coconuT code uses Eulerian spherical polar coordinates {r,
0 }; for the models discussed in this paper we are assuming axisym-
metry with respect to the rotation axis and also equatorial symmetry.
The finite-difference grid consists of 200 radial grid points and 40
angular grid points, which are equidistantly spaced. A small part
of the grid, which initially corresponds to 60 radial grid points,
covers an artificial low-density atmosphere, extending beyond the
stellar surface, whose rest-mass density is 10~!7 of the initial central
rest-mass density of the NS.

Since the calculation of the space—time metric is computationally
expensive, it is updated only once every 25 hydrodynamic time-steps
during the evolution and is extrapolated in between. The suitability
of this procedure has been tested and discussed in detail in Dim-
melmeier et al. (2002a). We also note that tests with different grid
resolutions were performed to check that the regular grid resolution
specified above is appropriate for our simulations. A check on the
relative violation in the conservation of total rest mass, ADM mass
and total angular momentum showed that each of these quantities
is conserved to within 1 per cent during the entire evolution time.

2.4 Gravitational waves

The GWs emitted by the collapsing NS are computed using the
Newtonian quadrupole formula in its first time-integrated form (the
first-moment of momentum density formulation as described in
detail in Dimmelmeier et al. 2002b) in the variant of Shibata &
Sekiguchi (2004). This yields the quadrupole wave amplitude AZ? as
the lowest order term in a multipole expansion of the radiation field
into pure-spin tensor harmonics (Thorne 1980). The wave amplitude
is related to the dimensionless GW strain /4 in the equatorial plane
by (Dimmelmeier et al. 2002b)

1 /15 A2 AE2 N\ 710k
h= -] 2220 _ g 8504 5 1072 (220 P (o)
8V m r 103 cm r

where r is the distance from the emitting source.

We point out that although the quadrupole formula is not gauge
invariant and is only strictly valid in the Newtonian slow-motion
limit, for GWs emitted by pulsations of rotating NSs it gives results
that agree very well in phase and to about 10-20 per cent in ampli-
tude with more sophisticated methods (Shibata & Sekiguchi 2003;
Nagar et al. 2007).
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3 STELLAR MODELS AND TREATMENT OF
THE PHASE TRANSITION

3.1 Initial neutron star model

Following LCCS, we compute the initial equilibrium NS model
before the phase transition using a polytropic EOS,

P=Kp, (11

where K and y are constants. We choose y = 2 and K = 100
(in units where M = 1) for all of the GR initial models consid-
ered in the present study. On the initial time-slice, we also need
to specify the specific internal energy €. For a polytropic EOS, the
thermodynamically consistent € is given by

e=——pr7, (12)

3.2 Hybrid quark star model

Due to the complexity of the fundamental theory of strong inter-
actions, all theoretical studies of quark matter in compact stars
are based on phenomenological models. The MIT bag model EOS,
which has been used extensively for this (for areview, see e.g. Weber
1999; Glendenning 2002), is based on the following assumptions:
(i) quarks appear in colour neutral clusters confined to a finite region
of space, the volume of which is limited by the negative pressure of
the QCD vacuum; (ii) within this region, interactions between the
quarks are weak and can be treated using low-order perturbation
theory in the coupling constant. These two assumptions allow the
two main features of QCD to be modelled, namely colour confine-
ment and asymptotic freedom. The parameters of the bag model
are the bag constant B, the masses of the quarks and the running
coupling constant o5, whose value at the scale relevant for typical
quark chemical potentials is s € [0.4, 0.6] (Benhar et al. 2007).

At the moment there is no general consensus about the value
of B. Fits to the spectrum of light hadrons give B'/* ~ 145 MeV
(DeGrand et al. 1975), while the adjustment of B with hadronic
structure functions suggests B'/* ~ 170 MeV (Steffens, Holtmann &
Thomas 1995). On the other hand, lattice QCD calculations predict
values up to B4 ~ 190 MeV (Satz 1982). Hereafter, and following
LCCS, we take B'/* = 170 MeV.

The masses of the u and d quarks are of the order of a few
MeV (Hagiwara et al. 2002) and can therefore be mostly neglected,
whereas the mass of the s quark is much larger, its value being in
the range mg € [80, 155] MeV. Nevertheless, including this mass
for the s quark, rather than taking it to be massless, would decrease
the pressure by only a few per cent (Alcock & Olinto 1988). We do
not expect that this would change our results qualitatively, and so
we neglect it in our study. We also neglect the residual interaction
between the quarks and approximate their temperature as being zero.
The EOS of the MIT bag model for massless and non-interacting
quarks at zero temperature is given by

%(6—43), (13)

where e is the total energy density.

A fundamental problem appears to arise in using the hydrody-
namic equations of Section 2 to describe the quark medium since the
quarks are being treated as having zero rest mass. The quantity e rep-
resents only the internal energy density of the quarks and contains
no rest-mass contribution. Rest mass appears as a fluid quantity,

P, =

within this picture, only when the quarks become confined. Never-
theless, the continuity equation (the first equation of the system of
the hydrodynamic equations 8) remains well defined if thought of
in terms of baryon number (which is defined for the quark medium)
rather than in terms of rest mass. In order to have a unified treatment
for the quark matter and the hadronic matter (which is necessary
since we have transformation between the two), one can define a
quantity p = n,m, in the quark medium (where #ny, is the baryon
number density and mj, is the rest mass per baryon in the hadronic
medium) and then formally split the internal energy density of the
quark medium into two parts, writing e = p + pe as usual but
bearing in mind that the first term on the right-hand side represents
just a part of the internal energy density in the quark phase. If one
does this, it is easy to show that the treatment of the hydrodynamics
goes through unchanged in a consistent way, using this p and €.

For the normal hadron matter, during the evolution we use an
ideal gas type of EOS

Py =(y — Dpe. 14)

However, in contrast to LCCS, we do not reduce the adiabatic index
y from its initial value of 2, because we see no physical mechanism
which could be responsible for a global reduction of pressure in the
hadronic matter phase. Consequently, in our GR models the collapse
is caused solely by the pressure change due to the introduction of
quark matter in the core of the NS.

As first shown by Glendenning (1991, 1992), if the surface ten-
sion between the phases is not too large, relaxing the condition of
local electrical neutrality would allow for the possibility of having
coexistence between the two phases within a certain range of den-
sities. In a region where this applied, one would then have many
intermixed microscopic zones of the lower density hadronic matter
and of the higher density quark matter. Each zone would have a
net electric charge but with the mixture being electrically neutral
on average and with the volume fraction occupied by the higher
density phase growing from O at the lower density boundary of the
mixed phase oy, up to 1 at the upper-density boundary 0.

The value of the lower threshold density ppny,, above which
free quarks start to appear, is rather uncertain. From simple ge-
ometrical considerations, nucleons should begin to touch at p ~
(4Ttr§uC /3), which for the characteristic nucleon radius ry,. ~
1fm gives a few times nuclear saturation density, py,. = 2.7 X
10" gcm™ (Glendenning 1989). For densities above this, one ex-
pects that the boundaries of particles like p,n, ¥, A and K~ would
dissolve and that quarks would start to populate free states outside
the hadrons (Weber 1999). The value of the upper threshold den-
Sity pgm, marking the boundary between the mixed phase and the
pure deconfined quark matter phase, is also uncertain (and is model
dependent) but it is very probably in the range 4—100,c-

According to this picture, a hybrid star would then be composed
of either two or three parts: (i) a pure hadronic matter phase for
£ < Pum, (i) a mixed phase of the confined—deconfined matter for
Phm < P < Pgm and (iii) a pure quark matter phase for p > pgn
(this might or might not be present in practice, depending on the
maximum density reached).

In this paper, we follow LCCS in adopting the picture outlined
above and we also follow their prescription in formulating the EOS
for the HQS matter:

P, for p < Pnm,
P: (XPq+(1_a)Ph forphm fpqumv (15)
Py for pgm < p,
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where

s
a=1— (M) (16)

Pgm — Phm

is a factor quantifying the contribution of each of the components
of the mixed phase to the total pressure. As stated above, we take
P, to be given by the MIT bag model (13), while Py, is calculated
using the ideal gas EOS (14). The parameter § is introduced in
order to control the quark matter contribution to the pressure in the
mixed phase: with larger , the contribution from P, increases. For
6 = 1 we recover the EOS of LCCS. We again emphasize that, in
contrast to LCCS, we do not reduce the effective adiabatic index of
the nuclear matter in our GR models, but rather keep it at its initial
value y = 2 during the evolution.

For our GR models we define the transition density pp, from
the pure hadronic matter phase to the mixed phase to be where P,
vanishes, similarly to LCCS (although they were identifying en-
ergy density and rest-mass density within their Newtonian regime).
This corresponds to ppm = 6.97 x 10*gecm™ = 2.58p,, for
B4 = 170MeV and py,c = 2.7 x 10" gcm™3. Following LCCS,
we set Pgm = 9 Pnuc in our simulations (corresponding to 24.3 x
10 gcm™ for our value of py,,.), but this is just a rough estimate
to give a working value. When we make direct comparisons with
the Newtonian models of LCCS in Section 4, we use their values
Pm = 7.24 x 10 gem™ and pgm = 25.2 x 10 gem™, which
slightly differ from our standard values.

We want to stress that this treatment of the EOS via equations
(15) and (16) is extremely rough as a representation of matter in the
mixed phase experiencing the phase transition, especially when one
bears in mind the behaviour of fluid elements undergoing successive
compression and decompression and changing the proportions of
the phases. In particular, it neglects any possible effect from local
heating and from the creation and subsequent emission of neutrinos
during the collapse and the subsequent bounces. However, it does
have the advantage of being simple and parametrizable. By changing
the values of the free parameters (e.g. 8, Ohm OF Pgm) it allows us to
modify easily the properties of the EOS.

3.3 Parameter space

The properties of our models for the phase-transition-induced col-
lapse depend on a number of free parameters including the initial
rotation period p, the total stellar rest mass M, the pressure con-
tribution of the quark component in the mixed phase (controlled
by §), etc. In order to study how the collapse dynamics depends on
these quantities, we performed simulations for various sequences of
models where one parameter was held fixed. For instance, in order
to investigate the impact of rotation we used the models A1-A8 and
B1-B6 (see Table 1). The models of sequence A have a fixed central
rest-mass density p.; = 11.25 x 10" gcm~ and a varying rotation
period in the range from p = 1.00 to 6.18 ms. The ones of sequence
B have a fixed rest mass My = 1.75 M, and rotation periods from
p = 1.30 to 2.89 ms. The consequences of a variation in the rest
mass of the initial NS are explored in the sequence of models C1—
C4, where the rotation period is held fixed at p = 1.80ms and the
rest mass takes values from M = 1.65 to 1.80 M.

These initial models were then evolved as sequences CA, CB and
CC with fixed EOS parameters, choosing § = 2 in each case. For
the CD sequence, however, we used different values for § (from 1
to 5) in order to assess how varying the quark contribution to the
EOS in the mixed phase influences the dynamics. In this sequence,
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Table 1. Summary of the set of initial models: p is the rotation period of the
NS, M is the total rest mass, M is the gravitational mass, T is the rotational
mass energy, W is the gravitational binding energy, p. ; is the central rest-
mass density and re/rp is the ratio of the equatorial and polar radii. Note
that the initial models A5, B4 and C3 are identical. Model N is one of the
Newtonian initial models used by LCCS.

Model P My M Pc,i re/Tp T/|IW|
(ms) Mgp) Mp) (1014 gcm’3) (per cent)
Al 1.00 1.98 1.81 11.25 0.635 8.44
A2 1.20 1.85 1.70 11.25 0.785 5.30
A3 1.40 1.80 1.65 11.25 0.847 3.75
A4 1.60 1.77 1.62 11.25 0.885 2.80
A5 1.80 1.75 1.60 11.25 0.910 2.18
A6 2.00 1.73 1.59 11.25 0.928 1.74
A7 2.99 1.70 1.57 11.25 0.968 0.76
A8 5.98 1.69 1.55 11.25 0.992 0.50
B1 1.30 1.75 1.62 8.42 0.746 6.32
B2 1.40 1.75 1.61 9.48 0.815 4.57
B3 1.60 1.75 1.61 10.63 0.878 2.98
B4 1.80 1.75 1.60 11.25 0.910 2.18
B5 2.00 1.75 1.60 11.80 0.931 1.66
B6 2.98 1.75 1.60 12.86 0.972 0.66
Cl 1.80 1.65 1.53 8.74 0.882 2.89
Cc2 1.80 1.70 1.57 9.88 0.897 2.51
C3 1.80 1.75 1.60 11.25 0.910 2.18
Cc4 1.80 1.80 1.65 13.70 0.927 1.75
N 1.20 2.20 1.89 9.34 0.695 7.71

the models CD1-CDS5 use the initial model A2, while CD6-CD9
are based on the initial model AS.

In addition, in order to validate our code and to discuss the results
obtained by LCCS in more detail, we simulated some of their models
with a Newtonian version of the cocoNnuT code. Our Newtonian
models CN1, CN2 and CN3 (all based on the equilibrium model N)
are identical to their models G1.95, R and G1.75, with the adiabatic
index y of the EOS being reduced everywhere as they had done.
For these models we used exactly the same EOS as in LCCS, which
differs from our regular EOS in various ways (see Section 3.2). The
models labelled CNy;p,, and CNjy, are Newtonian test models whose
properties are discussed in detail in Section 4.2.

In Table 2 we list important quantities obtained in the simulations
of the collapse models which are discussed in the following sections.
Note that the total evolution time for all models is # = 50 ms. At
that point we simply terminate the evolution, which however could
be extended to much longer times given the long-term stability of
our code.

4 COMPARISON WITH NEWTONIAN MODELS

Before discussing the results for our GR models, we present here
our simulations of three of the Newtonian models also studied by
LCCS. We begin, however, with a description of the qualitative
features of phase-transition-induced collapse of a rotating NS to an
HQS which is relevant also for the later GR models.

4.1 Collapse dynamics and gravitational radiation waveform

The EOS of the deconfined quark matter in the stellar core gener-
ally gives a smaller pressure contribution than that of the hadronic
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Table 2. Summary of the set of collapse models: y is the adiabatic index of the hadronic matter during the evolution, § is the EOS parameter that specifies the
contribution of the quark matter pressure in the mixed phase, p. 1, is the value of the central rest-mass density at bounce, |/|max is the maximum value of the
GW signal strain during the evolution, Egy is the energy emitted in GWs (during a total emission time of #f = 50ms), fr and f2 are the frequencies of
the fundamental quasi-radial and quadrupolar modes, respectively, while T and 72, are the damping times of those modes in the GW signal. In addition, we

give the phases ¢; and ¢, of the F and 2f modes and the relative amplitude A;/A; as obtained from a fit to the GW signal according to equation (B1). Note
that the collapse models CAS, CB4 and CC3 are identical, as are models CB2 and CD2, and models CB5 and CD7. During the contraction, models CB6, CC4
and CD9 form an apparent horizon and become black holes. The phase-transition-induced collapse models CN1, CN2 and CN3, as well as the test collapse
models CN pjpr and CN j; are computed with a Newtonian treatment. Where no values are given for the damping times, this signifies that the model either
collapses to form a black hole or that no unambiguous damping could be diagnosed in the GW signal (mostly due to mode resonance; see Section 5.5).

Model Initial y 8 Pec,b 1Al max
model (10" gem™)  (107*at 10 Mpc)

CAl Al 200 2 15.81 1.45
CA2 A2 200 2 16.04 1.33
CA3 A3 200 2 15.81 1.90
CA4 A4 200 2 15.92 1.10
CAS AS 200 2 15.99 0.62
CA6 A6 200 2 16.02 0.52
CA7 A7 200 2 16.10 0.25
CA8 A8 200 2 16.07 0.09
CBI Bl 200 2 9.52 0.42
CB2 B2 200 2 11.70 0.69
CB3 B3 200 2 14.36 0.74
CB4 B4 200 2 15.99 0.62
CB5 BS 200 2 17.92 241
CB6 B6 200 2 - -
cCl cl 200 2 1031 0.36
cc2 c2 200 2 12.71 051
ccs3 c3 200 2 15.99 0.62
cc4 c4 200 2 - -
CD1 B2 200 1 10.47 0.40
CD2 B2 200 2 11.70 0.69
CD3 B2 200 3 12.93 1.07
CD4 B2 200 4 14.16 1.47
CD5 B2 200 5 15.35 1.84
CD6 BS 200 1 1441 031
CD7 BS 200 2 17.92 241
CD8 BS 200 3 24.80 1.14
CD9 BS 200 4 - -
CNI1 N 195 1 10.37 4.41
CN2 N 185 1 1231 15.38
CN3 N 175 1 14.19 21.22
CNuipr N 190 - 12.32 10.11
CNipr N 200 - 11.82 7.63

Egy fe VEY: TF T2p é1 $2 Ar/Ay
(107*Mg ¢*) (kHz) (kHz) (ms) (ms) (rad) (rad)
0.04 0.87  2.01 40 12 0.06  —3.07 0.93
0.29 099 208 49 130 —048 3.24 0.40
0.59 1.05  2.08 - 18 —391 —6.44 0.15
0.17 1.07 208 319 67 —0.15 0.30 0.64
0.11 1.09 2.06 418 - 0.09 3.00 1.44
0.11 .12 204 270 51 —0.15 1.50 1.78
0.05 .16 202 711 - —0.46 3.44 3.01
0.01 1.19  2.00 - - 5.98 6.35 1.69
0.01 1.05 1.78 99 37 0.06 3.17 0.57
0.05 1.06 190 133 44 0.04 3.06 0.71
0.09 110 202 196 59 0.10 -3.11 0.87
0.11 1.10  2.06 418 - 0.09 3.00 0.64
1.16 1.08 210 687 76 6.16 6.02 0.06
0.01 .14 176 143 53 0.13 321 0.77
0.04 113 1.90 71 47 —0.03 3.27 0.86
0.11 1.10  2.06 418 - 0.09 3.00 0.64
0.01 1.15  1.86 150 36 0.00 3.17 0.69
0.05 1.07 190 133 44 0.04 3.06 0.71
0.08 1.04 194 54 39 0.15 2.96 0.78
0.14 1.10  1.96 19 48 035 —142 2.32
0.15 1.14 197 8 44 0.04 3.17 0.80
0.04 .13 2.04 248 62 0.00 —3.18 1.04
1.16 1.09 210 687 76 6.16 6.02 0.06
0.24 1.02 215 - 34 —0.61 3.41 0.46
0.88 268 198 73 80 3.17 0.00 1.12
4.10 288 214 9 20 295  —0.08 1.03
5.70 3.18 234 1 15 285  —0.38 0.98
4.96 267 204 71 67 3.32 0.06 1.10
2.86 283 204 86 67 297  —0.01 1.05

EOS? and so the phase transition in the NS core leads to an in-
stability of the progenitor NS (which is in equilibrium before
the transition) and the entire NS starts to contract. Depending on
the parameters used and the phase transition time-scale, the infall
phase typically lasts between 0.3 and 0.5ms. As the pressure in
the core rises with increasing density, the infall decelerates and the
contraction of the inner core is stopped, while the outer regions are
still falling in. In the case of a rotating NS, the deceleration of the
core can be augmented by the increase of centrifugal forces due to
angular momentum conservation in the contraction phase.
Because of its inertia, the core overshoots its new equilibrium
configuration, rebounds, expands again and then recollapses. It typ-

2 In principle, the quark matter could give as large a pressure contribution
as the hadronic matter (see e.g. Alford et al. 2007a, for a recent discussion).
However, in our study we do not consider those cases.

ically experiences many such distinct sequences of infall, bounce
and re-expansion in the form of pronounced, mainly radial ring-
down pulsations until it finally reaches a new equilibrium state.
Fig. 1 shows the time evolution of the central rest-mass density p.
for the Newtonian model CN2, where this oscillatory behaviour can
be clearly seen.

If the initial NS is non-rotating, then the newly formed HQS
pulsates only radially, and only / = 0 modes are present in the
oscillation spectrum (unless significant convection develops). In
this case, no GWs are emitted. However, if a rotating initial model
undergoes a collapse and ring-down, then GWs of considerable
amplitude can be emitted, as shown in the waveform plot in Fig. 2,
again for model CN2.

Comparing a simple collapse model with a purely ideal gas EOS
to a regular collapse model with a quark contribution to the EOS,
LCCS demonstrated that the phase-transition-induced collapse of
a rotating NS to an HQS predominantly excites two quasi-normal
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Figure 1. Time evolution of the central rest-mass density p. for the
Newtonian collapse model CN2 (which is identical to model R of LCCS).
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Figure 2. Time evolution of the GW strain % at a distance of 10 Mpc for the
Newtonian collapse model CN2.
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Figure 3. Power spectrum / (in arbitrary units) of the GW strain / for the
Newtonian collapse model CN2. The narrow peaks of the F and 2f modes
clearly dominate the spectrum.

pulsation modes: the fundamental / = 0 quasi-radial F mode and
the fundamental [ = 2 quadrupolar 2f mode. These stand out in the
power spectrum of many fluid or metric quantities and, in particular,
in that of the gravitational radiation waveform as presented in Fig. 3.
All of our collapse models exhibit the predominance of these two
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modes as a generic feature.® For the more slowly rotating models,
the contribution from higher order modes at higher frequencies can
become comparable to that of the two fundamental / = 0, 2 modes,
but these higher frequency modes have damping times that are
significantly shorter than those of the fundamental modes and their
impact on the waveform (and other quantities) dies out quickly.

Comparing our values of selected quantities describing the col-
lapse dynamics with the corresponding ones in LCCS shows that our
code is able to accurately reproduce the original results (see Table 3),
despite being based on a different formulation of the hydrodynamic
equations and utilizing a different coordinate system. Furthermore,
Figs 1-3, which correspond to the data plotted in Figs 6, 7 (centre
panel) and 12 (dashed line) of LCCS, also exemplify the excel-
lent agreement both qualitatively and quantitatively. Making this
comparison and demonstrating the good agreement obtained at a
Newtonian level is important for removing possible doubts about
the analysis which we present in the next subsection concerning the
onset and development of convective instabilities.

4.2 The role of convection in generating differential rotation

A conspicuous difference from the results of LCCS that we observe
in the simulations of Newtonian models performed with our code is
the significantly smaller damping of the post-bounce oscillations.
This is not only apparent from the much larger values that we find
for the damping times 7 and 2 ¢ (see Table 3) but can also be noted
by comparing our Figs 1 and 2 to the corresponding Figs 6 and 7
(centre panel) in LCCS. This has important consequences for the
physical interpretation given in LCCS for the damping of the quasi-
radial post-bounce pulsations: they suggested that the dominant
damping mechanism is conversion of the kinetic energy of these
pulsations into differential rotation. According to their discussion,
another less significant part of that kinetic energy is lost when matter
at the boundary of the HQS is ejected by shock waves, while yet
another small amount of damping is due to numerical dissipation.
The 3D Newtonian code of LCCS used a coarser grid spacing
than in our 2D GR calculations and this (together with some other
possible numerical effects) would have led to a higher level of
numerical dissipation. If the damping of post-bounce pulsations
which they saw was indeed mostly caused by physical processes
such as the transformation of kinetic energy into differential rotation
or mass shedding at the boundary, then we would not have seen
much smaller damping in our simulations for the same models.
We therefore conclude that numerical dissipation actually did play
a major role for the damping seen in the simulations of LCCS
(although physical processes certainly also played a role).
Furthermore, if the observed exponential damping, which re-
moves energy from the pulsations at a constant relative rate, were
directly feeding the generation of differential rotation, there should
be a simple correlation between the evolution time 7 and the increase
in the quantity used as a measure of differential rotation by LCCS,

1 22 &2
Td:i prosin“ 6 (2 — Q) dV, (17)
where Q = r~! sin™! 6 v, is the local angular velocity with v, being
the rotation velocity of the fluid, and Q is the volume averaged

3 We perform the mode identification by perturbing equilibrium models that
have similar structure to those of the collapse remnants using specific / = 0
and 2 trial eigenfunctions and analysing the response to these perturbations.
This method is described in detail in LCCS.
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Table 3. Comparison of various quantities as calculated in our simulations for the Newtonian collapse models CN1, CN2 and CN3 (top row for each model)
with the results published by LCCS (bottom row). For each quantity we also give the relative difference between our results and theirs. Note that we multiply
their values for (ﬁz)l/ 2 by /2 to undo the angular averaging and obtain |Aly,x. The values of p¢ , for models CN2 and CN3 are extracted from Figs 6 and 10
in their article, respectively, while for model CN1 they present no data from which to read off the central rest-mass density at the bounce.

1 per cent

2 per cent

2 per cent

f2f TF Tayp
(kHz) (ms) (ms)
1.98 Ipercent 7278 600 per cent 80.23 670 per cent
2.00 10.39 10.42
2.14 3 per cent 8.56 234 per cent 20.10 325 per cent
2.08 2.56 4.73
2.34 4 per cent 1.45 245 per cent 14.51 474 per cent

2.25 0.42 2.53

Model Pc.b 1Almax SF
(10" gem™3) (10~ at 10 Mpc) (kHz)
CN1 10.37 - 4.41 4 percent  2.68
- 4.24 2.66
CN2 12.31 <lpercent 1538  <I percent 2.88
12.30 15.41 2.82
CN3 14.19 <lpercent 21.22 2 per cent 3.18
14.14 21.64 3.12
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Figure 4. Time evolution of the differential rotation measures 74 (top panel)
and A4 (bottom panel) for the Newtonian collapse model CN2.

angular velocity of the HQS.* Note that Ty does not follow the
additive property for energies and so is not a fully satisfactory
measure of the kinetic energy associated with differential rotation.
We instead prefer to use as our measure of differential rotation, a
quantity which is a volume-averaged and density-weighted measure
of the relevant r¢ component of the Newtonian shear tensor,

Ad:/P

The two quantities (17) and (18) are related and they have similar
time evolutions, as shown for model CN2 in Fig. 4 (and as found

dU¢ Vg

dv. 18
dr (18)

4 Note that in contrast to LCCS, we averaged Q at each time level and
not only once at the time of bounce, because when we did the latter, we
obtained a very oscillatory behaviour for 74; we are not clear why LCCS
did not observe this.

for all of the models considered), but we prefer to use A4 because
of it having a clearer physical meaning.

Overall, the evolution of the two measures of differential rotation
has the following general behaviour: after an initial peak associated
with the initial collapse and the main bounce (with its height cor-
relating with the intensity of the bounce), the average differential
rotation stays roughly the same for around a millisecond (corre-
sponding to several dynamical time-scales during which a number
of post-bounce oscillations occur) following which it grows con-
siderably up to a maximum value, then decreases a little and finally
oscillates around an almost constant state. This behaviour is not
in accordance with having continuous conversion of pulsational
kinetic energy into differential rotation as the main damping mech-
anism. Rather, it suggests that some other process is responsible for
creating the observed differential rotation.

The initial peak of Ty and A4 can be readily explained by the
fact that any initially uniform rotation profile will become non-
uniform during the collapse as a result of the non-homology of the
collapse. On the other hand, the intermittent behaviour after the
initial peak and the saturation at a constant value can be interpreted
straightforwardly in terms of differential rotation caused by large-
scale convection developing in the HQS several dynamical time-
scales after the initial collapse when it is still pulsating but is already
close to a new quasi-equilibrium state.

In rotating stellar models significant convection can occur if
the Solberg—Hgiland stability criteria are violated (see e.g. Cerdé-
Duran, Font & Dimmelmeier 2007, and references therein). For our
simple EOS, these translate into the condition that convection can
develop if there is a sufficiently strong negative radial gradient of
specific entropy (depending on the rotation rate of the HQS). We find
that the method of pressure reduction employed by LCCS, which
involves uniformly lowering y in the ideal gas EOS (14) for the
hadronic phase without adjusting the value for the internal specific
energy € at the initial time, indeed results in a very large negative
specific-entropy gradient for their choices of y. This is shown for
model CN2 in Fig. 5 (solid line), where we plot the radial profile at
t = 0 of the (density-dependent) measure of specific entropy

pe(y — 1)
pV

in the equatorial plane, assuming an ideal gas EOS for the entire

star with a y that is reduced from its initial value of 2—1.85. Note
that for a polytrope K is identical to the polytropic constant K.

In order to assess unambiguously the occurrence of artificially

produced convection and its impact on the development of differ-

ential rotation, we set up two simple Newtonian collapsing test

K= 19)
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Figure 5. Radial profiles of the specific entropy measure K (top panel) and
of the r-component of its gradient (bottom panel), both calculated in the
equatorial plane at the initial time for the Newtonian models CN2 (solid
line), CN yipr (dashed line) and CNjp, (dash—dotted line). Both the entropy
and the radius are scaled to give K.=1landre=1.

models, which are both based on the initial model N and utilize
a purely ideal gas EOS (14), so as to simplify the discussion by
removing the influence of quark matter on the results. In model
CNajipr (With non-isentropic pressure reduction) we reduce the pres-
sure by lowering the adiabatic index y from its initial value to
1.9 (without then adjusting €); this creates a strong initial negative
specific-entropy gradient that is comparable with the one in model
CN2 (see Fig. 5). In model CNj, (for isentropic pressure reduction)
y remains at its pre-collapse value of 2 during the evolution, while
the pressure reduction is now realized by a lowering the polytropic
constant K by 10 per cent, which keeps the specific entropy uniform
throughout the entire NS.

Note that the parameters in the EOS for these two test models
have been chosen in such a way that the collapse dynamics (repre-
sented by the maximum density reached at the first bounce and the
amplitude of the post-bounce pulsations) is comparable with that of
model CN2, as can be seen from Fig. 6. Consequently, the gravi-
tational radiation waveforms of these models also have amplitudes
and waveforms similar to those of model CN2.

However, because of the different behaviour regarding convective
instability, the dynamics of the three models CN2, CNy;,, and CNjg,
fall into two very distinct classes, depending on whether the initial
pressure reduction creates a strong negative specific-entropy profile
or leaves the specific entropy constant. In all models, analysis of
the meridional velocity fields shows no noticeable convection being
present at early times (e.g. at the time of the main bounce, around
t = 0.2 ms). In the isentropic collapse model CNj,, convection con-
tinues to remain unimportant also at later times and, accordingly,
both Ty and A4 remain very small at all times (see the right-hand
panel of Fig. 7). In stark contrast, the non-isentropic models CN2
and CNy;,, develop several convection vortices in the bulk of the
collapsed star at # ~ 1 ms (corresponding to a few dynamical time-
scales), which is when the two differential rotation measures start to
increase. This convection grows rapidly and reaches saturation al-
most instantaneously, with typical maximum convection velocities
of ~0.03 c. During the entire period when T4 and A, are increasing,
the convection remains practically constant and redistributes angu-
lar momentum and entropy locally within each vortex. By times
t 2 5ms this has led to the specific entropy being almost constant
within the spatial scale of each convection vortex. Convection then
subsides again, and T4 and A4 remain approximately constant from
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then on. It is clear, therefore, that the distinct phases in the time
evolution of the two quantities reflect very accurately the distinct
phases of convection, which acts as the mechanism that redistributes
angular momentum and thus creates differential rotation.

The impact of angular momentum redistribution by convection on
the initially uniform rotation profile can be seen from Fig. 8 which
shows plots of the rotation velocity v, in the equatorial plane for
the different models. For the strongly convective models CN2 (left-
hand panel) and CN,;, (centre panel), the vy curves are driven away
from the initial uniform rotation (straight line) profile to reach a
step-like profile at late times, whereas the essentially non-convective
model CNjp, (right-hand panel) maintains an approximately uniform
rotation profile.’

It is worth stressing that the occurrence of convection here, and
thus the creation of the differential rotation, is essentially inde-
pendent of the presence and strength of post-bounce pulsations.
Indeed, setting aside some small spurious convection close to the
stellar boundary (caused by interaction of matter with the artificial
low-density atmosphere), the strong bulk convection is caused by
having a negative specific-entropy gradient and can be switched on
and off at will, depending on whether the initial pressure reduction
destroys isentropy or not.

In order to demonstrate this connection further, we constructed
initial equilibrium models with a local polytropic EOS,

P =K(p)p", (20)

with y = 2, where the polytropic ‘constant” K (p) depends on the
rest-mass density and thus varies inside the NS. By adjusting K
(p) we can thus create models with negative (as well as positive)
specific-entropy gradients of arbitrary strengths. When these ini-
tial models are evolved with an ideal gas EOS (14), they remain
essentially in equilibrium, pulsating with only very small ampli-
tudes. However, during the evolution they develop convection, and
subsequently differential rotation, with a strength that directly cor-
responds to the strength of the negative specific-entropy gradient
imposed initially. This is illustrated in Fig. 9 where we show plots
of the meridional velocity field superimposed on the magnitude of
the ¢ component of the vorticity. For this figure we selected three
such equilibrium models for which the initial specific-entropy pro-
file varies between constant specific entropy and a gradient that
is comparable to model CN2.% Clearly, convection is practically
nonexistent in the isentropic model (left-hand panel), whereas the
model with moderate initial non-isentropy (centre panel) develops
considerable convection in those parts of the NS that are not too
far from the rotation axis. Finally, for the model with the strong
negative initial specific-entropy gradient (right-hand panel), con-
spicuous convection vortices occur throughout the NS. Plots of the
vorticity for collapsing models show similar patterns but there the
meridional velocity field is also affected by the contribution from
the large quasi-radial pulsations.

Also for these equilibrium models the time evolution of A4 ex-
hibits the expected behaviour, as shown in Fig. 10 (we here no
longer plot 7y which, however, exhibits a very similar time evolu-
tion to that of A4). Note that the quasi-periodic modulation of A4
is not caused by pulsations of the star, as their amplitudes are too
small to be visible in A4 and they have higher frequencies. Instead,

5 This rather good preservation of uniform rotation is a consequence of the
infall being nearly homologous here.

6 Note that these equilibrium models have central densities comparable with
that of CN2 but they are more compact.
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these oscillations (which can also be seen in a power spectrum of
Aq for the collapse models CN2 and CNy,) are due to temporal
variations in the vortices, with their time-scale being determined by
the typical convection velocity and the average vortex size.

In summary, we find that the differential rotation reported by
LCCS is almost exclusively caused by the transient convection that
occurs if a negative specific-entropy gradient is generated by the
initial pressure reduction. Therefore, we are convinced that the
conclusion drawn by LCCS about the link between the damping
of the large-amplitude post-bounce pulsations and the creation of
differential rotation, although seemingly plausible, is not correct.
They observed that the kinetic energy stored in the pulsations is
approximately equal to the maximum value of A4 for both model
CN2 and model CN3 (their models R and G1.75; see their fig. 8)

but this is an unfortunate coincidence. Our models CNp;p, and CNjp,
demonstrate that convection and thus the maximum value of A4 can
vary enormously for roughly constant pulsation amplitude.

5 GENERAL RELATIVISTIC COLLAPSE
MODELS

5.1 Collapse dynamics and gravitational radiation waveform

We next present our results for the GR models, employing a quark
contribution to the EOS that is slightly different from that used
for the Newtonian models (see Section 3.2). Overall, we have per-
formed simulations for 23 different models, and in Table 2 we
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summarize the most important quantities which characterize the
dynamics of each model.

As discussed previously, our prescription for the triggering of the
phase transition and of the subsequent collapse differs from the one
proposed by LCCS in that we do not change the adiabatic index y,
leaving the EOS in the hadronic phase unchanged. Although still
very idealized, we believe that this represents a more consistent
description of the physics of the phase transition. As a consequence
of this prescription, the phase transition and collapse in our GR
models is solely caused by the lower pressure exerted by matter
which is transformed to the quark phase. The difference between
our approach and that of LCCS is exemplified in Fig. 11, where we
show the different prescriptions for the initial pressure reduction
when applied to the representative model CAS.

With our prescription, only a small (central) part of the NS loses
pressure support, and thus the NS will not, in general, collapse to
a black hole even if the initial model is close to the stability limit.
Rather, it reaches a new stable equilibrium state in the form of
an HQS. For instance, in model CAS only 0.49 M, out of a total
mass of 1.75 M, is subject to the pressure reduction. Nevertheless,
the change of the central rest-mass density during the contraction
from its initial value p.; to p.p at bounce reaches values of up to
~50 per cent for some models (see Tables 1 and 2), which is com-
parable to what was obtained by LCCS in their Newtonian models
with a larger overall pressure reduction. There are at least two dif-
ferent reasons behind this large and local increase of p: first, the
stronger gravitational force that the NS experiences in a GR frame-
work naturally amplifies the strength of the collapse. Secondly, our
initial equilibrium models (in particular the ones with high p. ;)
are already close to the limit beyond which the F mode becomes
unstable. For these models, therefore, even a moderate perturba-
tion can lead to a strong local contraction and trigger post-bounce
oscillations of significant amplitude.’

7 For a non-rotating HQS with the EOS of equation (15) the unstable branch
starts at p. = 29.6 x 10 gem=3.
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Figure 13. Time evolution of the GW strain / at a distance of 10 Mpc for
the GR collapse model CAS.

Despite this conceptually important difference in the way that the
phase transition (and hence the resulting collapse) is triggered, no
major qualitative differences appear when comparing results from
the GR simulations with those from the Newtonian simulations of
LCCS. This is shown for the representative model CAS in Figs 12
and 13, where we plot the time evolution of the central rest-mass
density p. and the GW strain £, respectively. We point out, how-
ever, that in our GR models of sequences CA, CB, CC and CD we
observe a small spike in the time evolution of the central rest-mass
density p. at about 0.1 ms (see Fig. 12). This spike is caused by a
density compression wave triggered by the non-uniform pressure
reduction in those models, which at the start of the evolution leads
to a noticeable gradient in the first radial derivative of the pres-
sure at the interface between the mixed and pure hadronic matter
phases.

As in the Newtonian case, the waveform is mainly composed of
the fundamental / = 0 quasi-radial F mode and of the fundamental
I = 2 quadrupolar 2f mode (see the Fourier spectrum of the GW
signal in Fig. 14). However, in contrast to the Newtonian models,
the F mode is now at a lower frequency than the 2f mode (with
the F mode now having frequencies between 0.87 and 1.19 kHz for
our selection of models, and the %f mode having frequencies be-
tween 1.76 and 2.15 kHz). This difference is a consequence of the
different density profile in the GR case and is in agreement with pre-
vious investigations of pulsating y = 2 equilibrium polytropes (see
Dimmelmeier, Stergioulas & Font 2006a, and references therein).
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The prominent peak next to that for the 2f mode is a non-linear
self-coupling of the F mode at twice the original frequency, which
(like several other such non-linear modes) is strongly excited due
to the violent nature of the collapse. Using the fitting procedure
described in Appendix B, we have extracted from the waveforms
the damping times for these two modes, obtaining values between
Tr = 8 and 687 ms, and 72, = 18 and 130 ms, respectively. Because
of the much smaller numerical dissipation of our code, the damping
times computed for the GR models are considerably longer than
those for the Newtonian models calculated by LCCS.

Another important quantitative difference with respect to the
Newtonian models appears in the maximum GW strain |/|n.x that
is significantly smaller here for comparable overall rotation rates.
The deeper gravitational potential well in GR gives a shorter con-
traction time-scale and higher densities at bounce, which tend to
amplify the GW signal, while this is counteracted by the more
compact collapsed remnant in GR having a smaller quadrupole mo-
ment (for a detailed discussion of these two competing effects, see
Dimmelmeier et al. 2002b). However, the main reason for |/|yax
here being smaller than for the Newtonian models is that within
our scenario for the destabilization, a smaller proportion of the total
matter content of the NS is directly involved in the collapse and in
undergoing large density variations. For a source at 10 Mpc, |/|max
ranges between 0.08 and 1.72 x 10723 for all of the models con-
sidered here, while the energy E,,, emitted in GWs during the first
50ms of the evolution ranges between 107 and 10~ Mg c®. A
more detailed discussion about the detectability of these sources is
presented in Section 5.6.

5.2 Influence of rotation, total rest mass and composition
of the mixed phase

We next investigate the impact on the collapse dynamics of varying
the values of the main model parameters: the initial rotation period
D, the rest mass My, and the exponent é used in the mixed phase.

Rotation. As in any gravitational collapse, the influence of rotation
is twofold. On the one hand, the rotational flattening of the collaps-
ing fluid produces an increase of the quadrupole moment, which
could potentially lead to stronger GW emission. On the other hand,
centrifugal forces also tend to slow down the collapse and, in cases
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where they are strong enough, they can considerably reduce the time
variation of the quadrupole moment and hence the GW amplitude.

For the sequence CA, in which the initial central rest-mass density
Pc.b 18 kept constant, the dependence of the maximum GW strain
|h|max On the rotation rate is rather straightforward to interpret (see
the top panel of Fig. 15 and Table 2). Except for models CA3 and
CA4, whose expected GW emission is altered by resonance effects
(as discussed in detail in Section 5.5), |h|n.x increases monotoni-
cally with increasing rotation (which we here measure in terms of
the ratio 7'/|W|, as this quantity turns out to remain almost constant
throughout the evolution). Since in this sequence the values of the
central rest-mass density at bounce are all close to 16 x 10'* gcm ™3,
we conclude that centrifugal forces do not significantly retard the
collapse for these models and so there is no significant associated
weakening effect for the GW emission.

The effect of rotation is also investigated in the constant rest-mass
sequence CB, for which we observe a slight initial increase of |/ yax
with increasing rotation (see the bottom panel of Fig. 15) that is then
reversed for very rapid rotation (model CBS5, whose GW emission
is again enhanced by mode resonance, is an exceptional case). We
attribute this behaviour to the fact that in this sequence the central
rest-mass density, both in the initial model and at bounce, drops
significantly as rotation grows along the sequence, resulting in a
much less violent collapse. This property can be seen in the central
overdensity at bounce, which amounts to p. ,/p.i — 1 = 39 per cent
for model CBS5, but reaches only 13 per cent for model CB1. The
interplay of growing rotation and decreasing collapse strength then
explains the behaviour of the GW peak amplitude seen for sequence
CB.

The influence of rotation on the frequencies of the F and 2f modes
can be compared directly with the results of Dimmelmeier et al.
(2006a), who obtained relations between the frequencies of these
two modes and the strength of rotation for pulsating equilibrium
models of NSs with a y = 2 polytropic EOS, both for sequences
with constant central rest-mass density and with constant rest mass.
In agreement with that work, for our dynamical collapse models,
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fr decreases noticeably with more rapid rotation for sequence CA
and CB, as shown in Fig. 16 (see also Table 2). Also, for f2; our
models reproduce the initial increase and subsequent decrease with
growing rotation for the constant initial central rest-mass density
sequence CA (sequence BU in Dimmelmeier et al. 2006a) as well
as the monotonic decrease with increasing rotation for the constant
rest-mass sequence CB (their sequence AU). Our results therefore
demonstrate that studies of linear pulsations of equilibrium models
can be used also in the more general context of stellar gravita-
tional collapse to predict the dependence of the fundamental mode
frequencies on rotation. In our models, the creation of differential
rotation by non-homologous contraction during the collapse phase
is rather small. However, even if the deviation from uniform rotation
were stronger, the study of Dimmelmeier et al. (2006a) suggests that
the influence on the mode frequencies would still be weak.

In Fig. 16 we also show the behaviour of the non-linear self-
coupling of the F mode at twice the original frequency (the 2-F
mode) which is strongly excited in all of our models (see also
Fig. 14) including the Newtonian ones. Such non-linear couplings
of linear quasi-normal modes were also observed in the study of ini-
tially linearly perturbed equilibrium models by Dimmelmeier et al.
(2006a), although at much lower excitation levels. In contrast to the
initial low-level perturbations used in their models, in our case the
strong collapse and rebound at bounce manages to channel a large
amount of energy into this particular mode. A detailed discussion of
the impact of exciting the 2-F mode for GW emission is presented
in Section 5.5.

Rest mass. For their Newtonian models, LCCS reported that along a
sequence with constant rotation period p, the maximum GW strain
|h|max first increases with M, and then decreases again. In contrast,
we find that for our corresponding sequence CC, ||y, increases
monotonically with M, (see Table 2).® This different behaviour is

8 We have found the same qualitative behaviour also for another sequence
with constant period p = 1.4 ms and varying rest mass, for which we do not
present the data here.

probably due to a fundamental difference between our GR models
and their Newtonian counterparts. Besides the obvious differences
in the structure of the HQS and hence in the mode frequencies, one
should bear in mind that the rest mass of the GR models has an upper
limit corresponding to the point of transition to the unstable branch
of equilibrium solutions. This is particularly evident for sequence
CC, where model CC4 does not reach a stable configuration after
the collapse but instead produces a black hole as deduced from
the appearance of an apparent horizon. As a result, the eventual
decrease of ||, With increasing M, in the Newtonian case may
not occur in GR simply because it might require rest masses above
the upper limit.

Composition of the mixed phase. The impact on the collapse dy-
namics of varying the parameter § (and hence varying the pressure
reduction due to the presence of the quarks in the mixed phase)
is quite obvious. Both for the collapse models CD1-CDS5, which
are based on the initial model B2, and for the models CD6-CD9,
which use the initial model BS, the rest-mass density at bounce p
and the amplitude of the post-bounce oscillations grow when the
pressure reduction is enlarged by increasing the exponent ¢ (see Ta-
ble 2). Since within each of the two subsequences the initial rotation
rate is constant, the growth of p. 1, and hence of the compactness,
with a greater pressure reduction is directly reflected in stronger GW
emission and higher values for |4|,.«. Also in this case, an exception
arises with model CD7 which is identical to the already mentioned
model CBS. Interestingly, when § = 4, the pressure reduction in the
mixed phase is so great that the corresponding model CD9 collapses
directly to a black hole without experiencing a bounce.

Finally, we note that the F-mode frequencies in the sequence of
models CD1-CDS5 first decrease with increasing 6 and then increase
again. This may be the result of a near cancellation of opposite ef-
fects: while a larger pressure reduction produces a higher overall
density of the post-collapse HQS (potentially resulting in higher val-
ues of fr), it also leads to more rapid rotation due the comparatively
greater compactness (which should lower fr). We also note that the
large-amplitude quasi-radial oscillations in the last model(s) of each
subsequence of sequence CD are so strongly damped shortly after
the collapse, that making a precise determination of the frequency
fr is difficult.

5.3 Damping of the stellar pulsations

Both from the values for the damping time 7 of the fundamental
quasi-radial F mode in the GW signal given in Table 2 and from
Fig. 17, where we plot the time evolution of p. for the most and
least rapidly rotating collapse models of sequence CA, it is evident
that there can be significant damping of the post-bounce pulsations
in the HQS, for some values of the model parameters. In Table 4
we also report the values for the damping time 75, ,, extracted from
the time evolution of the central rest-mass density p.: these values
range from 8 to 200 ms for the models considered here. With the
exception of those models for which the GW emission is dominated
by mode resonance, the two estimated time-scales 7 and t¢ ,, are
very similar.

In Section 4, we have argued that the kinetic energy stored in the
quasi-radial post-bounce pulsations is not responsible for generating
differential rotation, and therefore the observed damping cannot be
attributed to this mechanism as previously suggested. Since, also,
the numerical dissipation of our code is much too small to be the
main cause for the strong damping observed in some models (and
anyway affects all models in the same way) it is necessary to offer an
alternative physical explanation for why the pulsations are strongly
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Figure 17. Time evolution of the central rest-mass density p. for models CA1 and CAS8, the most and the least rapidly rotating models of sequence CA. The

dotted line marks the pulsation damping time g, 5, for model CA1.

Table 4. Relevant quantities for mass-shedding-induced damping: p is the
rotation period of the NS, pk is the rotation period of a free particle on a
circular orbit at the equator (Kepler limit), p/pk is the ratio of these two
periods, pc v/ pc,i — 1 is the central overdensity at bounce compared to the
initial value, and 1 ,, and T are the F mode damping times extracted from
the time evolution of p. and from the GW signal, respectively. Note that we
omit here those models that collapse to a black hole. For completeness, we
also include the Newtonian collapse models CN1, CN2 and CN3.

Model 4 PK p/px Peb/Pei—1  TEp TF
(ms) (ms) (per cent) (ms) (ms)
CAl 1.00 0.89 1.12 41 32 40
CA2 1.20 0.75 1.60 43 36 49
CA3 1.40 0.72 1.94 41 93 -
CA4 1.60 0.70 2.29 42 155 319
CAS 1.80 0.69 2.61 42 160 418
CA6 2.00 0.68 2.94 42 150 270
CA7 2.99 0.67 4.46 43 152 711
CA8 5.98 0.66 9.06 43 132 -
CB1 1.30 0.89 1.46 13 113 99
CB2 1.40 0.80 1.75 23 128 133
CB3 1.60 0.73 2.19 35 156 196
CB4 1.80 0.69 2.61 42 160 418
CBS5 2.00 0.67 2.99 52 103 687
CC1 1.80 0.79 2.28 18 136 143
CcC2 1.80 0.74 243 29 62 71
CC3 1.80 0.69 2.61 42 160 418
CD1 1.40 0.80 1.75 10 200 150
CD2 1.40 0.80 1.75 23 128 133
CD3 1.40 0.80 1.75 36 49 54
CD4 1.40 0.80 1.75 49 19 19
CD5 1.40 0.80 1.75 62 8 8
CD6 1.40 0.80 1.75 22 191 248
CD7 2.00 0.67 2.99 52 103 687
CD8 2.00 0.67 2.99 110 53 -
CN1 1.20 0.86 1.40 11 91 73
CN2 1.20 0.86 1.40 32 16 9
CN3 1.20 0.86 1.40 52 1 1

damped for some models, with 7, being a few ms (and thus
comparable with the dynamical time-scale), while for other models
the damping is much slower, with 7 ,. ~ 100 ms (and thus orders
of magnitude longer than both the dynamical time-scale and the
pulsation period of the star; in this case, the damping seems to be
limited essentially to that caused by numerical viscosity). Since the
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Only models with very rapid rotation (close to the Kepler limit) and violent
post-bounce oscillations due to a very dynamical collapse (upper left-hand
corner of the plot) have short damping times.

gravitational radiation back reaction on the system is also negligible
(and is not taken into account by our conformally flat approximation
of the metric equations anyway), the strong damping seen can only
be due to hydrodynamic effects.

A careful analysis of our model parameters reveals that damping
is significant only for those models that both rotate very rapidly and
experience strong pulsations. This can be seen in Fig. 18, where
the value of g, for each model is given by the grey-scale. Only
models located in the upper left-hand part of the plane spanned
by the rotation period ratio p/px and the overdensity at bounce
Peb/Pci — 1 have the very short damping times.

For models rotating close to the mass-shedding limit (the Kepler
limit), the effective gravity near to the equator is significantly weak-
ened, vanishing at the mass-shedding point. As one goes to models
having larger amplitude quasi-radial post-bounce pulsations, an in-
creasing amount of matter is ejected from low latitudes on the stellar
surface during each oscillation. This matter goes into the initially
artificial very-low-density atmosphere and creates an expanding
envelope of weakly bound (or even unbound) material around the
HQS. This mass shedding causes strong damping of the pulsations,
as pulsational kinetic energy is converted into gravitational poten-
tial energy of the ejected matter. Since polar perturbations (mainly
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radial ones) are coupled to axial perturbations in rotating stars, the
damping rapidly affects all modes.

This mass-shedding-induced damping of oscillations in rapidly
rotating NSs near to the Kepler limit was first observed and dis-
cussed by Stergioulas, Apostolatos & Font (2004) for weakly pul-
sating equilibrium polytropic NS models in uniform rotation, treated
within the Cowling approximation (neglecting the dynamics of the
space—time). In a subsequent study, Dimmelmeier et al. (2006a)
found that if the Cowling approximation is abandoned and the
space—time is dynamically evolved, the effect of mass-shedding
is drastically reduced, giving a consequent decrease in the damping
of the pulsations. However, both of these studies treated small-
amplitude pulsations of equilibrium models (working within the
linear regime), whereas in our collapse models the pulsations can
have very large amplitudes.

Considering the example of model CD8: this has a large ini-
tial pulsation amplitude, with relative variations in p. of around
55 per cent (which is about half of the overdensity at bounce) but it
is rotating too slowly to be close to the Kepler limit (with p/px =~ 3)
and does not show strong damping. The five models with the short-
est damping time-scales, however, (tg,, < fy = 50ms) all have
both quite large initial pulsation amplitudes >18 per cent and are
also rapidly rotating, with rotation period ratios p/px < 1.75. This
is consistent with equatorial mass-shedding being the predominant
mechanism for the strong damping of the post-bounce pulsations
seen for models that both rotate close to the Kepler limit and pulsate
with large amplitude. For models that are not affected by equatorial
mass shedding, other damping mechanisms predominate (such as
the conversion of kinetic energy into internal energy by shocks, non-
linear coupling of modes, numerical or physical dissipation) but all
of these operate on time-scales much longer than the dynamical
time-scale.’

5.4 The role of convection

As discussed above, the damping of post-bounce pulsations and the
development of differential rotation seen by LCCS seems to have
been mainly a manifestation of the convective motion artificially
produced in their simulations by the way in which they induced the
collapse. Real physical convection might well be induced by energy
input coming from the phase transition but this has no connection
with the artificially induced convection. Calculating the real con-
vection is beyond the scope of the present simplified treatments and
remains a topic for future work. While we have eliminated from
our calculations the main source of artificial convection present in
the LCCS simulations, some artificially induced convection still re-
mains. There are at least two different origins for this which apply
for two different classes of initial models.

The first origin is related to the CFC approximation itself: when
the data from the initial model solver are mapped to the evolution
code and the initial-value problem is subsequently resolved to sat-
isfy the constraints (3), small errors due to the CFC approximation
create spurious departures from constant entropy. This side effect
of the CFC approximation is clearly larger for rapidly rotating and
very compact models such as CAl, and becomes very small for

9 As far as viscosity is concerned, in the quark phase the shear viscous
damping time-scale is comparable to that of normal nuclear matter, which
is of the order of 10%s for a typical NS, while the bulk viscous damping
time-scale is of the order of seconds, assuming a rotation period p = 1 ms
and an s quark mass ms; = 100 MeV (Madsen 2000).
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Figure 19. Radial profile of the specific-entropy measure K (top panel)
and its radial derivative (bottom panel) in the equatorial plane at the initial
time for the GR model CA1 (solid line), and the corresponding profiles
for the Newtonian models CN1 (dashed line) and CN3 (dash—dotted line).
The specific-entropy measure and the radius are scaled to give K. = 1 and
re = 1.

slowly rotating models, vanishing in the non-rotating limit. Fig. 19
shows the initial radial profile of the specific-entropy measure K
(cf. equation 19) for model CA1, together with those for the New-
tonian models CN1 and CN3 discussed previously. It can be seen
that the CFC approximation produces a negative specific-entropy
gradient for model CA1 at the start of the evolution. While this
gradient is very small in the bulk of the star (for r/r. < 0.8), near
to the surface it becomes comparable to (or even greater than) that
for model CN1, for which y was initially decreased from 2 to 1.95.
However, it is still much smaller than that occurring when reducing
y to 1.75 as in model CN3.

The CFC-induced violation of the Solberg—Hgiland criteria drives
this model (and other rapidly rotating ones) to develop significant
convection, which we measure in terms of the general relativistic
equivalent of the averaged shear (cf. equation 18),

dl)q) Vg

— — —| dV, 21
dr @

Ag = / V7 phW?

where vy = /303 is the rotation velocity of the fluid.'® Fig. 20
shows the time evolution of Ay for model CA1 (whose convection
is, in fact, among the strongest for the GR models; left-hand panel),
as well as for the Newtonian models CN1 (centre panel) and CN3
(whose convection is among the strongest for the Newtonian mod-
els; right-hand panel). It can be seen that both the development of
the convection with time for model CA1 and its maximum satura-
tion level are comparable with those for the Newtonian model CN3,
while the convection in model CN1 is stronger and occurs on a much

10 Ag already noted for the Newtonian models, the Newtonian equivalent of
Aq has a qualitatively very similar behaviour to that of T4 but only the first
of these has a clearly defined physical meaning.
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Figure 20. Time evolution of the differential rotation measure A4 for the GR collapse model CA1 (left-hand panel) and the Newtonian collapse models CN1

(centre panel) and CN3 (right-hand panel).

shorter time-scale, which is natural since the initial non-isentropy
is larger in that case.

The second origin of spurious convection appears in slowly ro-
tating models; this is not due to the CFC approximation since the
errors coming from that are essentially negligible in these cases.
Instead, convection is produced here by the small violation of isen-
tropy caused by interaction of the matter just inside the surface of
the HQS with the surrounding artificial atmosphere. This perturba-
tion slowly propagates inwards and finally affects the entire star at
late times. Since in uniformly rotating configurations, centrifugal
forces tend to have a stabilizing effect within the Solberg—Hgiland
criteria, it is easy to understand why this process occurs only for the
slowly rotating models. An example of this mechanism in action is
given by model CAS, which is the slowest rotator in our set of GR
models: here A4 reaches a maximum that is close to the saturation
level of models CA1 and CN1 but is still much smaller than the
value for the strongly convective model CN3.

In models that are neither very rapidly nor very slowly rotating
(e.g. model CC1), convection is almost absent and A4 remains at
very low values, which can be explained as resulting from small
deviations away from homology during the initial contraction and
the subsequent post-bounce oscillations. We repeat, however, that
consistent treatment of other possible real sources of convection
remains a major topic for future work.

5.5 Enhanced emission of gravitational waves via mode
resonance

In Section 5.2 we have discussed the influence of the initial rota-
tion speed on the frequencies of the post-bounce oscillations and
also commented that for models with the same rest mass, those
with higher rotation generally have higher GW strain due to their
increased quadrupole moments. This is indeed what is seen, for
instance, in the sequence CB as reported in Table 2. This general
behaviour, however, has a notable exception in the case of the com-
paratively slowly rotating model CBS5, which has by far the largest
GW strain for any of those in the sequence CB, with the energy emit-
ted in GWs in the first 50 ms being at least an order of magnitude
larger than for any of the other models in this sequence.

In the top panels of Fig. 21 we plot the time evolution of the
central rest-mass density p. for models CB3, CB4 and CBS. It can
be seen that the collapse dynamics of model CBS are not qualita-
tively different from those of the more rapidly rotating members of
the same sequence. As rotation decreases from CB3 to CBS, the
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strength of the contraction increases, leading to higher central over
densities p.p at the bounce and stronger post-bounce oscillations.
This, however, cannot account satisfactorily for the very large max-
imum GW strain amplitude ||« of model CBS5, nor for the growth
of & during the first 20 ms after the bounce in this case (see bottom
panels of Fig. 21).

Rather, the time evolution of /2 in model CBS5 (the delayed growth,
the saturation and the subsequent decay) suggests the presence of a
resonance effect among several modes, at least one of which should
be an efficient emitter of GWs. One of the obstacles to having
strong GW emission is that the modes which are most strongly
excited during the bounce are (quasi-)radial modes which are not
efficient GW emitters; indeed they would not emit at all if rotation
were not present to introduce non-radial contributions. However,
it was suggested many years ago (see e.g. Eardley 1983) that the
pulsational energy from a quasi-radial mode, which contains a sig-
nificant amount of kinetic energy but radiates GWs only weakly,
could be transferred to a much more strongly radiating quadrupolar
mode by means of resonance effects and even parametric insta-
bilities. Dimmelmeier et al. (2006a), as well as Passamonti et al.
(2005) and Passamonti, Stergioulas & Nagar (2007) have discussed
this possibility in the context of non-linear coupling of quasi-normal
modes for nearly equilibrium models of NSs.

In order to investigate whether this mechanism might be respon-
sible for the enhanced GW emission observed for model CBS, we
performed a mode analysis for models CB3, CB4 and CBS. The
power spectrum of the time evolution of the central rest-mass den-
sity p., shown in the top panels of Fig. 22, indicates that there is
a lot of energy in the 2-F mode which has a peak about an order
of magnitude higher than the corresponding one for the 2f mode,
located at slightly lower frequencies. As rotation decreases from
model CB3 to model CBS5, the frequencies of these two modes get
closer until the two peaks almost merge for model CBS, with the
relative difference between the two frequencies decreasing to about
4 per cent (see the bottom panel of Fig. 16 and also Table 5).!! Un-
der these conditions of resonance, the 2-F mode is able to transfer
a considerable amount of energy into the 2f mode, as can be clearly
seen in the power spectrum of the waveform amplitude shown in the
lower panels of Fig. 22. If the spectra for model CB5 from Fig. 16

' We have also performed simulations for models with other parameter
values in the close vicinity of those for model CB5 and found that CB5
actually exhibits almost the maximum possible resonance between the 2-F
and 2f modes.
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Figure 21. Time evolution of the central rest-mass density p. (top panels) and the GW strain / at a distance of 10 Mpc (bottom panels) for the GR collapse
models CB3 (left-hand panels), CB4 (centre panels) and CBS5 (right-hand panels). The enhanced GW emission for model CNS5 due to mode resonance is clearly

visible.
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Figure 22. Logarithmic power spectrum (in arbitrary units) of the central rest-mass density p. (top panels) and the GW strain / (bottom panels) for the same
models as in Fig. 21. The resonance between 2f and 2-F modes sets in as their frequencies (marked by dotted lines) approach each other.

are produced for several time windows, this energy transfer between
the two modes becomes visible. While the peaks of both p. and &
corresponding to the 2fmode first gradually grow in the early phases
of the evolution (showing the initial amplification at the expense of
the 2-F mode) and start decreasing only at later times, the peaks of
the 2-F mode always decrease.

The strong dependence of the maximum GW strain |A|,.x on the
rotation rate, as seen in Table 5 as well as in the bottom panel of
Fig. 15, indicates that the resonant behaviour becomes important
only when the frequencies of the 2f and 2-F modes are very close
to each other. This small difference between the two frequencies is
also responsible for the clear beating pattern seen in the waveform

for model CBS5 (see the bottom right-hand panel in Fig. 21). Fig. 15
also shows that while the pulsation energy contained in the F mode
(represented by the spectrum of p in the top panel) is always larger
than the corresponding one in the 2-F mode, when more resonance
between the 2-F and %f modes is at work, the 2-F mode becomes
a very efficient emitter of GWs as well (see the spectrum of 4 in
the lower panel), surpassing the F mode here. This is most likely
a consequence of the altering of the 2-F mode’s previously quasi-
radial eigenfunction by the interaction with the quadrupolar 2fmode
(see e.g. Dimmelmeier et al. 2006a).

Applying this analysis to the complete set of investigated models,
we find that the same resonance between the 2fand 2-F modes is also
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Table 5. The frequencies fzf and f2.r of the fundamental quadrupolar
2f mode and the self-coupling of the F mode, for the collapse models of
sequence CB. A fiel = far/ f2y — 1 is the relative difference between the
frequencies of these two modes.

Model fzf far A frel 1lmax ng
(kHz) (kHz) (percent) (c1072at10Mpe) (107*Mg ¢?)
CBI1 178 2.10 18 0.38 0.01
CB2 190 2.13 12 0.57 0.05
CB3 202 218 8 0.10 0.09
CB4 206 2.19 6 0.10 0.11
CB5 210 218 4 1.72 1.16

at work in models CA3 and CA4 (this is clearly visible in the top
panel of Fig. 15) as well as in model CD8. Also in these cases, the
waveforms show an initial growth in amplitude over several cycles
and then a strong beating at later times. In the case of model CD8,
the growth in 4 due to the mode resonance becomes prominent long
after the bounce, at ¢ 2 20 ms, not reaching its maximum |/|y.x
until + >~ 48 ms, when the quasi-radial oscillations have already
been damped to around 38 per cent of their initial amplitude. In
contrast, for models whose GW emission is not influenced by this
resonance, |h|m.x 1S reached at the time of bounce or very close to
it. In addition, here the spectral power of both the 2-F and ?f modes
decreases at all times if successive spectra are obtained with the
technique of shifted time windows.

5.6 Detectability prospects for the gravitational wave emission

Although the maximum GW strain ||y, in the waveforms of our
GR models is about an order of magnitude smaller than that com-
puted by LCCS for Newtonian models, the long quasi-periodic GW
emission that is possible for phase-transition-induced collapse may
still make this scenario a plausible source for GW detectors. As-
suming that the strong post-bounce oscillations are not damped by
any other physical mechanisms apart from dissipation of kinetic
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energy by shocks, the damping times that we obtain suggest that
the effective total emission time for GWs can be much longer than
the time for which we have followed the evolution of our models
(tr = 50 ms), extending to hundreds of oscillations.

The main GW emission modes are the F and 2f modes, which
have comparable energies in the power spectra, except where the
resonance between the %f and 2-F modes is important, when the
combined 2f mode/2-F mode dominates the GW spectrum. Model
CAS, for which we show in Fig. 23 the power spectrum of the time
evolution of p. (top panel) and of the GW signal (bottom panel),
is an example where the frequencies of 2f mode and 2-F mode are
already close and the two modes start to merge.

Exploiting the fact that, for most models, the waveform can
be very well approximated as a combination of two essentially
monochromatic damped sinusoids, it is straightforward to construct
a phenomenological waveform expressed in terms of six parame-
ters: the mode frequencies fr and f,, the damping times T and
727, and the initial phases and relative amplitude of the two modes
(all of which can be found from Table 2). This can then be applied
as a template in matched filtering data analysis algorithms so as to
search for the waveforms in the data stream more effectively.

In order to assess the prospects for detection by current and
planned interferometric detectors, we next calculate characteristic
quantities for the GW signal following Thorne (1987). Making a
Fourier transform of the dimensionless GW strain £,

h = / 2™/ dt, (22)

00

we can compute the (detector-dependent) integrated characteristic
frequency
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Figure 23. Logarithmic power spectrum (in arbitrary units) of the central rest-mass density p. (top panel) and the GW strain 4 (bottom panel) for the GR
collapse model CAS. The linear quasi-normal modes and the non-linear (self-)couplings are marked with dotted lines and labelled. H; denotes the first overtone
of the F mode, while 2p1 and 4p1 are the first overtones of the fundamental / = 2 and 4 modes, respectively.
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Table 6. Detection prospects for the GWs: f; is the characteristic frequency, A is the integrated characteristic GW signal strain and S/N is the signal-to-noise
ratio, each given for the current LIGO and VIRGO detectors, and for the future advanced LIGO detector. The values given for all of the quantities assume a
total emission time of #f = 50 ms and are dependent on the rms strain noise /g of the detector. Note that models CB6, CC4 and CD9 collapse to form a black

hole as a result of the phase transition and so are omitted here.

Model  ferico  feVIRGO  fec.adv.LIGO he,LiGO he VIRGO he adv. LIGO S/Niuco  S/Nvirgo S/N adv.LiGO
(kHz) (kHz) (kHz) (107%at 10kpc)  (1072at 10kpc)  (1072%at 10kpc)  (at 10kpe)  (at 10 kpc) (at 10 kpc)
CAl 0.954 0.978 1.029 2.55 2.59 2.68 7.5 12.0 179
CA2 1.755 1.798 1.864 5.65 5.75 5.92 6.8 11.8 201
CA3 1.845 1.876 1.923 8.52 8.63 8.80 9.4 16.6 287
CA4 1.619 1.660 1.735 3.56 3.62 3.75 4.8 8.3 139
CAS 1.349 1.382 1.450 1.78 1.81 1.87 3.1 53 86
CA6 1.415 1.452 1.527 1.55 1.58 1.63 2.5 4.4 71
CA7 1.449 1.485 1.572 0.72 0.73 0.76 1.1 2.0 32
CA8 1.609 1.672 1.788 0.29 0.30 0.31 0.4 0.7 11
CBI 1.349 1.374 1.417 1.31 1.33 1.36 23 4.0 64
CB2 1.304 1.335 1.388 2.12 2.16 2.22 3.9 6.7 108
CB3 1.322 1.353 1.411 2.09 2.12 2.18 3.8 6.4 104
CB4 1.349 1.382 1.450 1.78 1.81 1.87 3.1 53 86
CBS 2.073 2.078 2.086 13.18 13.27 13.24 12.3 21.9 389
ccl1 1.370 1.394 1.435 1.06 1.08 1.10 1.8 3.1 51
cc2 1.370 1.394 1.442 1.48 1.50 1.54 2.6 4.4 71
CC3 1.349 1.382 1.450 1.78 1.81 1.87 3.1 53 86
CD1 1.346 1.370 1.407 1.23 1.25 1.27 22 3.7 61
CD2 1.304 1.335 1.388 2.12 2.16 2.22 3.9 6.7 108
CD3 1313 1.345 1.406 2.79 2.84 2.93 5.1 8.7 140
CD4 1.555 1.585 1.636 4.54 4.60 471 6.5 11.2 188
CD5 1.661 1.682 1.718 5.09 5.14 5.23 6.6 11.6 197
CD6 1.350 1.383 1.449 0.82 8.36 0.86 L5 2.5 40
CD7 2.073 2.078 2.086 13.18 13.21 13.24 12.3 22.0 389
CD8 1.722 1.780 1.862 3.88 3.9 4.13 4.8 8.3 141

where ), is the power spectral density of the detector and S,. =
Sy(f.). We approximate the average (A2) over randomly distributed
angles by A2, assuming optimal orientation of the detector. From
equations (23) and (24) the signal-to-noise ratio (S/N) can be cal-
culated as h /[hms(f)], where hys = / f Sy, 1s the value of the rms
strain noise for the detector (which gives the theoretical sensitivity
window).

In Table 6 we summarize the values of f., 4. and the S/N for all
of the models (except those which collapse to a black hole) for the
currently operating LIGO and VIRGO detectors and for the future
advanced LIGO detector. For all of the detectors we consider a
source inside our own Galaxy at a reference distance of 10kpc. The
proportion of NSs that undergo phase-transition-induced collapse
at some stage in their lifetimes is not well known. The phenomenon
could occur at, or soon after, the formation stage (giving an event
rate roughly proportional to that for core collapse supernovae) or it
could come at a later stage when an old NS is spun up and has its
mass increased by accretion from a binary partner in an LMXB (an
interesting case but with an event rate which is thought to be very
much lower, probably ~10~° yr~! for the Milky Way; see Pfahl,
Rappaport & Podsiadlowski 2003). Another point is that a phase-
transition-induced collapse occurring for an NS which is not rapidly
rotating would not be so interesting for our purposes. Even under
the most extremely optimistic assumption that the phase-transition-
induced collapse rate equals that for core-collapse supernovae, that
would only give a rate of up to 1 per 20 yr for our Galaxy, which is
prohibitively low. On the other hand, if such an event did occur in
our Galaxy, for current interferometric detectors of the LIGO class
and assuming an emission time #; = 50 ms, all of our models except

one have an S/N above 1. For the strongest emitting model CBS5,
where mode resonance significantly enhances the GW emission, the
S/N even exceeds 10. With the advanced LIGO detector, the S/N
lies comfortably above 10 for all models and reaches almost 400 in
model CB5.

For substantially increasing the event rate, it would be necessary
for the detector to be sensitive to signals coming from distances
out to the Virgo cluster, at ~20 Mpc (for which the supernova rate
would rise to more than 1 per year). However, at this distance the
S/N for our models drops to well below 1 even for advanced LIGO.
Therefore, as for GW signals from supernova core collapse (see
the discussion in Dimmelmeier et al. 2005), the second generation
detectors will improve the S/N of a local event, but will not increase
the event rate much on account of the inhomogeneous galaxy dis-
tribution in the local region of the Universe. Only third generation
detectors will have the required sensitivity in the kHz range to
achieve a robust S/N at the distance of the Virgo cluster.

Note that for most of the models the integrated characteristic
frequency f. given in Table 6 is not very close to either of the two
main GW emission frequencies fr and f2,. This is because f. reflects
the frequency dependence of the sensitivity of the detector, because
non-linear mode couplings and higher order linear modes also con-
tribute to the GW signal (although with lower relative amplitudes;
see Fig. 23) and, most importantly, because for many models the
GW power spectrum of the signal exhibits nearly equally strong
peaks in the F and %f modes.

The detector dependence of f; and k. is also illustrated in Fig. 24,
where the locations of the GW signals for all of the models are
plotted relative to the rms strain noise /.y of the current LIGO
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Figure 24. Location of the GW signals from all of our GR models in the 4.—f plane shown relative to the sensitivity curves (giving the rms strain noise /)
for the current LIGO detector (left-hand panel) and VIRGO detector (centre panel) and for the advanced LIGO detector (right-hand panel). The sources are
taken to be at a distance of 10 kpc. Note that some of the models belong to more than one sequence. Models for which mode resonance boosts the GW emission

are additionally marked with circles.

and VIRGO detectors (left-hand and centre panels, respectively)
and the future advanced LIGO detector (right-hand panel), all for a
distance to the source of 10kpc. As a general feature, we note that
the upper parts of these sensitivity diagrams are occupied by those
models whose GW signal strength is enhanced by mode resonance.
When mode resonance is not important, the largest characteristic
amplitudes occur for those models which are most rapidly rotating,
unless strong post-bounce damping is in action as in model CA1.

Both in Table 6 and in Fig. 24 the GW characteristics have been
evaluated for a total emission time of # = 50 ms. In Appendix B
we describe how to obtain the characteristic GW strain A, for an
arbitrary emission time using simple scaling laws.

6 CONCLUSION

In this paper, we have described numerical simulations of the phase-
transition-induced collapse of rotating NSs to become hybrid quark
stars. The simulations were made using a code which solves the gen-
eral relativistic hydrodynamic equations in axisymmetry and within
the conformally flat approximation. The initial stellar models were
taken as being rapidly rotating y = 2 polytropes, while during the
evolution we used an EOS composed of three parts, depending on
density: a normal hadronic-matter phase, a mixed phase of normal
matter together with deconfined quark matter, and a pure quark mat-
ter phase. The hadronic component of the EOS was described with
an ideal gas type of EOS, while for the deconfined quark matter
phase we used the MIT bag model.

To validate our code, we first repeated several of the Newto-
nian simulations performed previously by LCCS. We found that
the differential rotation which develops in these models during the
post-bounce phase is almost entirely due to strong transient convec-
tion which arises because the way in which they treated the onset of
the phase transition leads to an artificial negative specific-entropy
gradient. We argue that their conclusion about there being a causal
link between the large-amplitude post-bounce pulsations and the
creation of differential rotation was a misinterpretation of the re-
sults. We also suggest that a significant part of the damping of the
pulsations which they observed was a consequence of the numerical
dissipation present in their calculations, rather than being related to
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differential rotation, although a part of this damping was related
to the other physical processes which we have discussed here and
which were present in both calculations.

Having clarified the dynamics of the collapse in the Newtonian
framework, we then investigated the corresponding situation within
GR, using a modified prescription for triggering the phase transi-
tion and initiating the collapse. Here we change the EOS only in
the regions where the phase transition has taken place and leave it
unchanged elsewhere. We recognize that our procedure for describ-
ing the phase transition remains extremely idealized but we believe
that it represents a step forward.

Despite this difference in the way in which the phase transition is
triggered, we have not found any major qualitative differences in the
waveforms produced when comparing the relativistic simulations
with the earlier Newtonian ones. Also in the general relativistic
simulations, the waveforms produced are mainly composed of the
fundamental / = 0 quasi-radial F mode and the fundamental / =
2 quadrupolar *f mode. However, in contrast to the Newtonian
models, the F mode is at a lower frequency than the 2f mode as a
consequence of the different density profiles. In addition to these
modes, a non-linear self-coupling of the F mode at twice the original
frequency, the 2-F mode, is strongly excited due to the violent nature
of the collapse. Although qualitatively similar to their Newtonian
counterparts, the relativistic models exhibit quantitative differences
in their dynamics. In order to investigate these, we have considered
a set of 23 different models organized in several sequences. In each
of these sequences, only one of the characteristic parameters of the
models was allowed to vary.

The main trends observed were as follows. For the sequence with
constant initial central rest-mass density, the maximum GW strain
|h|max Increases monotonically with the rotation rate (except for
some models where the waveform is strongly altered by mode reso-
nances). For the constant rest-mass sequence, on the other hand, we
observe first an increase of |A|,,.x With the rotation rate and then a
decrease for very rapid rotation. For the sequence with constant ro-
tation period but varying rest mass, we see | /|, increasing mono-
tonically with the rest mass, which is a different behaviour from
that seen for the Newtonian models, where |/|n. first increases
and then decreases again as the rest mass is increased. The reason
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for this difference may simply be that having a decreasing part of
the curve would require progenitor NSs with rest masses beyond
the upper limit for general relativistic models. Finally, changing the
EOS in the mixed phase has straightforward consequences: the cen-
tral rest-mass density at bounce, the amplitude of the post-bounce
oscillations, and the maximum GW strain all increase as the overall
pressure in the mixed phase is reduced.

Other points to arise include the following. First, the influence
of rotation on the frequencies of the F and *f modes agrees well
with what was found by Dimmelmeier et al. (2006a) for pulsations
of equilibrium NSs, suggesting that studies of linear pulsations of
equilibrium models can (at least in some cases) correctly predict
the properties of the eigenfrequencies also when the pulsations
are excited in a dynamical situation. Secondly, in some models
the emission of gravitational radiation is considerably enhanced by
the non-linear resonance between the 2-F and 2f modes. When the
frequencies of these two modes are sufficiently close, the weakly
radiating quasi-radial 2-F mode transfers some of its kinetic energy
to the strongly radiating quadrupolar 2f mode, leading to a con-
siderable increase in |A|max. Thirdly, we have proposed a simple
explanation for the strong damping of the post-bounce pulsations
seen for a subset of our models. Our analysis reveals that that these
models are all both rotating close to the Kepler limit and also un-
dergoing large-amplitude post-bounce pulsations, resulting in sig-
nificant mass shedding from the stellar surface close to the equator.
As already discussed by Stergioulas et al. (2004), this ejection of
loosely bound matter is very efficient in the damping quasi-radial
pulsations.

In order to assess the prospects for the detection of phase-
transition-induced collapse events by GW interferometers, special
attention has been paid to making an accurate calculation of the
GW emission resulting from this scenario. We find that the dimen-
sionless GW strain /& from a source at a distance of 10 Mpc ranges
between 0.1 and 2.4 x 10723 for all of the models considered and
that the total energy emitted in GWs during first 50 ms of evolution
is between 107° and 10~ M c?, corresponding to 2 x 10* and 2
x 10 erg, respectively. These numbers are considerably smaller
than those presented by LCCS for their Newtonian calculations and
so are disappointing for the prospects of detecting these sources.
The damping times for the post-bounce oscillations, as computed
from the gravitational radiation waveform, range from 8 to 687 ms
for the F mode, and from 18 to 130 ms for the 2f mode. For all of
the models considered, we have also calculated the characteristic
frequency f;, the characteristic strain /., and the S/N for current and
future detectors. For current detectors such as LIGO or VIRGO,
all of the models (except one) have an S/N above 1 for a source at
10 kpc. For the advanced LIGO detector, the S/N rises to well above
10 for a source at 10 kpc for all of the models and reaches almost
400 when mode resonance is active. However, for detecting sources
within the Virgo cluster at a distance of 20 Mpc, which is probably
necessary in order to reach a realistic event rate, third generation
detectors would be needed.

In conclusion, we note that while our study represents an improve-
ment over previous ones, it still lacks a number of very important
aspects which would be necessary for a properly realistic modelling
of these objects. First, there is the treatment of the phase transfor-
mation itself which remains extremely crude, containing no detailed
picture of the transformation of the material, the local heat input
or the emission of neutrinos or photons. A consistent treatment of
radiative transfer is likely to be essential for following the cooling
phase of the newly formed hybrid quark star and could highlight
that the radiative losses would produce differences in the specific-

entropy stratification and hence trigger real convection. Also, in our
discussion, we have been considering the phase transition as occur-
ring by means of a detonation; the conclusions would be drastically
altered if it takes place instead via a slow deflagration. A second
aspect concerns the treatment of the standard neutron-star matter:
while using a gamma-law EOS to model this can be reasonable for
some simplified calculations, it gives an extremely poor approxima-
tion to the complex physics actually occurring in real NSs. Thirdly,
we have not been considering the influence of magnetic fields which
are not only expected to affect the dynamics, but could also lead
to a dramatic modification of the phase transition process itself
(Lugones et al. 2002). It is clear that future studies will need to take
these aspects into account.
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APPENDIX A: FINITE TIME FOR THE
INITIAL PHASE TRANSFORMATION

In the study by LCCS, it was assumed that the time-scale of the
phase transition is much smaller than the hydrodynamic time-scale
for an NS, which is roughly 0.1 ms. They then ignored the finite
velocity of the conversion process and instead induced the phase
transition by instantaneously replacing the initial polytropic EOS
by one including the quark matter, which gives a lower pressure.
However, since the time-scale for the phase transition even to
two-flavour quark matter can be as long as 0.05ms within our
picture (which is comparable to the hydrodynamic time-scale), it is
far from clear that treating it as instantaneous will not significantly
affect the subsequent dynamics of the forming HQS. To check on
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this, we performed simulations for a set of representative collapse
models in which we take the initial phase transformation to occur
gradually over a finite time-scale with the values of pny, and pgy in
equations (15) and (16) depending on the time ¢ according to

Pc — L()Ox: - )Ohm) fort < Teonvs

= {275

Phm for ¢ = Teonvs

Pgm + Pe — Phm fors < Teonvs (Al)
pqm(t) = _ﬁ(pc - phm)

Pam for t > Teony,

where Ty is the time-scale of the initial phase transformation
and p. is the central rest-mass density. This means that pu,(?)
starts initially at p. and then evolves linearly with time to reach its
final value ppm at f = Teony, While pgm(?) has a similar behaviour
shifted by pqm — onm. For this test we set the time-scale equal to
the approximate upper limit for a detonation type phase transition,
Teonv = 0.05ms, and compared the results obtained with those for
the regular models (corresponding to 7 o, = 0 ms).

We expected that having the initial phase transformation occur-
ring gradually in this way would produce a time lag of the same
order as 7oy in the initial contraction and give a less violent bounce
occurring at a lower density with post-bounce pulsations of smaller
amplitude than before. All of this was indeed the case for the mod-
els which we investigated, as can be seen in Fig. Al, where we
show the time evolution of the central rest-mass density p. for the
representative model CAS with 7o, = 0 and 0.05 ms. The wave-
form of the emitted GWs remains essentially unaltered except for
a small reduction in the first large-amplitude peaks and the ex-
pected phase shift (see Fig. A2). As the final HQS is less compact
in the case of a non-instantaneous phase transition due to the less
dynamic initial contraction, the frequencies of the predominantly
excited quasi-normal modes, the F and 2f modes, are modified only
slightly, changing from 1.09 to 1.12 kHz and from 2.04 to 2.06 kHz,
giving relative changes of 3—1 per cent, respectively (see Fig. A3).

The result that the differences seen when the finite 7y, is intro-
duced are so small is a direct consequence of 7 o,y = 0.05 ms still
being about an order of magnitude smaller than the collapse time-
scale in the case of an instantaneous initial phase transformation
(although it is of the same order as the dynamical time-scale). The
collapse time-scale can be approximated by the time of bounce,
which is 0.40 ms for model CAS and takes similar values for all
of the other models. Since the choice 7 ,,, = 0.05ms is an upper
limit within our picture, we conclude that the taking T .oy = Oms
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model CAS 3
16 5
4 I5F i g
E 1 3
- a :
on E 1 —
= g 3
2 E 3
¢
0 ms —
conv \ E
- 7. =0.05ms E
conv {
HHHH‘HHH\H‘\HHHH‘HHH\H‘\HHHH‘H\H\Hg
0 1 2 3 4 5 6
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Figure Al. Time evolution of the central rest-mass density p. for the GR
collapse model CAS with t¢ony = Oms (solid line) and Tcony = 0.05 ms
(dashed line).
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Figure A2. Time evolution of the GW strain / at a distance of 10 Mpc for
the GR collapse model CAS5 with 7¢ony = Oms (solid line) and Teony =
0.05 ms (dashed line).
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Figure A3. Power spectrum A (in arbitrary units) of the GW strain / for the
GR collapse model CAS with 7¢ony = O ms (solid line) and T¢ony = 0.05 ms
(dashed line).

for our regular collapse models was reasonable, giving values for
quantities, such as pcp, |#|max.fr and f that are upper, but close,
limits for a detonation type phase-transition-induced collapse of an
NS to an HQS.

APPENDIX B: CALCULATION OF THE
DAMPING TIMES OF THE WAVEFORMS

In order to determine the damping times for the GW emission we
apply a curve fitting method to the numerically obtained waveform:
the waveform is fitted by a series of damped sinusoids,

AS = Z A;e ' cos2mfit + ;). (B

i=0

The parameters of this series (the damping times t;, the ampli-
tudes A; and the phases ¢;) are fixed by finding the best fitting
curve. Depending on the model, we use n = 4—5 terms for the
fitting procedure.

Note that this method of determining the damping times is more
general than that presented in LCCS, where the series consisted of
only two terms, so that only the fundamental / = 0 and 2 modes
are taken into account, which leads to some inaccuracies at early
post-bounce times when higher frequency modes in the GW signal
are present. Also, they take A; = A, and ¢; = 0, which may not be
the case in general. With our approach we are able fit the original
waveform with the correlation coefficient between the numerical
data and equation (B1) exceeding 0.99 for all models, whereas the
method used by LCCS gives a correlation coefficient of less than
0.9 for some models.

Assuming that the GW signal is essentially a linear combination
of the F and 2f modes, approximating each of them as a damped
sinusoid and using knowledge of the mode frequencies f¢ and f>,
the amplitudes A and A,, and the phases ¢; and ¢,, one can obtain
the value of the characteristic GW strain /. for an arbitrary emission
time using simple scaling laws. For a single damped sinusoid,

h=hye " sin@nft — ¢), (B2)

where hy is the amplitude, 7 is the damping time-scale, f is the
frequency and ¢ is the phase. If & is known for some emission time
t¢, then its value for a multiple n of the original emission time can
be calculated as

1— 672m‘f/r
he(ntr) = he(tr) 1o/’ (B3)

provided that f~! « 7 (which is fulfilled for most of our models)
and the power spectral density S, of the detector is reasonably
constant in the vicinity of f. For an undamped sinusoid with 7 = oo,
equation (B3) gives h.(nt;) = /n h. as expected; in other words,
h. scales like the square root of the number of cycles in the GW
signal. In the limit of infinite emission time, but with finite 7, the
exponential damping of the signal results in a finite value for the
total characteristic GW strain,

he(t = 00) = he(te) (B4)

1
For many of our models, we have F mode damping times tf
which are much longer than #;. On these time-scales, other damping
mechanisms such as physical viscosity or GW back reaction (which
are not taken into account in our study) could become important.
We therefore do not give values of the total characteristic GW strain
h.(t = co) for our models.
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