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Abstract: We prove that in Einstein-Maxwell theory the inequality (8π J )2+(4πQ2)2 <

A2 holds for any sub-extremal axisymmetric and stationary black hole with arbitrary sur-
rounding matter. Here J, Q, and A are angular momentum, electric charge, and horizon
area of the black hole, respectively.

1. Introduction

For a single rotating, electrically charged, axisymmetric and stationary black hole in
vacuum (described by the Kerr-Newman family of solutions), the angular momentum J ,
the electric charge Q, and the horizon area A are restricted by the inequality

p2
J + p2

Q ≤ 1 with pJ := 8π J

A
, pQ := 4πQ2

A
. (1)

Equality in (1) holds if and only if the Kerr-Newman black hole is extremal. That is to
say,

p2
J + p2

Q < 1 (2)

holds for any non-extremal Kerr-Newman black hole.
As was shown in [1], the equality p2

J + p2
Q = 1 holds more generally in Einstein-

Maxwell theory for axisymmetric and stationary degenerate1 black holes with surround-
ing matter. Moreover, it was conjectured in [1] that inequality (1) is still valid if the black
hole is surrounded by matter (i.e. if it is not a member of the Kerr-Newman family).

Inequality (2) was proved in [7] for axisymmetric and stationary black holes with
surrounding matter in pure Einsteinian gravity (without Maxwell field). In that article,
emphasis was put on “physically relevant” configurations by assuming the black hole to

1 Degeneracy of an axisymmetric and stationary black hole is defined by vanishing surface gravity κ .
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be sub-extremal. This condition requires the existence of trapped surfaces (i.e. surfaces
with a negative expansion of outgoing null geodesics) in every sufficiently small interior
vicinity of the event horizon, see [3]. Here, we consider again sub-extremal axisymmet-
ric and stationary black holes with arbitrary surrounding matter, but provide a proof of
(2) which is valid in the full Einstein-Maxwell theory.

The idea of the proof relies on showing that a black hole cannot be sub-extremal
for p2

J + p2
Q ≥ 1. In order to prove this, we study the Einstein-Maxwell equations in a

vicinity of the black hole horizon. It turns out that a reformulation can be found which
states that an appropriate functional I (to be defined below) must always be greater than
or equal to 1. In this way, we encounter a variational problem, and the corresponding
solution provides a proof of inequality (2). As will be shown below, this variational
problem can be treated with methods from the calculus of variations.

This paper is organized as follows. In Sec. 2, we introduce appropriate coordinates
which are adapted to the subsequent analysis. Moreover, we list the Einstein-Maxwell
equations and the corresponding boundary and regularity conditions in these coordinates.
In Sec. 3, we express the ingredients pJ and pQ , which appear in the inequality (2), in
terms of metric and electromagnetic potentials. We formulate the variational problem
mentioned above in Sec. 4 and solve it in Sec. 5. Finally, we conclude this paper with
a discussion on physical implications of inequality (2), see Sec. 6. In an appendix, we
establish a connection to degenerate black holes.

2. Coordinate Systems and Einstein Equations

Following Bardeen [2], we describe an exterior electrovacuum vicinity of the black hole2

in spherical coordinates (R, θ, ϕ, t) in terms of a Boyer-Lindquist-type3 line element

ds2 = µ̂

(
dR2

R2 − r2
h

+ dθ2

)
+ û sin2θ (dϕ − ωdt)2 − 4

û
(R2 − r2

h )dt2, (3)

where the metric potentials µ̂, û and ω are functions of R and θ alone and where in
addition µ̂ and û are positive functions. The event horizon H is located at R = rh,
rh = constant > 0.

The electromagnetic field gives rise to an energy momentum tensor

Ti j = 1

4π

(
Fki Fk

j − 1

4
gi j Fkl Fkl

)
, (4)

where, using Lorenz gauge, the electromagnetic field tensor Fi j can be written in terms
of a potential (Ai ) = (0, 0, Aϕ, At ),

Fi j = Ai, j − A j,i . (5)

Note that, like the metric quantities, Aϕ and At also depend on R and θ only.

2 For a stationary spacetime, the immediate vicinity of a black hole event horizon must be electrovacuum,
see [5 and 2].

3 In the special case without any exterior matter, i.e. for the Kerr-Newman black hole, we obtain Boyer-
Lindquist coordinates (r, θ, ϕ, t) through a linear transformation r = 2R + M , where M is the black hole
mass.
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In the Boyer-Lindquist-type coordinates, the Einstein-Maxwell equations in electro-
vacuum are given by4

(R2 − r2
h )ũ,R R + 2Rũ,R + ũ,θθ + cot θ ũ,θ

= 1 − û2

8
sin2θ

(
ω2
,R +

ω2
,θ

R2 − r2
h

)
− 1

û sin2θ

[
(R2 − r2

h )A
2
ϕ,R + A2

ϕ,θ

]

− û

4

[
(�,R − Aϕω,R)

2 +
(�,θ − Aϕω,θ )2

R2 − r2
h

]
, (6)

(R2 − r2
h )µ̃,R R + Rµ̃,R + µ̃,θθ

= û2

16
sin2θ

(
ω2
,R +

ω2
,θ

R2 − r2
h

)
− (R2 − r2

h )ũ
2
,R + Rũ,R − ũ,θ (ũ,θ + cot θ), (7)

(R2 − r2
h )(ω,R R + 4ω,Rũ,R) + ω,θθ + ω,θ (3 cot θ + 4ũ,θ )

= 4

û sin2θ

[
(R2 − r2

h )Aϕ,R(�,R − Aϕω,R) + Aϕ,θ (�,θ − Aϕω,θ )
]
, (8)

(R2 − r2
h )

[
�,R R − Aϕω,R R + 2ũ,R(�,R − Aϕω,R)− Aϕ,Rω,R

]
+�,θθ − Aϕω,θθ + (2ũ,θ + cot θ)(�,θ − Aϕω,θ )− Aϕ,θω,θ = 0, (9)

(R2 − r2
h )

[
Aϕ,R R − 2ũ,R A,ϕ,R

]
+ 2R Aϕ,R + Aϕ,θθ − (2ũ,θ + cot θ)Aϕ,θ

= û2

4
sin2θ

[
(�,R − Aϕω,R)ω,R +

�,θ − Aϕω,θ
R2 − r2

h

ω,θ

]
. (10)

Here, we have used the dimensionless quantities

ũ := 1

2
ln

û

ûN
, µ̃ := 1

2
ln
µ̂

ûN
,

where ûN is the the north pole value of û,

ûN := û(R = rh, θ = 0).

Moreover, we have replaced At by the comoving electric potential

� = At + ωAϕ.

At the horizon, the metric potentials obey the boundary conditions (cf. [2])

H : ω = constant = ωh,
2rh√
µ̂û

= constant = κ, � = constant = �h, (11)

where ωh, κ , and�h denote the angular velocity of the horizon, the surface gravity, and
the value of the comoving electric potential at the horizon, respectively.

4 Throughout this paper we consider a vanishing cosmological constant, � = 0. (Note that inequality (1)
can be violated for � �= 0. An example is the Kerr-(A)dS family of black holes, see [3].)
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On the horizon’s north and south pole (R = rh and sin θ = 0), the following regularity
conditions hold5:

µ̂(R = rh, θ = 0) = û(R = rh, θ = 0)

= µ̂(R = rh, θ = π) = û(R = rh, θ = π) = ûN = 2rh

κ
, (12)

Aϕ(R, θ = 0) = Aϕ(R, θ = π) = 0. (13)

In the forthcoming calculations we need relations between metric and electromag-
netic quantities at the black hole horizon H. These are provided by an investigation of
Eqs. (6) and (7). For the evaluation of these equations in the limit R → rh, we introduce
the regular horizon potentials (cf. [1])

ω̂ := ω − ωh

R − rh
, �̂ := �−�h

R − rh
, (14)

from which it follows that

lim
R→rh

ω2
,θ

R2 − r2
h

= lim
R→rh

(
R − rh

R + rh
ω̂2
,θ

)
= 0,

lim
R→rh

(�,θ − Aϕω,θ )2

R2 − r2
h

= lim
R→rh

[
R − rh

R + rh
(�̂2

,θ − Aϕω̂,θ )
2
]

= 0.

Using these relations, we obtain for (6) and (7) in the limit R → rh,

2rhũ,R + ũ,θθ + cot θ ũ,θ = 1 − û2

8
sin2θ ω2

,R − A2
ϕ,R

û sin2θ
− û

4
(�,R − Aϕω,R)

2, (15)

rhµ̃,R + µ̃,θθ = û2

16
sin2θ ω2

,R + rhũ,R − ũ,θ (ũ,θ + cot θ). (16)

3. Calculation of pJ and pQ

In order to find suitable expressions for pJ and pQ , we introduce the following functions
which are defined as follows in terms of the metric and electromagnetic quantities at the
black hole horizon H:

U (x) := 1

2
ln

û

ûN

∣∣∣H, V (x) := 1

4
û ω,R

∣∣H, (17)

S(x) := û

2
√

ûN
(�,R − Aϕω,R)

∣∣H, T (x) := Aϕ√
ûN

∣∣∣H, (18)

where x := cos θ .

5 Note that (13) holds on the entire rotation axis.
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In terms of these quantities we obtain for angular momentum J , charge Q and horizon
area A (cf. [1]): 6

J = 1

8π

∮
H
(mi; j + 2mk Ak Fi j )dSi j

= −1

4

∫ π

0
û

[
û

4
ω,R sin2θ − Aϕ(�,R − Aϕω,R)

] ∣∣∣H sin θ dθ

= − ûN

4

∫ 1

−1
[V e2U (1 − x2)− 2ST ]dx, (19)

Q = − 1

4π

∮
H

Fi j dSi j = −1

4

∫ π

0
û(�,R − Aϕω,R)

∣∣H sin θ dθ (20)

= −
√

ûN

2

∫ 1

−1
S dx (21)

A = 2π
∫ π

0

√
µ̂û

∣∣H sin θ dθ = 4π ûN. (22)

Here, we have used conditions (11) and (12). Finally, we arrive at

pJ ≡ 8π J

A
= −1

2

∫ 1

−1
[V e2U (1 − x2)− 2ST ]dx, (23)

pQ ≡ 4πQ2

A
= 1

4

(∫ 1

−1
S dx

)2

. (24)

4. Reformulation in terms of a Variational Problem

As a first step towards the proof of the inequality (2) for sub-extremal black holes, we
consider the following lemma.

Lemma 1 (Characterization of sub-extremal black holes). A necessary condition for the
existence of trapped surfaces in the interior vicinity of the event horizon of an axisym-
metric and stationary charged black hole is

∫ π

0
(µ̂û),R

∣∣H sin θ dθ > 0. (25)

This lemma was originally derived in the setting of pure Einsteinian gravity (without
Maxwell-field), see [7]. As the corresponding proof presented in [7] carries over to the
full Einstein-Maxwell theory, we may use the lemma in the forthcoming investigation.

The proof of (2) relies on showing that for p2
J + p2

Q ≥ 1 inequality (25) is violated,
which implies by virtue of Lemma 1 a violation of the sub-extremality condition:

p2
J + p2

Q ≥ 1 ⇒
∫ π

0
(µ̂û),R

∣∣H sin θ dθ ≤ 0. (26)

6 Note that mi denotes the Killing vector with respect to axisymmetry.
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Using Einstein equations (15) and (16) together with the boundary conditions (11),
we may rewrite the integrand in (25) as

(µ̂û),R
∣∣H = 2(ûN)

2

rh

[
1 −

(
ûω,R

4

)2

sin2θ − ũ,θ (ũ,θ + 2 cot θ)

− A2
ϕ,θ

û sin2θ
− û

4
(�,R − Aϕω,R)

2

]
. (27)

Hence we can express (25) in terms of S, T , U , and V :

1

2

∫ 1

−1

[
(V 2 + U ′ 2)(1 − x2)− 2xU ′ + (S2 + T ′ 2)e−2U

]
dx < 1, (28)

where ′ := d/dx . With the expressions for pJ and pQ [see (23), (24)] we can thus write
the implication in (26) as follows:

(∫ 1

−1

[
V e2U (1 − x2)− 2ST

]
dx

)2

+
1

4

(∫ 1

−1
Sdx

)4

≥ 4

⇒ 1

2

∫ 1

−1

[
(V 2 + U ′ 2)(1 − x2)− 2xU ′ + (S2 + T ′ 2)e−2U

]
dx ≥ 1. (29)

In the following we show that this implication holds for all sufficiently regular functions7

S, T,U, V : [−1, 1] → R

which satisfy the boundary conditions

U (±1) = T (±1) = 0. (30)

The conditions in (30) follow from (17), (18), (12), (13).
In the next step we formulate a variational problem which is a sufficient criterion for

the validity of the implication in (29). Applying the Cauchy-Schwarz inequality to the
first inequality in (29), we obtain⎛
⎝
√∫ 1

−1
V 2(1 − x2)dx

√∫ 1

−1
e4U (1 − x2)dx + 2

∣∣∣∣
∫ 1

−1
S T dx

∣∣∣∣
⎞
⎠

2

+
1

4

(∫ 1

−1
Sdx

)4

≥4.

With the abbreviations

c1 :=
√∫ 1

−1
e4U (1 − x2)dx, c2 :=

∫ 1

−1
ST dx, c3 := 1√

2

∫ 1

−1
Sdx, (31)

this inequality leads to the estimate∫ 1

−1
V 2(1 − x2)dx ≥ M2

2 , (32)

7 A precise statement about the required regularity properties follows below.
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where

M1 := max
{

0, 4 − c4
3

}
, M2 := max

{
0,

√
M1 − 2|c2|

c1

}
. (33)

Using (32) in order to replace the term
∫

V 2(1− x2) dx in the second inequality in (29),
it follows immediately that

I [S, T,U ] := 1

2

∫ 1

−1
[U ′ 2(1 − x2)− 2xU ′(x) + (S2 + T ′ 2)e−2U ]dx +

M2
2

2
≥ 1 (34)

is a sufficient condition for the validity of the implication in (26). We summarize this
result in the following lemma.

Lemma 2 (Variational problem). The inequality p2
J + p2

Q < 1 holds for any sub-extre-
mal axisymmetric and stationary charged black hole with surrounding matter provided
that the inequality

I [S, T,U ] ≥ 1 (35)

is satisfied for all S ∈ L2(−1, 1), T,U ∈ W 1,2
0 (−1, 1).

Remark. The Lebesgue and Sobolev spaces L2 and W 1,2
0 contain all functions S and T ,

U , respectively, that arise in the physical situation above.

With this lemma, we have reduced inequality (2) to the variational problem of cal-
culating the minimum of I [S, T,U ] and showing that this is greater than or equal to 1.
In the next section, we solve this problem with methods from the calculus of variations.

5. Solution of the Variational Problem

5.1. An approximating family of functionals. Analyzing the functional I proves diffi-
cult as the factor 1 − x2 is singular at the boundary x = ±1, cf. definition of I in (34).
We therefore approximate it by a family of slightly modified functionals Iε which are
conducive to analysis using techniques of the calculus of variations. We work on the
Hilbert space

X := (L2 × W 1,2
0 × W 1,2

0 )(−1, 1) (36)

endowed with the inner product

〈
(S, T,U ), (S̃, T̃ , Ũ )

〉
:=

∫ 1

−1

[
SS̃ + T ′T̃ ′ + U ′Ũ ′(1 + ε − x2)

]
dx

depending on a fixed ε > 0. Recall that this inner product is equivalent to the ordinary
one by the fundamental theorem of calculus. Moreover, we have

Proposition 1 (Theorem 2.2 in Buttazzo-Giaquinta-Hildebrandt [4]). On any bounded
interval J ⊆ R, W 1,2(J ) ↪→ C0(J ) compactly. Moreover, the fundamental theorem of
calculus holds in W 1,2(J ).
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For ε ≥ 0, we consider the functional Iε : X → R given by

Iε[S, T,U ] := 1

2

∫ 1

−1

[
U ′ 2(1 + ε − x2)−2xU ′ + (S2 + T ′ 2)e−2U

]
dx +

Mε
2 [S, T,U ]2

2
,

(37)

where the auxiliary functionals Mε
2 ,M1, cε1, c2, c3 : X → R are defined by

cε1[S, T,U ] :=
√∫ 1

−1
e4U (1 + ε − x2)dx, c2[S, T,U ] :=

∫ 1

−1
ST dx, (38)

c3[S, T,U ] := 1√
2

∫ 1

−1
S dx, M1[S, T,U ] := max

{
0, 4 − (c3[S, T,U ])4

}
, (39)

and

Mε
2 [S, T,U ] := max

{
0,

(√
M1 − 2|c2|

cε1

)
[S, T,U ]

}
, (40)

respectively. All of these functionals can easily be seen to be well-defined, and all auxil-
iary functionals are weakly continuous on X by Poincaré’s inequality. Also, cε1 is positive
and both M1, Mε

2 are non-negative.
We now show that for ε > 0 there exists a global minimizer (S, T,U ) ∈ X for Iε

and study its value Iε[S, T,U ]. Following this investigation, we take the limit ε → 0
and see that the claim of Lemma 2 follows.

5.2. Existence and characterization of the minimizer. Now let ε > 0 be fixed. Iε then
has the following properties:

(i) Iε is bounded from below. Using 0 ≤
(

x√
1+ε−x2 − U ′(x)

√
1 + ε − x2

)2 =
x2

1+ε−x2 − 2xU ′(x) + U ′ 2(x)(1 + ε − x2) we conclude that

Iε[S, T,U ] ≥ −1

2

∫ 1

−1

x2

1 + ε − x2 dx =: C(ε) > −∞

for any (S, T,U ) ∈ X .
(ii) Iε is coercive with respect to the weak topology on X . Indeed, applying the

Cauchy-Schwarz inequality to
∫ 1
−1 xU ′(x)dx , we obtain that

Iε[S, T,U ] ≥ 1

2
‖U‖2 − C(ε)‖U‖

for any (S, T,U ) ∈ X with C(ε) > 0. Hence, for every P ∈ R there exists
Q P ∈ R such that Iε[S, T,U ] ≥ P whenever ‖(S, T,U )‖ ≥ Q P . This is equiv-
alent to coercivity of the functional Iε with respect to the weak topology on X ,
where both the norm ‖ · ‖ and the weak topology refer to the inner product defined
above.
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(iii) The functional Iε is sequentially lower semi-continuous (lsc) with respect to the
weak topology on X . To see this, recall that lower semi-continuity is additive and
that the first terms can be dealt with by standard theory (see e.g. [9]), and use
Proposition 1 as well as the Lipschitz continuity of exp on bounded intervals. For
the last term, the weak continuity of the auxiliary functionals yields the claim.

We are now in a position to show existence of a global minimizer for Iε: As we
have seen in (i), Iε is bounded from below on X . We can hence choose a minimiz-
ing sequence (Sk, Tk,Uk) ∈ X which must be bounded by coercivity (ii) and thus has
a weakly converging subsequence by Hilbert space techniques (theorem of Eberlein-
Shmulyan [9]) tending to a limit (S∗, T ∗,U∗). Lower semicontinuity as in (iii) then gives
us Iε[S∗, T ∗,U∗] = inf{Iε[S, T,U ] | (S, T,U ) ∈ X} and thus asserts that (S∗, T ∗,U∗)
is a global minimizer. However, Iε is not Fréchet-differentiable at (S, T,U ) ∈ X with
c2[S, T,U ] = 0 and c4

3[S, T,U ] = 4 due to the maximum-terms in the definitions of
Mε

i (i = 1, 2). It is consequently impossible to derive Euler-Lagrange equations for Iε
directly.

To circumvent this problem, we introduce the constraints cεi = constant (i = 1, 2, 3)
and use the method of Lagrange multipliers to minimize Iε under these constraints. This
leads to a Fréchet-differentiable functional on every class K with fixed values of cεi .
Moreover, the asserted global minimizer (S∗, T ∗,U∗) also minimizes Iε in its class K∗
which induces conditions on the constants specifying K∗ and explicit expressions for
the related Lagrange multipliers.

5.3. The Euler-Lagrange equations. Setting

c∗
i := cεi [S∗, T ∗,U∗] and M∗

j := Mε
j [S∗, T ∗,U∗], (i = 1, 2, 3; j = 1, 2),

the class K∗ containing the global minimizer (S∗, T ∗,U∗) is characterized by

K∗ := {
(S, T,U ) ∈ X | cεi [S, T,U ] = c∗

i (i = 1, 2, 3)
}
.

In this class, Iε can be evaluated as follows:

Iε[S, T,U ] = 1

2

∫ 1

−1

[
U ′ 2(1 + ε − x2)− 2xU ′ + (S2 + T ′2)e−2U

]
dx +

(M∗
2 )

2

2
.

By the theory of Lagrange multipliers, for each minimizer (S, T,U ) of Iε in the class
K∗, there is (λ1, λ2, λ3) ∈ R3 such that (S, T,U, λ1, λ2, λ3) ∈ X × R3 is a critical
point of the functional J ∗

ε : X × R3 → R given by

J ∗
ε [S, T,U, λ1, λ2, λ3] := 1

2

∫ 1

−1

[
U ′ 2(1 + ε − x2)− 2xU ′ + (S2 + T ′ 2)e−2U

]
dx

+ λ1

(
(cε1[S, T,U ])2 − (c∗

1)
2
)

+ λ2
(
c2[S, T,U ] − c∗

2

)
+

√
2 λ3

(
c3[S, T,U ] − c∗

3

)
,

which is well-defined and indeed sufficiently smooth by Proposition 1. In other words,
there is (λ∗

1, λ
∗
2, λ

∗
3) ∈ R3 such that (S∗, T ∗,U∗) satisfies

0 =
∫ 1

−1

[
U ′ψ ′(1 + ε − x2)− xψ ′] dx +

∫ 1

−1

[
Sρ + T ′ϕ′ − (S2 + T ′ 2)ψ

]
e−2U dx

+ 4λ∗
1

∫ 1

−1
e4Uψ(1 + ε − x2) dx + λ∗

2

∫ 1

−1
(Sϕ + Tρ) dx + λ∗

3

∫ 1

−1
ρ dx (41)
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for all (ρ, ϕ,ψ) ∈ X . This can be restated by saying that (S∗, T ∗,U∗) is a weak solution
of

0 = −U ′′(1 + ε − x2) + 2xU ′ + 1 − (S2 + T ′ 2)e−2U + 4λ∗
1(1 + ε − x2) e4U , (42)

0 = −T ′′ + 2U ′T ′ + λ∗
2 Se2U , (43)

0 = S + (λ∗
2T + λ∗

3)e
2U , (44)

0 = T (±1) = U (±1)

on (−1, 1). Any weak solution (S, T,U ) ∈ X of the system (42), (43), and (44) can be
shown to be smooth and to satisfy the equations strongly via a bootstrap argument: For
all (ρ, ϕ,ψ) ∈ X , we can rewrite (41) as

0 =
∫ 1

−1

[
U ′(1 + ε − x2)− x +

∫ x

−1
(S2 + T ′ 2) e−2U dt

− 4λ∗
1

∫ x

−1
e4U (1 + ε − t2)dt

]
ψ ′ dx,

0 =
∫ 1

−1

[
T ′e−2U − λ∗

2

∫ x

−1
S dt

]
ϕ′ dx,

0 =
∫ 1

−1

[
Se−2U + λ∗

2T + λ∗
3

]
ρ dx,

where we used integration by parts and Proposition 1. By the fundamental lemma of the
calculus of variations, there are constants a, b ∈ R such that the equations

a = U ′(x)(1 + ε − x2)− x +
∫ x

−1
(S2 + T ′ 2) e−2U dt

− 4λ∗
1

∫ x

−1
e4U (1 + ε − t2) dt, (45)

b = T ′(x) e−2U (x) − λ∗
2

∫ x

−1
S dt, (46)

0 = S(x) e−2U (x) + λ∗
2 T (x) + λ∗

3 (47)

hold almost everywhere on (−1, 1). Solving iteratively for T ′, U ′, and S, we deduce the
respective smoothness of S, T , and U up to the boundary by a bootstrap argument (similar
to p. 462 in [6]) using Propostion 1 in every step. Differentiating Eqs. (45) and (46), we get
validity of (42) and (43) in the strong sense. In particular, (S∗, T ∗,U∗) is a smooth clas-
sical solution of the Euler-Lagrange equations of J ∗

ε with (λ1, λ2, λ3) = (λ∗
1, λ

∗
2, λ

∗
3).

5.4. Solution of the Euler-Lagrange equations. Let us now determine the minimizer
(S, T,U ) := (S∗, T ∗,U∗) explicitly, dropping the asterisk in what follows for ease of
notation. S can obviously be expressed as

S(x) = −[λ3 + λ2 T (x)] e2U (x) (48)

by Eq. (44). Inserting this expression into (43), we get the equation

0 = T ′′ − 2U ′T ′ + λ2 (λ3 + λ2 T ) e4U , (49)
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a linear ODE of second order for T for given U . To solve (49), consider two separate
cases:

(i) Assume λ2 = 0. Then (49) reduces to T ′′ = 2U T ′ which has the general solution
T (x) = a

∫ x
−1 e2U (t) dt + b with a, b ∈ R, so that T (±1) = 0 induces T ≡ 0.

(ii) Assume now λ2 �= 0. In this case, (49) has the general solution

T (x) = λ3

λ2

[
a sin

(
λ2

∫ x

−1
e2U (t) dt

)
+ b cos

(
λ2

∫ x

−1
e2U (t) dt

)
− 1

]
(50)

with a, b ∈ R. For λ3 �= 0, inserting the boundary values T (±1) = 0 gives us
b = 1 and

a =
1 − cos

(
λ2

∫ 1
−1 e2U (t) dt

)
sin

(
λ2

∫ 1
−1 e2U (t) dt

) = ±

√√√√√1 − cos
(
λ2

∫ 1
−1 e2U (t) dt

)
1 + cos

(
λ2

∫ 1
−1 e2U (t) dt

) . (51)

The task of determining U remains to be completed. To this end, set

γ := −
[

S(x)2 + T ′(x)2
]

e−4U (x) ≤ 0 (52)

and observe that dγ /dx = 0, so that γ is a non-positive constant. Moreover, from the
explicit expressions obtained for S and T , we see that γ = −λ2

3 (1 + a2) where, as
defined above, a = 0 if λ2 = 0 and a is as in (51) otherwise.

Recall that (S, T,U ) is a global minimizer of Iε. Although Iε is not globally Fréchet-
differentiable w.r.t. S and T , it can straightforwardly be shown that it is continuously
Fréchet-differentiable w.r.t. U . We thus deduce via integration by parts and by the fun-
damental lemma of the calculus of variations that

0 = −U ′′(1 + ε − x2) + 2xU ′ + 1 − (S2 + T ′ 2)e−2U − 2M2
2

c2
1

(1 + ε − x2) e4U .

Comparing this equation with (42), we obtain the explicit expression

λ1 = − M2
2

2c2
1

≤ 0. (53)

Moreover, the Euler-Lagrange equation (42) for U , which can now be written as

0 = −U ′′(1 + ε − x2) + 2xU ′ + 1 + γ e2U + 4λ1(1 + ε − x2) e4U ,

has an integrating factor and leads to the first order ODE

F := −(1 + ε − x2)2U ′ 2 + 2x(1 + ε − x2)U ′ + 2λ1 e4U (1 + ε − x2)2

−x2 + γ (1 + ε − x2) e2U ≡ constant, (54)

because

F ′(x) = 2[(1 − x2)U ′(x)− x]
[
−U ′′(1 + ε − x2) + 2xU ′ + 1 + γ e2U

+ 4λ1(1 + ε − x2) e4U
]

= 0.
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We now proceed to calculate U . Substituting W (x) := (1 + ε − x2) e2U (x) > 0 on
[−1, 1], Eq. (54) can be reformulated to say

W ′

2W
= ±

√
2λ1W 2 + γW − F

1 + ε − x2 , (55)

which in particular implies F ≤ 0 as both λ1, γ ≤ 0 and W > 0 by definition. We would
like to divide by the square root on the right hand side and integrate the equation. We
must first find out where the zeros of W ′ can lie, if they exist at all. A careful discussion
of the ODE (55) referring to (42), the boundary values W (±1) = ε, and using the fact
that we are discussing the class K∗ containing the global minimizer, shows that W ′ has
exactly one zero x̃ ∈ (−1, 1) and that W ′′(x̃) < 0. Moreover, from this discussion we
obtain F < 0 and the fact that λ1 and γ cannot vanish simultaneously.

Integrating (55) on both [−1, x̃) and (x̃, 1] and using W ′′(x̃) < 0 to determine the
correct sign on each interval we obtain

W±(x) = 2F

γ − √
γ 2 + 8λ1 F cosh y±(x)

, y±(x) := 2
√−F√
1 + ε

artanh

(
x√

1 + ε

)
± C,

where

C = −2
√−F√
1 + ε

artanh

(
1√

1 + ε

)
+ artanh

⎛
⎝√

2λ1ε2 + γ ε − F√−F + γ ε

2
√−F

⎞
⎠ ,

W− : [−1, x̃) → R, W+ : (x̃, 1] → R.

As the solution W we are looking for is smooth by the above and agrees with W± where
they exist, W− and W+ must smoothly fit together at x̃ . Also, the induced functions
U−,U+ both smoothly extend to [−1, 1] and must agree at x̃ to all orders. Moreover,
they both solve Eq. (42). Thus, Picard’s uniqueness theorem (cf. p. 9 in [8]) tells us they
agree on the whole interval [−1, 1]. From W−(−x) = W+(x) we deduce symmetry of
W , x̃ = 0, and C = 0.

Altogether, we know that W has the following form:

W (x) = 2F

γ − √
γ 2 + 8λ1 F cosh y(x)

, y(x) := 2
√−F√
1 + ε

artanh

(
x√

1 + ε

)
. (56)

5.5. Estimating the minimal value of Iε. In order to estimate the value of Iε at its global
minimizer, we use the fact that (54) allows us to simplify our expression for Iε. Using
(53), we obtain

Iε[S, T,U ] = 1 −
(√

1 + ε +
F√

1 + ε

)
artanh

1√
1 + ε

. (57)

We now intend to estimate F from above via

F ≤ −(1 + ε)

[
1 − 2 ln 2+ε

2−ε
ln (2+ε)2

ε

]2

, (58)

which allows us to conclude that lim infε→0 Iε ≥ 1, see Subsect. 5.8. We prepare this
estimate with the study of two auxiliary functions f and g, see below. We then use these
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functions to obtain (58) in the cases c2 �= 0 and c2 = 0 (and several subcases), see
Subsecs. 5.6 and 5.7.

We define

f (α) := 1

2
Mε

2 [(1 + α)S, T,U ]2, g(α) := 1

2
Mε

2 [S, (1 + α)T,U ]2.

The function g : R → R can be seen to be differentiable at α = 0 and we obtain

g′(0) = −2 |c2| M2

c1
. (59)

As (S, T,U ) simultaneously is a minimizer of Iε and a critical point of Jε, it follows
from (41) on the other hand that

0 =
∫ 1

−1
T ′ 2 e−2U dx + λ2 c2 =

∫ 1

−1
T ′ 2 e−2U dx + g′(0). (60)

We also find that f : R → R is differentiable at α = 0 unless both c2 = 0 and c4
3 = 4.

Recall that this singular case also led us to the introduction of Lagrange multipliers. We
then have

f ′(0) =
{

g′(0)− 2 M2 c4
3

c1
√

M1
if M1 �= 0

0 if M1 = 0
, (61)

unless both c2 = 0 and c4
3 = 4. In addition, it follows as above that

0 =
∫ 1

−1
S2e−2U dx + λ2 c2 +

√
2 λ3 c3 =

∫ 1

−1
S2e−2U dx + f ′(0), (62)

or equivalently

0 = −γ
∫ 1

−1
e2U dx −

∫ 1

−1
T ′ 2e−2U dx + λ2 c2 +

√
2 λ3 c3

= −γ
∫ 1

−1
e2U dx −

∫ 1

−1
T ′ 2e−2U dx + f ′(0). (63)

5.6. Estimating the minimal value of Iε: the case c2 = 0. The explicit expression (59)
for g′(0) suggests separate treatment of the cases c2 = 0 and c2 �= 0. We begin with
c2 = 0. Four different subcases arise, namely

(a) c4
3 = 4,

(b) c3 = 0,
(c) c3 �= 0, M1 = 0,
(d) c3 �= 0, M1 �= 0.

We will find that the last two cases cannot occur in the minimizing class K∗. In the first
two cases, we will indeed arrive at estimate (58).

Let us discuss the singular case (a) first. Here, (60) implies T ≡ 0, c3 �= 0 assures
S �= 0 so that we can deduce λ2 = 0 from (43). Recall M1 = M2 = λ1 = 0, γ �= 0.
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Then (48) implies S = −λ3 e2U so that c3 = − λ3√
2

∫ 1
−1 e2U dx . Let us proceed to calcu-

late
∫ 1
−1 e2U dx . The boundary condition W (±1) = ε implies γ = 2F

ε(1+cosh y1)
and we

are in a position to calculate

∫ 1

−1
e2U (x)dx =

∫ 1

−1

W (x)

1 + ε − x2 dx = −
√−F

2γ

∫ y1

−y1

[
1 − tanh2

( y

2

)]
dy = ε sinh(y1)√−F

.

Recalling γ = −λ2
3, we deduce 2 = c2

3 = 2ε sinh2
( y1

2

)
so that cosh y1 = 2+ε

ε
, whence

by definition of y1, F = −(1 + ε) in accordance with (58).
We now proceed to a discussion of case (b). From (60) and (62), we get T ≡ 0 and

S ≡ 0, respectively. This implies γ = 0 so that λ1 �= 0 by the above. We therefore
obtain

W (x) =
√−F√−2λ1 cosh y(x)

so that the boundary condition W (±1) = ε leads to λ1 = F
2ε2 cosh2 y1

. We calculate

c2
1 =

∫ 1

−1

W 2

1 + ε − x2 dx = −
√−F

2λ1
tanh y1.

Recall that in this particular case also λ1 = − 2
c4

1
by (53) so that y1 = arsinh 2

ε
and we

arrive at estimate (58) using

arsinh x = ln(x +
√

x2 + 1) and artanh x = 1

2
ln

1 + x

1 − x
.

Let us continue with case (c). From (60) we get T ≡ 0, whereas M1 = 0 implies M2 = 0
and thus λ1 = 0 by (53). On the other hand, we get f ′(0) = 0 from (61) so that by (63)
we have γ = 0, a contradiction, because we have seen in the previous subsection that
λ1 and γ cannot vanish simultaneously.

Finally, we discuss case (d). As before, we get T ≡ 0 and thus by (43) λ2 = 0 as

c3 �= 0 ensures S �≡ 0. Equation (62) then leads to λ3 = −
√

2c3
3

c2
1

. From this, we obtain∫ 1
−1 e2U dx = c2

1
c2

3
, where we used (48) and c3 �= 0. Also, γ = −λ2

3 so that γ = − 2c6
3

c4
1

.

In particular, Iε[S, T = 0,U ] = Iε[0, 0,U ] +
c4

3
2c2

1
> Iε[0, 0,U ]. This contradicts

[S, T = 0,U ] being a global minimizer of Iε.

5.7. Estimating the minimal value of Iε: the case c2 �= 0. Finally let c2 �= 0. If λ1 = 0
were possible, then by (53) M2 = 0 so that g′(0) = 0 and thus T ≡ 0 follow from (59),
(60). Equation (61) then tells us that f ′(0) = 0 and whence S ≡ 0, so that also γ = 0,
in contradiction to the above exclusion of λ1 = γ = 0. Thus, λ1 �= 0 which implies
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both M2 �= 0 and M1 �= 0. Using again (60), (62), and (53), we obtain:

λ1 = −

(√
4 − c4

3 − 2|c2|
)2

2c4
1

, (64)

λ2 = −
2

(√
4 − c4

3 − 2|c2|
)

c2
1

sign(c2), (65)

λ3 = −
√

2

(√
4 − c4

3 − 2|c2|
)

c3
3√

4 − c4
3 c2

1

. (66)

Rewrite S, T in terms of A(x) := λ2
∫ x

0 e2U (t)dt , A1 := A(1) and use W (±1) = ε,
equation (52), and our definition of y1 as well as symmetry of U to obtain

T (x) = λ3

λ2

[
cos A(x)

cos A1
− 1

]
, (67)

S(x) = −λ3
cos A(x)

cos A1
e2U (x), (68)

γ = − λ2
3

cos2 A1
, (69)

c2
1 = −

√−F

2λ1

[ √
γ 2 + 8λ1 F sinh y1√

γ 2 + 8λ1 F cosh y1 − γ

+
2γ√
8λ1 F

arctan

(
γ +

√
γ 2 + 8λ1 F√
8λ1 F

tanh
y1

2

)]
, (70)

c2 = −λ
2
3

λ2
2

A1 − sin A1 cos A1

cos2 A1
, (71)

c3 = −√
2
λ3

λ2
tan A1, (72)

A1 = λ2√−2λ1
arctan

(
γ +

√
γ 2 + 8λ1 F√
8λ1 F

tanh
y1

2

)
, (73)

ε = 2F

γ − √
γ 2 + 8λ1 F cosh y1

, (74)

y1 = 2
√−F√
1 + ε

artanh
1√

1 + ε
. (75)

Now set φ := arccos −γ√
γ 2+8λ1 F

∈ (0, π2 ) which is well-defined as λ1 · F > 0. Using

this new constant, Eqs. (67) through (75) take on a simpler form. In particular, these
equations lead to 0 < |A1| ≤ φ < π

2 and

c2
1 = 4 tan φ cos A1 | sin A1 − A1 cos A1|√−F sin4 A1

, c3 = ±√
2 cos A1.
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For the Lagrange multipliers, we get

λ1 = F sin4 A1

8 tan2 φ cos2 A1
,

λ2 = 4(sin A1 − A1 cos A1)

c2
1 sin2 A1

,

λ3 = ∓ 4

c2
1

cos
3
2 A1

| sin A1 − A1 cos A1|
sin3 A1

.

With the above expressions, we obtain

ε = 2 cos A1 sin2φ

sin2 A1 cosφ (cosh y1 + cosφ)
.

As sin2x
cos x is monotonically increasing on

(
0, π2

)
and |A1| ≤ φ, we have ε ≥ 2

cosh y1+1 or
in other words

y1 ≥ arcosh

(
2

ε
− 1

)
.

This implies

√−F ≥
√

1 + ε arcosh
( 2
ε

− 1
)

2 artanh 1√
1+ε

,

where we have used (75). Recall arcosh x = ln
(

x +
√

x2 − 1
)

to deduce (58) also in

the discussed case c2 �= 0.

5.8. The limit ε → 0. We conclude as promised that for c2 = 0 cases (c) and (d) cannot
apply for the minimizer (S, T,U ), whereas in the remaining cases (a) and (b), as well
as for c2 �= 0, we can estimate using (57) and (58) that

Iε[S, T,U ] ≥ 1 +
√

1 + ε

⎡
⎣(

1 − 2 ln 2+ε
2−ε

ln (2+ε)2
ε

)2

− 1

⎤
⎦ artanh

1√
1 + ε

≥ 1 − 2
√

1 + ε ln
2 + ε

2 − ε
. (76)

We now study the limit ε → 0. For any (S, T,U ) ∈ X , c2[S, T,U ], c3[S, T,U ]
and thus M1[S, T,U ] are independent of ε, limε→0 cε1[S, T,U ] = c0

1[S, T,U ] and thus
limε→0 Mε

2 [S, T,U ] = M0
2 [S, T,U ] so that

|I [S, T,U ] − Iε[S, T,U ]| ≤ ε

2

∫ 1

−1
U ′(x)2dx +

∣∣∣∣∣ M2[S, T,U ]2

2
− Mε

2 [S, T,U ]2

2

∣∣∣∣∣→0
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as ε → 0, i.e. Iε[S, T,U ] is continuous at ε = 0 for fixed (S, T,U ). This finally leads
us to an esimate of the original functional I . We obtain

I [S, T,U ] = lim
ε→0

Iε[S, T,U ]
≥ lim inf

ε→0
Iε[S∗, T ∗,U∗]

≥ lim inf
ε→0

(
1 − 2

√
1 + ε ln

2 + ε

2 − ε

)
= 1,

where (S∗, T ∗,U∗) denotes the global minimizer of Iε.
This proves the claim of Lemma 2 and therefore the inequality (2). ��
Finally, after we have seen that the functional I has a lower bound of 1, we can ask

the question of whether there exist functions S, T , and U for which I takes on this value.
The investigation of this question together with a discussion of the meaning of I in the
context of degenerate black holes can be found in Appendix A.

6. Discussion

With techniques from the calculus of variations, we have shown that the inequality
p2

J + p2
Q < 1 holds for axisymmetric and stationary sub-extremal black holes with

surrounding matter in full Einstein-Maxwell theory.
In particular, we have proved the inequality I [S, T,U ] ≥ 1 for the functional I

defined in (34). As I could not directly be seen to have a local minimizer, we introduced
a family of approximating functionals Iε which could be shown to have one.

Together with a theorem for degenerate black holes in [1], we can deduce the fol-
lowing.

Theorem 1. Consider Einstein-Maxwell spacetimes with vanishing cosmological con-
stant. Then, for every axisymmetric and stationary sub-extremal black hole with arbitrary
surrounding matter we have the inequality

(8π J )2 + (4πQ2)2 < A2.

If the axisymmetric and stationary black hole is degenerate, the equation

(8π J )2 + (4πQ2)2 = A2

holds.

Observe that the assumptions for the result in [1] which has been used here have been
weakened, see Appendix A.

Theorem 1 provides a remarkable relation between the geometrical concept of the
existence of trapped surfaces and the physical black hole properties described by rota-
tion rate pJ and charge rate pQ . We see that “physically reasonable” (sub-extremal)
black holes cannot rotate “too fast” and cannot be charged “too strongly”.

Finally, our results shed new light on the notions of sub-extremality and extremality
of axisymmetric and stationary black holes. Any sub-extremal black hole in the sense of
[3] (the notion of which we have used throughout this paper) is also sub-extremal in the
sense that p2

J + p2
Q < 1. In fact, p2

J + p2
Q = 1 holds in the degenerate limit, for which

reason we may call these black holes “extremal”.
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A. Remarks on Degenerate Black Holes

In order to discuss extremal black holes (as done in [1]) and to get an idea of the meaning
of the appearing functional I , one can apply similar techniques as used in Sec. 5 to I
itself to derive Euler-Lagrange equations and a complete characterization of the mini-
mizers of I . As minimizers of I need not be limits of minimizers of Iε, this renewed
analysis is necessary.

It turns out that the Euler-Lagrange equations for S and T are just as before, cf.
(43) and (44). Moreover, there again exists an integrating factor for the Euler-Lagrange
equation for U leading to

−1 = −(1 − x2)2U ′ 2 + 2x(1 − x2)U ′ + 2λ1 e4U (1 − x2)2 − x2 + γ (1 − x2) e2U ,

where γ is defined as in (52). Introducing W (x) := (1 − x2)e2U (x) on the interior
(−1, 1), we find that Eq. (55) holds on (−1, 1) with ε = 0 and F = −1. Discussing the
radicand in (55) as before, we see that it vanishes at at most one inner point. Assuming
non-vanishing of the radicand and integrating the equation on (−1 + δ, 1 − δ) for some
δ > 0 leads to a contradiction as the unique solution U derived from W diverges as
δ → 0 while we know that the smooth solution U exists on the whole interval by the
same bootstrap argument as sketched above. Thus we know that there exists exactly one
interior zero of the radicand and we can integrate the equation as before to obtain

e2U (x) = 2

(1 + γ )x2 + 1 − γ
, (77)

and the consistency condition

γ 2 − 8λ1 = 1,

using the boundary values for U , U (±1) = 0. In other words, U belongs to a family
parametrized by γ ∈ [−1, 0].

Proceeding as above, we find that S and T are given by

S(x) = ±
[
(−γ ) 3

2 +
√

1 − γ 2|T (x)|
]

e2U ,

T (x) = ±
√

−γ (1 − γ 2)
1 − x2

1 − γ + (1 + γ )x2

with γ ∈ [−1, 0]. The signs of S and T can be chosen independently of each other. It
can a posteriori be seen that all functions S, T , U of this form with γ ∈ [−1, 0] in fact
satisfy

I [S, T,U ] = 1
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so that we have identified all minimizers of I . Moreover, one can show that the Lagrange
parameters λ1, λ2, λ3 can explicitly be expressed as

λ1 = −1

8
(1 − γ 2), λ2 = ±

√
1 − γ 2, λ3 = ±(−γ ) 3

2 , (78)

where again the signs are not correlated.
By comparison with [1], one finds that these are exactly the functions S, T , and

U arising in the context of arbitrary degenerate black holes with surrounding matter.8

Moreover, the differential equations characterizing S, T , and U in [1] are exactly the
Euler-Lagrange equations of I derived in this paper where the Lagrange parameters in
(78) correspond to the constants appearing in [1].

We arrive at two conclusions: First, our analysis dispenses with additional assump-
tions made in [1], namely equatorial symmetry and the existence of a continuous
sequence of spacetimes, leading from the Kerr-Newman solution in electrovacuum to
the discussed black hole solution. The latter was necessary to assure uniqueness (up to
a parameter) of the solution to the horizon equations in [1].

As a matter of fact, any smooth solution of the equations in [1] is a minimizer of I
as can be seen by solving the equations as done above and using the relations in (78)
between γ and the Lagrange parameters. Thus, any solution of these equations is auto-
matically equatorially symmetric and of the form assumed in [1]. Hence, the unnecessary
assumptions of [1] can be dropped.

Secondly, we see that the functional I plays the role of a “primitive” of the
Einstein equations on the event horizon of degenerate black holes: Remarkably, the
Euler-Lagrange equations corresponding to I lead uniquely to the electromagnetic and
metric potentials S, T , and U belonging to degenerate black holes.

References

1. Ansorg, M., Pfister, H.: A universal constraint between charge and rotation rate for degenerate black holes
surrounded by matter. Class. Quantum Grav. 25, 035009 (2008)

2. Bardeen, J.M.: Rapidly rotating stars, disks, and black holes. In: Black holes (Les Houches), deWitt, C.,
deWitt, B.S., ed., London: Gordon and Breach, 1973, pp. 241–289

3. Booth, I., Fairhurst, S.: Extremality conditions for isolated and dynamical horizons. Phys. Rev. D 77,
084005 (2008)

4. Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-dimensional variational problems. Oxford: Clarendon
Press, 1998

5. Carter, B.: Black hole equilibrium states. In: Black Holes (Les Houches), deWitt, C., deWitt, B.S., ed.,
London: Gordon and Breach, 1973, pp. 57–214

6. Evans, L.C.: Partial Differential Equations. Providence, RI: Amer. Math. Soc. 2002
7. Hennig, J., Ansorg, M., Cederbaum, C.: A universal inequality between the angular momentum and

horizon area for axisymmetric and stationary black holes with surrounding matter. Class. Quantum
Grav. 25, 162002 (2008)

8. Rauch, J.: Partial Differential Equations. Berlin: Springer, 1991
9. Yosida, K.: Functional Analysis. Berlin: Springer, 1995

Communicated by P.T. Chruściel
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