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Abstract

This paper focuses on a three-parameter deformation of N = 4 Yang–Mills that breaks all the supersym-
metry in the theory. We show that the resulting non-supersymmetric gauge theory is scale invariant, in the
planar approximation, by proving that its Green functions are ultraviolet finite to all orders in light-cone
perturbation theory.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Scale invariant quantum field theories can be viewed as fixed points of a renormalization
group flow in theory space [1]. A particularly interesting class of such theories are those in
which the scale invariance is preserved while continuous parameters are varied. In such cases the
fixed points constitute a manifold. A well known example in four dimensions is the maximally
(N = 4) supersymmetric Yang–Mills (SYM) theory [2]. This theory is conformally invariant
[3–5] for any value of the gauge coupling, so it corresponds to a one-dimensional manifold of
fixed points.1

A class of deformations of N = 4 Yang–Mills, referred to as β-deformations [6], are expected
to preserve the conformal symmetry while extending the manifold of fixed points to higher di-
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mensional surfaces. These β-deformed Yang–Mills theories [6,7] are characterized, in N = 1
superspace, by superpotentials of the form

(1)W =
∫

d4x

[∫
d2θ ghTr

(
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) + h.c.

]
,

where g is the Yang–Mills coupling and h and β are two complex parameters. In [8], it was
shown that the model with h = 1 and β ∈ R is scale invariant to all orders in planar perturbation
theory.

The recent proposal of a supergravity solution [9] dual to these deformed models serves as
additional motivation to study these theories in the context of the AdS/CFT correspondence [10].

In this paper we will focus on the case of a non-supersymmetric Yang–Mills theory. We will
prove that this theory, obtained by deforming N = 4 Yang–Mills, is scale invariant in the planar
approximation. We will achieve this by proving that planar Green functions in the theory are
ultraviolet finite to all orders in light-cone perturbation theory. This in turn implies that the de-
formed non-supersymmetric gauge theory is scale invariant in the planar limit. Scale invariance,
unlike finiteness of Green functions, is a gauge-independent statement [11].

The non-supersymmetric (deformed) Yang–Mills theory [12,13] will be obtained from N = 4
SYM by a simple generalization of the superspace �-product introduced in [8]. Realizing the
deformation in this manner will allow us to prove the ultraviolet finiteness of the theory using
the same arguments presented in [8].

Although the deformation breaks supersymmetry completely, there is a close relation between
the perturbative expansions in the deformed theory and in N = 4 SYM. Specifically, as in the
case of the N = 1 supersymmetric deformation of [9], single planar diagrams in the deformed
theory differ from the corresponding diagrams in N = 4 SYM only by phase factors. However,
it is not clear whether the finiteness of the deformed model can be deduced from this fact alone.
Individual diagrams in N = 4 SYM can be divergent and the finiteness of the complete Green
functions is, in general, the result of cancelations among divergent diagrams. In the deformed
theory these cancelations may be ruined if the phase factors acquired by different diagrams are
not the same. This is particularly relevant in the non-supersymmetric case under consideration
since this theory does not have a formulation which makes available the powerful techniques of
N = 1 superspace.

Our approach, instead, involves directly proving the ultraviolet finiteness of the deformed
theory without relying on the finiteness of the original model. We will explicitly show that all
Green functions in the deformed theory are indeed finite.

2. The non-supersymmetric Yang–Mills theory

The N = 4 Yang–Mills action in manifestly SU(4) notation is

S =
∫

d4x Tr

(
1

2
FμνFμν + Dμϕ̄mnDμϕmn − 2i λm/Dλ̄m

(2)− 2
√

2g
([

λm,λn
]
ϕ̄mn + [λ̄p, λ̄q ]ϕpq

) − 1

2
g2[ϕmn,ϕkl

][ϕ̄mn, ϕ̄kl]
)

,

where m,n = 1, . . . ,4 are indices in the fundamental of SU(4). The field content consists of a
gauge field, Aμ, six real scalars, introduced as SU(4) bispinors, ϕmn, satisfying
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Table 1
Flavor charges of the fields in the three-parameter deformation of N = 4 SYM

q1 q2 q3 q1 q2 q3

ϕ14 1 0 0 λ1 1
2 − 1

2 − 1
2

ϕ24 0 1 0 λ2 − 1
2

1
2 − 1

2

ϕ34 0 0 1 λ3 − 1
2 − 1

2
1
2

ϕ23 −1 0 0 λ4 1
2

1
2

1
2

ϕ13 0 −1 0 Aμ 0 0 0

ϕ12 0 0 −1

(3)ϕmn = −ϕnm, ϕ̄mn = 1

2
εmnpqϕpq,

and four Weyl fermions, λm, and their conjugates. All the fields lie in the adjoint representation
of the gauge group.

The non-supersymmetric deformation involves three real parameters, γi , i = 1,2,3. The de-
formed theory has the same field content as N = 4 SYM and is obtained by modifying the
Yukawa and scalar quartic couplings in the N = 4 SYM action by certain phase factors.

These phases completely break the supersymmetry as well as the SU(4) R-symmetry of N = 4
SYM. The resulting theory is invariant under the Cartan subgroup of SU(4), U(1) × U(1) × U(1),
which arises as a flavor symmetry. The six real scalars and the four Weyl fermions are charged
under this U(1) × U(1) × U(1) symmetry, while the gauge field remains uncharged.

The phase factors in the action of the deformed theory can be generated via a ∗-product which
generalizes the one introduced in [9] to realize a one-parameter N = 1β-deformation of N = 4
SYM. To define the ∗-product we make a choice of basis for the Cartan subalgebra of SU(4). This
corresponds to the assignment of charges, q1, q2, q3, given in Table 1.2 From the table it is also
clear that the deformed theory cannot preserve any supersymmetries, for generic deformation
parameters, because Aμ and λ4, which lie in the same N = 1 multiplet, have different charges.

In terms of these charges the ∗-product that realizes the deformation is [12,13]

(4)f ∗ g = eiπγiε
ijkq

f
j q

g
k fg,

where f and g denote two generic component fields. Although the choice of q1, q2 and q3 is
arbitrary, the connection between the phase factors introduced by the ∗-product (4) and the three
charges has a natural interpretation in the dual supergravity [9,12–14]. The special case in which
the three γi parameters are equal corresponds to the N = 1 β-deformed theory of [9].

The deformed non-supersymmetric theory is simply obtained by replacing all commutators in
the N = 4 SYM action (2) by ∗-commutators defined as

(5)[f,g]∗ = f ∗ g − g ∗ f.

The component action describing the deformed theory is therefore

2 The charges of the conjugate fermions, λ̄m, are the opposite of those of the λm’s. Notice that, working with the
bi-spinor representation for the scalars, the charges of ϕmn for any m, n pair are the same as those of the combination
λmλn.
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S =
∫

d4x Tr

(
1

2
FμνFμν + Dμϕ̄mnDμϕmn − 2iλm/Dλ̄m

(6)− 2
√

2g
([

λm,λn
]
∗ϕ̄mn + [λ̄p, λ̄q ]∗ϕpq

) − 1

2
g2[ϕmn,ϕkl

]
∗[ϕ̄mn, ϕ̄kl]∗

)
.

There is an another way to introduce the same ∗-product. We will find this alternate definition
useful since it closely resembles that used in [8]. This will allow us to carry over many of the
techniques used there as well.

We choose to define the ∗-product by

(7)f ∗ g = eiπβ(Q
[1]
f Q

[2]
g −Q

[2]
f Q

[1]
g )

fg,

where β is a real parameter and Q[1] and Q[2] are two commuting generators of SU(4) which
can be represented by diagonal matrices

(8)

⎛
⎜⎜⎝

α
[1]
1

α
[1]
2

α
[1]
3

α
[1]
4

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

α
[2]
1

α
[2]
2

α
[2]
3

α
[2]
4

⎞
⎟⎟⎠ .

These matrices act on the 4 of SU(4) so the Q[1] charge of λm, for example, is α
[1]
m while the

Q[2] charge of ϕmn is α
[2]
m +α

[2]
n (see footnote 2). The α’s parametrizing the two U(1) generators

are constrained by the tracelessness conditions

(9)
4∑

m=1

α[1]
m = 0,

4∑
m=1

α[2]
m = 0.

The effect of the ∗-product is best illustrated by computing explicitly the phases that it introduces
in the products of fields. For example, in the commutator of the Weyl fermions one obtains

(10)
[
λm,λn

]
∗ = eiπβmnλmλn − eiπβnmλnλm ,

where

(11)βmn = β
(
α[1]

m α[2]
n − α[2]

n α[1]
m

)
, βnm = −βmn.

The ∗-commutators of the scalars (expressed as SU(4) bi-spinors) can be similarly computed.
Note that all the ∗-products involving the gauge field, which is a SU(4) singlet, reduce to ordinary
products.

Eq. (9) implies that the βmn parameters are not all independent. For example

(12)β14 = −β24 − β34.

It is easy to verify that the phases introduced by the ∗-product in the deformed action can
all be written in terms of just three parameters, e.g. β12, β23 and β31, using the tracelessness
constraints (9). Thus the deformed model represents a three-parameter non-supersymmetric de-
formation of N = 4 Yang–Mills. With this definition of the ∗-product the special case of the
N = 1 supersymmetric deformation of [9] corresponds to the choice α

[1]
4 = α

[2]
4 = 0.

It is straightforward to verify the equivalence of the two definitions of the ∗-product in (4)
and in (7). To find the relation between the parameters used in the two cases we expand the two
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charges, Q[1] and Q[2], in the basis formed by q1, q2 and q3,

(13)Q[r] = (
α

[r]
1 + α

[r]
4

)
q1 + (

α
[r]
2 + α

[r]
4

)
q2 + (

α
[r]
3 + α

[r]
4

)
q3, r = 1,2.

By substituting this expression into (7), we see that it coincides with the definition (4), if we set

γ1 = β
((

α
[1]
2 + α

[1]
4

)(
α

[2]
3 + α

[2]
4

) − (
α

[1]
3 + α

[1]
4

)(
α

[2]
2 + α

[2]
4

))
,

γ2 = β
((

α
[1]
3 + α

[1]
4

)(
α

[2]
1 + α

[2]
4

) − (
α

[1]
1 + α

[1]
4

)(
α

[2]
3 + α

[2]
4

))
,

(14)γ3 = β
((

α
[1]
1 + α

[1]
4

)(
α

[2]
2 + α

[2]
4

) − (
α

[1]
2 + α

[1]
4

)(
α

[2]
1 + α

[2]
4

))
.

Having established the equivalence of the two ∗-products, in the following we will work with the
definition in (7).

3. N = 4 light-cone superspace

In the proof of finiteness we will use the tools of light-cone superspace [4,5]. Despite the fact
that the deformed Yang–Mills theory is non-supersymmetric it can still be formulated in N = 4
light-cone superspace. This is thanks to the fact that its field content is identical to that of N = 4
Yang–Mills. Thus as a first step towards a light-cone superspace realization we formulate the
deformed non-supersymmetric theory in (6) in light-cone gauge.

The choice of light-cone gauge is made by setting

A− = 0.

The A+ component is solved for using the equations of motion. The SU(4) fermions split up as

λm
α → (

λm(+), λm(−)
)
.

Again, the equations of motion allow us to eliminate λm(+). For simplicity of notation we rename
the remaining physical field to χm.

We then derive the light-cone component description of the deformed non-supersymmetric
theory applying these steps to the action (6). The light-cone non-supersymmetric theory can
also be obtained by replacing all the commutators of charged fields (all six scalars and four
fermions) in the N = 4 light-cone component action [15] by ∗-commutators. The exact form
of the component action is irrelevant to this paper as, in the following, we will use the light-
cone superspace formalism. We refer the reader to [8] for further details regarding the light-cone
component description.

The N = 4 light-cone superspace [15–17] is comprised of four bosonic coordinates,
x+, x−, x, x̄, and eight fermionic coordinates, θm, θ̄m, m = 1,2,3,4. These are collectively de-
noted by z = (x+, x−, x, x̄, θm, θ̄m).

All the degrees of freedom of the deformed theory are described by a single scalar superfield.
This superfield is defined by the chirality constraints

(15)dmΦ = 0, d̄nΦ̄ = 0,

as well as the “inside–out constraints”

(16)d̄md̄nΦ = 1

2
εmnpqdpdqΦ̄,
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where Φ̄ is the complex conjugate of Φ . The superspace chiral derivatives in the above expres-
sions are

(17)dm = − ∂

∂θ̄m

+ i√
2
θm∂−, d̄n = ∂

∂θn
− i√

2
θ̄n∂−.

The superfield satisfying the constraints (15) and (16) is [15]

Φ(x, θ, θ̄) = − 1

∂−
A(y) − i

∂−
θmχ̄m(y) + i√

2
θmθnϕ̄mn(y)

(18)+
√

2

6
θmθnθpεmnpqχq(y) − 1

12
θmθnθpθqεmnpq∂−Ā(y),

where y = (x, x̄, x+, y− ≡ x− − i√
2
θmθ̄m) is the chiral coordinate and the r.h.s. of (18) is to be

understood as an expansion around x−. Note that we use, for the 1
∂− operator, the prescription

given in [4].
We now introduce a superspace �-product whose effect on superfields mimics the action of

the ∗-product on component fields [8]. In superspace we formally consider the U(1) generators to
be acting on the superspace fermionic coordinates, i.e. we think of the “flavor” charges as being
carried by the θ variables (the charges of the θ̄ ’s are opposite to those of the θ ’s). The superspace
�-product is then simply realized in terms of operators which count the number of θ ’s and θ̄ ’s.

In superspace, we define charges, qm, by

−→q m = θm

−→
∂

∂θm
− θ̄m

−→
∂

∂θ̄m

,

(19)←−q m =
←−
∂

∂θm
θm −

←−
∂

∂θ̄m

θ̄m.

In terms of these we define Q[1] and Q[2] by

(20)Q[1] =
4∑

m=1

α[1]
m qm, Q[2] =

4∑
m=1

α[2]
m qm,

where the parameters α
[1]
m and α

[2]
m are the same as those used for the component ∗-product. We

define the �-product of two superfields, F and G, by

(21)F � G = F eiπβ(
←−
Q

[1]
F

−→
Q

[2]
G −←−

Q
[2]
F

−→
Q

[1]
G )G

and the associated �-commutator by

(22)[F,G]� = F � G − G � F.

The �-product (21) allows us to formulate the non-supersymmetric deformed Yang–Mills theory
in N = 4 light-cone superspace. The action reads3

S = 72
∫

d4x

∫
d4θ d4θ̄ Tr

{
−2Φ̄

�
∂2−

Φ + i
8

3
g

(
1

∂−
Φ̄[Φ, ∂̄Φ]� + 1

∂−
Φ[Φ̄, ∂Φ̄]�

)

(23)+ 2g2
(

1

∂−
[Φ,∂−Φ]� 1

∂−
[Φ̄, ∂−Φ̄]� + [Φ,Φ̄]�[Φ,Φ̄]�

)}
.

3 We remind the reader that as far as space–time is concerned this is an ordinary “commutative” field theory.
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Expanding the various �-commutators and performing the Grassmann integrations reproduces
exactly the light-cone component action justifying our definition of the superspace �-product.

We denote the superfield propagator by

(24)
〈
Φu

v(z1)Φ
r
s(z2)

〉 = Δu
v
r
s(z1 − z2),

where we have made explicit the matrix indices. The corresponding momentum-space propagator
is

(25)Δu
v
r
s(k, θ(1), θ̄(1), θ(2), θ̄(2)) = tuv

r
s

1

k2
μ

d4
(1)δ

8(θ(1) − θ(2)),

where θ(1) and θ(2) denote the fermionic coordinates at superspace points z1 and z2, respectively
and tuv

r
s is a tensor whose precise structure depends on the choice of gauge group and is irrel-

evant to our analysis. Notice that here and in the following we denote the product of four chiral
derivatives, d1d2d3d4, by d4 and the product of four anti-chiral derivatives, d̄1d̄2d̄3d̄4, by d̄4.

The fermionic δ-function is

(26)δ8(θ(1) − θ(2)) = (θ(1) − θ(2))
4(θ̄(1) − θ̄(2))

4.

The light-cone superspace Feynman rules for the theory can be easily derived from the ac-
tion (23). Having formulated the deformed theory in N = 4 light-cone superspace we will now
prove its ultraviolet finiteness to all orders in planar perturbation theory.

4. Proof of finiteness

The proof of finiteness is identical to that presented in [8]. We therefore simply highlight the
salient points involved and refer the reader to [8] for a complete and detailed description of the
procedure.

At the basis of the proof is Weinberg’s power counting theorem [18], which states that an arbi-
trary Feynman diagram is convergent if the superficial degree of divergence, D, of the diagram as
a whole and of all its sub-diagrams is negative. To prove the finiteness of the non-supersymmetric
deformed theory we will show that, in light-cone superspace, all the supergraphs in the theory
satisfy the hypotheses of Weinberg’s theorem. This is achieved in two steps:

(i) A superspace dimensional analysis provides a preliminary estimate which yields D = 0 for
a generic supergraph;

(ii) Using superspace manipulations it is shown that the degree of divergence of any sub-graph in
an arbitrary supergraph can be reduced to a negative value by bringing factors of momentum
out of the internal loops.

The first step is based on a version of the superspace power counting methods of [19] adapted
to the light-cone formalism. An essential ingredient in this analysis is the relation

(27)δ8(θ(1) − θ(2))d
4
(1)d̄

4
(1)δ

8(θ(1) − θ(2)) = δ8(θ(1) − θ(2)).

A modified version of this equation [8] remains valid for planar diagrams in the deformed theory.
Repeating the analysis of [8] leads to the conclusion that D = 0 for any planar supergraph if all
the momenta are assumed to contribute to the loop integrals.



234 S. Ananth et al. / Nuclear Physics B 783 [FS] (2007) 227–237
(a) (b)

Fig. 1. Light-cone supergraphs.

This estimate is then refined by distinguishing between internal and external lines and using
the explicit form of the vertices in (23): standard manipulations in light-cone superspace allow us
to show that the degree of divergence of any loop in an arbitrary supergraph is actually negative.

The strategy used in the analysis of a generic complicated supergraph, such as the one depicted
on the left-hand side of Fig. 1, is the following.

We consider an external leg, e.g. the one marked with a dotted circle in the figure, and analyze
the internal loop it connects to. The corresponding integral can be rendered finite using integra-
tions by parts in superspace to move chiral derivatives from the internal lines onto the external
one. This brings factors of momentum out of the loop integral and improves its convergence.4

External lines connected to a quartic vertex can be analyzed in a similar fashion. Once the first
loop connected to the selected external leg is rendered finite, we move to an adjacent loop and
use similar manipulations to reduce its degree of divergence to a negative value. The procedure
continues until all the loops in the supergraph have been dealt with.

In order to give the reader a flavor of the kind of manipulations involved, we analyze explicitly
the contribution of specific Wick contractions to the loop attached to the vertex highlighted in
the graph on the left of Fig. 1. We isolate the vertex, which is depicted on the right hand side of
the figure with the associated momenta. In position space we consider

(28)

〈
Φ(z1)Φ(z2)Φ(z3)

∫
d12z iL3(z)

〉
,

where

(29)iL3(z) = −g Tr

{
1

12

1

∂−
Φ

[
d̄4

∂2−
Φ,∂

d̄4

∂2−
Φ

]
�

}
.

Among the Wick contractions contributing to (28) we consider

(30)Tr

{
1

∂−
Δ2

[
d̄4

∂2−
Δ1, ∂

d̄4

∂2−
Δ3

]
�

+ 1

∂−
Δ3

[
d̄4

∂2−
Δ1, ∂

d̄4

∂2−
Δ2

]
�

}
,

4 In general to cancel the divergent part of a graph it is necessary to combine the contribution of different Wick
contractions.
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where the index 1 refers to the external leg while 2 and 3 identify the internal legs. In the above
formula the propagators Δn ≡ Δ(z − zn) are treated as matrices with indices associated with the
interaction point z (indices relating to zn, n = 1,2,3, are omitted).

The manipulations required to render a supergraph finite are exactly the same as those used in
the proof of finiteness of N = 4 SYM in [4,5]. An identical analysis was applied to the case of
the N = 1 β-deformed theory in [8], where it was shown that the arguments in the N = 4 proof
remain applicable thanks to the properties of the superspace �-product.5 The same can be shown
in the present non-supersymmetric case. In general in the presence of �-products the integration
by parts of chiral derivatives introduces phase factors in the superspace expressions, however, as
discussed in [8], these do not affect the proof.

In order to prove that the contribution of the contractions in (30) to the loop integral is ultra-
violet finite, we integrate the superspace chiral derivatives from leg 3 to leg 2 in the first term.
Using the associativity of the �-product and the cyclicity of the trace, the result can be rewritten
as

(31)Tr

{
−∂

1

∂2−
Δ3

[
d̄4

∂2−
Δ1,

d̄4

∂−
Δ2

]
�

+ 1

∂−
Δ3

[
d̄4

∂2−
Δ1, ∂

d̄4

∂2−
Δ2

]
�

}
,

so that a common structure can be factored out. In momentum space we get

(32)−
(

p − k

(p− − k−)2

1

p−2

1

k−
− 1

p− − k−
1

p−2

k

k−2

)
Tr

(
Δ3

[
d̄4Δ1, d̄

4Δ2
]
�

)
.

Potential ultraviolet divergences arise from loop momenta, k, satisfying k � p. In this limit the
leading terms in parentheses cancel. This means that the logarithmically divergent contribution
vanishes leaving a finite integral.

All the other Wick contractions involving both cubic and quartic vertices can be treated fol-
lowing similar steps. This leads to the conclusion that all the loops connected to external legs in
an arbitrarily complicated supergraph have negative degree of divergence. We can then proceed
to internal loops and repeat the same analysis. The ultraviolet finiteness of any supergraph then
follows from the application of Weinberg’s theorem [18]. Note that the use of the theorem in
the light-cone gauge is permitted due to our choice of pole structure [4], which allows for Wick
rotation into Euclidean space.

Non-planar diagrams can be analyzed using the same methods. However, in the non-planar
case the relation (27) does not hold, implying that the preliminary estimate yielding D = 0 for
all supergraphs is no longer valid. Therefore manipulations of the type outlined above are not
sufficient to conclude that generic non-planar diagrams have negative superficial degree of diver-
gence.

As already observed, it is not straightforward to deduce the finiteness of the non-supersymmet-
ric deformation of N = 4 SYM considered in this paper from the ultraviolet properties of the
parent N = 4 theory. We also point out that, while there exist other indirect arguments for the
finiteness of theories obtained as deformations of N = 4 SYM, such as those described in [6,20],
these methods rely on supersymmetry. Hence they are not applicable to non-supersymmetric
theories such as the one studied here. For these theories the light-cone analysis presented here is
so far the only viable approach.

5 For a detailed list of properties of the �-product we refer the reader to Appendix A of [8].
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There are natural generalizations of the deformation considered in this paper. Mass terms for
all the matter fields can be added preserving ultraviolet finiteness, but at the expense of scale in-
variance. Moreover in the light-cone superspace formulation additional parameters can be added
multiplying respectively the two cubic couplings and the two quartic couplings in the action (23).
This does not ruin the proof of scale invariance, since in proving the finiteness of the light-cone
Green functions only cancelations among supergraphs involving separately the cubic and quartic
vertices were invoked. However, this type of deformation will probably break Lorentz invari-
ance. A more interesting generalization involves making the deformation parameters complex.
A supergravity solution with 2 + 6 parameters, which generalizes the supergravity dual to the
deformed theory considered in this paper, was obtained in [12]. We expect that the techniques
used here and in [8] will allow us to prove the finiteness, in the planar approximation, of the theo-
ries deformed with complex parameters. This case is of particular interest in connection with the
recent work on the role of integrability in the context of the gauge/gravity correspondence. The
N = 1 deformation of [9] and the non-supersymmetric case studied in this paper are believed to
preserve the integrability of the spectrum in the planar approximation only in the case of real de-
formation parameters [12,13,21]. Understanding whether the complex deformations indeed lead
to finite theories may help to shed light on the interconnections between integrability and scale
invariance.

Finally, the maximally supersymmetric N = 8 supergravity in four dimensions [22] has also
been formulated in light-cone superspace up to second order in the gravitational coupling con-
stant [17,23]. The main feature of this formulation, as in the Yang–Mills case, is that it is free of
both auxiliary fields and ghosts. It will be interesting to investigate whether the techniques pre-
sented in this paper and in [4,5,8] prove useful in the study of the ultraviolet behavior of N = 8
supergravity [24].
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