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In a recent publication, we have demonstrated that differentially rotating stars admit new channels of
black hole formation via fragmentation instabilities. Since a higher order instability of this kind could
potentially transform a differentially rotating supermassive star into a multiple black hole system
embedded in a massive accretion disk, we investigate the dependence of the instability on parameters
of the equilibrium model. We find that many of the models constructed exhibit nonaxisymmetric
instabilities with corotation points, even for low values of T=jWj, which lead to a fission of the stars
into one, two, or three fragments, depending on the initial perturbation. At least in the models selected
here, an m � 1 mode becomes unstable at lower values of T=jWj, which would seem to favor a scenario
where one black hole with a massive accretion disk forms. In this case, we have gained evidence that low
values of compactness of the initial model can lead to a stabilization of the resulting fragment, thus
preventing black hole formation in this scenario.
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I. INTRODUCTION

The study of oscillations and stability of stars has a long
history (see e.g. [1]). While its classical results tried to
address the limits of possible models for main-sequence
stars, and the question of binary star formation from pro-
tostellar clouds, it has been extended in the last century to
examine the properties of relativistic fluid equilibria, and
their connection to the formation of black holes by axi-
symmetric instabilities.

This work is an extension of our publication [2], where
we have studied the formation of black holes from frag-
mentation in N � 3 polytropes, which was induced by the
growth of a nonaxisymmetric instability in a strongly
differentially rotating star. We would like to focus attention
here on the question of whether the instability we have
observed is generic for strongly differentially rotating
polytropes, and how changes in parameters of the initial
model affect its development. In addition, we will present
some tentative results related to arguments previously
presented by Watts et al. [3] on a possible connection
between low-T=jWj1 and spiral-arm instabilities and the
location of the corotation band in a sequence of increasing
rotational energy.

Because of the recent prospect of detecting gravitational
radiation directly, the connection between the local dynam-
ics of collapse and gravitational wave emission is currently
receiving increased attention (e.g. [5,6]). In this context, a

nonaxisymmetric instability in a star is expected to change
the nature of the signal, and to enhance the chances of
detecting it [7]. We shall discuss a number of scenarios for
gravitational collapse and black hole formation to illustrate
this point.

(1) Stars retaining spherical symmetry: If the initial
matter distribution has spherical symmetry, no
gravitational waves are emitted as a consequence
of Birkhoff’s theorem. The exact solution by
Oppenheimer and Snyder [8] already exhibits
many features of the local dynamics, while the
connection to dynamical stability in general relativ-
ity has been made explicit by Chandrasekhar [9].
The assumption of spherical symmetry, while re-
strictive, already admits simple models of phe-
nomena like mass limits for compact stars, some
generic properties of black hole formation from
supermassive stars and neutron stars (e.g. [10–
12]), and the dynamics of apparent and event hori-
zons (ibido).

(2) Stars retaining (approximate) axisymmetry: If the
symmetry assumption is relaxed to axisymmetry,
models of gravitational collapse admit a number of
additional features, the most important in this con-
text being the emission of gravitational radiation.
Stars in axisymmetry can be rotating, which changes
the radial modes of the nonrotating member of a
sequence into a quasiradial mode. If that is unstable,
the star may collapse to a black hole in a manner
which is similar to the spherically symmetric case in
its bulk properties, and it proceeds by (i) contraction
due to a quasiradial instability, (ii) formation of an

1Here, and subsequently, T=jWj shall denote the ratio of
rotational kinetic to gravitational binding energy in the axisym-
metric initial model. For a definition of these quantities, see [4].
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event horizon centered on the axis, and (iii) ring-
down to a Kerr black hole with a disk. We will call
this process the canonical scenario to represent that
it provides the expected properties of the collapse of
slowly rotating stars. It has been studied extensively
in numerical investigations [6,13–27], and seems
even appropriate to describe the quality of collapse
of most rapidly and differentially rotating neutron
stars [25]. It should not be considered implicit here
that the canonical scenario is generic for axisym-
metric collapse: see e.g. [28,29] for systems involv-
ing toroidal black holes.

(3) Stars not retaining (approximate) axisymmetry: As
already mentioned, even in many numerical models
with three spatial dimensions, the collapse to a black
hole proceeds in an almost axisymmetric manner,
although the initial data is represented on discrete
Cartesian grids. It has been found that even when
nonaxisymmetric perturbations are applied to the
collapsing material, no large deviations from axi-
symmetry are seen during the collapse [26]. Judging
from the perturbative theory of Newtonian poly-
tropes [1], this indicates that either the amount of
rotational over gravitational binding energy T=jWj
is insufficient, or that the collapse time is too short to
admit growth of initial deviations from the symmet-
ric state to significant levels.
The situation can be quite different when the system
is not unstable to axisymmetric perturbations, or if
the collapse stabilizes around a new equilibrium
with higher T=jWj. The classical limit of T=jWj �
0:27 for Maclaurin spheroids [30] indicates the on-
set of a dynamical instability to transition to the x �
�1 Riemann S-type sequence [30,31]. To which
extent this idealized behavior is also realized in
general relativistic compressible polytropes, and,
more specifically, how it is connected to the forma-
tion of black holes, is the issue we would like to
address in part here.

If a general relativistic star encounters a nonaxisymmet-
ric instability, the nature of its subsequent evolution may be
characterizable by certain properties of the equilibrium
model, like the rotation law, T=jWj, compactness, and
equation of state. For the limit of uniformly rotating, al-
most homogeneous models of low compactness, we ex-
pect, for T=jWj> 0:27, a dynamical transition to an
ellipsoid by a principle of correspondence with
Newtonian gravity.

By relaxing all but the assumption of low compactness,
we can make use of the rich body of knowledge about the
stability and evolution of stars in Newtonian gravity. Two
classical applications of stability theory are the oscillations
of disks and the fission problem [1]. These matters have
been investigated extensively over the last decades [32–
47], and a number of possible scenarios have emerged for

the nonlinear evolution of nonaxisymmetric dynamical
instabilities in rotating polytropes:

(1) The polytrope develops a bar-mode instability simi-
lar to the Maclaurin case, and possibly retains this
shape over many rotational periods (e.g. [41]).

(2) Two spiral arms and an ellipsoidal core region de-
velop, where the latter transports angular momen-
tum to the spiral arms by gravitational torques, is
spun down, and collapses (e.g. [33]). This scenario
is interesting for black hole formation, since the
rotational support of the initial model can be par-
tially removed by such a mechanism. If this trans-
port is efficient enough, the core ellipsoid might
collapse, resulting in a Kerr black hole with a disk
of material around it. One might conjecture that, if
the equation of state is soft enough, the disk itself
may be subject to fragmentation, and form several
smaller black holes which are subsequently
accreted.

(3) One spiral arm develops, and the mode saturates at
some amplitude [38,48], leaving a central conden-
sation. This might also lead to central black hole
formation. Note that the onset for this dynamical
instability in terms of T=jWj can be significantly
lower than the Maclaurin limit.

(4) For polytropes with strong differential rotation, the
initial model may be quasitoroidal, i.e. it has at least
one isodensity surface which is homeomorphic to a
torus. If models of this kind, or purely toroidal ones,
are subject to the development of a nonaxisymmet-
ric instability, they may exhibit fragmentation
[40,43]. This is clearly the most interesting setting
for the fission problem, but has been discussed
also in the context of core collapse (‘‘collapse, pur-
suit, and plunge’’ scenario, Fig. 24.3 in [49], also
[37,45]).

It is this last kind of instability we will investigate here in
the context of general relativity, and its relation to the
formation of black holes.

Concerning the nature of the spiral-arm and low-T=jWj
instabilities, Watts et al. ([3], see also [50,51]) have sug-
gested a possible relation of these instabilities to their
location with respect to the corotation band.2 That corota-
tion has a bearing on instabilities in differentially rotating
disks has been suggested for some time; the perturbation
operator is singular at corotation points, which gives rise to
a continuous spectrum of ‘‘modes.’’ While the initial-value
problem of perturbations associated with the continuous
spectrum of stars is not well understood even in Newtonian
gravity, there is evidence [50,52–54] that a mode entering
corotation may be subject to a shear-type instability, or that

2The corotation band in a differentially rotating star is the set
of frequencies associated with modes having at least one coro-
tation point, i.e. a point where the local pattern speed of the
instability matches the local angular velocity.
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it merges with another mode inside the corotation band,
which appears to admit a certain class of solutions showing
similar properties as the solutions in the discrete spectrum
[51]. While three-dimensional Newtonian simulations
would appear, at least as a first step, most appropriate to
gain more intuition in these matters [55], we will collect
some evidence on corotation points in the evolutions pre-
sented here as well.

Since the parameter space of possible initial models is
large, and given that three-dimensional simulations of this
kind are still quite expensive in terms of computational
resources, we restrict attention to several isolated sequen-
ces, where just one initial model parameter is varied to gain
evidence on its systematic effects, and to a plane in pa-
rameter space defined by a constant central rest-mass
density and a fixed parameter � � 4=3 in the �-law equa-
tion of state P � ��� 1���. We will find that, at least as
long as we are concerned with the question when certain
modes become dynamically unstable on a sequence, the
consideration of models of constant central density is not
overly restrictive as far as the development of the insta-
bility is concerned, while the nature of the final remnant
might be rather sensitive to it. This latter issue, namely,
whether a black hole forms or not, will not be answered in
full here, since we will only determine whether the frag-
ment stabilizes during collapse, and reexpands, or if it does
not. We leave the location of the apparent horizon with
adaptive mesh-refinement techniques and the subsequent
evolution with excision to future work, and concentrate
here on the general structure of the parameter space and its
relation to the nonaxisymmetric instability.

The choice � � 4=3 is well known to approximately
correspond to the adiabatic coefficient of a degenerate,
relativistic Fermi gas or a radiation-pressure dominated
gas [56], and is thus closely connected to iron cores and
supermassive stars. We would like to point out that a
collapsing iron core, even if its initial state is assumed to
be determined mostly by electron pressure, is subject to a
complex set of nuclear reactions, which involve the gen-
eration of neutrinos and transition to nuclear matter at high
densities. It is because of this complexity, which we do not
take into account here in order to reduce the number of free
parameters, that we do not suggest the use of the fragmen-
tation and black hole formation investigated in [2] as a
highly idealized model of core collapse. For supermassive
stars, the situation is different, since an event horizon can
form before thermonuclear reactions become important,
depending on the metallicity and mass of the progenitor
[57]. Because of this, it is conceivable that the type of
evolution in [2] can be used as an approximate model of
supermassive black hole formation. Finally, we would like
to mention the possibility that gravitational wave detection
may uncover so-far unexpected processes involving black
hole formation, and in that case it is useful to have a
general understanding of possible dynamical scenarios.

II. PREVIOUS WORK

The background for this study comes from three areas:
the study of (i) fragmentation in Newtonian polytropes,
(ii) nonaxisymmetric instabilities in general relativistic
polytropes, and (iii) black hole formation by gravitational
collapse. The first area is represented by a large number of
publications (some of them cited in the introduction), but
we would like to mention specifically the work by
Centrella, New, et al. [43,58], since the kind of initial
model and subsequent evolution studied in these publica-
tions are similar to the ones presented by us in [2] and here,
apart from the fact that Newtonian gravity and a softer
equation of state (� � 1:3) was used. New and Shapiro
[59] investigated equilibrium sequences of differentially
rotating Newtonian polytropes with � � 4=3 to present an
evolutionary scenario where supermassive stars develop a
bar-mode instability instead of collapsing axisymmetri-
cally. This kind of scenario (see also [7,60]) is also im-
portant when connecting the general relativistic frag-
mentation presented here to the evolution of supermassive
stars.

Nonaxisymmetric dynamical instabilities in general
relativistic, self-gravitating fluid stars have been studied
by several authors [25,61–65]. Some evidence of fragmen-
tation has been found in [25] in a ring resulting from a
‘‘supra-Kerr’’ collapse with J=M2 > 1 (here J denotes the
total angular momentum, and M the Arnowitt-Deser-
Misner (ADM) mass), but no black hole was identified,
although the pressure in the initial data was artificially
reduced by a large factor in order to induce collapse.
Finally, black hole formation by gravitational collapse
has been studied extensively (see references in the
introduction), and in recent years also in three spatial
dimensions [6,19,21,24,25,27,66,67]. The collapse of dif-
ferentially rotating supermassive stars in the approxima-
tion of spatial conformal flatness has been investigated by
Saijo [26].

In addition, the work on low-T=jWj instabilities by
Watts et al. [3,50,51] has already been described in the
introduction, and recent numerical studies of related inter-
est can be found in [55,68,69].

III. NUMERICAL METHODS

All model calculations presented here are performed in
full general relativity. We use Cartesian meshes with the
only symmetry assumption being reflection invariance with
respect to the equatorial plane of our models. We employ
the Cactus computational framework [70,71] in our
simulations. We use finite-differencing methods of second
order for the spacetime variables, and finite-volume, high-
resolution shock-capturing techniques for the hydrody-
namical variables. Hydrodynamics and metric evolution
are coupled by means of the method of lines, using the
time-explicit iterative Crank-Nicholson integrator with
three intermediate steps [72–74].
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In the following we give a brief overview on the 3-metric
evolution, hydrodynamics, and mesh-refinement methods
used. We set c � G � K � 1 to fix our system of units,
where c denotes the speed of light, G the gravitational
constant, and K the polytropic constant in the relation P �
K�� between pressure P and rest-mass density � used to
compute the initial models. Latin indices run from 1 to 3,
Greek from 0 to 3. We use a spacelike signature
��;�;�;��. Unless explicitly mentioned otherwise, we
assume Einstein’s summation convention.

A. Metric evolution

We evolve the 3-metric with the 3� 1 Cauchy free-
evolution code developed at the Albert Einstein Institute
[72,75]. The code provides at each time step a solution to
the Einstein equations in the ADM 3� 1 formulation [76],
while internally evolving the spacetime in the NOK-BSSN
conformal-traceless recast of the ADM equations [77–79]
which has been proven to lead to much more stable nu-
merical evolutions of Einstein’s equation than the original
ADM system [72]. The details of our NOK-BSSN imple-
mentation can be found in [72,80]. Here we only briefly
summarize the ADM system through which we couple
spacetime and hydrodynamics [27].

In ADM, the four-dimensional spacetime is foliated into
a set of three-dimensional and nonintersecting spatial hy-
persurfaces. Individual surfaces are related through the
lapse function �, which describes the rate of advance of
time along a timelike unit normal vector n�, and through
the shift vector �i which indicates how the coordinates
change from one slice to the next. The gauge freedom in
ADM allows a free choice of both lapse and shift, but care
must be taken for the choice of gauge may have an effect
on numerical stability [80].

The ADM line element reads

 ds2 � ���2 � �i�
i�dt2 � 2�idx

idt� �ijdx
idxj (1)

and the first-order form of the evolution equations for the
spatial 3-metric �ij and the extrinsic curvature Kij read

 @t�ij � �2�Kij �ri�j �rj�i; (2)

 

@tKij � �rirj�� ��Rij � KKij � 2KimK
m
j

� 8��Sij �
1
2�ijS� � 4��ADM�ij�

� �mrmKij � Kimrj�
m � Kmjri�

m; (3)

where ri denotes the covariant derivative with respect to
the coordinate direction @i and the 3-metric �ij. Rij is the
coordinate representation of the 3-Ricci tensor and K �
�ijKij is the trace of the extrinsic curvature. �ADM is the
energy density as measured by a Eulerian observer [81]. Sij
is the projection of the stress-energy tensor on the space-
like hypersurfaces and S � �ijSij.

Gauge choices

We evolve the lapse function with the hyperbolic
K-driver condition [80,82] of the form

 @t� � ��
2f����K � K0�; (4)

where f��� is an arbitrary positive function of � and K0 �
K�t � 0�. We choose f��� � 2=� which is referred to as
‘‘1� log slicing’’ and has excellent singularity-avoiding
properties in the sense that the lapse tends to zero near a
physical singularity, freezing the evolution in that region.

For the model simulations presented in this paper we
find that a dynamical evolution of the spatial gauge �i is
not necessary, and we keep it fixed to its initial direction
and magnitude.

B. General-relativistic hydrodynamics

The equations of general-relativistic hydrodynamics are
derived from the conservation equations of the stress-
energy tensor Tab and the matter current density Ja:

 raT
ab � 0; raJ

a � 0; (5)

where Ja � �ua, � is the rest-mass density, and ua the 4-
velocity of the fluid. We use the perfect-fluid stress-energy
tensor

 Tab � �huaub � Pgab; (6)

with P being the fluid pressure, h � 1� �� P=� the
relativistic specific enthalpy, and � the specific internal
energy of the fluid.

For evolving the hydrodynamical fields we employ the
Whisky code [27,83] which implements the general rela-
tivistic hydrodynamics equations in the hyperbolic first-
order flux-conservative form proposed and tested in
[84,85]. This code requires us to add an artificial atmo-
sphere to the computational domain in regions of very low
density. We typically choose an atmospheric density of
10�5 of the maximal density of the initial model. The
evolved state vector ~U � �D; Si; ��

T is defined in terms
of the primitive hydrodynamical variables �, P, and vi, the
3-velocity, measured by a Eulerian observer:

 

~U �
D
Sj
�

2
64

3
75 �

����
�
p

W�����
�
p

�hW2vj����
�
p
��hW2 � P�W��

2
64

3
75; (7)

where � � det�ij and W � �u0 � 1=
�������������������������
1� �ijv

ivj
q

is the

Lorentz factor.
The set of equations then reads

 @t ~U� @i ~F
i � ~S; (8)

with the three flux vectors given by
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~F i �

��vi � 1
��

i�D
���vi � 1

��
i�Sj �

����
�
p

P�ij�
���vi � 1

��
i���

����
�
p

viP�

2
64

3
75: (9)

The source vector ~S, which contains the curvature-related
force and work terms, but no derivatives of the primitive
variables, is given by

 

~S �
0

�
����
�
p

T	
g
���	j
�

����
�
p
�T	0@	�� �T

	
�0
	
�

2
64

3
75; (10)

where ��	
 are the standard 4-Christoffel symbols.
We choose the ideal fluid �-law equation of state,

 P��; �� � ��� 1��� (11)

to close the system of hydrodynamic equations.

C. Mesh refinement

In order to ensure adequate spatial resolution while
keeping the computational resource requirements of our
three-dimensional simulations to a minimum, we use
Berger-Oliger style [86] mesh refinement with subcycling
in time as implemented by the open-source Carpet
[87,88] driver for the Cactus code. Carpet provides
fixed, progressive [6], and adaptive mesh refinement. In
this study we use a predefined refinement hierarchy with
five levels of refinement, arranged in a box-in-box manner
centered on the origin. The resolution factor between levels
is two. We point out that adaptive (or at least progressive)
mesh refinement will be necessary to track black hole
formation in detail, and has been performed on one model
in [2].

D. Outer boundary conditions

The outer boundary is located several equatorial radii
away from the stellar surface. Boundary conditions on the
fluid variables are effectively acting on the atmosphere,
which itself acts as an outer boundary for the star. We use
static boundaries in this case, and find that changing the
location of the outer boundary does not affect the resulting
evolution. For the BSSN variables, a standard set of
Sommerfeld-type outer boundary conditions is used.

E. Mode extraction

To evaluate and quantify the stability or instability of a
given model to nonaxisymmetric perturbations, we extract
azimuthal modes eim’ by means of a Fourier analysis of the
rest-mass density on a ring of fixed coordinate radius in the
equatorial plane.3 Following Tohline et al. [32], we com-
pute complex weighted averages

 Cm �
1

2�

Z 2�

0
��$;’; z � 0�eim’d’ (12)

and define normalized real mode amplitudes

 Am �
jCmj
C0

: (13)

Here $ �
����������������
x2 � y2

p
� const and is chosen to correspond

to the initial equatorial radius of maximum density in our
quasitoroidal models, if not mentioned otherwise. The
index m corresponds to the number of azimuthal density
nodes and is used to characterize the modes.

IV. INITIAL DATA

A. Quasitoroidal polytropes

We focus on general relativistic, differentially rotating
polytropes which are quasitoroidal: Such a polytrope has
at least one isodensity surface which is homeomorphic to a
torus. To construct equilibrium polytropes of this kind, an
extended version of the Stergioulas-Friedman (RNS) code
is used [4,89,90], which uses the numerical methods de-
veloped in Komatsu, Hachisu, and Eriguchi [91–93]. The
code assumes a certain gauge in a stationary, axisymmetric
spacetime, such that we can write the line element in terms
of potentials 
,  , !, and 	, and the Killing fields @t and
@� as [4]

 ds2 � �e2
dt2 � e2 �d��!dt�2 � e2	�dr2 � r2d
2�:

(14)

To compute an equilibrium polytrope, the central rest-
mass density �c, the coordinate axis ratio rp=re, and a
barotropic relation P��� need to be specified.4 In addition,
the equations of structure [4] contain an additional freely
specifiable function F���. We will use the common choice

 F��� � ~A2��c ���; (15)

where �c denotes the angular velocity at the star’s center.
This rotation law reduces to uniform rotation in the limit
~A! 1, and to the constant specific angular momentum
case in the limit ~A! 0. We will, however, often use the
normalized parameter A � ~A=re, where re is the coordi-
nate radius of the intersection of the stellar surface with the
equatorial plane 
 � �=2. For construction of a polytrope,
the equation of state is constrained to the polytropic rela-
tion

 P � K�� (16)

with the polytropic constant K and the coefficient �, which
3These quantities are not gauge invariant, but they provide a

useful way of characterizing the representation of the instability
within our choice of coordinates. 4Purely toroidal models have rp=re � 0.
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can also be expressed by the polytropic index N � ���
1��1. Without loss of generality we set K � 1 in all cases.
The equation of state of the initial model is completed by
the energy relation � � P=���� 1���.

The resulting set of equations is solved iteratively [4],
where the initial trial fields are a suitable solution of the
Tolman-Oppenheimer-Volkoff system. To converge to the
desired model, it may be necessary to select a number of
intermediate attractors as trial fields. Some models are thus
constructed by first obtaining a specific quasitoroidal
model, and then moving in parameter space in the quasi-
toroidal branch to the target model. In this work, a hook
model with parameters Ahook � 0:3 and �rp=re�hook � 0:15
is generated, which then is used as initial guess to construct
the target model.

If we include the polytropic coefficient �, we have to
consider a four-dimensional parameter space ��; �c; A;
rp=re�. We will not study the whole parameter space
here: Rather, we first use a reference model and explore
sequences in �c, �, and rp=re containing this model, and
will subsequently concentrate on the important case � �
4=3, since it approximately represents a radiation-pressure
dominated star.

Most polytropes have been constructed with a meri-
dional grid resolution of nr � 601 radial zones and ncos
 �
301 angular zones, a maximal harmonic index ‘max � 10
for the angular expansion of the Green function, and a
solution accuracy of 10�7. Selected models have been
tested for convergence with resolutions up to nr � 2401,
ncos
 � 1201, and ‘max � 20.

To investigate the stability of the polytropes constructed
with the RNS code, two kinds of perturbations are applied:
the pressure is reduced by 0.1%, and a cylindrical density
perturbation of the form

 ��x� ! ��x�
�

1�
1

re

X4

m�1

�mBf�$� sin�m��
�

(17)

is added to the equilibrium polytrope. Here, m 2
f1; 2; 3; 4g, �m is either 0 or 1, $ is the cylindrical radius,
and f�$� is a radial trial function. Experiments have been
made with f�$� � $ and f�$� � $m, but the exact
choice was found not to affect the results significantly.
This is true quite generally, since we only require the trial
function to have some reasonable overlap with a set of
quasinormal modes. It is beyond our scope to investigate
the full spectrum of quasinormal modes of general relativ-
istic polytropes; therefore, we determine stability only with
respect to specific trial functions. The choice made is not
completely arbitrary, however: a quasitoroidal polytrope
has an off-center toroidal region of maximal density, and it
is this region which will dominate the dynamics if a
fragmentation instability sets in. A linear perturbation
without nodes in this region can be expected to be compat-
ible (have nonzero scalar product) with most low-
frequency quasinormal modes. The function f�$� � $m

has the additional property of smoothness at the center, but,
as already noted, numerical experiments have shown the
difference to be negligible in practice. An additional note
on the use of language: If we find that a perturbation with
�i � �ij, j 2 f1; 2; 3; 4g leads to an instability with the
associated number of node lines in the equatorial plane,
we will denote this instability with the term m � j mode
(and the corresponding perturbation m � j perturbation).
This is a simplification insofar as each m is expected to
represent a (discrete) infinite spectrum of modes [94], from
which we will observe only the fastest-growing unstable
member. While we will attempt to discuss the nature of the
global evolution to some extent, we will, for the reasons
stated above, concentrate on the high-density torus, and
mostly neglect the dynamics of its halo.

The perturbations applied are both constraint violating.
This is no significant issue, since the discrete evolution of
the NOK-BSSN system will introduce constraint violations
even if some minimization technique has been applied to
the initial data. Figure 1 shows the evolution of the L2

norm of the Hamiltonian constraint for different grid res-
olutions, for a model perturbed with �i � �i1 and B �
10�3. (The time in this figure, and in the subsequent ones,
is normalized to tdyn � Re

�������������
Re=M

p
, where Re is the circum-

ferential equatorial radius, and M is the ADM mass.) Note
that, for a typical perturbation amplitude of ��=� � 10�3,
the Hamiltonian constraint will be violated by �H �
16��	 10�3 � 2:5	 10�7, which is sufficiently smaller
than the violations during evolution in Fig. 1. Also, tests
have been performed where the perturbation amplitude B
(cf. Eq. (17)) is reduced by a factor of 10, and found that
this does not affect the growth rate of the perturbation, as
expected from small perturbations. To conveniently com-
pare different resolutions, the amplitude is kept constant;
however, it is possible to reduce the perturbation ampli-

0 1 2 3 4 5 6 7
t / t

D

1×10
-7

1×10
-6

1×10
-5

1×10
-4

||H
|| 2

Resolution 49x49x25
Resolution 65x65x33
Resolution 97x97x49
Resolution 129x129x65

FIG. 1. Time evolution of the L2 norm of the Hamiltonian
constraint for different resolutions (the numbers refer to a grid
point on a single patch of our mesh-refinement grid). The time is
normalized to the dynamical time scale tdyn � Re

�������������
Re=M

p
.
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tudes for resolutions significantly higher than the ones used
here (specifically, in the regime where �H would become
comparable to the constraint violations during evolution)
to obtain a system where convergence, now to the equilib-
rium system, does only depend on the well-posedness of
the continuum initial-boundary value problem and the
stability of the discrete system.5

B. The reference polytrope and associated sequences

We start with a polytrope with the same central rest-
mass density (�c � 3:38	 10�6) as Saijo’s series of dif-
ferentially rotating supermassive star models [26]. To ob-
tain experience with the influence of certain parameters on
the stability properties of the relativistic quasitoroidal
polytropes, some sequences containing this reference
model have been constructed.

1. The reference model

The reference model is identical to the model used in
[2]; its parameters and integral quantities are shown in
Table I. Figure 2 is a graph of the density in the meridional
plane for this model. This model has been found to be
unstable to perturbations with m � 1 and m � 2 (see
below, and [2]), which lead to fragmentation. In the case
of m � 1, black hole formation has been demonstrated by
locating an apparent horizon centered on the fragment [2].

2. The sequence of axis ratios

A number of sequences containing this model have been
constructed to study the stability properties when varying

typical parameters. The first of these sequences is parame-
trized by the coordinate axis ratio rp=re. Its members are
denoted by Rhrp=rei, and their properties can be found in
Table II. It is apparent that, with increasing axis ratios, the
quantity T=jWj and the ratio of maximal to central rest-
mass density �max=�c both decrease monotonically. None
of the sequence members is close to the mass-shedding
limit. Below rp=re � 0:20, no models could be con-
structed due to failure of convergence. We will also not
consider models with larger rp=re. The reason for this is
indicated in Fig. 3: Beyond an axis ratio of rp=re �
0:3423, quasitoroidal models could not be constructed as
the numerical code fails to converge.

3. The sequence of stiffnesses

This sequence is a variation of the parameter � in the
polytropic relation P � K��, which also determines the
stiffness of the ideal fluid equation of state P � ��� 1���
used for evolution. To obtain a sequence of comparable
compactness, we adjust the central density �c to yield
approximately the same Re=M. The parameters and inte-
gral quantities are shown in Table III. Along the sequence
of increasing �, the value T=jWj decreases from 0.227 to
0.159. Therefore, it would also be interesting to consider a
sequence of models with varying �, but constant T=jWj, by
adjusting the axis ratio rp=re accordingly. Unfortunately,
such a sequence could not be obtained, since the initial data
solver did not converge to models with the required (low)
axis ratios.

4. The sequence of compactnesses

The next sequence is a variation of the central rest-mass
density �c while leaving all other parameters fixed. The
resulting sequence, as is apparent from Table IV, is also a
sequence of inverse equatorial compactnesses Re=M. The
members have been selected to represent models which are
half to one-eighth as compact as the reference polytrope.
The sequence shows that T=jWj is only slightly affected by
the choice of �c, but Re=M and J=M2 change significantly.

TABLE I. Parameters and integral quantities of the reference
quasitoroidal polytrope [2]. The quantities �, �c, A, and rp=re
are parameters. The quantity �e is the angular velocity on the
equator, while �K is the associated Keplerian velocity of the
same model. Therefore, the mass-shedding sequence is located
at �e=�K � 1.

Polytropic index � � 4=3
Central rest-mass density �c 3:38	 10�6

Degree of differential rotation A 1=3
Coordinate axis ratio rp=re 0.24
Density ratio �max=�c 16.71
ADM mass M 7.003
Rest mass M0 7.052
Equatorial inverse compactness Re=M 11.71
Angular momentum J 52.20
Normalized angular momentum J=M2 1.064
Kinetic over binding energy T=jWj 0.227
(See caption) �e=�K 0.467

FIG. 2. Decadic logarithm of the density in a meridional plane
of the model constructed with the parameters in Table I. The
model is of quasitoroidal nature.

5In addition, since our technique of solving the equations of
hydrodynamics requires us to add an artificial atmosphere in the
vacuum region, one would also need to reduce its density with
resolution.

NONAXISYMMETRIC INSTABILITY AND FRAGMENTATION . . . PHYSICAL REVIEW D 76, 024019 (2007)

024019-7



C. Quasitoroidal and spheroidal models of constant
central rest-mass density

In addition to sequences containing the reference model,
we explore a more extended part of the parameter space of
models. We use � � 4=3 and �c � 10�7 to define a sur-

face in the parameter space spanned by the axis ratio rp=re
and the degree of differential rotation A. While an ideal
fluid with � � 4=3 is an approximation for the material
properties of radiation-pressure dominated stars, the re-
striction to �c � 10�7 is arbitrary. However, as discussed
in Sec. V, the nonaxisymmetric stability of the quasitoroi-
dal models is probably less sensitive to �c than to rp=re or
A. The restriction to a plane is necessary since three-
dimensional simulations of quasitoroidal relativistic stars
are still expensive; however, selected models will also be
studied with different �c in Sec. V.

The general properties of the polytropes obtained with
the RNS code is shown for a central rest-mass density �c �
10�7 in Fig. 4.6 The top left plot shows the function
�e=�K, where �e is the equatorial stellar angular veloc-
ity, and �K is the corresponding Keplerian angular veloc-
ity. The jump indicated in the equilibrium model surface
has already been found in the R sequence, see Fig. 3.

The topological nature of the polytropes is shown in the
top right panel of Fig. 4, which plots the ratio of maximal
to central rest-mass density �max=�c. This value measures
the degree of toroidal deformation of the model, with the
limiting cases �max=�c � 1 (purely spheroidal polytrope)
and �max=�c � 1 (purely toroidal polytrope). Since we
are interested in the properties of quasitoroidal models, we
will concentrate our study on the part of this plot covered
by contour lines.

Judging from the study of Newtonian polytropes, one
would expect that the function T=jWj is related to non-
axisymmetric stability. For the sequence of Maclaurin
spheroids, the dynamically unstable subset can be de-
scribed by the simple inequality T=jWj 
 �T=jWj�dyn

[30], suggesting to use T=jWj to parametrize the sequence.
While the situation is clearly more complicated with rela-
tivistic, differentially rotating polytropic models, the
middle left plot in Fig. 4 suggests that the quasitoroidal
models with small axis ratio rp=re � 0:15 are more likely

TABLE II. Parameters and integral quantities of the R sequence of axis ratios, which contains the reference model for rp=re � 0:24.
Each member of the sequence is denoted by the term Rhrp=rei. All models have � � 4=3 and A � 1=3.

Model �c rp=re �max=�c M M0 Re=M J J=M2 T=jWj �e=�K

R0:20 3:38	 10�6 0.20 38.12 6.181 6.200 9.660 38.59 1.010 0.235 0.487
R0:22 3:38	 10�6 0.22 25.69 6.662 6.710 10.41 45.46 1.024 0.228 0.475
R0:24 3:38	 10�6 0.24 16.76 6.989 7.037 11.71 52.00 1.065 0.227 0.467
R0:26 3:38	 10�6 0.26 11.07 7.334 7.391 13.10 58.99 1.097 0.223 0.460
R0:28 3:38	 10�6 0.28 7.312 7.585 7.646 14.83 65.19 1.133 0.219 0.455
R0:30 3:38	 10�6 0.30 4.733 7.764 7.825 17.13 70.82 1.175 0.213 0.452
R0:32 3:38	 10�6 0.32 2.934 7.847 7.905 20.46 75.48 1.226 0.207 0.452
R0:34 3:38	 10�6 0.34 1.539 7.755 7.803 27.42 78.72 1.309 0.196 0.463

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36
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p
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T
 / 
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|

FIG. 3. �max=�c (top) and T=jWj (bottom) for the R sequence.
Beyond an axis ratio of rp=re � 0:3423, the initial data solver
converges to spheroidal models.

6We have also generated the same set of plots for the plane
�c � 10�10, and find the dimensionless quantities �e=�K,
�max=�c, and T=jWj to be quite similar.
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to be unstable to nonaxisymmetric perturbations. We will
study this in Sec. V.

The bottom right panel in Fig. 4 is an illustration of the
initial model parameter space. The polytropes which have
been evolved numerically are marked by circles. The equi-
librium parameters and associated quantities of a selected
set of these polytropes are listed in Table V.

D. A sequence of central rest-mass densities containing
the model A0.2R0.40

The L sequence (see Table VI) is a variation of the C
sequence in Sec. IV B 4. It starts from the model A0:2R0:40
instead of the reference model. In contrast to the C se-
quence, we do not keep the axis ratio rp=re fixed while
varying the central rest-mass density, but rather the quan-
tity T=jWj. This sequence is constructed to study the
influence of the compactness on a model near the boundary
to the region denoted by ‘‘I’’ in Fig. 25 (see also Sec. V H).

V. RESULTS

The models constructed in Sec. IV have been evolved
numerically to study their stability properties. We will start
with discussing the reference model, and show that it is
unstable to a nonaxisymmetric perturbation which leads to
black hole formation. Then, the sequences of axis ratios,
compactness, and stiffness from Sec. IV are studied.
Finally, the parameter plane constrained by � � 4=3 and
�c � 10�7 is sampled, and the coordinate location of the
corotation point on a sequence in this plane is investigated.

A. Evolution of the reference model

The main results from evolving the reference polytrope
defined in Sec. IV B 2 have already been discussed in [2].
When subject to a perturbation of the form given in
Eq. (17), the torus transforms into one (m � 1) or two
(m � 2) fragments. In the case of the m � 1 perturbation,
it has been shown that the fragment is partially covered by
an apparent horizon, indicating black hole formation.

In this section, we will take a more detailed look at this
model, and discuss some technical issues relevant to the
parameter space study below.

1. Development of the instability

Figure 5 shows the development of the nonaxisymmetric
instability in the equatorial plane when using a perturba-
tion of the form given by Eq. (17) and �m � 1 for m �
1; . . . ; 4. The density perturbation is not apparent in the
initial model, but, after a few dynamical time scales, an
instability has developed which entirely destroys the struc-
ture of the star. (Note that the artifacts outside the stellar
surface are caused by the introduction of an artifical atmo-
sphere.) In this case, one collapsing off-center fragment
forms in the system. Judging from Fig. 5 there is a ‘‘col-
lapse of the lapse,’’ which is a well-known effect when
using singularity-avoiding slicings, and which indicates
the development of a black hole.

To investigate the instability more closely, the Fourier
mode extraction discussed in Sec. III has been applied to
the coordinate radius of highest density in the initial model,

TABLE IV. Parameters and integral quantities of the C sequence of compactnesses, which contains the reference model for �c �
3:38	 10�6. Each member of the sequence is denoted by the term Chai, where a denotes the approximate ratio of Re=M to �Re=M�ref

of the reference model C1. The sequence is obtained by varying the central rest-mass density. All models have � � 4=3 and A � 1=3.

Model �c rp=re �max=�c M M0 Re=M J J=M2 T=jWj �e=�K

C1 3:38	 10�6 0.24 16.76 6.989 7.037 11.71 52.00 1.065 0.227 0.467
C2 1	 10�7 0.24 31.06 10.65 10.74 22.72 167.0 1.474 0.225 0.434
C4 7:5	 10�9 0.24 37.01 12.54 12.60 45.65 326.0 2.073 0.225 0.423
C8 8	 10�10 0.24 39.64 13.47 13.51 89.91 525.6 2.897 0.225 0.419

TABLE III. Parameters and integral quantities of the G sequence of polytropic coefficient �, which contains the reference model for
� � 4=3. Each member of the sequence is denoted by the term Gh�i. The central density is adjusted to yield approximately the same
inverse equatorial compactness Re=M as in the reference model. The models G1:7 to G1:9 have not been constructed, since the models
G1:6 and G2:0 were found to be stable. All models have A � 1=3 and rp=re � 0:24.

Model � �c �max=�c M M0 Re=M J J=M2 T=jWj �e=�K

G1:333 4=3 3:38	 10�6 16.76 6.989 7.037 11.71 52.00 1.065 0.227 0.467
G1:4 1.4 1:32	 10�5 16.44 2.805 2.856 11.69 8.337 1.059 0.211 0.424
G1:45 1.45 3:7	 10�5 13.83 1.624 1.662 11.70 2.767 1.049 0.202 0.404
G1:5 1.5 9:2	 10�5 11.53 1.038 1.066 11.65 1.115 1.035 0.194 0.390
G1:6 1.6 3:75	 10�4 8.349 0.5197 0.5363 11.80 0.2758 1.021 0.183 0.370
G2:0 2.0 8:2	 10�3 3.880 0.1270 0.1323 11.69 0.0155 0.9633 0.159 0.331
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FIG. 4. Polytropic models constructed with the RNS code. The plots show the parameter plane spanned by the axis ratio rp=re and
the differential rotation parameter A, constrained by �c � 10�7 and � � 4=3, and resolved by construction of 6400 (80	 80) models.
Top left: contours of the equatorial stellar over Keplerian angular velocity �e=�K (the mass-shedding limit is the isosurface �e=�K �
1). Top right: decadic logarithm of the ratio of maximal over central density log10��max=�c�. Middle left: rotation parameter T=jWj.
Middle right: decadic logarithm of the inverse equatorial compactness Re=M. Bottom left: normalized angular momentum J=M2.
Bottom right: Selection of evolved initial models. The thick continuous line marks the jump between quasitoroidal and spheroidal
models apparent in the top left to bottom left plots, the thick dashed line is the mass-shedding limit, and the thin dashed line indicates
an approximate division between spheroidal and quasitoroidal models. The models selected for numerical evolution are marked by
circles.
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which is at r � 0:25Re. We concentrate on this radius for
reasons already discussed: different extraction radii will be
considered in Sec. VA 2. The top left panel of Fig. 6 dis-
plays the evolution of the amplitude of the first four Fourier
modes Am, m � 1; . . . ; 4, in this evolution. Although all
four modes have been injected with the same amplitude
( � 10�4), the m � 4 mode displays a significant initial
growth of about an order of magnitude, and then oscillates
around this level until t=tdyn � 6, where nonlinear effects
become important. The high level of m � 4 noise is very
likely an artefact of the Cartesian grids used for the simu-
lation. Support for this argument can be obtained by con-
sidering that the equatorial section of the grid has a discrete
C4 symmetry, and by comparing Fig. 3 and 4 in [43], where
results from the development of a similar nonaxisymmetric
instability, though in Newtonian gravity, were achieved on
cylindrical and Cartesian grids. We note that the discrete
model appears to be stable against this perturbation, and
also against the m � 3 perturbation. The remaining modes
are unstable, and the growth times of both modes are
similar. In this specific case the m � 1 structure dominates
the late-time evolution, and leads to the spiral-arm struc-
ture and fragmentation visible in Fig. 5.

The structure of the numerical noise depends on the grid
geometry, resolution, finite difference operators and dis-
crete methods for treating hydrodynamics, the outer
boundary conditions, and the artificial atmosphere.
Therefore, it is important to know to which degree the
four Fourier modes are coupled during the evolution.
Since the initial perturbation is considered to be ‘‘small,’’
which holds when compared to the m � 4 numerical noise
level discussed above, we expect that coupling becomes
important as soon as the amplitudes Am get close to unity.
To determine this in the reference model, a number of
simulations have been performed with perturbations of

the form given by Eq. (17), but with �m � �mj for different
j 2 f1; . . . ; 4g to select individual modes, and one simula-
tion where no perturbation is applied. The mode ampli-
tudes in these simulations are shown in Fig. 6, and the
m � 1 and m � 2 modes are compared to the perturbation
with �m � 1 in Fig. 7. As long as the mode development is
not dominated by another mode which at a higher ampli-
tude, e.g. as in the case of the m � 2 mode in the top right
panel in Fig. 6, the growth times are comparable for differ-
ent perturbations.

The high-amplitude, strongly nonlinear development at
late times is sensitive to the perturbation function, as is
visible from the evolutions shown in Figs. 8 and 9. In the
case of the m � 1 perturbation, a single fragment develops
and collapses in a similar manner to the case �m � 1. With
an m � 2 perturbation, however, two orbiting fragments
develop, contract, and subsequently encounter a runaway
instability in the center (bottom right panel in Fig. 9). Any
perturbation with different values for �1 and �2 might
produce a mixture of this spiral-arm and binary-system
fragmentation instability. One might argue that a fine-
grained parameter space study in the space of �1 and �2

is necessary to obtain a more complete understanding of
the remnants. However, the reference polytrope is already
well inside the unstable region of the parameter space. We
will see in Sec. V E that, on a sequence of increasing
T=jWj, the m � 1 mode dominates first. As has been
shown in [2], this process of fragmentation is black-hole
forming.7 Unfortunately, around the time of horizon for-
mation the evolution fails. This appears to be due to the

TABLE VI. Parameters and integral quantities of the L sequence. This sequence is constructed by starting from the model A0:2R0:40
(cf. Sec. IV C), which is identical to the model L4, and keeping T=jWj fixed while reducing the central density.

Model � �c A rp=re �max=�c M M0 Re=M J J=M2 T=jWj �e=�K

L1 4=3 10�4 0.2 0.354 1.874 3.621 3.578 14.85 9.952 0.760 0.144 0.301
L2 4=3 10�5 0.2 0.378 2.434 5.173 5.177 20.67 24.06 0.900 0.144 0.280
L3 4=3 10�6 0.2 0.392 2.644 6.505 6.524 35.69 49.51 1.170 0.144 0.269
L4 4=3 10�7 0.2 0.4 2.689 7.348 7.362 69.41 87.33 1.617 0.144 0.264

TABLE V. Parameters and integral quantities of selected quasitoroidal models in the parameter space plane defined by �c � 10�7

and � � 4=3. The models are labeled by AhAiRhrp=rei. All models have � � 4=3.

Model �c A rp=re �max=�c M M0 Re=M J J=M2 T=jWj �e=�K

A0:1R0:15 10�7 0.1 0.15 246.8 4.896 4.893 20.82 18.62 0.777 0.124 0.195
A0:1R0:50 10�7 0.1 0.5 1.881 5.387 5.390 106.2 31.69 1.092 0.0706 0.126
A0:3R0:15 10�7 0.3 0.15 356.9 7.964 8.034 12.04 70.66 1.114 0.228 0.434
A0:3R0:50 10�7 0.3 0.5 1.00005 6.291 6.300 151.4 77.10 1.948 0.108 0.360
A0:6R0:15 10�7 0.6 0.15 541.2 21.29 21.39 61.62 13.60 3.000 0.276 0.650

7The case �m � �m2 exhibits a ‘‘collapse of the lapse’’ at late
times, which suggests that in this case a black hole has formed,
too. Unfortunately, it was not possible to locate an apparent
horizon in this case due to numerical difficulties.
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FIG. 5 (color online). Development of the fragmentation instability in the reference polytrope. The left sequence of plots shows the
decadic logarithm of rest-mass density in the equatorial plane, the right sequence of plots shows the lapse function. The snapshots
correspond to times t=tdyn � 0 (top), 6.28 (middle), and 7.48 (bottom). The initial model, perturbed by Eq. (17) with �m � 1 for
m � 1; . . . ; 4, develops a spiral-arm instability and a collapsing fragment. The domain outside the star initially has the density of the
artificial atmosphere (�atm � 5	 10�10), and the artifacts outside the star are caused by interactions of the atmosphere with the stellar
surface and the outer boundaries of the computational domain. Here, and in all evolution sequences which follow, the extent of the
spatial coordinate domain plotted is the same in all snapshots. Also, note that the color map is adapted to the range of function values in
each plot.
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FIG. 6 (color online). Mode amplitudes versus time, extracted at r � 0:25Re, the radius of highest rest-mass density in the initial
model, for different initial perturbations. The amplitude Am is the mth harmonic Fourier projection of the density, normalized to the
average value. The perturbations corresponding to each plot are (cf. also Eq. (17)): �m � 1 for m � 1; . . . ; 4 (top left), �m � �m1 (top
right), �m � �m2 (middle left), �m � �m3 (middle right), �m � �m4 (bottom left), and �m � 0 for m � 1; . . . ; 4. For details see text.
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growth of small scale features that cannot be adequately
resolved leading to unphysical oscillations. It seems pos-
sible that a more robust gauge condition, artificial dissipa-
tion [95], or excision techniques [96,97] could avoid these
problems.

To investigate the growth time � of the modes, which, in
the context of linear theory, is defined by the relation
Am�t� � Am�t � 0� exp�t=�m�, we plot the function
�m�t� :� �d lnA=dt��1 in the top panel of Fig. 10 for m �
1 and m � 2, using different initial perturbations of the

FIG. 8 (color online). Similar to Fig. 5, but now for a perturbation �m � �m1. Shown is the decadic logarithm of the density in the
equatorial plane. The snapshots correspond to times t=tdyn � 6:28 (left), 7.11 (middle), and 7.48 (right). While the m � 2 mode is now
suppressed, the qualitative evolution is similar to that displayed in Fig. 5.
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FIG. 7 (color online). Comparison of mode amplitude versus time for different initial perturbations. The upper panel shows the mode
amplitude A1, and the lower one shows A2. Note that, in the case �m � �m1, the m � 2 mode is dominated by nonlinear effects from
the fragmentation.

FIG. 9 (color online). Similar to Fig. 5, but for a perturbation �m � �m2. Shown is the decadic logarithm of the density in the
equatorial plane. The snapshots correspond to times t=tdyn � 6:28 (left), 7.66 (middle), and 8.85 (right). Two fragments develop and
encounter a runaway instability while orbiting each other.
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reference polytrope as before. As expected for a dynamical
instability, the growth times are of the order of the dynami-
cal time scale. Finally, in the bottom panel of Fig. 10 the
mode frequencies !m�t� � d�m=dt (as extracted from the
Fourier decomposition of the density on a coordinate ra-
dius of highest initial density) are plotted versus time.
These, and the connected pattern speeds !=m, will be
important in the discussion of the corotation band in
Sec. VA 3.

2. Some results on the global nature of the instability

While we do not focus on the global nature of the
quasinormal modes of general relativistic quasitoroidal
polytropes here, this section will give some indication
about the structure of the instability. Consider Fig. 11
which displays the equatorial distribution of the function
log10�j��x; y; z; t� � �0�x; y; z�j � ��, where �0 is the den-
sity function of the equilibrium polytrope and � � 10�10.

These logarithmic difference plots exhibit the node lines of
the unstable mode corresponding to m � 1 in the equato-
rial plane, and show the spiral-arm structure of the frag-
mentation instability.

The mode amplitudes at different extraction radii in the
equatorial plane are shown, for a perturbation with �m �
�m1, in Figs. 12 and 13. The development of the unstable
modes is not very sensitive to the extraction radius, at least
as long as the amplitude of the dominant mode is not close
to unity. Figure 14 suggests that the local mode frequency
does not depend strongly on the radius, at least within the
considerable uncertainties of the plot.

3. The location of the unstable modes in the corotation
band

To determine the location of the instability with respect
to the corotation band, we define a coordinate angular
velocity of the initial model by
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FIG. 10 (color online). Local growth times �m�t� :� �d lnA=dt��1 (top) and frequencies d�m=dt (bottom) for modes m � 1 and
m � 2, both taken from simulations with the corresponding initial perturbation. The plots denoted by ‘‘time averaged’’ are running
averages over tdyn.

FIG. 11 (color online). Contour plot of the function log10�j��x; y; z; t� � �0�x; y; z�j � �� in the equatorial plane, where � denotes the
rest-mass density of them � 1 evolution shown in Fig. 8, �0 denotes the density function of the equilibrium polytrope, and � is a small
number (� � 10�10 in this plot).
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FIG. 13 (color online). Same as Fig. 12, but for the mode amplitudes A3 and A4.
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 ��$� � �v� � ��: (18)

This can be compared to the mode pattern speed
1=md�=dt, which we will assume to be valid for the whole
star (cf. Fig. 14), to determine whether a certain mode has a
corotation point. In Fig. 15, the angular velocity is plotted
in addition to the numerical approximation of the location
of the m � 1 and m � 2 pattern speeds. We find that both
modes have corotation points: the m � 1 mode near the
radius of highest density at 0:25Re, and the m � 2 mode
near 0:5 . . . 0:6Re.

4. Grid resolution and convergence

For any parameter study with numerical methods, it is
important to have an understanding of the amount of grid
resolution needed to extract the physical features under
consideration. A typical way to gauge this is to evolve a
system with different resolutions and to compare the re-
sults. For the black hole forming fragmentation instability
shown in Sec. VA 1, it is expected that different phases of
the evolution have substantially different resolution re-
quirements. During the nearly exponential growth of the
instability at low amplitudes (which we will call linear
regime), the equilibrium structure of the star as a whole
needs to be covered appropriately. The instability is, at
first, a low-frequency effect on the star, and as such it is not
expected to dominate the resolution requirements.
However, if the fragment evolves into a black hole (in
the nonlinear regime), it needs to be resolved with signifi-
cantly more grid points.

As explained in Sec. III, the star is covered by a grid with
fixed mesh refinement. Typically, five grid patches are
used, centered on each other, and with an increase of
resolution by a factor 2 each. Only the central patch with
highest resolution, which covers the region of highest
density, is 0.75 times as extended as the second finest one
to reduce artefacts from interpatch boundaries. To test
convergence, the reference model has been evolved with
49	 49	 25 (grid spacing h � 0:29M), 65	 65	 33
(h � 0:22M), 97	 97	 49 (h � 0:15M), and 129	
129	 65 (h � 0:11M) zones per outer grid patch; the
innermost patch covering the high-density toroidal region
has 65	 65	 33, 97	 97	 49, 129	 129	 65 or
193	 193	 97 grid zones. Also, the initial data was
calculated with a grid of 401	 201, 601	 301, 1201	
601, and 2401	 1201 zones.
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FIG. 15 (color online). Angular velocity of the reference poly-
trope over the x axis (black line), and approximate location (with
error bar) of the pattern speed of the m � 1 mode (red, upper
rectangle), and the m � 2 mode (blue, lower rectangle). Both
modes are inside the corotation band.

0 2 4 6 8
t / tdyn

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
1

49 x 49 x 25
65 x 65 x 33
97 x 97 x 49
129 x 129 x 65

0 2 4 6
t / tdyn

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
2

49 x 49 x 25
65 x 65 x 33
97 x 97 x 49
129 x 129 x 65

FIG. 16 (color online). Evolution of the mode amplitudes A1 (top) and A2 (bottom) for different grid resolutions. The grid sizes in the
legend refer to the four outer grid patches; the innermost patch covering the high-density central toroidal region of the star has a
resolution of 65	 65	 33, 97	 97	 49, 129	 129	 65, or 193	 193	 97, correspondingly.
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The results from evolving the reference model with an
m � 1 perturbation at different resolutions are shown in
Figs. 1 and 16–18. The convergence of the Hamiltonian
constraint has already been discussed in Sec. IVA. The
time development of the mode amplitudes has a noticeably
different growth only at the lowest resolution. The evolu-
tion of the maximum of the rest-mass density (Fig. 17)
exhibits a similar behavior. Finally, the total rest mass of
the system is conserved from within 1.4% (lowest resolu-
tion) to 0.1% (higher resolutions). The drift in the rest mass
can be explained by our use of an artificial atmosphere:
The rest-mass density of the atmosphere is 10�5�c �
3:38	 10�11, which corresponds to an approximate total
mass of M0;atmo � 3:8	 10�3 in a domain of coordinate
volume 10403 (not taking into account the volume form).
This translates into a systematic shift in the total rest mass
of the system as apparent when comparing to an evolution
with a lower atmospheric density (bottom panel in Fig. 18),
and a drift caused by the intrinsic atmospheric dynamics
and the interaction with the outer boundary. Note that this
is to be considered an (nonsharp) upper limit on the sys-
tematic errors induced by the atmosphere, because one
could always extend the total computational domain arbi-
trarily without affecting the core region significantly.

Judging from the resolution study in Figs. 1 and 16–18,
we think that the lowest resolution considered here (which
already covers the equatorial radius of the star with about
60 grid points when comparing to uniform grids) is suffi-
cient to get qualitatively correct results. Quantitatively, the
errors in rest mass are in a range of a few percent. The next
highest resolution of 65	 65	 33 (h � 0:22M) seems
accurate to within about 1%. This resolution will therefore
be used for the parameter study below. This is reasonable
since the structure of the quasitoroidal models has similar
features, and therefore similar requirements concerning
resolution. Nevertheless, selected models have been tested

for convergence independently from the reference
polytrope.

5. Influence of the artificial atmosphere

The standard artificial atmosphere we employ in our
simulations has a density several orders of magnitude
lower than the average density in the star, so we expect
that it does not influence the dynamical properties of the
star significantly. The atmospheric density is set in terms of
the central density of the star: we have used a ratio of 10�5

in most simulations. To test the influence of this parameter,
we have evolved the reference model also with a 10 times
lower atmospheric density (i.e. 10�6�c), and with an m �
1 perturbation. The results are shown in Figs. 18 and 19.
The latter shows that the dominant m � 1 mode is not
influenced by the atmospheric setting, while the m � 2
amplitude shows dependence on the atmosphere setting
only as long as its amplitude is on the level of the numerical
noise.8

B. Evolution of the sequence of axis ratios

The R sequence has been described in Sec. IV B 2. From
Table II, it is apparent that higher values of rp=re are
connected to lower T=jWj. In Maclaurin spheroids, this
is related to a stabilization of the initial model. Consider
Fig. 20: The growth time of the modes m � 1 and m � 2
increases with lower rp=re, which indeed is a sign for
approaching a limit of stability.
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FIG. 17 (color online). Same as Fig. 16, but for the evolution
of the maximum of the rest-mass density �max.
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8We have tested that the same results hold for even lower
atmospheric densities, and have checked this at several
resolutions.
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C. Evolution of the sequence of stiffnesses

The change in the instability along the G sequence
described in Sec. IV B 3 is shown in Fig. 21. With increas-
ing �, and T=jWj decreasing from 0.227 to 0.159
(cf. Table III), both the m � 1 and the m � 2 modes are
stabilized. The member G2:0 with � � 2 is of special
interest, since this choice is often used to obtain a simple
polytropic equilibrium model of neutron stars. While it is
known that strong differential rotation can induce bar-
mode instabilities in neutron stars [61,62,65], the particular
model G2:0 does not appear to be m � 2 unstable (note,
however, the limitations of our method to determine stabil-
ity expressed in Sec. V G).

D. Evolution of the sequence of compactnesses

The mode amplitudes A1 and A2 for different members
of the C sequence (cf. Sec. IV B 4 and Table IV) are shown
in Fig. 22. The plot demonstrates that different choices of
�c do not have a significant effect on the growth time of the
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FIG. 19 (color online). Evolution of the mode amplitudes A1

and A2 in the reference polytrope, for artificial atmospheres of
different density �atm=�c.
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FIG. 20 (color online). Evolution of the mode amplitudes A1 and A2 for different members of the R sequence (cf. Table II).
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FIG. 21 (color online). Evolution of the mode amplitudes A1 and A2 for different members of the G sequence (cf. Table III).
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mode, which is in contrast to the effects of � and rp=re
discussed above. However, while the linear development of
the mode is similar for different compactnesses, the non-
linear behavior is not. Consider Fig. 23: The reference
polytrope C1 and the model C2, which is about half as
compact, both show an unbounded growth in the maximum
of the density and a collapse of the lapse, indicating black
hole formation. The models C4 and C8, however, appear to
avoid black hole formation and reexpand after a state of
maximum compression. Figure 24 shows these different
types of evolution for the model C8 in more detail: In
contrast to the black hole-forming case C1, the fragment
reexpands after the collapse in this evolution. This is not
unexpected, since the Newtonian limit, for an equation of
state � � 4=3, admits a stable equilibrium state of the
fragment if it has sufficient rotation. We conclude therefore
that, even when the growth time of the instability is quite

similar for stars of different compactness, the outcome of
the fragmentation can differ drastically.9

E. Evolution of quasitoroidal models of constant central
rest-mass density

The structure of the parameter space plane � � 4=3 and
�c � 10�7 has been discussed in Sec. IV C. As already
noted, the necessity of investigating only one plane is
determined primarily by the computational cost of three-
dimensional general relativistic hydrodynamical simula-
tions. Also, the choice of the central density does not
seem to affect the almost exponential development of a
nonaxisymmetric unstable mode in the linear regime con-
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FIG. 22 (color online). Evolution of the mode amplitudes A1 and A2 for different members of the C sequence (cf. Table IV).
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9These results have been confirmed with lower and higher
resolutions.
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siderably, even for very compact quasitoroidal polytropes
(cf. Sec. V D), which is in contrast to axisymmetric
modes. Finally, we note that the models with �c � 10�7

are already quite compact, with Re=M � 10 . . . 100, and
rp=M � 2 . . . 70.

To investigate the stability of these models, the initial
data indicated by circles in the bottom right panel of Fig. 4
have been evolved, imposing a perturbation of the form
given by eqn. (17) with �m � 1, and with a resolution of
65	 65	 33 grid points in the outer patches, and 97	
97	 49 in the innermost patch. Selected models have been
tested against individual m � j perturbations with �m �
�mj, with different resolutions, and different densities of
the artificial atmosphere, to test consistency and conver-
gence. Also, central rest-mass densities different from
10�7 were investigated in a few models.

Figure 25 gives an overview of the stability properties of
the selected models. The Latin numbers ‘‘I’’ to ‘‘III’’ refer
to the highest m with an unstable mode, i.e. in addition to
the reference polytrope, which belongs to the class ‘‘II,’’
we find models which are unstable to an m � 3 perturba-
tion, and models which appear to be stable against m � 2
(within the restrictions illustrated in Sec. V G). The models
denoted with an ‘‘A’’ have been found to be unstable to an
axisymmetric mode, and collapse before any nonaxisym-
metric instability develops. Finally, the models marked
with ‘‘(I)’’ are either stable or long-term unstable with a
growth time �� tdyn. Each model has been evolved for up
to 10tdyn to determine its stability. This limit is arbitrary,

FIG. 24 (color online). Evolution of density in the equatorial
plane of the model C8. Shown is the decadic logarithm of the
rest-mass density. The snapshots were taken at times t=tdyn � 0
(top), 6.28 (middle), and 8.28 (bottom). In contrast to the more
compact model C1, which is the reference polytrope investigated
earlier (cf. Fig. 5), the fragment reexpands after a maximal
compression.

FIG. 25 (color online). Stability of quasitoroidal models with
�c � 10�7 (cf. Fig. 4). A Latin number denotes the highest
azimuthal order of the unstable modes, i.e. I for m � 1 unstable,
II for m � 1, 2 unstable, and III form � 1, 2, 3 unstable. Models
denoted by ‘‘(I)’’ are either long-term unstable with growth times
�� tdyn, or stable (see text), and models denoted by A exhibit
an axisymmetric instability. The (red) line in the lower left is the
approximate location of the sequence J=M2 � 1 (cf. Fig. 4), and
the three (blue) lines inside the quasitoroidal region are the
approximate locations of sequences with T=jWj � 0:14 (right),
T=jWj � 0:18 (middle), and T=jWj � 0:26 (left).
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but imposed by the significant resource requirements of
these simulations. If no mode amplitude exceeds the level
of the m � 4 noise during this time, the model is marked
with a ‘‘(I).’’ This does not imply that the model is actually
stable, and we will investigate a specific model denoted by
‘‘(I)’’ later. We will find it to be unstable to anm � 1 mode
with slow growth (Sec. V G).

The additional lines in Fig. 25 are approximate isolines
of the functions T=jWj for the values 0.14, 0.18, and 0.26
and of the function J=M2 for the value 1. As long as the
models do not rotate too differentially, T=jWj still seems to

be a reasonable indicator of the nonaxisymmetric stability
of the polytropes, even though they are quasitoroidal and
relativistic.

The nature of the nonlinear behavior of models exhibit-
ing a nonaxisymmetric instability is indicated in Fig. 26.
We use the evolution of the minimum of the lapse function
to classify the models, see also Fig. 23. Models denoted by
‘‘B’’ have a global minimum in the lapse, while models
denoted by ‘‘C’’ do not. Given that the compactness of the
models increases with smaller axis ratios in this plot
(cf. Fig. 4), we expect that a black hole forms for each
member of the C class. To determine this uniquely, each of
these models should be tested using the adaptive mesh-

FIG. 26. Remnants of the models from Fig. 25, which are
unstable with respect to nonaxisymmetric modes. The nonlinear
behavior has been analyzed by observing the evolution of the
function min� (see also Fig. 23). Models which show a mini-
mum in this function are marked by B for ‘‘bounce,’’ while
models exhibiting an exponential collapse of the lapse are
marked by C for ‘‘collapse.’’
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FIG. 27 (color online). Mode amplitudes in the model
A0:1R0:15 (cf. Table V), extracted at the radius of highest initial
rest-mass density.
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FIG. 28 (color online). Mode amplitudes in the model
A0:1R0:50 (cf. Table V), extracted at the radius of highest initial
rest-mass density.
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FIG. 29 (color online). Mode amplitudes in the model
A0:3R0:15 (cf. Table V), extracted at the radius of highest initial
rest-mass density.
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refinement technique presented in [2], which is, however,
beyond the scope of this study.10

In Figs. 27–31, we have plotted the mode amplitudes Am
for selected models (cf. Table V). The evolution of the
model A0:3R0:15 (Fig. 29) is quite similar to that of the
reference polytrope. Model A0:6R0:15 is further inside the
unstable region, and exhibits also an m � 3 instability: the
density evolution of this mode is plotted in Fig. 32. The
models A0:1R0:50 and A0:3R0:50 are stable within the
numerical restrictions mentioned above.
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FIG. 30 (color online). Mode amplitudes in the model
A0:3R0:50 (cf. Table V), extracted at the radius of highest initial
rest-mass density.
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FIG. 31 (color online). Mode amplitudes in the model
A0:6R0:15 (cf. Table V), extracted at the radius of highest initial
rest-mass density.

FIG. 32 (color online). Equatorial density evolution of the
model A0:6R0:15, with an m � 3 perturbation. (Note that, in
Fig. 31, a perturbation with �m � 1 has been used instead).
Shown is the decadic logarithm of the rest-mass density. The
snapshots were taken at times t=tdyn � 0 (top), 6.28 (middle),
and 7.60 (bottom). Three fragments develop and subsequently
encounter collapse similar to the two-fragment case (cf. Fig. 9).
The evolution of the model perturbed with m � 1 and m � 2 is
similar to the corresponding one in the reference polytrope.

10We also note that models denoted by B might actually form a
black hole by delayed collapse.
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The model A0:1R0:15 seems to have an unusual evolu-
tion of the mode amplitudes; this also applies to the model
A0:1R0:20, which is not shown here. The density evolution
of A0:1R0:15 (Fig. 33) shows that the model has encoun-
tered an axisymmetric instability before any nonaxisym-
metric modes can grow to appreciable amplitudes. We note
that both models A0:1R0:15 and A0:1R0:20 have J=M2 <
1, in contrast to most other models in the parameter space
plane considered here; only the model A0:1R0:25 has
J=M2 � 0:961. In Fig. 25, the isoline J=M2 � 1 is
marked. It approximately separates the region of axisym-
metric from that of nonaxisymmetric instability.

F. The location of the instability in the corotation band

Figure 34 shows the location of the unstable modes in
the corotation band, for three different models on the
sequence � � 4=3, �c � 10�7, and A � 0:3. All modes
are in corotation, but there is evidence that, for decreasing
T=jWj, the corotation point moves towards the axis of
rotation. This gives support to the arguments presented in
[3], where the existence of low-T=jWj and spiral-arm
instabilities in differentially rotating polytropes are con-
nected to corotation.11 Limitations of resources did not
permit us to investigate the boundary of the corotation
region, where growth times of many tdyn are expected.
However, with the results of Secs. V D and V H, purely
Newtonian investigation could be sufficient to reproduce
the linear regime of the instability.

G. Evolution of a model with a slow growth of the
m � 1 instability

As already discussed, the nature of the class ‘‘(I)’’
models in Fig. 25 could not be investigated in detail due
to the high computational cost when evolving general
relativistic, three-dimensional models. However, to illus-
trate the behavior in one specific case, a long-term simu-
lation of the model A0:2R0:45 has been performed
(Fig. 35). A slowly growing m � 1 instability is apparent
in the evolution, which saturates at high amplitudes only
after 20tdyn. While the m � 1 mode is clearly dominant,
the m � 2 might be unstable as well. A detailed investiga-
tion of these sequences should be attempted in the limit of
vanishing compactness, with a Newtonian model and pref-
erably, with a cylindrical grid (see also the discussion in
Sec. VI).

H. Evolution of a sequence of models with different
compactness starting from the boundary between the

regions I and ‘‘(I)’’

In Sec. V D, we have already studied the influence of the
compactness on the development of the instability in the
reference polytrope. According to the results of Sec. V E,
the reference model is located inside region ‘‘II’’ of the
parameter space plane for �c � 3:38	 10�6. Thus, it is
instructive to investigate the effect of compactness on a
model’s evolution which is located close to the boundary
between regions I and ‘‘(I)’’ in Fig. 25 (although this
boundary is not sharply defined). A selected model,
A0:2R0:40, has been extended to the L sequence of con-
stant �, A, and T=jWj (cf. Table VI). The influence of
compactness on the m � 1 mode is illustrated in Fig. 36:
The most compact models L1 and L2 show a growth of
the nonaxisymmetric mode already early on, but collapse
due to an axisymmetric instability (both models have

FIG. 33 (color online). Equatorial density evolution of the model A0:1R0:15. Shown is the decadic logarithm of the rest-mass
density. The snapshots were taken at times t=tdyn � 0 (top) and 6.28 (bottom). The model exhibits an axisymmetric instability.

11There is evidence that, on a sequence of increasing rotation
parameter, some modes in the discrete spectrum become un-
stable when entering the corotation band (which has a continu-
ous spectrum), or might merge with other modes inside the band
and become unstable. These are mechanisms not present in
uniformly rotating polytropes.

BURKHARD ZINK et al. PHYSICAL REVIEW D 76, 024019 (2007)

024019-24



J=M2 < 1). The growth rate of the nonaxisymmetric in-
stability is not very sensitive to the compactness, which
confirms our findings for models of the C sequence. One
might therefore be reasonably optimistic that the nonax-
isymmetric stability properties of quasitoroidal N � 3
polytropes are well represented by Fig. 25, even for a
different choice of central rest-mass density. The axisym-
metric stability, and the question whether the collapse of
the fragment will be halted or not, is sensitive to �c.

VI. DISCUSSION

In this paper we have presented an extension of our
earlier work on the fragmentation of general relativistic

FIG. 34 (color online). Angular velocity of the polytropes
A0:3R0:15 (top), A0:3R0:30 (middle), and A0:3R0:40 (bottom)
over the x axis (black line), and approximate location of the
pattern speed of the m � 1 mode (red, upper rectangle) and the
m � 2 mode (blue, lower rectangle), cf. also Fig. 15.
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FIG. 35 (color online). Long-term evolution of the mode am-
plitudes for the model A0:2R0:45, which is unstable to an m � 1
perturbation. The mode, however, grows rather slowly over a
time of 20tdyn.
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FIG. 36 (color online). Amplitude of the m � 1 mode for
different models from a sequence with constant T=jWj limiting
in the model A0:2R0:40, which has �c � 10�7; cf. also Table VI.
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quasitoroidal polytropes and the production of black holes
in this scenario [2]. The central focus was to gain an
understanding of how various parameters determining the
structure of the equilibrium polytrope affect the develop-
ment of the instability observed in [2], and the nature of its
remnant. In addition, we have investigated the location of
the unstable modes in the corotation band of the differ-
entially rotating models.

All investigations have been performed using three-
dimensional numerical simulations in general relativity,
and assuming the stars to be self-gravitating perfect fluids
with an adiabatic coefficient equal to the polytropic con-
stant �. The equations of general relativistic hydrodynam-
ics have been evolved using high-resolution shock-
capturing methods, and the NOK-BSSN formalism has
been used for the metric evolution. All grids use fixed
mesh refinement, and impose an equatorial plane symme-
try. The development of unstable modes has been followed
by the use of a discrete Fourier transform of the rest-mass
density computed at certain coordinate radii in the equa-
torial plane, with a preference on the radius of initial
highest density.

The central results are represented in Figs. 25, 26, and
34. For a plane of constant rest-mass density �c � 10�7

and � � 4=3, we have determined the region where qua-
sitoroidal models become dynamically unstable to non-
axisymmetric fragmentation. From the structure of the
space of initial models presented in Fig. 4, it appears that
there is a rough relation between T=jWj and the highest
order of unstable modes, at least as long as the degree of
differential rotation is not too high. Since the numerical
method is not well suited to follow the development of
instabilities with growth times much longer than a dynami-
cal time scale, we could not determine the fate of models
from class ‘‘(I)’’ with certainty. However, we have shown
in one specific case that the model is actually unstable. In
the same manner, a model from class I could be subject to a
slowly growing mode withm> 1; however, in this case the
m � 1 mode would clearly be dominant.

From the investigation of a sequence emanating from the
model used in the publication [2], we have found that the
central rest-mass density �c, which controls the compact-
ness of the polytrope, does not affect the almost exponen-
tial development of the nonaxisymmetric instability
significantly. This is related to the fact that T=jWj is
insensitive to �c. However, �c determines the nature of
the final remnant: While the model in [2] forms a black
hole, two models having one-fourth and one-eighth as
much compactness shows a reexpansion of the fragment
after maximal contraction.

The regions of models in the plane �c � 10�7 and � �
4=3 where such a reexpansion was observed is indicated in
Fig. 26 by a ‘‘B.’’ If one assumes that the models not
exhibiting this behavior, marked with C in Fig. 26, are
forming black holes in the same manner as shown in [2],

then we can draw the following tentative picture of black
hole formation by fragmentation of single stars.

The nature of the final system, either an almost unper-
turbed axisymmetric star, a single central black hole, single
or multiple noncentral black holes with a disk, or one or
several expanding remnants without trapped surfaces, de-
pends on the symmetry properties of the perturbation, and
the location of the equilibrium star with respect to three
types of surfaces in the space of parameters:

(1) Surfaces indicating the onset of the instability of a
mode of a certain order m. These surfaces might be
close to isosurfaces of T=jWj as indicated in Fig. 25,
but the resource requirements of performing three-
dimensional general relativistic simulations limit
our ability to identify slowly growing modes.
However, if only modes growing on a dynamical
time scale are considered, then T=jWj might yield a
reasonable indicator of the location of the limit
surfaces. The compactness of the initial model
seems to have no significant effect on the location
of these surfaces, at least for � � 4=3.

(2) Surfaces indicating the onset of an axisymmetric
instability. In our samples, all models with J=M2 <
1 were unstable to quickly growing axisymmetric
modes, and hence will likely evolve to central black
holes. The surface J=M2 � 1 can therefore be used
as an approximate separator between axisymmetric
collapse and stability (cf. [98] for a more detailed
discussion of this point).

(3) Surfaces separating prompt black hole formation
from reexpansion. In Fig. 26, an approximate deter-
mination of such a surface has been attempted. In a
first approach, and assuming that results for the
stability of slowly and uniformly rotating relativistic
polytropes [99–101] can be applied to the frag-
ments, we expect a fragment with a higher compact-
ness and lower rotation rate to be destabilized, and,
given that the geometric development of the frag-
mentation process is similar for different choices of
compactness of the equilibrium polytrope, that there
is a close connection to isosurfaces of Re=M and
J=M2. However, when comparing the structure of
Re=M and J=M2 (cf. Fig. 4) and 26, the situation
appears more complicated, and deserves further
attention.

With respect to the question of whether multiple black
holes may form or not, two comments are in order: First, in
the unstable systems of class II and ‘‘III,’’ all growth times
of modes with different m are of comparable magnitude,
i.e. the nature of the actual time development in a specific
star will depend on the nature of the perturbation, as al-
ready mentioned. On a sequence of increasing T=jWj, we
have found the m � 1 perturbation to be dominant before
higher order modes become unstable, which suggest the
(off-center) formation of a single black hole with a massive
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accretion disk. However, as discussed in the main text, this
conclusion applies to instabilities with growth times in the
order of a dynamical time scale. More specifically, our
simulations do not exclude, on a sequence of increasing
T=jWj, a slowly growing higher order instability to be
effective before the m � 1 mode is dynamically unstable.
Second, when two fragments are forming and collapsing,
in all cases considered here a runaway instability develops
and leads to a central collapse (Fig. 9). In this case, the
gravitational wave signal is expected to resemble the ring-
down phase of a highly deformed black hole. For the m �
1 collapse, we have published an approximate prediction
for a partial waveform in [2], which suggests an amplitude
and frequency well inside the LISA sensitivity if the source
is a collapsing supermassive star.

Concerning the nature of the nonaxisymmetric mode,
we have collected evidence that, along a sequence with
decreasing T=jWj, the corotation point moves towards the
axis of rotation of the polytrope. This gives support to the
arguments by Watts et al. [3]. To also investigate the cases
with large growth times, however, a Newtonian model,
preferably on a cylindrical grid, would be of advantage
to obtain more detailed results [55].

A final comment is in order concerning the black hole
remnant. Since the normalized angular momentum J=M2

of the initial model is greater than unity, the resulting black
hole, unless it is ejected from its shell, may very well be
rapidly rotating, spun up by accretion of the material
remaining outside the initial location of the trapped
surface.

Possible future work on this problem can be roughly
divided into four approaches. First, the nature of the
low-T=jWj and m � 1 instabilities in quasitoroidal poly-
tropes could be investigated in Newtonian gravity, or per-
haps using some perturbative approximation of general
relativity, to determine the location of the corresponding
surfaces in parameter space, and to suggest regions where
the quantity T=jWj is still a good indicator for the degree of
instability. Since the Newtonian polytropes can be consid-
ered to be limit points of relativistic sequences with van-
ishing compactness, the systematic effects of general
relativity on their stability properties can be determined
separately.

Second, the location of the surfaces separating black
hole formation from ‘‘bounce’’ behavior, and its relation
to the initial compactness Re=M and the normalized angu-
lar momentum J=M2, needs to be determined with more
detail, specifically also for different equations of state and

rotation laws. Could a newly formed, rapidly, and differ-
entially rotating neutron star fragment in this way? We
have found no example of this kind here, but such a
question deserves further attention. A more detailed inves-
tigation of the ‘‘bouncing’’ models might also be interest-
ing, since they could have a rich phenomenology, including
a possible delayed collapse to black holes and complex
gravitational wave signatures.

Third, a study of the evolution of the black hole and its
shell would shed light on a number of interesting aspects:
(i) The angular momentum of the remnant black hole,
which is related to the structure of the accretion disk and
its ability to power jets, (ii) the kick velocity of the black
hole, and the question whether it may be ejected from its
host galaxy in some cases, and (iii) the gravitational wave
signal from the formation process at J�. While we were
not able to evolve the black hole for an extended time after
its formation, recent advances in discrete techniques may
be able to solve this problem, either by adding a sufficient
amount of artificial dissipation [95] or by employing multi-
block grids with summation-by-parts operators [96,97].

Fourth, to connect more closely to certain astrophysical
systems, a detailed model of the microphysical processes,
particle transport, and magnetic fields is necessary in many
cases to obtain specific answers. The most important bulk
property appears to be a change in � with density, since this
would modify the nonlinear evolution of the fragmentation
significantly. In the specific case of core collapse, results in
this context have been obtained already [48,63].
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N. Stergioulas, J. A. Font, and E. Seidel, Phys. Rev. D 71,
024035 (2005).

[28] S. A. Hughes, C. R. Keeton, II, P. Walker, K. T. Walsh,
S. L. Shapiro, and S. A. Teukolsky, Phys. Rev. D 49, 4004
(1994).

[29] A. M. Abrahams, G. B. Cook, S. L. Shapiro, and S. A.
Teukolsky, Phys. Rev. D 49, 5153 (1994).

[30] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium
(Yale University, New Haven, CT, 1969), revised edition
1987.

[31] D. M. Christodoulou, D. Kazanas, I. Shlosman, and J. E.
Tohline, Astrophys. J. 446, 472 (1995).

[32] J. E. Tohline, R. H. Durisen, and M. McCollough,
Astrophys. J. 298, 220 (1985).

[33] R. H. Durisen, R. A. Gingold, J. E. Tohline, and A. P. Boss,
Astrophys. J. 305, 281 (1986).

[34] J. E. Tohline and I. Hachisu, Astrophys. J. 361, 394
(1990).

[35] I. A. Bonnell and M. R. Bate, Mon. Not. R. Astron. Soc.
271, 999 (1994).

[36] A. Loeb and F. A. Rasio, Astrophys. J. 432, 52 (1994).

[37] I. A. Bonnell and J. E. Pringle, Mon. Not. R. Astron. Soc.
273, L12 (1995).

[38] B. K. Pickett, R. H. Durisen, and G. A. Davis, Astrophys.
J. 458, 714 (1996).

[39] J. L. Houser and J. M. Centrella, Phys. Rev. D 54, 7278
(1996).

[40] M. Rampp, E. Müller, and M. Ruffert, Astron. Astrophys.
332, 969 (1998).

[41] J. D. Brown, Phys. Rev. D 62, 084024 (2000).
[42] J. N. Imamura and R. H. Durisen, Astrophys. J. 549, 1062

(2001).
[43] J. M. Centrella, K. C. B. New, L. L. Lowe, and J. D. Brown,

Astrophys. J. 550, L193 (2001).
[44] M. Colpi and I. Wasserman, Astrophys. J. 581, 1271

(2002).
[45] M. B. Davies, A. King, S. Rosswog, and G. Wynn,

Astrophys. J. Lett. 579, L63 (2002).
[46] J. N. Imamura, B. K. Pickett, and R. H. Durisen,

Astrophys. J. 587, 341 (2003).
[47] R. Banerjee, R. E. Pudritz, and L. Holmes, Mon. Not. R.

Astron. Soc. 355, 248 (2004).
[48] C. D. Ott, S. Ou, J. E. Tohline, and A. Burrows, Astrophys.

J. 625, L119 (2005).
[49] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, San Francisco, 1973).
[50] A. L. Watts, N. Andersson, H. Beyer, and B. F. Schutz,

Mon. Not. R. Astron. Soc. 342, 1156 (2003).
[51] A. L. Watts, N. Andersson, and R. L. Williams, Mon. Not.

R. Astron. Soc. 350, 927 (2004).
[52] J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron.

Soc. 208, 721 (1984).
[53] J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron.

Soc. 213, 799 (1985).
[54] E. Balbinski, Mon. Not. R. Astron. Soc. 216, 897 (1985).
[55] M. Saijo and S. Yoshida, Mon. Not. R. Astron. Soc. 368,

1429 (2006).
[56] S. L. Shapiro and S. A. Teukolsky, Black Holes, White

Dwarfs, and Neutron Stars (John Wiley & Sons, New
York, 1983).

[57] G. M. Fuller, S. E. Woosley, and T. A. Weaver, Astrophys.
J. 307, 675 (1986).

[58] K. C. B. New and J. M. Centrella, in Astrophysical Sources
for Ground-Based Gravitational Wave Detectors, AIP
Conf. Proc. No. 575 (AIP, New York, 2001), p. 221.

[59] K. C. B. New and S. L. Shapiro, Astrophys. J. 548, 439
(2001).

[60] P. Bodenheimer and J. P. Ostriker, Astrophys. J. 180, 159
(1973).

[61] M. Shibata, T. W. Baumgarte, and S. L. Shapiro,
Astrophys. J. 542, 453 (2000).

[62] M. Saijo, M. Shibata, T. W. Baumgarte, and S. L. Shapiro,
Astrophys. J. 548, 919 (2001).

[63] M. Shibata and Y.-i. Sekiguchi, Phys. Rev. D 71, 024014
(2005).

[64] M. Saijo, Phys. Rev. D 71, 104038 (2005).
[65] L. Baiotti, R. D. Pietri, G. M. Manca, and L. Rezzolla,

Phys. Rev. D 75, 044023 (2007).
[66] T. W. Baumgarte and S. L. Shapiro, Astrophys. J. 585, 930

(2003).
[67] M. D. Duez, Y. T. Liu, S. L. Shapiro, M. Shibata, and B. C.

Stephens, Phys. Rev. Lett. 96, 031101 (2006).

BURKHARD ZINK et al. PHYSICAL REVIEW D 76, 024019 (2007)

024019-28



[68] M. Shibata, S. Karino, and Y. Eriguchi, Mon. Not. R.
Astron. Soc. 334, L27 (2002).

[69] M. Shibata, S. Karino, and Y. Eriguchi, Mon. Not. R.
Astron. Soc. 343, 619 (2003).

[70] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,
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