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Abstract
Stationary, axisymmetric, vacuum, solutions of Einstein’s equations are
obtained as critical points of the total mass among all axisymmetric and
(t, φ) symmetric initial data with fixed angular momentum. In this variational
principle, the mass is written as a positive definite integral over a spacelike
hypersurface. It is also proved that if an absolute minimum exists then it is
equal to the absolute minimum of the mass among all maximal, axisymmetric,
vacuum, initial data with fixed angular momentum. Arguments are given to
support the conjecture that this minimum exists and is the extreme Kerr initial
data.

PACS numbers: 04.70.Bw, 04.20.Dw, 04.20.Ex, 04.20.Fy

1. Introduction

In an axisymmetric, vacuum, gravitational collapse the total angular momentum is an
absolutely conserved quantity. Therefore, if we assume, according to the standard picture
of the gravitational collapse, that the final state will be a Kerr black hole the following
inequality should hold for every axisymmetric, vacuum, asymptotically flat, complete, initial
data set: √

|J | � m, (1)

where m is the mass of the data and J is the angular momentum in the asymptotic region.
Moreover, the equality in (1) should imply that the data are the slice of the extreme Kerr black
hole. A counterexample to (1) will provide a regular vacuum data that do not settle down to
a Kerr black hole. For a more detailed discussion of the motivations and relevance of (1) and
related inequalities, see [9, 11, 15].

Inequality (1) is a property of the spacetime and not only of the data, since both quantities
J and m are independent of the slicing. It is in fact a property of axisymmetric, vacuum, black
holes spacetimes, because a non-zero J (in vacuum) implies a non-trivial topology on the
data and this is expected to signal the presence of a black hole. Note, however, that the mass
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in (1) is a global quantity but the angular momentum is a quasilocal quantity because we have
assumed axial symmetry. Without axial symmetry we still have J defined as a global quantity
at spacelike infinity, but (1) is no longer true in this case. A more subtle question is whether (1)
is true, where both m and J are quasilocal quantities, that is, whether (1) is in fact a quasilocal
property of the black hole. In general there is no unique definition of quasilocal mass (see the
recent review on the subject [20]). However, a remarkable counterexample was found in [1]
in which there is a clear quasilocal mass definition (the Komar mass), and inequality (1) is
violated at the quasilocal level. It is also important to recall that (1) is false for black holes in
higher dimensions (see, for example, [16] and reference therein). Finally, note that there exist
analogue inequalities for charge and mass (see [4, 12]) and for spin and mass in anti-de Sitter
spacetimes (see [13]).

Inequality (1) suggests the following variational principle.

(i) The extreme Kerr initial data are the absolute minima of the mass among all axisymmetric,
vacuum, asymptotically flat and complete initial data with fixed angular momentum.

So far, there is no proof of (1). A promising strategy to prove it is to use the variational
formulation (i). In this paper, we will prove the following results, which are a step forward in
this direction.

The first result is the following related variational principle.

(ii) The critical points of the mass among all the axisymmetric, (t, φ) symmetric,
asymptotically flat data are the stationary, axisymmetric solutions.

A spacetime is defined to be (t, φ) symmetric if it is symmetric under a simultaneous change
of sign of the time coordinate t and the axial angle φ. Data are called (t, φ) symmetric if
their evolution is a (t, φ) symmetric spacetime. These data are also known as ‘momentarily
stationary data’ (see [2] for more details). The variational principle (ii) was proved by Bardeen
[2], who also included matter in the formulation. It was also studied by Hawking [14] for
black holes including boundary terms. However, in all these works the mass is not written as a
positive definitive integral (see the discussion of section 8 in [2]). Therefore, it is not possible
to relate (ii) with (i) in these formulations. In this paper, we will prove (ii) using the mass
formula discovered by Brill [5], which is a positive definitive integral over the slice. Using
this formulation of (ii) we will be able to prove the following.

(i′) If the absolute minimum of the mass among all axisymmetric, (t, φ) symmetric, vacuum,
asymptotically flat and complete initial data with fixed angular momentum exists, then it
is equal to the absolute minimum of the mass among all maximal, axisymmetric (the axial
vector is assumed to be surface orthogonal), vacuum, asymptotically flat and complete
initial data with fixed angular momentum. Moreover, the absolute minimum is stationary.

That is, we have essentially reduced the variational problem (i) to the (t, φ) symmetric case.
Note that we have included in (i’) the conditions that the data are maximal (i.e., the trace of the
second fundamental form is zero) and that the axial Killing vector is hypersurface orthogonal
on the slice. These are technical assumptions which simplify considerably the analysis, but
the statement is expected to be valid without them.

There exist other variational formulations of the stationary, axisymmetric, equations, see
[17, 19]. Particularly interesting in the present context is the variational formulation given by
Carter [8] which is based on the Ernst formulation [10]. There exists a remarkable connection
between (ii) in the present formulation and Carter’s variational principle; we will prove that
the Lagrangians differ only by a (singular) boundary term.
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2. Axially symmetric initial data and Brill proof of the positive mass theorem

In this section, we review Brill’s positive mass theorem for axisymmetric data [5]. The original
proof was for time-symmetric data in R

3; Bardeen [2] extended it to momentarily stationary
data. Here we slightly extend the proof to include maximal data and non-trivial topologies.

An initial data set for Einstein’s vacuum equations consists in a 3-manifold S, a Riemannian
metric h̃ab and a symmetric tensor field K̃ab such that the vacuum constraint equations

D̃bK̃ab − D̃aK̃ = 0, (2)

R̃ + K̃2 − K̃abK̃
ab = 0 (3)

are satisfied on S, where D̃a and R̃ are the Levi-Civita connection and the Ricci scalar associated
with h̃ab, K̃ = h̃abK̃ab, and the indices are moved with the metric h̃ab and its inverse h̃ab.

We will assume that the initial data are axially symmetric, that is, there exists an axial
Killing vector ηa such that

£ηh̃ab = 0, £ηK̃ab = 0, (4)

where £ denotes the Lie derivative. The Cauchy development of such initial data will be an
axially symmetric spacetime.

The Killing vector ηa is assumed to be orthogonal with respect to h̃ab to a family of
2-surfaces in S. Under these conditions, the metric h̃ab can be characterized by two functions,
one is essentially the norm of the Killing vector and the other is a conformal factor on the
2-surfaces. We make explicit the choice of the free functions as follows. Let (ρ, z, φ) be local
coordinates in S such that the metric has the following form:

h̃ab = ψ4hab, (5)

where the conformal metric hab is given by

h = e−2q(dρ2 + dz2) + ρ2 dϕ2, (6)

and q,ψ are functions which depend only on z and ρ with ψ > 0. The vector ηa = (∂/∂ϕ)a

is a Killing vector of both metrics h̃ab and hab. The norm of ηa with respect to the physical
metric will be denoted by X, (i.e. X = ηaηbh̃ab = ψ4ρ2), and the norm of ηa with respect to
the conformal metric is given by ρ2 = ηaηbhab.

We define the following quantity:

J (�) =
∮

�

π̃abη
añb dsh̃, (7)

where π̃ab = K̃ab − h̃abK̃,� is any closed 2-surface, ña is the unit normal vector to � with
respect to h̃ab and dsh̃ is the area element of � with respect to h̃ab. Equation (2) and the Killing
equation imply that the vector π̃abη

a is divergence free. If � is the boundary of some compact
domain 	 ⊂ S, by the Gauss theorem, we have J (�) = 0. For example, if S = R

3 then
J (�) = 0 for all �. In an asymptotically flat data, J (�∞) gives the total angular momentum,
where �∞ is any closed surface in the asymptotic region. Then, the angular momentum will
be zero unless �∞ is not the boundary of some compact domain contained in S.

In order to have non-zero angular momentum, we will allow S to have many asymptotic
ends1. Let ik be a finite number of points in R

3. The manifold S is assumed to be R
3\ ∑

k ik .
The points ik will represent the extra asymptotic ends; at those points we will impose singular

1 There is an interesting alternative (not included here) discussed in [11] to allow non-zero angular momentum: the
interior of the manifold is assumed to be compact and non-simply connected with a pseudo axial Killing vector. A
pseudo axial Killing vector is a rotational Killing vector defined only up to sign, see [11] for the precise definition.
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boundary conditions for ψ . To be consistent with the axial symmetry assumption, the points
ik should be located on the axis ρ = 0.

In addition to axial symmetry we will assume that the data are maximal:

K̃ = 0. (8)

By equation (3), this implies that R̃ is non-negative; this will be essential in order to extend
Brill’s proof to non-time symmetric data.

Define the conformal second fundamental form by Kab = ψ10K̃ab. Using (8) and (4) we
obtain

£ηKab = 0, K = 0. (9)

The constraint equations (2)–(3) can be written as equations for Kab and ψ using the
well-known conformal method (see, for example, [3] and reference therein)

DaK
ab = 0, (10)

DaDaψ − 1
8Rψ = − 1

8KabK
abψ−7, (11)

where Da and R are the Levi-Civita connection and the Ricci scalar associated with the
conformal metric hab. In these equations, the indices are moved with the conformal metric
hab and its inverse hab.

The function q is assumed to be smooth with respect to the coordinates (ρ, z). At the
axis, we impose the regularity condition

q(ρ = 0, z) = 0. (12)

Note that condition (12) includes the points ik . These points are assumed to be regular points
of the conformal metric hab, that is, hab is well defined in R

3.
We assume the following fall-off condition at infinity:

q = o(r−1), q,r = o(r−2), (13)

where r =
√

ρ2 + z2 and a comma denotes partial derivatives. This fall-off conditions imply
that the total mass of the conformal metric hab is zero.

At infinity, the conformal factor ψ and the conformal second fundamental form satisfy

ψ − 1 = O(r−1), ψ,r = O(r−2) (14)

and

Kab = O(r−2). (15)

Under these assumptions the total mass of the physical metric is given by

m = −1

2π
lim

r→∞

∮
�r

naDaψ dsh, (16)

where �r are the 2-spheres r = constant, na is the unit normal, with respect to hab, pointed
outwards and dsh is the area element of � with respect to hab.

The Ricci scalar R of the conformal metric (6) is given by

R = 2 e2q(q,ρρ + q,zz). (17)

We have the important equation∫
R

3
R dµh = 0, (18)
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where dµh is the volume element of the metric hab To prove this, note that dµh =
ρ e−2qdρ dz dφ, then∫

R
3
R dµh = 4π

∫ ∞

0
dρ

∫ ∞

−∞
dz(q,ρρ + q,zz)ρ (19)

= 4π

∫ ∞

0
dρ

∫ ∞

−∞
dz((ρq,ρ − q),ρ + (ρq,z),z), (20)

we use the divergence theorem in two dimension to transform this volume integral in a
boundary integral over the axis ρ = 0 and infinity. The boundary integral at the axis vanishes
since q satisfies (12), and at infinity it also vanishes because of (13).

Since limr→∞ ψ = 1, we have an equivalent expression for the mass

m = −1

2π
lim

r→∞

∮
�r

naDaψ

ψ
dsh. (21)

We use the identity

Da

(
Daψ

ψ

)
= DaDaψ

ψ
− DaψDaψ

ψ2
, (22)

the constraint equations (11), (18) and the mass formula (21) to obtain the final expression

m = 1

2π

∫
R

3

(
KabKab

8ψ8
+

DaψDaψ

ψ2

)
dµh, (23)

which is definite positive. To obtain (23) from (22), we have assumed that the boundary
integral around the singular points ik vanishes, that is

lim
rk→0

∮
�rk

naDaψ

ψ
dsh = 0, (24)

where rk is the distance to the point ik . This condition (which is, of course, trivially satisfied
when the topology of the physical data is R

3) allows for a singular behaviour of ψ at ik , which
in particular includes the case where ik are asymptotically flat ends. Near an asymptotically
flat end ik , the conformal factor satisfies ψ = O

(
r−1
k

)
, ψ,r = O

(
r−2
k

)
which imply (24). To

illustrate this, consider the following two examples.
The Schwarzschild initial data in isotropic coordinates are time-symmetric (Kab = 0)

and conformally flat (q = 0). In this case, we have one point i0 located at the origin and the
conformal factor is given by

ψ = 1 +
m0

2r
, (25)

where m0 is the Schwarzschild mass. We have

m = 2
∫ ∞

0

(ψ,r )
2

ψ2
r2 dr (26)

= m0. (27)

Note that the integral is taken over the space spanned by the two asymptotic regions.
The second example is the axisymetric Brill–Lindquist [6] initial data. In this case,

the data are also time-symmetric and conformally flat, but here we have n ends ik and the
conformal factor is given by

ψ = 1 +
n∑
k

mk

2rk

, (28)
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where mk are arbitrary positive constants. The conformal factor (28) satisfies (24) and we
have that

m = 1

2π

∫
R

3

(
DaψDaψ

ψ2

)
dµh =

n∑
k

mk. (29)

In the non-time-symmetric case, we have assumed that the integral of KabKabψ
−8 over

R
3 is bounded. At infinity, the integral converges because assumptions (15) and (14). At

the points, ik the conformal second fundamental form will, in general, be singular. However,
the integral will be bounded because the singular behaviour of Kab will be cancelled out
by the singular behaviour of ψ . For example, in the asymptotically flat case, Kab = O

(
r−4
k

)
near ik and then we have that KabKabψ

−8 is bounded. In appendix A, we prove that Kerr
initial data satisfy these conditions.

3. The variational principle

In integral (23), the mass depends on the metric variables ψ, q (the function q appears
in the volume element and in the indices contractions) and on the conformal second
fundamental form Kab. These functions are not independent; they have to satisfy the constraint
equations (10) and (11). In order to formulate the variational principle, we want to express the
mass in terms of functions that can be freely varied. We analyse first the conformal second
fundamental form Kab and the constraint (10).

Consider the following vector field Sa:

Sa = Kabη
b − ρ−2ηaKbcη

bηc. (30)

Using equations (9), (10) and the Killing equation for ηa , it follows that Sa satisfies

£ηS
a = 0, Saηa = 0, DaS

a = 0. (31)

From (7), we deduce an equivalent expression for the total angular momentum

J = − 1

8π

∮
�∞

San
a dsh, (32)

where we have used that the second term on the right-hand side of (30) does not contribute
to the angular momentum because we can always chose a closed surface at infinity such that
naηa = 0.

The conformal metric hab can be decomposed into

hab = qab + ρ−2ηaηb, (33)

where

qab ≡ e−2q(dρ2 + dz2) (34)

is the intrinsic metric of the planes orthogonal to ηa . Using this decomposition and the
definition of Sa , we obtain the following expression for the square of the conformal second
fundamental form:

KabKab = KabKcdq
acqbd + ρ−4(Kabη

aηb)2 + 2ρ−2SaSa. (35)

The two first terms on the right-hand side of this equation are positive, then we have

KabKab � 2ρ−2SaSa. (36)

Equations (32) and (36) are important because they show that Sa contains the angular
momentum of Kab and its square is a lower bound for the square of Kab.
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We define the tensor

K̄ab = 2

η
S(aηb), (37)

we have

K̄abK̄ab = 2SaSa

ρ2
. (38)

It is interesting to note (but we will not make use of it) that this tensor is trace free and
divergence free. To prove this, we use the Killing equation D(aηb) = 0, the fact that ηa is
hypersurface orthogonal (i.e., it satisfies Daηb = −η[aDb] ln η) and equations (31).

Data will be (t, φ) symmetric if and only if the following conditions hold (see [2]):

Kabq
acqbd = 0, Kabη

aηb = 0. (39)

This is equivalent to Kab = K̄ab.
The vector Sa can be expressed in terms of a free potential. Define the rescaled vector sa

by

sa = e−2qSa, (40)

then

£ηs
a = 0, saηa = 0, ∂as

a = 0, (41)

where ∂a is the connexion with respect to the flat metric

δ = dρ2 + dz2 + ρ2 dϕ2, (42)

and in equation (41) the indices are moved with this metric and its inverse. The same will
apply to all the equations from now on: all of them will be given in terms of the flat metric
δab and its connexion ∂a .

An arbitrary vector sa , which satisfies equations (41), can be written in terms of a potential
Y in the following form:

sa = 1

2ρ2
εabcηb∂cY, (43)

where εabc is the volume element of the flat metric (42) and £ηY = 0. The motivation of the
normalization factor 1/2 in (43) will be clear in the following section. We have the relation

K̄abK̄ab = 2sasa

ρ2
= ∂aY∂aY

2ρ4
. (44)

Angular momentum (31) is given in terms of the potential Y by

J = 1

8
(Y (ρ = 0,−z) − Y (ρ = 0, z)) , (45)

where z is taken to be larger than the location of any point ik .
Motivated by Brill’s formula (23), we define the mass functional as follows:

M(v, Y ) = 1

32π

∫
R

3
(16∂av∂av + ρ−4 e−8v∂aY ∂aY ) dµ0, (46)

where v = ln ψ and dµ0 is the flat volume element. Note that in integral (46) the metric
function q does not appear.

From equations (23) and (44), we see that for every axisymmetric and (t, φ) symmetric
data we have m = M(v, Y ). From (36), we see that for every axisymmetric, maximal data,
we have

m � M(v, Y ). (47)
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We emphasize that the functions (v, Y ) can be computed for an arbitrary axisymmetric data
(in the construction of the potential Y we have not used the maximal condition) and then the
functionalM(v, Y ) can be also calculated for arbitrary data (provided, of course, the integral is
well defined). However, only for maximal data, we can use the Brill formula (23) to conclude
(47), and only for (t, φ) symmetric data we have that M(v, Y ) is in fact the mass.

For the present calculations it is more convenient to write the functional M in the form
(46), where the axial symmetry is not explicit. For completeness, we also write it in a manifest
axisymmetric form

M(v, Y ) = 1

16

∫ ∞

0
dρ

∫ ∞

−∞
dz

(
16ρ

(
v2

,z + v2
,ρ

)
+ ρ−3 e−8v

(
Y 2

,z + Y 2
,ρ

))
. (48)

Let us define A as the set of all functions (v, Y ) such that integral (46) is bounded.
Although M(v, Y ) is well defined in A, not for every function in A we will have that M(v, Y )

is equal to the mass of some (t, φ) symmetric initial data. This is a subtle and important point;
let us discuss it in detail. We have seen that all axisymmetric and (t, φ) symmetric data can be
generated by three functions (v, q, Y ). They are coupled by the Hamiltonian constraint (3).
In coordinates, this equation is given by

4
�ψ

ψ
− (q,ρρ + q,zz) = −∂aY∂aY

4ρ4ψ8
, (49)

where � is the flat Laplacian with respect to (42). For given (v, Y ) (remember that v = ln ψ)
this is a linear, two-dimensional Poisson equation for q. The delicate points are the boundary
conditions. In order to obtain Brill’s formula, we have required that q satisfies (12) and (13).
But we cannot impose these two equations as boundary conditions for a two-dimensional
Poisson equation. Let us say that we impose (12) and we ask for solutions which fall off at
infinity. This problem can be solved with an explicit Green function. However, in general,
the fall-off of the solution will be q = O(r−1) which is weaker than (13). Only for some
particular source functions (v, Y ), the solution q will satisfy (13). Let us denote by A1 the
subset of A of those functions (v, Y ) such that the solution q of equation (49) satisfies (12)
and (13). Only for functions in A1 the functional M(v, Y ) can be written as the boundary
integral (16) and hence gives the mass of some initial data. A function v of compact support
(such that ψ = 1 near infinity) is an example of a function which is in A but not in A1 (we can
take Y = 0), since in this case clearly M(v, Y ) is strictly positive and the boundary integral
(16) is zero.

We want to make variations of M(v, Y ). At first sight, it appears that the appropriate set
for admissible functions is A1 and not A. However, it seems to be difficult to characterize
A1. It is known how to characterize the set of those q such that (49) has a solution ψ (for an,
essentially, arbitrary Y) which satisfies (14); in this case a nonlinear equation must be solved
(see [7] and [18]). However, this set is not very useful in the present context since for the Brill
formula it is natural to use (v, Y ) as independent functions and not (q, Y ). Instead, what we
will do is to take A as the set of admissible functions. Remarkably, it will turn out that the
critical equations in this bigger set are only the stationary, axially symmetric equations.

Let α and y be compact supported functions in R
3 with support in S and such that the

support of y does not contain the axis. By equation (45) we see that this condition implies
that the perturbation Y + y does not change the angular momentum of Y. Define

i(ε) = M(v + εα, Y + εy). (50)

The first variation of M(v, Y ) is given by

i′(0) = 1

16π

∫
R

3
(16∂av∂aα − 4αρ−4 e−8v∂aY ∂aY + ρ−4 e−8v∂aY ∂ay) dµ0, (51)
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where a prime denotes derivative with respect to ε. Integrating by parts, we obtain that the
condition

i ′(0) = 0, (52)

for all α and y, is equivalent to the following Euler–Lagrange equations:

4�v + ρ−4 e−8v∂aY ∂aY = 0, (53)

∂a(ρ−4 e−8v∂aY ) = 0. (54)

The second variation is given by

i′′(0) = 1

16π

∫
R

3
{16∂aα∂aα + (32α2∂aY∂aY − 16α∂aY∂ay + ∂ay∂ay)ρ−4 e−8v} dµ0. (55)

There is an equivalent way of deducing equations (53)–(54). Instead of taking Y as
variable we take the vector sa , which should satisfy the constraints (41). The mass functional
is given by

M(v, s) = 1

8π

∫
R

3
(4∂av∂av + ρ−2 e−8vsasa) dµ0. (56)

Let γ a be a compact supported vector in S such that the support of γ a does not contain the
axis. We assume that γ a satisfies the constraint

∂aγ
a = 0. (57)

We define i in analogous way as in (50). The first variation is given by

i′(0) = 1

4π

∫
R

3
(4∂av∂aα − 4αρ−2 e−8vsasa + ρ−2 e−8vsaγa) dµ0, (58)

integrating by parts we get

i′(0) = 1

4π

∫
R

3
(−4α(�v + ρ−2 e−8vsasa) + ρ−2 e−8vsaγa) dµ0. (59)

From this, we deduce the Euler–Lagrange equations

�v + ρ−2 e−8vsasa = 0, (60)

ρ−2 e−8vsa = 1
2∂a	, (61)

for some function 	. Equation (60) follows because we can make arbitrary variations in α.
On the other hand, variations in γ a should satisfy the constraint (57). Writing γ a as the curl
of an arbitrary vector and integrating by parts we get

∂[aHb] = 0, (62)

where

Ha = ρ−2sa e−8v. (63)

Equation (62) is equivalent to (61). Using the constraint ∂as
a = 0, we deduce the following

equations which do not involve sa

4�v + ρ2 e8v∂a	∂a	 = 0, (64)

∂a(ρ2 e8v∂a	) = 0. (65)
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Equations (64)–(65) are equivalent to equations (53)–(54), the relation between 	 and Y is
given by

∂a	 = ρ−4 e−8vεabcη
b∂cY. (66)

In the following section, we will prove that these equations are precisely the stationary,
axisymmetric, vacuum equations. This will provide also an interpretation for the potential Y
and the velocity 	 in the stationary case. Note that Y is defined for arbitrary data; in contrast
	 is only defined for solutions of the critical equations, that is, for stationary axisymmetric
data.

If we take Y = 0, then these equations reduce to

�v = 0, (67)

which is Weyl equation for axisymmetric, static, spacetimes. This is of course consistent with
the results that we are going to prove in the following section. However, it is important to note
that the Schwarzschild data in the form (25) do not satisfy (67). Schwarzschild satisfies (67)
in Weyl coordinates where v̄ and the metric function q̄ are given by

v̄ = −1

4
ln

(
r̄+ + r̄− − 2m

r̄+ + r̄− + 2m

)
, q̄ = 1

2
ln

(
(r̄+ + r̄−)2 − 4m2

4r̄+r̄−

)
, (68)

with r̄2
± = ρ̄2 + (z̄ ± m)2. The relation with the isotropic coordinates (r, θ) used in (25) is

ρ̄ = ρ

(
1 − m2

4r2

)
, z̄ = z

(
1 +

m2

4r2

)
, (69)

where z = r cos θ and ρ = r sin θ . Since X is a scalar independent of coordinates we have
X = ρ2ψ4 = ρ̄2ψ̄4. The function q̄ satisfies our assumptions (12) and (13); however the
conformal factor ψ̄ = ev̄ does not satisfies (24). The conformal factor is singular on the rod
ρ̄ = 0,−m � z̄ � m (which represents the horizon of Schwarzschild data) and not just on
singular points ik . The integral M(v̄, 0) diverges. Note that R

3 in Weyl coordinates (ρ̄, z̄)

represent the exterior of the black holes, in contrast to coordinates (ρ, z) where R
3 represent

both asymptotic regions.

4. Stationary axisymmetric fields

The spacetime metric of a vacuum, stationary and axially symmetric spacetime can be written,
in Weyl coordinates, in the following form (see, for example, [21])

g = −V (dt − σ dφ)2 + V −1[ρ2 dφ2 + e2γ (dρ2 + dz2)], (70)

where the functions V, σ and γ depend only on (ρ, z). The two Killing vectors are

ξµ =
(

∂

∂t

)µ

, ηµ =
(

∂

∂φ

)µ

,

they define the scalars

V = −ξµξνgµν, X = ηµηνgµν, W = ηνξµgνµ, (71)

where µ, ν are spacetime indices. We have the following relations:

W = V σ, ρ2 = V X + W 2. (72)

The vacuum field equations are given by

∂a(V −1∂aV + ρ−2V 2σ∂aσ ) = 0, (73)
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∂a(ρ−2V 2∂aσ ) = 0. (74)

We want to prove that these equations are equivalent to equations (64)–(65). We first compute
the relation between (V , σ ) and (v,	).

Take an slice t = constant of the metric (70). The intrinsic metric of this surface is given
by

h̃ = V −1(ρ2 − σ 2V 2) dφ2 + V −1 e2γ (dρ2 + dz2). (75)

To write this metric in the form (5)–(6) set

ψ4 = (ρ2 − V 2σ 2)

Vρ2
= X

ρ2
= X

(V X + W 2)
, (76)

and

e2q = e2γ ρ2

(ρ2 − V 2σ 2)
= e2γ ρ2

V X
. (77)

From (76), we deduce

v(V, σ ) = 1

4
ln

(ρ2 − V 2σ 2)

Vρ2
. (78)

In order to compute 	(v, σ ), we need to calculate the second fundamental form of this
foliation. The lapse and the shift of the foliation t = constant are given by

N = ρ√
X

= ψ−2, Na = W(dφ)a, (79)

and the second fundamental form is

K̃ab = − 1

2N
D̃(aNb). (80)

We write Na in terms of the Killing vector ηa , as in the previous section we define η̃a = h̃abη
b,

where h̃ab is given by (75), then we have

η̃a = (ρ2 − V 2σ 2)

V
(dφ)a. (81)

Using this expression we write Na as

Na = 	η̃a, (82)

where 	 is given by

	(V, σ) = V 2σ

2(ρ2 − V 2σ 2)
= W

X
. (83)

The scalar 	 can be interpreted as the angular velocity of the locally non-rotating observers
(see [2] and also [21] p 187). We want to prove that this function 	 is precisely the potential
	 of the previous section. In order to see this, let us compute the vector sa

sa = ηbKab = ψ2ηbK̃ab = 1

2N
ψ2X∂a	 = 1

2
ψ8ρ2∂a	. (84)

Where we have used sa = sbδab = Sbhab. Equation (84) is identical to equation (61).
Using relations (78) and (83), after a long but straightforward computation, we conclude

that equations (73) and (74) for the functions (V , σ ) are equivalent to equations (60)–(61)
for (v,	).



6868 S Dain

There is another way to prove the equivalence with the stationary equations, using the
potential Y. We replace v by X, that is we consider X, Y as variables. From equation (76) we
get

v = 1
4 ln X − 1

2 ln ρ. (85)

Take the functional M defined in (46), but let us perform the integral on a bounded domain B,
in terms of the variables X, Y we get

M(X, Y ) = M′(X, Y ) − 1

8π

∫
B

ln
( ρ

X

)
� ln ρ dµ0 +

∮
∂B

ρ−1 ln
( ρ

X

)
na∂aρ ds, (86)

where we have defined

M′(X, Y ) = 1

32π

∫
B

(
∂aX∂aX + ∂aY∂aY

X2

)
dµ0. (87)

But we have

� ln ρ = 0, (88)

for ρ �= 0. Then M and M′ differ only by a boundary term. Hence, they give the same Euler–
Lagrange equations. Note, however, that the boundary term is singular at the axis ρ = 0: if
we take a cylinder ρ = constant near the axis, we have X = O(ρ2), ds = ρ dzdφ, na∂aρ = 1,
then the boundary term diverges like O(ln ρ) as ρ → 0.

In [8], Carter formulates a variational principle for the axisymmetric, stationary equations.
This formulation is, essentially, a modification of the [10] formulation in which the norm of
the axial Killing vector (and not of the stationary one) is taken to be the principal variable.

Carter’s Lagrangian is precisely M′ (we use the same notation for X and Y, this is the
reason for the normalization factor 1/2 in (43)). In [8], it is proved that the critical equations
of M′ are the stationary, axisymmetric equations. Therefore, the same is valid for M. There
are, however, some important points that we want to stress.

If we ignore boundary terms, then equation (86) provides an interpretation for Carter
Lagrangian. Also, it gives an interpretation of the space of admissible functions in which the
variations are made for the following reason. In Carter’s formulation Y is defined in terms of
W and X by

εabcη
b∂cY = X∂aW − W∂aX. (89)

This equation can easily be obtained from (66), (76) and (83). That is, Y is defined only for
stationary axisymmetric spacetimes. From the discussion of section 3, we have seen that Y can
be defined for arbitrary, axisymmetric data, and the variations of Y and X are in fact variation
among axisymmetric and (t, φ) symmetric data.

Let us consider boundary terms. The behaviour of X near the axis implies that M′ is
singular if the domain of integration includes the axis. On the other hand we have seen that
M is finite. In particular, in appendix A we have explicitly checked that Kerr initial data in
quasi-isotropic coordinates satisfy all our assumptions and then M is finite and equal to the
mass for Kerr. However, it is important to note that the relevant domains of integration are
different in Carter’s formulation and in the present one. In [8], the domain is the black hole
exterior region, in which the inner boundary is the horizon. In section 3, we have not included
any inner boundary conditions; the domain of integration is the whole manifold which can
include many asymptotic ends. This difference is reflected in the choice of the coordinate
system. We have discussed this with Schwarzschild data in section 3. The same apply to
non-extreme Kerr initial data in Weyl coordinates: M is singular in this coordinates. However,
for extreme Kerr, the Weyl coordinates and the quasi-isotropic coordinates coincides. In this
case both domains of integration coincides and M is finite whether M′ is not.
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5. Final comments

We have analysed the first variation of the, positive definite, mass functional M (defined
by (46)) over axisymmetric and (t, φ) symmetric initial data with fixed angular momentum.
We have shown that the critical points are the stationary, axial symmetric equations. This
proves the variational principle (ii). The functional is a lower bound for the mass (inequality
(47)) for all maximal, axisymmetric data. This proves (i’). In order to prove (i), and hence
inequality (1), we should prove that extreme Kerr is the unique absolute minimum of M
over axisymmetric and (t, φ) symmetric initial data with fixed angular momentum. This will
require the study of the second variation of M, given in equation (55).
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Appendix. Kerr initial data

Consider the Kerr metric in Boyer–Lindquist coordinates (t, r̃, θ, φ). The scalars (71) are
given by

V = � − a2 sin2 θ

�
, W = −2mar̃ sin2 θ

�
, (A.1)

X =
(

(r̃2 + a2)2 − �a2 sin2 θ

�

)
sin2 θ, (A.2)

where

� = r̃2 + a2 − 2mr̃, � = r̃2 + a2 cos2 θ, (A.3)

and m is the total mass and a is the angular momentum per unit mass (i.e. J = ma).
The intrinsic metric h̃ab of a hypersurface t = constant in these coordinates is given by

h̃ = �

�
dr̃2 + � dθ2 + η dφ2. (A.4)

The metric (A.4) has a coordinate singularity when � = 0. The solutions of the equation
� = 0 are given by

r̃+ = m +
√

m2 − a2, r̃− = m −
√

m2 − a2. (A.5)

By the following coordinate transformation, we extend the metric to a complete manifold with
two asymptotic ends. Let us define the quasi-isotropic radius r as the positive root of the
following equation:

r̃ = r + m +
m2 − a2

4r
. (A.6)

Note that when a = 0, this reduces to the isotropic radius for the Schwarzschild metric. The
manifold (as in the Schwarzschild case) has two isometric asymptotically flat components (the
region r̃ � r̃+ of the metric (A.4)) joined at the minimal surface (the horizon) r̃ = r̃+. The
components of h̃ab in the coordinates (r, θ, φ) are given by

h̃ = �

r2
dr2 + � dθ2 + η dφ2. (A.7)
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The metric (A.7) has the form (5)–(6) with

ψ4 = X

ρ2
, e−2q = sin2 θ�

X
, (A.8)

where ρ = r sin θ and z = r cos θ . Assume m > |a|. Then, from (A.8) we see that in the
limit r → 0, we have

ψ =
√

m2 − a2

r
+

m

2
√

m2 − a2
+ O(r), ψ,r = O(r−2) (A.9)

and at infinity

ψ = 1 +
m

2r
+ O(r−2), q = O(r−2). (A.10)

From (A.8) we also have that

q(ρ = 0) = 0. (A.11)

Hence, q satisfies (12), (13) and ψ satisfies (14) and (24).
The velocity 	 can be calculated from equation (83) using (A.1) and (A.2):

	 = − 2mar̃

(r̃2 + a2)2 − �a2 sin2 θ
. (A.12)

The potential Y is given by

Y = 2ma(cos3 θ − 3 cos θ) − 2ma3 cos θ sin4 θ

�
. (A.13)

Note that equation (45) is satisfied for z �= 0. To see that the integral of ∂aY∂aYρ−4ψ−8

over R
3 is bounded, we need to check the behaviour of this function at infinity and at the axis

ρ = 0. At infinity we have

∂aY∂aYρ−4ψ−8 = O(r−6), (A.14)

and at the axis

∂aY∂aYρ−4ψ−8 = O(r2), (A.15)

where we have used (A.9). Then, the integral is bounded and therefore we have proved that
the Kerr initial data satisfy our assumptions which imply that M(v, Y ) = m.

Weyl coordinates (ρ̄, z̄) are related to the coordinates (r, θ) by

ρ̄ =
√

� sin θ, z̄ = (r̃ − m) cos θ. (A.16)

Consider now the extreme case m = |a|. In this case we have

r = r̃ − m, � = r2, (A.17)

and the coordinates (r, θ) are equal to the Weyl coordinates. Equations (A.11) and (A.10) are
still valid in this case. The fall-off of the conformal factor near r = 0 is however different

ψ =
√

2m

(1 + cos2 θ)1/4
√

r
+ O(r1/2), ψ,r = O(r−3/2), (A.18)

this is because r = 0 is not an asymptotically flat in this case. Nevertheless, ψ satisfies (24).
The fall-of behaviour of Y at infinity is the same as in the non-extreme case. Near the axis,
because of (A.18), we have

∂aY∂aYρ−4ψ−8 = O(r−2), (A.19)

and hence we conclude that ∂aY∂aYρ−4ψ−8 is integrable over R
3.
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pp 303–18

[20] Szabados L B 2004 Quasi-local energy-momentum and angular momentum in GR: A review article Living Rev.
Relativ. 7 http://www.livingreviews.org/lrr-2004-4 (cited on 8 August 2005)

[21] Wald R M 1984 General Relativity (Chicago, IL: The University of Chicago Press)

http://dx.doi.org/10.1103/PhysRevD.72.024019
http://www.arxiv.org/abs/gr-qc/0505060
http://dx.doi.org/10.1086/150635
http://www.arxiv.org/abs/gr-qc/0405092
http://www.arxiv.org/abs/math.DG/0307278
http://dx.doi.org/10.1016/0003-4916(59)90055-7
http://dx.doi.org/10.1103/PhysRev.131.471
http://dx.doi.org/10.1103/PhysRevD.65.104038
http://www.arxiv.org/abs/gr-qc/0201062
http://dx.doi.org/10.1103/PhysRev.167.1175
http://dx.doi.org/10.1063/1.525195
http://dx.doi.org/10.1016/0370-2693(82)90751-1
http://dx.doi.org/10.1016/0550-3213(83)90480-7
http://dx.doi.org/10.1007/BF01646744
http://www.arxiv.org/abs/gr-qc/0507080
http://dx.doi.org/10.1103/PhysRev.154.1229
http://dx.doi.org/10.1007/s00220-004-1237-x
http://www.arxiv.org/abs/gr-qc/0307117
http://www.livingreviews.org/lrr-2004-4

	1. Introduction
	2. Axially symmetric initial data and Brill proof of the positive mass theorem
	3. The variational principle
	4. Stationary axisymmetric fields
	5. Final comments
	Acknowledgments
	Appendix. Kerr initial data
	References

