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Abstract: We consider classical strings propagating in a background generated by

a sequence of TsT transformations. We describe a general procedure to derive the

Green-Schwarz action for strings. We show that the U(1) isometry variables of the

TsT-transformed background are related to the isometry variables of the initial back-

ground in a universal way independent of the details of the background. This allows

us to prove that strings in the TsT-transformed background are described by the

Green-Schwarz action for strings in the initial background subject to twisted bound-

ary conditions. Our construction implies that a TsT transformation preserves inte-

grability properties of the string sigma model. We discuss in detail type IIB strings

propagating in the γi-deformed AdS5×S5 space-time, find the twisted boundary con-

ditions for bosons and fermions, and use them to write down an explicit expression

for the monodromy matrix. We also discuss string zero modes whose dynamics is

governed by a fermionic generalization of the integrable Neumann model.
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1. Introduction

It is well-known that a T-duality transformation applied to a circle which could

contract to zero size produces a singular geometry from a regular one. Recently,

it was noticed in [1] that in a situation when the initial geometry contains a two-

torus a regular background may be generated by using a combination of a T-duality

transformation on one angle variable, a shift of another isometry variable, followed

by the second T-duality on the first angle. We will refer to the chain of these

transformations producing a one-parameter deformation of the initial background as

a TsT transformation. The observation of [1] can be easily generalized to construct

regular multi-parameter deformations of gravity backgrounds if they contain a higher-

dimensional torus [2] by using a chain of TsT transformations.

A TsT transformation appears to be very useful in a search of new less su-

persymmetric examples of the AdS/CFT correspondence [3]. In particular, it was

successfully used in [1] to obtain a deformation of the AdS5×S5 geometry which was

conjectured to be dual to a supersymmetric marginal deformation of N = 4 SYM

sometimes called a β deformation [4]-[6]. Various aspects of the deformed gauge and

string theories, and the conjectured duality have been studied in [7, 8] by using the

ideas and methods developed to test the duality between the undeformed models

[9, 10].

Strings in the more general three-parameter deformed AdS5×S5 background [2],

and the dual nonsupersymmetric deformation of N = 4 SYM have been studied in

[11]-[13]. It is unclear, however, if the nonsupersymmetric string background is sta-

ble,1 and the double-trace operators are not generated in the deformed gauge theory,

thus, breaking conformal invariance as it happens for instance in nonsupersymmetric

orbifold models [15].

TsT transformations have been also used to deform other interesting string back-

grounds [16]. Further related results can be found in [17, 18].

A nice property of a TsT transformation is that it can be implemented on the

string sigma model level leading to simple relations between string coordinates of the

initial and TsT-transformed background [2]. The relations have been used to show

that classical solutions of string theory equations of motion in a deformed background

are in one-to-one correspondence with those in the initial background with twisted

1It is known that the spectrum of string theory in the TsT-transformed flat space contains

tachyons [14]. It does not imply that string theory on the deformed AdS5 × S5 is unstable because

the TsT-transformed flat space is singular at space infinity while the deformed AdS5×S5 is regular

everywhere. In fact, it seems that a TsT-transformation produces a nonsingular background only

if the two-torus is of a finite size.
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boundary conditions imposed on the U(1) isometry fields parametrizing the torus.

An interesting property of the twist is that it depends on the conserved U(1) charges

of the model.

The consideration in [2] was restricted to the bosonic part of type IIB Green-

Schwarz superstring action on the deformed AdS5 × S5. Dealing with the Green-

Schwarz superstring we face a new problem of how to define the TsT transformation

for fermionic variables. The answer is not immediately clear, because the operation of

T-duality must include a change of the fermionic chirality. The TsT transformation

involves the angle variables which transform under the commuting isometries of the

five-sphere. Generically, fermions of the Green-Schwarz superstring on AdS5 × S5

also transform under the same isometries. A key idea which allows us to solve the

problem is to redefine the original fermions in such a way that they become neutral

under the isometries in question. After this redefinition is found we can perform the

TsT-transformations on the angle variables with fermions being just the spectators.

The very existence of such a redefinition is non-trivial and will be established in

section 3.

The aim of the current paper is to extend the discussion in [2] to the most general

case of a fermionic string propagating in an arbitrary background possessing several

U(1) isometries. We analyze a TsT transformation and show that if fermions are

neutral under the isometries then the relations are universal and do not depend on

the details of the background in complete accord with the expectations in [2]. In

the case of Green-Schwarz strings in the deformed AdS5 × S5 background our con-

sideration implies the existence of a Lax pair representation, and, therefore, classical

integrability of the model.

The plan of the paper is as follows. In section 2 we consider a general sigma model

action for fermionic strings propagating in a curved background. We assume that

the action is invariant under at least two U(1) isometry transformations. Each U(1)

transformation is realized as a shift of an angle variables with all other bosonic and

fermionic fields being neutral under the shift. We then perform a TsT transformation

on a torus parametrized by any two of the angles, and find a TsT-transformed action.

We show that the TsT transformation preserves the U(1) currents corresponding to

the angles, and, moreover, the TsT-transformed angles are related to the original

angles by exactly the same formulas as the ones derived for the pure bosonic case

in [2] leading to the same twisted boundary conditions for the angle variables. This

implies that strings in the TsT-transformed background are described by the Green-

Schwarz action for strings in the initial background subject to the twisted boundary

conditions. We point out that if the original Green-Schwarz string action is integrable
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then the TsT-transformed action is also integrable extending the consideration of [2]

to the general case. Further we discuss the chains of TsT transformations applied

to a background containing a d-dimensional torus, and show that the most general

deformation is parametrized by a skew-symmetric d × d-dimensional matrix which

determines twisted boundary conditions for the U(1) isometry variables. The results

obtained in section 2 have a partial intersection with those of [18] where a general

bosonic string background was considered.

In section 3 we apply a sequence of TsT transformations to the Green-Schwarz

superstring in AdS5×S5 [19] to generate the Green-Schwarz action for nonsupersym-

metric strings in the γi-deformed AdS5 × S5 space-time. We explain how to redefine

the bosonic and fermionic fields so that the U(1) isometry transformations would be

realized as shifts of the angle variables. We then use the considerations in section

2 to find the twisted boundary conditions for bosons and fermions, and conclude

that the integrability of superstrings in AdS5 × S5 [20] implies the integrability of

the fermionic string in the γi-deformed AdS5 × S5 space-time. We use the Lax pair

for Green-Schwarz superstrings in AdS5 × S5 and the twisted boundary conditions

to derive the monodromy matrix for strings in the γi-deformed AdS5 × S5. The

monodromy matrix can be used to analyze the spectrum of classical strings in the

deformed background.

In section 4 we discuss the zero-mode part of the Green-Schwarz action for non-

supersymmetric strings in the γi-deformed AdS5 × S5 space-time. It describes a

particle with fermionic degrees of freedom moving in the deformed background. The

particle action is integrable, and generalizes the well-known Neumann model to the

fermionic case. The Lax pair for the model is induced by the Lax pair for strings in

the deformed background. Quantization of the fermionic Neumann model should de-

scribe the spectrum of type IIB supergravity on the nonsupersymmetric γi-deformed

background.

In Conclusion we summarize the results obtained and discuss open problems. In

appendices we collect some useful formulae.

2. The γ-deformed action

We start with the following general sigma model action describing propagation of a

fermionic closed string in a background with several U(1) isometries

S = −
√
λ

2

∫
dτ
dσ

2π

[
γαβ∂αφ

i∂βφ
j G0

ij − ǫαβ∂αφ
i∂βφ

j B0
ij (2.1)

+2∂αφ
i
(
γαβU0

β,i − ǫαβV 0
β,i

)
+ L0

rest

]
.
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Here
√
λ

2π
is the effective string tension which is identified with the ’t Hooft cou-

pling in the AdS/CFT correspondence, ǫ01 ≡ ǫτσ = 1 and γαβ ≡
√
−hhαβ , where

hαβ is a world-sheet metric with Minkowski signature. In the conformal gauge

γαβ = diag(−1, 1) although in the following we will not attempt to fix any gauge.

We assume that the action is invariant under U(1) isometry transformations geo-

metrically realized as shifts of the angle variables φi, i = 1, 2, . . . , d. That means

that the string background contains a d-dimensional torus T d. We show explicitly

the dependence of the action on φi, and their coupling to the background fields G0
ij,

B0
ij and U0

β,i, V
0
β,i which generalizes the usual coupling of bosons to the target space

metric and B-field. These background fields are independent of φi but can depend

on other bosonic and fermionic string coordinates which are neutral under the U(1)

isometry transformations. By L0
rest we denote the part of the Lagrangian which de-

pends on these other fields of the theory. We will see in the next section that the

Green-Schwarz action for superstrings on AdS5 × S5 [19] can be cast to the form

(2.1).

The action has d global symmetries corresponding to constant shifts of φ′s. The

corresponding Noether currents are

Jαi (φ) = −
√
λ
(
γαβ∂βφ

j G0
ij − ǫαβ∂βφ

j B0
ij + γαβU0

β,i − ǫαβV 0
β,i

)
, (2.2)

and they are conserved, ∂αJ
α
i = 0, as the consequence of the dynamical equations.

Now we perform a TsT transformation of the angle variables. To this end we

pick up a two-torus, for instance, the one, generated by φ1 and φ2. The TsT trans-

formation consists in dualizing the variable φ1 with the further shift φ2 → φ2 + γ̂φ1

and dualizing φ1 back. Application of the TsT transformation can be symbolically

expressed as the change of variables

(φ1, φ2)
TsT→ (φ̃1, φ̃2) . (2.3)

The procedure to construct the TsT-transformed action is explained in appendices A

and B. The corresponding action can be written in the same fashion as the original

one

S = −
√
λ

2

∫
dτ
dσ

2π

[
γαβ∂αφ̃i∂βφ̃

j Gij − ǫαβ∂αφ̃
i∂βφ̃

j Bij (2.4)

+2∂αφ̃
i
(
γαβUβ,i − ǫαβVβ,i

)
+ Lrest

]

with the new fields Gij, etc given in terms of the original ones. The explicit rela-

tions are listed in appendix B. Clearly, the new action also has the same number of

– 5 –



symmetries related to the constant shifts of the variables φ̃i. The conserved Noether

currents have now the form

J̃αi (φ̃) = −
√
λ
(
γαβ∂βφ̃

j Gij − ǫαβ∂βφ̃
j Bij + γαβUβ,i − ǫαβVβ,i

)
. (2.5)

The relation between the dual variables φ̃ and the original ones φ can be found by

using the formulas from appendices A and B, and is given by

∂αφ̃
1 = ∂αφ

1 − γ̂ǫαβγ
ββ̃∂β̃φ

iGi2 + γ̂∂αφ
iBi2 − γ̂ǫαβγ

ββ̃Uβ̃2 − γ̂Vα2

∂αφ̃
2 = ∂αφ

2 + γ̂ǫαβγ
ββ̃∂β̃φ

iGi1 − γ̂∂αφ
iBi1 + γ̂ǫαβγ

ββ̃Uβ̃1 + γ̂Vα1

∂αφ̃
i = ∂αφ

i , i ≥ 3 (2.6)

Using these transformation rules, one can check that the following relation holds

J̃αi (φ̃) = Jαi (φ) . (2.7)

It shows that independently of the form of the action (2.1) and the presence of

fermions the TsT transformation preserves the U(1) isometry currents corresponding

to the angles φi, thus, generalizing and proving the considerations in [2] (see, also

[18] where an arbitrary bosonic background was analyzed).

The equality (2.7) of the original and the TsT-transformed currents also shows

that the TsT-transformation is a particular example of the Bäcklund transformations.

Indeed, in full generality the Bäcklund transformation is defined as follows [21]

J̃α − Jα = ǫαβ∂βχ (2.8)

for some function χ. Here Jα and J̃α correspond to the global Noether currents

computed on the original and on the Bäcklund transformed solutions respectively.

Eq.(2.8) states that the difference between two currents conserved dynamically, the

original and the Bäcklund transformed, is proportional to the trivially conserved

topological current. The TsT-transformation simply corresponds to taking χ = 0.

However, in our present situation we do not require that the Bäcklund transfor-

mations should preserve the boundary conditions for the fundamental fields of the

theory.2

2It would be interesting to study the general Bäcklund transformation with a non-trivial function

χ but without imposing the same boundary conditions on the original and transformed fields. This

should lead to an alternative proof of integrability of strings in the γ-deformed background, in the

spirit of [22, 21].
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The relation (2.7) allows one to find a relation between the σ-derivatives of the

original and transformed angles

φ̃′
1 − φ′

1 = −γJτ2 , γ̂ =
√
λγ (2.9)

φ̃′
2 − φ′

2 = γJτ1 ,

φ̃′
i − φ′

i = 0 , i ≥ 3 .

Here Jτ means the τ -component of the conserved current. This is the same relation

as was found in the bosonic case [2].

Since we consider the closed strings on the γ-deformed background the angles φ̃i
have the following periodicity conditions

φ̃i(2π) − φ̃i(0) = 2πni , ni ∈ Z . (2.10)

Then integrating eqs.(2.9) we obtain the twisted boundary conditions for the original

angles φ1 and φ2, and the usual periodicity conditions (2.10) for the other d−2 angles

φ1(2π) − φ1(0) = 2π(n1 + γJ2) , (2.11)

φ2(2π) − φ2(0) = 2π(n2 − γJ1) ,

where

Ji =

∫ 2π

0

dσ

2π
Jτi

is the corresponding Noether charge. We see that the twisted boundary conditions

are universal and do not depend on the details of the background and the presence

of fermions. They depend only on the angles involved in the TsT transformation,

and the total U(1) charges.

To understand better the meaning of the relations (2.7) and (2.9) we notice that

the time components of the U(1) currents coincide with the momenta canonically

conjugated to the angles φi: J
τ
i = pi = δS/δφ̇i. Therefore, (2.7) and (2.9) can be

written in the form

p̃i = pi , φ̃′
i = φ′

i − γijpj , i, j = 1, 2, . . . , d , (2.12)

where we take summation over j, and γij is skew-symmetric, γij = −γji, with just

one nonvanishing component equal to the deformation parameter: γ12 = γ.

It is obvious from the relations (2.12) that up to the twisted boundary condi-

tions a TsT transformation is just a simple linear canonical transformation of the

U(1) isometry variables. It is the twist that makes the original and TsT-transformed
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theories inequivalent. It is also clear that the most general multi-parameter TsT-

transformed background obtained by applying TsT transformations successively,

many times, each time picking up a new torus and a new deformation param-

eter, is completely characterized by the relations (2.12) with an arbitrary skew-

symmetric matrix γij. Therefore, a background containing a d-dimensional torus

admits a d(d − 1)/2-parameter TsT deformation. In particular, the most general

TsT-transformed AdS5 × S5 background with TsT transformations applied only to

the five-sphere S5 (to preserve the isometry group of AdS5) has three independent

parameters, and, therefore, is the one found in [2].3 The twisted boundary conditions

for the original angles φi in the case of the most general deformation take the form

φi(2π) − φi(0) = 2π (ni − νi) , νi = −γik Jk . (2.13)

Notice, that the twists νi always satisfy the restriction νi Ji = 0.

In the next section we will discuss the most general three-parameter deformation

of the AdS5 × S5 background. For reader’s convenience below we specialize our

formulae to this case.

The general three-parameter γ-deformed background is obtained by applying the

TsT transformation three times. We express the corresponding procedure as

(φ1, φ2, φ3)
γ3→ (φ̃1, φ̃2, φ̃3)

γ1→ ( ˜̃φ1,
˜̃φ2,

˜̃φ3)
γ2→ (φ̌1, φ̌2, φ̌3) . (2.14)

Since under every step the corresponding Noether currents remain the same we can

summarize relation between the angles in the following table

φ̃′
1 − φ′

1 = −γ3J
τ
2

˜̃φ′
1 − φ̃′

1 = 0 φ̌1 − ˜̃φ′
1 = γ2J

τ
3

φ̃′
2 − φ′

2 = γ3J
τ
1

˜̃φ′
2 − φ̃′

2 = −γ1J
τ
3 φ̌′

2 − ˜̃φ′
2 = 0

φ̃′
3 − φ′

3 = 0
˜̃
φ′

3 − φ̃′
3 = γ1J

τ
2 φ̌′

3 − ˜̃
φ′

3 = −γ2J
τ
1

(2.15)

From here we straightforwardly find the relation between the derivatives of the angles

φi and the derivatives of φ̌i, the latter being attributed to string on the γ-deformed

background:

φ̌′
i − φ′

i = ǫijkγjJ
τ
k . (2.16)

We see from the formula that γik = −ǫijkγj. Integrating eq.(2.16) and taking into ac-

count that φ̌i(2π)− φ̌i(0) = 2πni , ni ∈ Z, we obtain the twisted boundary conditions

for the original angles

φi(2π) − φi(0) = 2π(ni − νi) , νi = ǫijkγjJk . (2.17)
3Let us note that a Ts...sT transformation discussed in [18] is just a sequence of TsT transfor-

mations applied to the tori (φ1, φi). The two-parameter deformation of AdS5 × S5 they considered

is, therefore, a particular case of the general three-parameter deformation.
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3. Green-Schwarz strings in γi-deformed AdS5 × S5

In this section we apply TsT transformations to the Green-Schwarz superstring in

AdS5×S5 [19] to generate nonsupersymmetric Green-Schwarz action for strings in the

γi-deformed AdS5 × S5 space-time. To this end we need to redefine the bosonic and

fermionic fields so that the U(1) isometry transformations would be realized as shifts

of the angle variables. We then use the considerations in section 2 to find the twisted

boundary conditions for bosons and fermions, and conclude that the integrability of

superstrings in AdS5×S5 [20] implies the integrability of the fermionic string in the γi-

deformed AdS5×S5 space-time. We use the Lax pair for Green-Schwarz superstrings

in AdS5 × S5 and the twisted boundary conditions to derive the monodromy matrix

for strings in the γi-deformed AdS5 × S5.

3.1 Superstring on AdS5 × S5 as the coset sigma-model

The Green-Schwarz superstring on AdS5 × S5 can be described as the sigma model

whose target-space is the coset [19]

PSU(2, 2|4)

SO(4, 1) × SO(5)
,

where PSU(2, 2|4) is supergroup of the superconformal algebra psu(2, 2|4). In what

follows we will use the convention of [23]4.

Consider a group element g belonging to PSU(2, 2|4) and construct the following

current

A = −g−1dg = A(0) + A(2)

︸ ︷︷ ︸
even

+A(1) + A(3)

︸ ︷︷ ︸
odd

. (3.1)

We recall that psu(2, 2|4) admits a Z4-grading automorphism with respect to which

it decomposes as the vector space into the direct sum of four components: two of

them are even (bosons) and two are odd (fermions). In eq.(3.1) A(0,2) are bosonic

elements, and A(1,3) are the fermionic ones. By construction the current A is flat,

i.e. it has the vanishing curvature. Then the Lagrangian density for superstring on

AdS5 × S5 can be written in the form [19, 25]

L = −1
2

√
λ str

(
γαβA(2)

α A
(2)
β + κǫαβA(1)

α A
(3)
β

)
, (3.2)

which is the sum of the kinetic and the Wess-Zumino terms, and κ-symmetry requires

κ = ±1.

4See also [24] and [23] for the introduction into the theory of the superalgebra psu(2, 2|4).
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The next step is related to an explicit choice of the coset representative g. As

was shown in [23] a convenient parametrization is provided by choosing

g = g(θ)g(z). (3.3)

Here g(θ) ≡ exp(θ), where θ is an odd element of psu(2, 2|4) which comprises 32

fermionic degrees of freedom. The element g(z) belongs to SU(2,2)× SU(4). The

coordinates z ≡ (xa, ya) with a = 1, . . . , 5 parametrize the five-sphere and AdS5

respectively.

With parametrization (3.3) we get for the flat current the following representation

A = −g−1dg = −g−1(z)g−1(θ)dg(θ)g(z) − g−1(z)dg(z) . (3.4)

Since

g(θ) = cosh θ + sinh θ , g−1(θ) = cosh θ − sinh θ

we see that

g−1(θ)dg(θ) = F + B , (3.5)

where

B ≡ cosh θ d cosh θ − sinh θ d sinh θ ,

F ≡ cosh θ d sinh θ − sinh θ d cosh θ (3.6)

are the even (boson) and odd (fermion) elements respectively. Thus, the even com-

ponent of A is

Aeven = −g−1(z)Bg(z) − g−1(z)dg(z) , (3.7)

while the odd component is

Aodd = −g−1(z)Fg(z) . (3.8)

It is interesting to note that for such a parametrization of the coset the even com-

ponent of the flat current is a gauge transform of the even element B, while the odd

component is conjugate to F with the bosonic matrix g(z).

To write down the final Lagrangian we have to find the projections A(i). This

can be easily done by using an explicit representation for the action of the Z4-grading

– 10 –



automorphism and we refer the reader to [23] for the corresponding discussion. To

present further results we introduce two 8 × 8 matrices

K8 =

(
K 0

0 K

)
, K̃8 =

(
K 0

0 −K

)
,

where K is a 4× 4 matrix obeying the condition K2 = −I. These matrices are used

to define

G = g(z)K8g(z)
t ≡

(
ga 0

0 gs

)
, G̃ = g(z)K̃8g(z)

t ≡
(
ga 0

0 −gs

)
.

As was discussed in [23], the 4 × 4 matrices ga ∈ SU(2, 2) and gs ∈ SU(4) provide

another parametrization of the five-sphere and the AdS space. On coordinates z

the global symmetry algebra psu(2, 2|4) is realized non-linearly. In opposite, ga and

gs carry a linear representation of the superconformal algebra. Such realization of

symmetries makes an identification of string states with operators of the dual gauge

theory more transparent. We further find

2A(0) = Aeven +K8A
t
evenK8 = −2g−1dg − g−1

(
B − GBtG−1 − dGG−1

)
g ,

2A(2) = Aeven −K8A
t
evenK8 = −g−1

(
B + GBtG−1 + dGG−1

)
g ,

2A(1) = Aodd + iK̃8A
t
oddK8 = −g−1

(
F − iG̃FtG−1

)
g ,

2A(3) = Aodd − iK̃8A
t
oddK8 = −g−1

(
F + iG̃FtG−1

)
g . (3.9)

Substituting these projections into the string Lagrangian (3.2) we obtain5

L = − 1

2

√
λ str

[
γαβ(Bα + GBt

αG
−1 + ∂αGG−1)(Bβ + GBt

βG
−1 + ∂βGG−1)

+ κǫαβ(Fα − iG̃FtαG
−1)(Fβ + iG̃FtβG

−1)
]
.

By using the cyclic property of the supertrace the Wess-Zumino term can be further

simplified and we get

L = − 1

2

√
λ str

[
γαβ(Bα + GBt

αG
−1 + ∂αGG−1)(Bβ + GBt

βG
−1 + ∂βGG−1)

+ 2iκǫαβFαG̃FtβG
−1
]
. (3.10)

The nice feature of this Lagrangian is that it depends only on fields which carry linear

representation of the superconformal group. In particular, we have three linearly

5For convenience we rescaled the whole Lagrangian by the factor of 4.
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realized U(1) isometries which are used to construct the Green-Schwarz superstring

on the γ-deformed background.

With a certain choice of the matrix K the matrix gs parametrizing S5 can be

written as follows (see, e.g. [26]):

gs =




0 u3 u1 u2

−u3 0 u∗2 −u∗1
−u1 −u∗2 0 u∗3
−u2 u∗1 −u∗3 0


 , (3.11)

This is the unitary matrix g†sgs = I provided the three complex coordinates ui obey

the constraint |u1|2 + |u2|2 + |u3|2 = 1. A similar parametrization of the AdS5 space

is given by

ga =




0 v3 v1 v2

−v3 0 −v∗2 v∗1
−v1 v∗2 0 v∗3
−v2 −v∗1 −v∗3 0


 . (3.12)

Here ga ∈ SU(2, 2), i.e. it obeys g†aEga = E with E = diag(1, 1,−1,−1) provided

the complex numbers vi satisfy the constraint: |v1|2 + |v2|2 − |v3|2 = −1.

3.2 Fermions twisting

The original fermions appearing in the Lagrangian (3.10) transform under the com-

muting isometries of the five-sphere. To apply the consideration in section 2 to

Green-Schwarz superstrings in AdS5 × S5 we need to redefine these fermions in such

a way that they become neutral under the isometries in question. After this redefi-

nition is found we can perform the TsT-transformations on the angle variables with

fermions being just the spectators, and use the general formulas derived in section

2. The twisted boundary conditions (2.17) for the original angles of AdS5 × S5 then

induce twisted boundary conditions for the original charged fermions of AdS5 × S5.

Let us explore in more detail the invariance of the Lagrangian under the abelian

subalgebra of the superconformal group. In full generality the bosonic symmetry

algebra SO(4, 2)× SO(6) has six Cartan generators: three for SO(4, 2) and three for

SO(6). If we introduce the polar representation

ui = ri e
i φi , vi = ρi e

i ψi ,
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with ri, ρi being real, then the six commuting isometries are realized as constant

shifts of the angle variables

φ→ φ+ ǫ , ψ → ψ + ǫ .

Remarkably, it turns out that the matrices gs and ga enjoy the following factorization

property [2] (see also [26])

gs(r, φ) = M(φ) ĝs(r)M(φ) , (3.13)

ga(ρ, ψ) = M(ψ) ĝa(ρ)M(ψ) , (3.14)

where

ĝs(r) =




0 r3 r1 r2
−r3 0 r2 −r1
−r1 −r2 0 −r3
−r2 r1 r3 0


 , ĝa(ρ) =




0 ρ3 ρ1 ρ2

−ρ3 0 ρ2 −ρ1

−ρ1 −ρ2 0 ρ3

−ρ2 ρ1 −ρ3 0


 . (3.15)

Here also M(φ) = e
i

2
Φ(φ), where Φ(φ) = diag(Φ1, . . . ,Φ4) with

Φ1 = φ1 + φ2 + φ3

Φ2 = −φ1 − φ2 + φ3

Φ3 = φ1 − φ2 − φ3

Φ4 = −φ1 + φ2 − φ3 (3.16)

The simplest way to see that all fermions are charged under the six commuting

isometries is to notice that any fermionic term in the Lagrangian (3.10) explicitly

depends on all the angle variable φi and ψi. To find the fermion redefinition that

makes them neutral we represent the odd matrix θ as

θ =

(
0 X

Y 0

)
(3.17)

Then it is clear that to uncharge the fermions under all U(1)’s we have to make the

following rescaling

X = M(ψi)X̂M(φi)
−1 (3.18)

Y = M(φi)Ŷ M(ψi)
−1 (3.19)

This leads to the following transformation formula

g(θ) =

(
M(ψi) 0

0 M(φi)

)
g(θ̂)

(
M(ψi)

−1 0

0 M(φi)
−1

)
, (3.20)
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where the fermions θ̂ are uncharged under all U(1)s.

In what follows we restrict our attention to TsT transformations applied to

the five-sphere, and, therefore, we do not need to make fermions neutral under the

isometries of AdS5. The corresponding redefinition of fermions simplifies and takes

the following form

X = X̂M(φi)
−1 , Y = M(φi)Ŷ (3.21)

g(θ) =

(
1 0

0 M(φi)

)
g(θ̂)

(
1 0

0 M(φi)
−1

)
. (3.22)

Let us mention, however, that the fermions do have to be neutral under some isome-

tries of AdS5, in particular, shifts of the global AdS time t ≡ ψ3, if one wants to

impose the uniform light-cone gauge that was recently used to solve the su(1|1) sector

of superstrings in AdS5 × S5 [27].

Now, to determine the twisted boundary conditions for fermions we just need

to take into account that the redefined neutral fermions do not transform under the

TsT transformations. Therefore, the original charged fermions in AdS5 × S5 satisfy

twisted boundary conditions which can be easily found by using (3.21), and the

twisted boundary conditions (2.17) for the angles φi:

X(2π) = X(0)eiπΛ , Y (2π) = e−iπΛY (0) , (3.23)

g(θ)(2π) =

(
1 0

0 e−iπΛ

)
g(θ)(0)

(
1 0

0 eiπΛ

)
, (3.24)

where Λ is the following diagonal matrix Λ = diag(Λ1, . . . ,Λ4) with

Λ1 = γ1(J2 − J3) + γ2(J3 − J1) + γ3(J1 − J2) = ν1 + ν2 + ν3

Λ2 = γ1(J2 + J3) − γ2(J1 + J3) − γ3(J1 − J2) = −ν1 − ν2 + ν3

Λ3 = −γ1(J2 − J3) + γ2(J1 + J3) − γ3(J1 + J2) = ν1 − ν2 − ν3

Λ4 = −γ1(J2 + J3) − γ2(J3 − J1) + γ3(J1 + J2) = −ν1 + ν2 − ν3 (3.25)

Obviously, the four variables Λk depend on three νi’s precisely in the same fashion

as Φk depend on φi’s, c.f. eqs.(3.16). The formulas (2.17) and (3.23) allow us to

analyze strings in the deformed background by using twisted strings in AdS5 × S5.

3.3 Lax Pair and Monodromy Matrix

As was discussed in detail in [2], the relations (2.6) can be used to find a local peri-

odic Lax pair for strings in a TsT-transformed background if an isometry invariant
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Lax pair for strings in the initial background is known. The twisted boundary con-

ditions (2.17) then can be used to get a simple expression for the TsT-transformed

monodromy matrix in terms of the initial monodromy matrix and the twist matrix.

We begin by recalling the structure of the Lax pair found in [20]. It is based on

the two-dimensional Lax connection L with components

Lα = ℓ0A
(0)
α + ℓ1A

(2)
α + ℓ2γαβǫ

βρA(2)
ρ + ℓ3Q

+
α + ℓ4Q

−
α , (3.26)

where ℓi are functions of a spectral parameter, and Q± = A(1) ± A(3). The zero

curvature condition for the connection L ,

∂αLβ − ∂βLα − [Lα,Lβ] = 0 , (3.27)

follows from the dynamical equations and the flatness of Aα if ℓi are chosen in the

form

ℓ0 = 1, ℓ1 =
1 + x2

1 − x2
, ℓ2 = s1

2x

1 − x2
, ℓ3 = s2

1√
1 − x2

, ℓ4 = s3
x√

1 − x2
,

where x is the spectral parameter, and the constants si satisfy

s2
2 = s2

3 = 1

s1 + κs2s3 = 0 .

Thus, for every choice of κ we have four different solutions for ℓi specified by the choice

of s2 = ±1 and s3 = ±1. By using eqs.(3.4) for Aα, the Lax connection (3.26) can

be explicitly realized in terms of 8× 8 supermatrices from the Lie algebra su(2, 2|4).

However, as was explained in [24], in the algebra su(2, 2|4) the curvature (3.27) of

Lα is not exactly zero, rather it is proportional to the identity matrix (anomaly)

with a coefficient depending on fermionic variables. However, since psu(2, 2|4) is

the factor-algebra of su(2, 2|4) over its central element proportional to the identity

matrix, the curvature is regarded to be zero [24, 28] in the algebra psu(2, 2|4).

The Lax connection (3.26) cannot be used to derive a Lax pair for strings in

the deformed background because Aα explicitly depends on φi, and, therefore, Lα

is not isometry invariant. To get a proper Lax connection we need to make a gauge

transformation of Lα similar to the one used in [2] for the bosonic case.

The necessary gauge transformation can be found in two steps. First, we use

the group element g and formulas (3.9) to derive a Lax connection L̃α which de-

pends only on the coset element G. The transformed Lax connection still has an

explicit dependence on the angles φi, but it can be easily gauged away by using the
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factorization property (3.13) of G, and making the fermions neutral under the U(1)

isometries of S5 by using (3.21). The resulting gauge transformation that converts

the Lax connection (3.26) to an isometry invariant form, therefore, is

h = M−1g , ∂α − Lα → ∂a − L̂α = M−1
(
∂α − L̃α

)
M = h (∂α − Lα)h

−1 ,(3.28)

where L̃α = gLαg
−1 +∂αgg

−1 can be easily found by using (3.9) and (3.26), and the

8 by 8 matrix M is

M =

(
1 0

0 M(φi)

)
.

The Lax connection L̂α depends only on the derivatives of φi, and, as was explained

in [2], to get a Lax connection for strings in the deformed AdS5 × S5 all one needs

to do is to express ∂αφi in terms of ∂αφ̃i by using the relations (2.6). The resulting

expression for the Lax connection L̂α is rather complicated, and it is difficult to

write down its explicit form.

The gauged transformed Lax connection L̂α is, obviously, flat, and is invariant

under the U(1) isometries, and is periodic in σ. It can be used to compute the

monodromy matrix T(x) which is defined as the path-ordered exponential of the

spatial component L̂σ(x) of the Lax connection [29]

T(x) = P exp

∫ 2π

0

dσ L̂σ(x) , (3.29)

The key property of the monodromy matrix is the time conservation of all its spectral

invariants. In particular, any eigenvalue of T(x), exp(ipk(x)) where pk(x) is called a

quasi-momentum, generates an infinite set of integrals of motion.

In the context of the AdS/CFT correspondence the monodromy matrix of the

Lax connection Lα of superstrings in AdS5 × S5 was used in [30, 28] to derive finite-

gap integral equations which describe the spectrum of classical spinning strings in

the scaling limit of [10].

The derivation of the equations requires a careful analysis of various asymptotic

properties of the monodromy matrix T(x) and the quasi-momenta p(x) at small and

large values of the spectral parameter x. An important distinction of L̂α from Lα is

that it does not vanish at large values of x, and that makes more difficult to study

the large x asymptotic properties of the monodromy matrix.

To analyze the asymptotics it is more convenient to use the nonlocal and non-

periodic Lax connection L̃α explicitly depending on the angles φi which satisfy the

twisted boundary conditions (2.17). In terms of the Lax connection the monodromy
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matrix T(x) takes the form

T(x) = M−1(2π) · P exp

∫ 2π

0

dσ L̃σ(x) ·M(0) . (3.30)

It is clear that the monodromy matrix is not similar to the path-ordered exponential

of the Lax connection L̃α because the matrix M is not periodic.

The quasi-momenta pk can be expressed through eigenvalues of

T̃(x) = M(0)M−1(2π) · P exp

∫ 2π

0

dσ L̃σ(x) . (3.31)

It is not difficult to check that

M(0)M−1(2π) =

(
1 0

0 eiπΛ

)
,

where Λ is given in (3.25).

It would be interesting to analyze the properties of the monodromy matrix and

derive finite-gap integral equations for the deformed model analogous to those derived

for strings in AdS5 × S5 in [30, 28]. It was done for the simplest su(2) sector in [7].

4. Spinning particle and Neumann model

In section 3 we established equivalence between strings on the γi-deformed back-

ground and strings on AdS5×S5 with twisted boundary conditions. This equivalence

allows one to construct an action for the “γi-deformed” spinning particle. Further

quantization of this action should lead to determination of the spectrum of IIB

supergravity compactified on the corresponding (generically non-supersymmetric)

background.

A spinning particle is the string zero mode. To obtain the spinning particle in the

γ-deformed background we have to assume that all the embedding fields describing

this background depend on the world-sheet time τ only. Correspondingly, from the

point of view of the string on AdS5 × S5, this means that the embedding bosonic

fields must have the following τ, σ-dependence

ui = ri(τ)e
iφi(τ)−iσνi , vi = ρi(τ)e

iψi(τ) . (4.1)

Here φi(τ) and ψi(τ) are the time-dependent phases and the σ-dependence of ui
reflects the twisted boundary conditions. For the matrix G (and similar for G̃) this

implies the following structure

G(τ, σ) =

(
1 0

0 e−
i

2
Λσ

)
G(τ)

(
1 0

0 e−
i

2
Λσ

)
. (4.2)
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The zero modes of the fermionic fields are described in an analogous manner

X(τ, σ) = X(τ)e
i

2
Λσ , Y (τ, σ) = e−

i

2
ΛσY (τ) , (4.3)

which is equivalent to

θ(τ, σ) =

(
1 0

0 e−
i

2
Λσ

)
θ(τ)

(
1 0

0 e
i

2
Λσ

)
. (4.4)

Upon substituting these formulae into the general string action (3.10) one can see

that the σ-dependence cancels out leaving behind the dependence on the deformation

parameters γi. As the result we obtain an action for the spinning particle in the γ-

deformed background. Since the corresponding bosonic action is known [12] to be the

same as the action for the so-called Neumann-Rosochatius (NR) integrable model,

we therefore obtain the fermionic generalization of the NR model.

If we restrict for the moment our attention to the purely bosonic case and intro-

duce the diagonal metric η = diag(1, 1,−1) we find the following action

Lbos = −2
√
λγττ

( 3∑

i=1

ṙ2
i + r2

i φ̇
2 +

3∑

ij

ηij ρ̇iρ̇j + ηijρ
2
i ψ̇

2
j

)
+

2
√
λ

γττ

3∑

i=1

ν2
i r

2
i

− 2
√
λ
γτσ

γττ

3∑

i=1

νir
2
i (νiγ

τσ − 2γττ φ̇i) . (4.5)

As usual components of the world-sheet metric are non-dynamical and play the role

of the Lagrangian multipliers. In particular, equation of motion for γτσ is equivalent

to the following Virasoro constraint

3∑

i=1

νir
2
i (γ

τσνi − γττ φ̇i) = 0 . (4.6)

Assume now that our particle rotates both in five-sphere with angular momenta

Ji and also in AdS5 with spins Si.
6 Fixing Ji and Si we can integrate all the time-

dependent phases φi(τ), ψi(τ) out by using their equations of motion. Indeed, we

have

ψ̇i = − ηijSj

4
√
λγττρ2

i

, φ̇i = − Ji

4
√
λγττr2

i

+ νi
γτσ

γττ
.

6The spin S3 coincides with the space-time energy of the particle.
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Upon substituting this solution for all six angle variables we obtain the following

bosonic action

Lbos = −2
√
λγττ (ṙ2

1 + ṙ2
2 + ṙ2

3 + ρ̇2
1 + ρ̇2

2 − ρ̇2
3)

− 1

8
√
λγττ

(J2
1

r2
1

+
J2

2

r2
2

+
J2

3

r2
3

+
S2

1

ρ2
1

+
S2

2

ρ2
2

− S2
3

ρ2
3

− 16λ

3∑

i=1

ν2
i r

2
i

)
. (4.7)

This is an action of the integrable NR system written in an arbitrary world-line

metric density γττ . Notice that the second independent component of the metric

γτσ cancels out from the action. On the other hand, the Virasoro constraint (4.6)

reduces to
∑

i

νiJi = 0 (4.8)

with the general solution νi = ǫijkγjJk. Thus, if we would start with arbitrary param-

eters νi defining the twisted boundary conditions (4.1), compatibility of the dynamics

with the Virasoro constraints would require that νi = ǫijkγjJk. This provides a new

interesting interpretation of the equation (4.8).

In the general fermionic case it is also possible to integrate out the angle variables

provided the fermions are redefined to be neutral under all U(1) isometries. This

redefinition has been already discussed in the previous section and therefore we will

not repeat it here. Introducing the 16 complex uncharged fermions θ = {θα}α=1,...,16

we integrate out the angle variables and obtain the fermionic generalization of the

NR model. Due to the complexity of the explicit answer, below we indicate the

structure of the quadratic fermionic action only. It reads

L2ferm =
√
λγττ

(
ǫijkrj ṙk(θ

∗Υi
rθ̇ − θ̇∗Υi

rθ) + ǫijkρj ρ̇k(θ
∗Υi

ρθ̇ − θ̇∗Υi
ρθ)
)

+
√
λκ
(
riρjθΩ

ij θ̇ + riρjθ
∗Ωij θ̇∗

)
+

√
λ

γττ
rirjθ

∗Σijθ

+
1

8
√
λγττ

θ∗(T1 + T2)θ . (4.9)

Here the matrices Υi
r,ρ are constant 16 × 16 anti-symmetric matrices. Matrices Ωij

and Σij are symmetric under i↔ j and they depend on the deformation parameters

νi; they vanish if νi → 0. The explicit formulas for the matrices T1 and T2 can be

found in appendix C. These matrices depend non-trivially on all the spins as well as

on coordinates ri and ρi but they are independent of νi.

Since we have not attempted to fix the κ-symmetry the action (4.9) still depends

on 32 fermionic degrees of freedom and the kinetic term for fermions appears to be
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degenerate reflecting thereby the presence of the κ-symmetry. Finally we note that

the fermionic NR model remains integrable, because the Lax connection for the string

on the γ-deformed background admits further reduction to zero modes. It would be

very interesting to further investigate the integrable properties of the fermionic NR

model and ultimately to quantize it.

5. Conclusion

In this paper we have discussed classical strings propagating in a background obtained

from an arbitrary string theory background by a sequence of TsT transformations.

Assuming that the initial background is invariant under d U(1) isometries, we

have described a procedure to derive the most general d(d−1) parameter deformation

of the background, and the Green-Schwarz action governing the dynamics of the

strings.

We have shown that angle variables of a TsT-transformed background are related

to angle variables of the initial background in a universal way independent of the

particular form of the background metric and other fields. This has allowed us to

prove that strings in the TsT-transformed background are described by the Green-

Schwarz action for strings in the initial background with bosonic and fermionic fields

subject to twisted boundary conditions. Due to this relation for many purposes it

is not necessary to know the explicit Green-Schwarz action for strings in a TsT-

transformed background. These strings can be analyze by mapping them to twisted

strings in the initial background. We have stressed that our construction implies

that a TsT transformation preserves integrability properties of string sigma model.

We have discussed in detail type IIB strings propagating in γi-deformed AdS5×S5

space-time and found the twisted boundary conditions for bosons and fermions. We

then have used a known Lax pair for superstrings in AdS5 × S5, and the relation be-

tween the angles to derive a local and periodic Lax representation for the γi-deformed

model. The existence of the Lax pair implies the integrability of the fermionic string

sigma model on the deformed background generalizing the construction of [2]. The

twisted boundary conditions for string coordinates have been used to write down

an explicit expression for the TsT-transformed monodromy matrix in terms of the

AdS5 × S5 monodromy matrix, and the twist matrix.

It would be interesting to use the Lax representation and the monodromy matrix

to derive finite-gap integral equations for the deformed model analogous to those

derived for strings on AdS5 × S5 in [30]. These equations could be then compared
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with the thermodynamic limit of the Bethe equations for the deformed N = 4 SYM

theory [5, 6, 11]. It has been already done for the simplest su(2)γ case in [7].

We have also discussed string zero modes and shown that their dynamics is

governed by a new fermionic generalization of the integrable Neumann-Rosochatius

model. Quantization of the model should give the spectrum of type IIB supergrav-

ity on the γi-deformed AdS5 × S5 space-time. The knowledge of the spectrum is

important for checking if the nonsupersymmetric TsT-transformed background is

perturbatively stable.

The twisted boundary conditions for string coordinates may be also used to find

1/J corrections to the spectrum of strings in near-plane-wave backgrounds gener-

alizing the computation done in [31] for the undeformed case. The Hamiltonian

formulation, and the uniform gauge of [32] seem to be very useful to handle the

problem. It should be also straightforward to compute the spectrum of fluctuations

around simple spinning circular strings, and analyze 1/J corrections to their ener-

gies generalizing the consideration of [33]. In particular, it would be interesting to

determine the γi-dependence of the terms nonanalytic in λ recently found in [34],

and their influence on the dressing factor of the quantum string Bethe ansatz [35].
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A. T-duality Transformation and Rules

In this appendix we present the T-duality transformation [36] for the most general

Green-Schwarz action in the form used in the paper. Our way of deriving a T-

dual Green-Schwarz action is very similar to the one used in [37] where the part of

the Green-Schwarz action quadratic in fermions was also given in an explicit form,

and shown that the quadratic fermionic term couples to background fluxes through

generalized covariant derivative.
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We start with the following Green-Schwarz action

S = −
√
λ

2

∫
dτ
dσ

2π

[
γαβ∂αφ

i∂βφ
j G0

ij − ǫαβ∂αφ
i∂βφ

j B0
ij (A.1)

+2∂αφ
i
(
γαβU0

β,i − ǫαβV 0
β,i

)
+ L0

rest

]
.

Here ǫ01 ≡ ǫτσ = 1 and γαβ ≡
√
−hhαβ, where hαβ is a world-sheet metric with

Minkowski signature. The action is invariant under U(1) isometries realized as shifts

of the angle variables φi, i = 1, 2, . . . , d. We show explicitly the dependence of the

action on φi, and their coupling to the background fields G0
ij, B

0
ij and U0

β,i, V
0
β,i. These

background fields are independent of φi but depend on other bosonic and fermionic

string coordinates which are neutral under the U(1) isometries. By L0
rest we denote

the part of the Lagrangian which depends on these other fields of the model.

We perform a T-duality on a circle parametrized by φ1. To find the T-duality

rules it is useful to represent the action (A.1) in the following equivalent form

S = −
√
λ

∫
dτ
dσ

2π

[
pα

(
∂αφ1 +

Û0
α,1

G0
11

− γαβǫ
βρ
V̂ 0
ρ,1

G0
11

)
− 1

2G0
11

γαβ p
αpβ (A.2)

−1

2
γαβ

Û0
α,1Û

0
β,1 − V̂ 0

α,1V̂
0
β,1

G0
11

+
1

2
ǫαβ

Û0
α,1V̂

0
β,1 − Û0

β,1V̂
0
α,1

G0
11

+ L′
rest

]
,

where

Û0
α,1 ≡ U0

α,1 + ∂αφ
j G0

1j , V̂ 0
α,1 ≡ V 0

α,1 + ∂αφ
j B0

1j , (A.3)

and L′
rest denotes the part of the Lagrangian (A.1) which does not depends on φ1.

Indeed, varying with respect to pα, one gets the following equation of motion for pα

pα = γαβ∂βφ1G
0
11 + γαβÛ0

β,1 − ǫαβV̂ 0
β,1 . (A.4)

Substituting (A.4) into (A.2) and using the identity ǫαγγγρǫ
ρβ = γαβ, we reproduce

the action (A.1). Let us also mention that up to an unessential multiplier pα coincides

with the U(1) current corresponding to shifts of φ1:

pα ∼ Jα1 .

On the other hand, varying (A.2) with respect to φ1 gives

∂α p
α = 0 . (A.5)
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The general solution to this equation can be written in the form

pα = ǫαβ∂βφ̃1 , (A.6)

where φ̃1 is the scalar T-dual to φ1. Substituting (A.6) into the action (A.2), we

obtain the following T-dual action

S = −
√
λ

2

∫
dτ
dσ

2π

[
γαβ∂αφ̃i∂βφ̃

j G̃ij − ǫαβ∂αφ̃
i∂βφ̃

j B̃ij (A.7)

+2∂αφ̃
i
(
γαβŨβ,i − ǫαβṼβ,i

)
+ L̃rest

]
.

with the new fields G̃ij , etc given in terms of the original ones.

G̃11 =
1

G0
11

, G̃ij = G0
ij −

G0
1iG

0
1j − B0

1iB
0
1j

G0
11

, G̃1i =
B0

1i

G0
11

, (A.8)

B̃ij = B0
ij −

G0
1iB

0
1j −B0

1iG
0
1j

G0
11

, B̃1i =
G0

1i

G0
11

,

Ũα,1 =
V 0
α,1

G0
11

, Ṽα,1 =
U0
α,1

G0
11

,

Ũα,i = U0
α,i −

G0
1iU

0
α,1 −B0

1iV
0
α,1

G0
11

,

Ṽα,i = V 0
α,i −

G0
1iV

0
α,1 −B0

1iU
0
α,1

G0
11

,

L̃rest = L0
rest − γαβ

U0
α,1U

0
β,1 − V 0

α,1V
0
β,1

G0
11

+ ǫαβ
U0
α,1V

0
β,1 − V 0

α,1U
0
β,1

G0
11

,

ǫαβ∂βφ̃
1 = γαβ∂βφ

iG0
1i − ǫαβ∂βφ

iB0
1i + γαβU0

β,1 − ǫαβV 0
β,1 , (A.9)

φ̃i = φi , i ≥ 2 .

In principle these formulas can be used to find the T-duality transformed NS-NS and

RR fields (see e.g. [38]) of the background in which strings propagate.

B. The background after TsT transformation

By using the formulas obtained in appendix A, and performing a TsT transformation

– 23 –



one finds the TsT-transformed background fields Gij, etc

Gij =
G0
ij

D
, Gi3 =

G0
i3

D
+ γ̂

B0
23G

0
1i − B0

13G
0
2i +B0

12G
0
i3

D
(B.1)

G33 = G0
33 +

γ̂ + γ̂2B0
12

D
2(B0

23G
0
13 − B0

13G
0
23) + (B.2)

γ̂2

D

(
G0

11((B
0
23)

2 − (G0
23)

2) +G0
22((B

0
13)

2 − (G0
13)

2) + 2G0
12(G

0
23G

0
13 − B0

13B
0
23)
)

B12 =
B0

12

D
+
γ̂

D

(
(B0

12)
2 − (G0

12)
2 +G0

11G
0
22

)
(B.3)

Bi3 =
B0
i3

D
+
γ̂

D

(
B0

12B
0
i3 −G0

13G
0
i2 +G0

23G
0
i1

)
(B.4)

Uα,i =
U0
α,i

D
+
γ̂

D

(
B0

12U
0
α,i +G0

1iV
0
α,2 −G0

2iV
0
α,1

)
(B.5)

Vα,i =
V 0
α,i

D
+
γ̂

D

(
B0

12V
0
α,i +G0

1iU
0
α,2 −G0

2iU
0
α,1

)
(B.6)

Uα,3 = U0
α,3 +

(γ̂ + γ̂2B0
12)

D

(
ǫijG0

i3V
0
α,j − ǫijB0

i3U
0
α,j

)
+ (B.7)

+
γ̂2

D

(
ǫijU0

α,i

(
G0

23G
0
1j −G0

13G
0
2j

)
+ ǫijV 0

α,i

(
−B0

23G
0
1j +B0

13G
0
2j

))

Vα,3 = V 0
α,3 +

(γ̂ + γ̂2B0
12)

D

(
ǫijG0

i3U
0
α,j − ǫijB0

i3V
0
α,j

)
+ (B.8)

+
γ̂2

D

(
ǫijV 0

α,i

(
G0

23G
0
1j −G0

13G
0
2j

)
+ ǫijU0

α,i

(
−B0

23G
0
1j +B0

13G
0
2j

))

Lrest = L
0
rest +

(γ̂ + γ̂2B0
12)

D

(
2ǫij(V 0

0,iV
0
1,j − U0

0,iU
0
1,j + γαβU0

α,iV
0
β,j)
)

+ (B.9)

+
γ̂2

D

(
G0
ijǫ

ĩiǫjj̃γαβ
(
V 0
α,̃i
V 0
β,j̃

− U0
α,̃i
U0
β,j̃

)
+G0

ijǫ
ĩiǫjj̃ǫαβU0

α,̃i
V 0
β,j̃

)

Here the indices i, j = 1, 2 define the directions of a two-torus, while the index 3 is

singled out (in case we are dealing with more than three indices, 3 should be replaced

by a generic index I different from 1 and 2.) . The element D is given by

D = 1 + 2γ̂B0
12 + γ̂2(G0

11G
0
22 − (G0

12)
2 + (B0

12)
2) , γ̂ =

√
λγ .
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C. The matrices

We choose the following parametrization of the fermionic element

g(θ, η) = exp




0 0 0 0 η5 η6 η7 η8

0 0 0 0 η1 η2 η3 η4

0 0 0 0 θ1 θ2 θ3 θ4

0 0 0 0 θ5 θ6 θ7 θ8

η5 η1 −θ1 −θ5 0 0 0 0

η6 η2 −θ2 −θ6 0 0 0 0

η7 η3 −θ3 −θ7 0 0 0 0

η8 η4 −θ4 −θ8 0 0 0 0



. (C.1)

Here θα and ηα are 8 + 8 complex fermions obeying the following conjugation rule

θα ∗ = θα and ηα ∗ = ηα. Under dilatation the fermions ηα and θα have charges 1
2

and −1
2

respectively [23]. This explains the notational distinction we made for the

fermions η’s and θ’s. In what follows it is useful to introduce the unifying notation

θα for fermionic variables. We therefore identify ηα ≡ θα+8 with α = 1, . . . , 8.

In section 4 to describe the fermionic Neumann-Rosochatius model we have used

the following matrices

Υ1
r = σ3 ⊗ I2 ⊗ (−iσ2) ⊗ σ3 Υ1

ρ = (−iσ2) ⊗ σ1 ⊗ I2 ⊗ I2

Υ2
r = σ3 ⊗ I2 ⊗ (−iσ2) ⊗ σ1 Υ2

ρ = iσ2 ⊗ σ3 ⊗ I2 ⊗ I2

Υ3
r = σ3 ⊗ I2 ⊗ I2 ⊗ (−iσ2) Υ3

ρ = σ3 ⊗ iσ2 ⊗ I2 ⊗ I2

To present the matrices Ωij we introduce the three auxiliary 4 × 4 matrices ∆i:

∆1 =




Λ1

−Λ2

−Λ3

Λ4


 , ∆2 =




Λ1

Λ2

−Λ3

−Λ4


 , ∆3 =




Λ1

−Λ2

Λ3

−Λ4


 .

With this definition the matrices Ωij can be written as

Ωi1 =




−∆i

−∆i

∆i

∆i


 , Ωi2 =




∆i

−∆i

−∆i

∆i


 , Ωi3 =




−∆i

∆i

∆i

−∆i


 .

Next we describe the structure of the matrix Σij which depends on the deformation

parameters γi and is symmetric under i ↔ j. We find that Σ is block-diagonal,
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Σij = (−ωij,−ωij, ωij, ωij), where the symmetric 4 × 4 matrices ωij read as

ω11 = 2ν1




ν1 + ν2 + ν3

ν1 + ν2 − ν3

ν1 − ν2 − ν3

ν1 − ν2 + ν3


 ,

ω22 = 2ν2




ν1 + ν2 + ν3

ν1 + ν2 − ν3

−ν1 + ν2 + ν3

−ν1 + ν2 − ν3


 ,

ω33 = 2ν3




ν1 + ν2 + ν3

−ν1 − ν2 + ν3

−ν1 + ν2 + ν3

ν1 − ν2 + ν3


 ,

ω12 = ν3




ν1 − ν2

ν1 − ν2

−ν1 − ν2

−ν1 − ν2


 ,

ω13 = ν2




ν3 − ν1

ν1 + ν3

ν1 + ν3

ν3 − ν1


 ,

ω23 = ν1




ν2 − ν3

−ν2 − ν3

ν2 − ν3

−ν2 − ν3


 .

Finally we collect the 16 by 16 matrices, T1 and T2:

T1 =

(
−S

2
1

ρ2
1

− S2
2

ρ2
2

+
S2

3

ρ2
3

+
J2

1

r2
1

+
J2

2

r2
2

+
J2

3

r2
3

)
M1 ⊗M0 + S1S3

(
1

ρ2
1

− 1

ρ2
3

)
M3 ⊗M0

+ S1S2

(
1

ρ2
1

+
1

ρ2
2

)
M0 ⊗M0 + S1J1

(
1

r2
1

− 1

ρ2
1

)
M2 ⊗M2 + S1J2

(
1

r2
2

− 1

ρ2
1

)
M2 ⊗M3

+ S1J3

(
1

r2
3

− 1

ρ2
1

)
M2 ⊗M1 + S2S3

(
1

ρ2
3

− 1

ρ2
2

)
M2 ⊗M0 + S2J1

(
1

ρ2
2

− 1

r2
1

)
M3 ⊗M2

+ S2J2

(
1

ρ2
2

− 1

r2
2

)
M3 ⊗M3 + S2J3

(
1

ρ2
2

− 1

r2
3

)
M3 ⊗M1 + S3J1

(
− 1

ρ2
3

− 1

r2
1

)
M0 ⊗M2

+ S3J2

(
− 1

ρ2
3

− 1

r2
2

)
M0 ⊗M3 + S3J3

(
− 1

ρ2
3

− 1

r2
3

)
M0 ⊗M1 − J1J2

(
1

r2
1

+
1

r2
2

)
M1 ⊗M1

+ J1J3

(
1

r2
1

+
1

r2
3

)
M1 ⊗M3 + J2J3

(
1

r2
2

+
1

r2
3

)
M1 ⊗M2 , (C.2)

T2 = G0 ⊗M0 + ... +G3M3 +M0 ⊗ G̃0 + ...+M3 ⊗ G̃3 . (C.3)
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Here the M ’s are the following diagonal 4 by 4 matrices

M0 = diag(1, 1, 1, 1), M1 = diag(1, 1,−1,−1), (C.4)

M2 = diag(1,−1, 1,−1), M3 = diag(1,−1,−1, 1) (C.5)

andG and G̃ are 4 by 4, symmetric matrices, with zeros in the diagonal. Decomposing

them in terms of the following orthogonal “basis”

O1 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


, O2 =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


, O3 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 ,

O4 =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


, O5 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, O6 =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 (C.6)

we can show their explicit dependence on the coordinates and the currents

G0 = −S2S3ρ1

ρ2ρ
2
3

O1 −
S1S3ρ2

ρ1ρ
2
3

O2 +
S2S3ρ1

ρ3ρ
2
2

O3 −
S1S2ρ3

ρ1ρ
2
2

O4 −
S1S2ρ3

ρ2ρ
2
1

O5 −
S1S3ρ2

ρ3ρ
2
1

O1

G1 =
S1J3ρ2

ρ1r2
3

O1 +
S2J3ρ1

ρ2r2
3

O2 −
S1J3ρ3

ρ1r2
3

O3 +
S3J3ρ1

ρ3r2
3

O4 +
S3J3ρ2

ρ3r2
3

O5 +
S2J3ρ3

ρ2r2
3

O6

G2 =
S1J1ρ2

ρ1r
2
1

O1 +
S2J1ρ1

ρ2r
2
1

O2 −
S1J1ρ3

ρ1r
2
1

O3 +
S3J1ρ1

ρ3r
2
1

O4 +
S3J1ρ2

ρ3r
2
1

O5 +
S2J1ρ3

ρ2r
2
1

O6

G3 =
S1J2ρ2

ρ1r2
2

O1 +
S2J2ρ1

ρ2r2
2

O2 −
S1J2ρ3

ρ1r2
2

O3 +
S3J2ρ1

ρ3r2
2

O4 +
S3J2ρ2

ρ3r2
2

O5 +
S2J2ρ3

ρ2r2
2

O6

G̃0 = −S3J1r2
r1ρ

2
3

O1 +
S3J2r1
r2ρ

2
3

O2 −
S3J2r3
r2ρ

2
3

O3 +
S3J3r2
r3ρ

2
3

O4 −
S3J3r1
r3ρ

2
3

O5 +
S3J1r3
r1ρ

2
3

O6

G̃1 = −J2J3r1
r2r2

3

O1 +
J1J3r2
r1r2

3

O2 −
J1J3r2
r3r2

1

O3 +
J1J2r3
r2r2

1

O4 −
J1J2r3
r1r2

2

O5 +
J2J3r1
r3r2

2

O6

G̃2 = −S1J1r2
r1ρ2

1

O1 +
S1J2r1
r2ρ2

1

O2 −
S1J2r3
r2ρ2

1

O3 +
S1J3r1
r3ρ2

1

O4 −
S1J3r1
r3ρ2

1

O5 +
S1J1r3
r1ρ2

1

O6

G̃3 =
S2J1r2
r1ρ2

2

O1 −
S2J2r1
r2ρ2

2

O2 +
S2J2r3
r2ρ2

2

O3 −
S2J3r2
r3ρ2

2

O4 +
S2J3r1
r3ρ2

2

O5 −
S2J1r3
r1ρ2

2

O6
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