日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Laser development for LISA

MPS-Authors
/persons/resource/persons40503

Tröbs,  Michael
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Skorupka,  Sascha
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40460

Heinzel,  Gerhard
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

cqg6_8_s20.pdf
(出版社版), 234KB

付随資料 (公開)
There is no public supplementary material available
引用

Tröbs, M., Weßels, P., Fallnich, C., Bode, M., Freitag, I., Skorupka, S., Heinzel, G., & Danzmann, K. (2006). Laser development for LISA. Classical and Quantum Gravity, 23(8), S151-S158.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-4C00-B
要旨
The two most promising configurations for the LISA laser are a stand-alone diode-pumped nonplanar ring oscillator (NPRO) or a fibre amplifier seeded by a low-power NPRO. The stand-alone laser was stabilized in frequency to a ULE cavity and in power to an electronic reference. For the first time the LISA requirement of relative power noise below 2 × 10-4/Hz1/2 was fulfilled in the whole frequency range from 0.1 mHz to 1 Hz. The LISA goal of frequency noise below 30 Hz/Hz1/2 was achieved for frequencies above 3 mHz. As a first step in the characterization of an oscillator-amplifier system, the excess frequency noise of an ytterbium-doped fibre amplifier was measured. For frequencies between 0.1 mHz and 1 Hz the excess noise was measured to be below 0.1 Hz/Hz1/2, which is significantly below the free-running frequency noise of NPROs.