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Abstract
It is widely believed that a quantum field fluctuation in an inflating
background creates the primeval seed perturbation which through subsequent
evolution leads to the observed large-scale structure of the universe. The
standard inflationary scenario produces a scale-invariant power spectrum quite
generically but it produces, unless fine tuned, too large an amplitude for the
primordial density perturbation observed. Using similar techniques, it is shown
that a loop quantum cosmology induced inflationary scenario can produce a
scale-invariant power spectrum as well as a small amplitude for the primordial
density perturbation without fine tuning. Further, its power spectrum has a
qualitatively distinct feature which is in principle falsifiable by observation and
can distinguish it from the standard inflationary scenario.

PACS numbers: 04.60.Pp, 04.60.Kz, 98.80.Jk

1. Introduction

The homogeneous and isotropic solution of the general theory of relativity, namely the
Friedmann–Robertson–Walker (FRW) solution, appears to be an extremely good description of
large-scale spacetime dynamics of our universe. The extreme simplicity of the FRW solution
nevertheless ignores some crucial features such as it having certain sub-structure as well. On
a large scale, the deviation from homogeneity and isotropy being small one can treat them as
small perturbations around a homogeneous and isotropic background. The classical theory
of large-scale structure formation can be used in principle to ‘derive’ the observed structure
of the current universe but these models require us to know the initial seed perturbations. In
this sense, the classical description of our universe is incomplete as there is no mechanism of
generating the seed perturbation within the theory itself.
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On the other hand, the quantum field fluctuation in an inflating background quite
generically produces a density perturbation with scale-invariant power spectrum [1] which
is consistent with current observations. This is certainly an attractive feature of the standard
inflationary scenario. However, one major problem that plagues almost all potential-driven
inflationary scenarios is that these models generically produce too large an amplitude for the
density perturbation, typically δρ

ρ
∼ 1–102 at horizon re-entry [2, 3]. On the other hand,

the cosmic microwave background (CMB) anisotropy measurements indicate δρ

ρ
∼ 10−5.

Naturally, to make these models viable it is necessary to fine tune the parameters of the field
potential [4]. In the presence of quantum fluctuations it is rather difficult to justify or sustain
this fine tuning of the field theoretical parameters.

It is worthwhile mentioning that inflation was invented to solve some crucial problems
of the standard big bang (SBB) cosmology. The most important of them is the so-called
particle horizon problem. The horizon problem is directly related to the fact that the standard
model of cosmology contains an initial singularity where physical quantities such as energy
density and spacetime curvature blow up leading to the breakdown of the classical description.
The initial singularity, however, is viewed as an attempt to extrapolate the classical theory
beyond its natural domain of validity. Near the classical singularity, one expects the evolution
of the universe to be governed by a quantum theory of gravity rather than the classical
one. Unfortunately, we are yet to formulate a completely satisfactory quantum theory of
gravity.

In recent years, the issues regarding singularities in cosmological models have been
addressed in a rigorous way within the framework of loop quantum cosmology (LQC) [5–12].
The loop quantum cosmology is a quantization of the cosmological models along the line of
a bigger theory known as loop quantum gravity (LQG) [13–16]. It has been shown that the
loop quantum cosmology cures the problem of classical singularities in the isotropic model
[17] as well as the less symmetric homogeneous model [18], along with quantum suppression
of classical chaotic behaviour near singularities in Bianchi-IX models [19, 20]. Further, it has
been shown that the non-perturbative modification of the scalar matter Hamiltonian leads to a
generic phase of inflation [21, 22]. These features crucially depend on the fact that the inverse
scale operator [23] in loop quantum cosmology has a bounded spectrum. This is in great
contrast with the classical situation where the inverse scale factor blows up as the scale factor
goes to zero. However, not being a basic operator, quantization of the inverse scale factor
operator involves quantization ambiguities [24]. One such ambiguity parameter, referred to
as j , is related to the dimension of representation of the holonomy operator, and can take any
half-integer value (i.e. j � 1

2 ). The ambiguity parameter j effectively controls the duration of
the LQC-induced inflationary phase. Being an ambiguity parameter, there is no unique way
to fix the value of j within loop quantum cosmology itself.

We have mentioned earlier that the density perturbation generated by quantum field
fluctuation in an inflating background are believed to be the seed perturbations responsible
for the current large-scale structure of the universe. We have also mentioned that non-
perturbative modification of the matter Hamiltonian in loop quantum cosmology leads to a
generic phase of inflation. Naturally it is an important question to ask whether the density
perturbation generated by quantum fluctuations during a loop quantum cosmology induced
inflationary phase can satisfy the basic requirements of viability such as a scale-invariant
power spectrum. Further, it may leave some distinct imprint on the power spectrum which
may be observationally detectable as well.

Being inhomogeneous in nature, treatment of these density perturbations requires
inhomogeneous models of loop quantum cosmology. However, the technology required
to deal with inhomogeneity at a fundamental level within loop quantum cosmology is not
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available yet. Without such technology, one needs to proceed rather intuitively. Let us recall
that in the standard inflationary scenario for computing the power spectrum of the density
perturbation due to quantum fluctuations, one uses techniques which can broadly be classified
as quantum field theory in a curved background [25, 26]. In this approach one treats the
background geometry as a classical object whereas the matter fields living in it are treated as
quantum entities. The main justification for using such techniques comes from the fact that the
energy scale associated with the inflationary scenario is a few orders of magnitude lower than
the Planck scale. So one expects the geometry to behave more or less classically in this regime.

In loop quantum cosmology, in principle, one can think of using physical observables and
physical inner products to evaluate the physical expectation values to find out the behaviour
of at least the homogeneous part of the geometrical quantities. Unfortunately developments in
physical observables, physical inner products and ‘time’ evolution in loop quantum cosmology
are still at an infant stage [8, 27, 28]. Nevertheless, one can construct an effective but classical
description of loop quantum cosmology using WKB techniques. The effective loop quantum
cosmology [29] incorporates important non-perturbative modifications and has been shown to
be generically non-singular as well [30–32].

In the effective loop quantum cosmology, it has been shown [29] that in the region of
interest (exponential inflationary phase) the gravitational part of the Hamiltonian constraint
becomes the same as the classical one with small quantum corrections. However, the scalar
matter part of the effective Hamiltonian remains non-perturbatively modified during this phase.
In fact, non-perturbative modification of the scalar matter Hamiltonian is what that drives
inflation in loop quantum cosmology. Having a modified scalar matter Hamiltonian the scalar
field satisfies a modified Klein–Gordon equation instead of standard Klein–Gordon equation.
Naturally the mode functions of the scalar field, which contain the necessary information
about background geometry evolution and are essential to compute the power spectrum of the
density perturbations, are expected to be different from the standard mode functions. Thus,
although it may be justified to employ similar techniques to compute the power spectrum in
effective loop quantum cosmology one certainly cannot borrow the same mode functions used
in the standard inflationary scenario.

In this paper, we will compute the power spectrum of the density perturbation using
the direct method [33]. In this method, one directly uses the operator expression of the
‘time–time’ component of the stress–energy tensor (which is classically energy density) to
compute the two-point density correlation function and then evaluates its Fourier transform to
compute the power spectrum of the density perturbation. In the standard inflationary scenario,
one generally avoids this direct computation as the two-point density correlation function
in a pure classical background diverges badly for small coordinate length separation (i.e.,
ultra-violet divergence). There, one usually first computes the power spectrum of the field
fluctuation. Using this, one reconstructs the inhomogeneous but classical field configuration
which is then used to compute the corresponding density perturbation. However, it is important
to understand that this divergence is rather unphysical because it arises when one tries to resolve
any two spatial points with arbitrary precision.

In a quantum system, the expectation value of an operator which is classically a phase
space function in general is not equal to the same function of the expectation values of basic
phase space operators. Thus, the use of the direct method is preferable to the standard method
as observational aspects deal with energy density directly rather than the field configuration.
Further, in the standard method, one needs to know the general expression of the stress–energy
tensor to relate the power spectrum of the field fluctuations to that of the density perturbation.
In this context, how to obtain an effective action from a quantum theory of gravity based on
canonical quantization is not yet a settled issue.
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In the context of the standard inflationary scenario, it was outlined and explicitly shown
in [33, 34] that one can in fact regularize this field theoretical divergence by using the notion
of zero-point proper length. Although it was used as an ad hoc assertion, it was argued that
the notion of zero-point proper length is expected from a proper theory of quantum gravity.
The power spectrums of density perturbations computed using these two different methods
in the relevant energy scale, however, are not very different. Nevertheless, there one can
avoid a rather cumbersome indirect method of computing the power spectrum of density
perturbation.

In effective loop quantum cosmology, it has been shown that the universe exhibits a
generic big bounce with a non-zero minimum proper volume [32]. This in turn implies a zero-
point proper length for the isotropic spacetime. Since the regularization technique is naturally
available in the effective loop quantum cosmology scenario, it is quite appealing to directly
use the operator expression of the ‘time–time’ component of the stress–energy tensor to obtain
the power spectrum of the density perturbation due to the quantum field fluctuation. In this
sense, this exercise can also be seen as an explicit example of a quantum gravity motivated
regularization technique to cure the ultra-violet divergence of standard quantum field theory
[35].

In sections 2 and 3, we briefly review the standard scenario of a quantum field living in a
de Sitter background and then obtain the corresponding two-point density correlation function.
In the following section, we review the scenario of effective loop quantum cosmology which
provides the basic infrastructure required to describe its inflationary phase. In particular, we
discuss the properties of the effective equation of state for the scalar matter field. The effective
equation of state essentially summarizes the evolution of the background geometry. In the
following section, we derive the modified Klein–Gordon equation which leads to a modified
mode-function equation. We obtain an analytic solution for the mode-function equation.
This modified mode function reduces to the standard mode function in the appropriate limit.
Using the mode functions in the following section, we compute the power spectrum of the
density perturbation. We discuss the properties of the power spectrum and its observational
implications.

2. The quantum field in a de Sitter background

In computing the power spectrum of the density perturbation in the standard inflationary
scenario, one considers the background geometry to be homogeneous and isotropic. The
invariant distance element in such spacetime (using natural units, i.e., c = h̄ = 1) is given by
the famous Friedmann–Robertson–Walker metric

ds2 = −dt2 + a2(t) dx2, (1)

where a(t) is the scale factor. During the inflationary period the scale factor grows almost
exponentially with coordinate time. The Hubble parameter defined as H := ȧ

a
remains almost

constant during the period. For simplicity, in the intermediate period of calculation one treats
the Hubble parameter as constant, i.e., the evolution of the background geometry is considered
to be de Sitter like. One can approximately compute the effect of small variation of the Hubble
parameter on the power spectrum simply by considering the variation of the final expression
of the power spectrum alone. This is in fact a good approximation as the variation of the
Hubble parameter is very small.

In the standard scenario, inflation is driven by a scalar field known as the inflaton field.
We will consider here the most simple single-field inflationary scenario. The dynamics of the
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scalar field is governed by the action

Sφ =
∫

d4x
√−g

[
−1

2
gµν∂µφ∂νφ − V (φ)

]
=

∫
d4x

√−gL. (2)

We have mentioned earlier that we will be using the direct method to compute the power
spectrum. So it will be quite useful to have an expression for the stress–energy tensor for the
scalar field. The stress–energy tensor corresponding to the action (2) is given by

Tµν := − 2√−g

δSφ

δgµν
= ∂µφ∂νφ + gµνL. (3)

Comparing with the perfect fluid ansatz, i.e., Tµν = (ρ + P)uµuν + gµνP , it is easy to see that
the T00 component represents energy density for the scalar field. In the canonical quantization,
one treats the Hamiltonian as a basic object. Thus, it is important for the purpose of this paper
to have the expression for the matter Hamiltonian

Hφ =
∫

d3x

[
1

2
a−3π2

φ +
1

2
a(∇φ)2 + a3V (φ)

]
, (4)

where πφ = a3φ̇. In deriving expression (4) it is assumed that the background geometry is
homogeneous and isotropic but not the scalar field itself. This approximation can be justified
as long as the deviation from the homogeneity and isotropy remains small. To make it more
clear, we rewrite the scalar field Hamiltonian (4) as

Hφ = a−3
∫

d3x

[
1

2
π2

φ

]
+ a

∫
d3x

[
1

2
(∇φ)2

]
+ a3

∫
d3x [V (φ)] . (5)

In loop quantum cosmology, the geometrical quantities such as the scale factor a are represented
here through corresponding quantum operators. While deriving effective classical Hamiltonian
from loop quantum cosmology, these operator expressions effectively get replaced by their
corresponding eigenvalues. The kinetic term of the scalar matter Hamiltonian (5) involves
inverse powers of the scale factor. In loop quantum cosmology, the inverse scale factor operator
has a bounded spectrum. Clearly one can see that the kinetic term of the effective scalar matter
Hamiltonian will involve non-perturbative modifications due to loop quantization. Using
Hamilton’s equations of motion for the scalar field, i.e.

φ̇ = δHφ

δπφ

; π̇φ = −δHφ

δφ
, (6)

one can derive the second-order equation of motion for the scalar field, given by

φ̈ + 3

(
ȧ

a

)
φ̇ − ∇2φ

a2
+ V ′(φ) = 0. (7)

The equation of motion (7) for the scalar field is the standard Klein–Gordon equation. It is
worthwhile emphasizing that one could have obtained the standard Klein–Gordon equation (7)
simply by considering the variation of the scalar field action (2). But one should remember
that our ultimate aim is to compute power spectrum in effective loop quantum cosmology
where non-perturbative modification in the matter sectors comes through its Hamiltonian.

To quantize the scalar field one proceeds in the standard way, i.e., by decomposing scalar
field operator in terms of annihilation and creation operators â and â† as follows:

φ̂(x, t) =
∫

d3k

(2π)3 [âkfk(t) eik·x + â
†
kf

∗
k (t) e−ik·x], (8)

where fk(t) are the ‘properly normalized’ mode functions. Although one can quantize the
scalar field analogous to that in Minkowski spacetime, one faces the well-known problem of
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defining the vacuum state in curved spacetime. In general, for a curved background geometry
a unique choice for the vacuum state does not exist. Thus, one needs to have some additional
prescription to define it.

In the standard inflationary scenario one generally chooses the so-called Bunch–Davies
vacuum. It is defined as the state which gets annihilated by â where the mode functions fk are
so ‘normalized’ such that in the ‘Minkowskian limit’, i.e., H → 0, the mode function reduces
to the flat-space positive frequency mode function 1√

2ω
e−iωt . We will use an analogous

definition for the vacuum state for the calculation of the power spectrum in effective loop
quantum cosmology as well. For simplicity, we consider the situation where the field potential
is made of only the mass term (i.e., V (φ) = 1

2m2
φφ2). Then the mode functions are the solution

of the equation

f̈ k + 3

(
ȧ

a

)
ḟ k +

(
k2

a2
+ m2

φ

)
fk = 0. (9)

The mode-function equation (9) follows from the Klein–Gordon equation (7) and the expansion
of the scalar field operator (8). For simplicity, we consider the situation where the mass term
can be neglected

(
k
a

� mφ

)
in equation (9). The ‘normalized’ mode-function solutions are

then given by

fk = H√
2k3

(
1 − i

k

Ha

)
ei k

Ha . (10)

The mode function (10) in the ‘Minkowskian limit’, i.e., H → 0, reduces (up to a constant
phase) to the flat-space positive frequency mode function 1√

2ω
e−iωt . This defines the vacuum

state |0〉 as â|0〉 = 0.
To compute the power spectrum of the density perturbation using the indirect method,

one first computes the power spectrum of field fluctuation, i.e., Pφ(k) := k3

2π2 |fk|2. It is easy
to see from the expression of the normalized mode function (10) that at the time of horizon
crossing

(
a(t) = k

2πH

)
, the corresponding power spectrum is scale invariant. In getting the

mode-function solution (10), we have ignored the mass term of the scalar field. For the mass
dominating case

(
k
a

	 mφ

)
, the ‘normalized’ mode functions are

fk = 1√
2mφ

a− 3
2 e

−imφt

(√
1−

(
3H

2mφ

)2)
.

It can be easily checked that for this case also the corresponding power spectrum is scale
invariant at the time of horizon crossing. It is often argued that the scale invariance is mainly
determined by the fact that during the inflationary period, the Hubble horizon H−1 remains
almost constant. The detail of this particular model of inflation have rather small effect on this
property of the power spectrum.

3. The two-point density correlation function

Having specified the vacuum state, one can proceed to evaluate the vacuum expectation value
of the two-point density correlation function. The two-point density correlation function can
naturally be defined as

C(x + l, x, t) := 〈0|T̂ 0
0 (x + l, t)T̂ 0

0 (x, t)|0〉. (11)
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Using the expression of the scalar field operator (8) and the expression of the stress–energy
tensor (3), one can evaluate the two-point density correlation function in terms of the mode
function, given by [33]

C(x + l, x, t) =
∫

d3p

(2π)3

d3q

(2π)3 ei(p+q)·l
∣∣∣ḟpḟq −

(p·q
a2

− m2
φ

)
fpfq

∣∣∣2
. (12)

In evaluating two-point density correlation function (12), one ignores a space-independent
(formally divergent) term as it would have contributed only to the k = 0 mode while taking a
Fourier transform. Knowing the normalized mode-function solution fk (10), one can explicitly
calculate the two-point density correlation function (12) given by [33]

C(l′, t) := C(x + l, x, t) = 1

4π4

[
2H 2

(al′)6
+

12

(al′)8

]
, (13)

where l′ = |l|. Expression (13) of the two-point density correlation function expectedly
diverges near l′ = 0. However, as shown in [33], one can regularize this divergence using
the notion of zero-point proper length. Expression (13) in ‘Minkowskian limit’, i.e., H → 0,
reduces to the flat-space two-point density correlation function.

4. Effective isotropic loop quantum cosmology

In isotropic loop quantum cosmology, the basic phase space variables are Ashtekar connection
c and densitized triad p. The geometrical property of the space is encoded in the densitized
triad p whereas the dynamics is encoded in the connection c. In loop quantum cosmology,
one redefines the densitized triad to absorb the fiducial coordinate volume component. This
makes the proper volume of the universe (1),

∫
d3x

√−g = a3V0 = p
3
2 [12].

In loop quantum cosmology, the development of physical observables and the physical
inner product are still at an infant stage. Nevertheless, one can derive via the WKB method,
an effective classical Hamiltonian which incorporates the most important non-perturbative
modifications. This allows one to study the effects of quantum modification using available
standard tools. The effective Hamiltonian for spatially flat isotropic loop quantum cosmology
derived in [29] is given by

H eff = − 1

κ

B+(p)

4p0
K2 + Wqg + H eff

φ (14)

where κ = 16πG,p0 = 1
6γ 
2

Pµ0, γ is the Barbero–Immirzi parameter, K is the extrinsic

curvature (conjugate variable of p), A(p) = |p +p0| 3
2 −|p −p0| 3

2 , B+(p) = A(p + 4p0) + A

(p − 4p0), 

2
P := κh̄ and Wqg = ( 
4

P

288κp3
0

){B+(p) − 2A(p)}. µ0 here is viewed as a quantization

ambiguity parameter and it is an order one number [12, 16]. Apart from the modifications of
the gravitational kinetic term and scalar matter kinetic term, the effective Hamiltonian (14)
differs from the classical Hamiltonian by a non-trivial potential term referred to as quantum
geometry potential Wqg . In this paper, we are interested in the regime p0 	 p where the
quantum geometry potential has the natural interpretation of being perturbative homogeneous
quantum fluctuations around a FRW background. The effective scalar matter Hamiltonian is
given by

H eff
φ = 1

2 |F̃ j,l(p)| 3
2 pφ

2 + p
3
2 V (φ), (15)

where pφ(=V0πφ) is the field momentum, F̃ j,l(p) is the eigenvalue of the inverse densitized
triad operator ˆp−1 and is given by F̃ j,l(p) = (pj )

−1Fl(p/pj ) where pj = 1
3γµ0j l2

p. The j

and l are two quantization ambiguity parameters [24, 36]. The half integer j is related with
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the dimension of representation while writing holonomy as multiplicative operators. The real
valued l (0 < l < 1) corresponds to different, classically equivalent, ways of writing the
inverse power of the densitized triad in terms of the Poisson bracket of the basic variables.
The function Fl(q) is given by [20]

Fl(q) :=
[

3

2(l + 2)(l + 1)l
((l + 1){(q + 1)l+2 − |q − 1|l+2}

− (l + 2)q{(q + 1)l+1 − sgn(q − 1)|q − 1|l+1})
] 1

1−l

→ q−1 (q � 1)

→
[

3q

l + 1

] 1
1−l

(0 < q 	 1). (16)

From expression (16) one should note that for large values of the densitized triad, i.e., in a
large volume, one has the expected classical behaviour for the inverse densitized triad. The
quantum behaviour is manifested for smaller values of the densitized triad. Here, the meaning
of large or small values of the triad p is determined necessarily by the values of pj . The
quantum mechanically allowed values for the ambiguity parameter l are 0 < l < 1. Now
one should also note that if one takes the ambiguity parameter value l = 2 then the small
volume expression (16) becomes the same as the large volume expression. In other words,
taking ambiguity parameter value l = 2 is equivalent to taking the large volume limit, i.e.
the classical limit. This observation will be very useful in fixing the choice of vacuum while
computing the two-point density correlation function in this effective background.

In loop quantum cosmology, p0 and pj represent two important (square of) length scales:
p0 demarcates the strong quantum effect regime (non-perturbative regime) from the weak
quantum effect regime (perturbative regime) of the gravity sector whereas pj demarcates
the same for the matter sector. Since ambiguity parameter j � 1

2 , it follows from their
respective definition that pj � p0. Naturally, non-perturbative modification of matter sector
can survive longer than the same for the gravity sector depending on the value of the ambiguity
parameter j . We have mentioned earlier that in computing the power spectrum of the density
perturbation we will use similar techniques to those used in the standard inflationary scenario.
In this approach one treats geometry as a classical object whereas matter fields living in it are
treated as quantum objects. Thus, self-consistency of this framework requires that we should
consider the regime where p � p0 in our calculation. In this regime, the gravitational part
of the Hamiltonian constraint becomes the same as the classical Hamiltonian with a small
quantum correction. The reduced effective Hamiltonian in this regime is given by

H eff = − 3

2κ
K2√p − 
4

P

24κ
p− 3

2 + H eff
φ . (17)

The loop quantum cosmology induced inflationary scenario persist as long as the densitized
triad p remains less than pj . Thus, we will be interested in computing the power spectrum
of the density perturbation in the regime p0 	 p < pj . In this regime, the effective energy

density and pressure are given by ρeff = p− 3
2 H eff

φ and P eff = − 1
3p− 3

2
(
2p

∂H eff
φ

∂p

)
[29]. It

can be checked easily using the relation between scale factor and densitized triad that these
definitions satisfy the standard conservation equation a

dρeff

da
= −3(ρeff + P eff). Furthermore,

one can recover the standard expression of energy density and pressure using the standard
scalar matter Hamiltonian Hφ in place of the modified scalar matter Hamiltonian H eff

φ in these
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definitions. It is shown in [22] that the effective equation of state ωeff := P eff/ρeff can be
expressed as a function of the standard equation of state ω and the densitized triad p

ωeff = −1 +
(1 + ω)p

3
2 [F̃ j,l(p)]

3
2

(
1 − p

F̃ j,l (p)

dF̃ j,l (p)

dp

)
(1 + ω)p

3
2 [F̃ j,l(p)]

3
2 + (1 − ω)

. (18)

Using expression (16), it is easy to see that for the large values of the densitized triad p,
where one expects the quantum effects to be small, ωeff = ω, whereas for small values of p
the ωeff differs from the classical ω dramatically. In this paper, we will be interested in the
situation where ωeff ≈ −1 (for p < pj ). This requirement will automatically be satisfied if
at the end of loop quantum cosmology induced inflation the radiation or matter domination or
even another phase of classical acceleration (i.e., ω = 1

3 , 0,< − 1
3 ) begins. Thus, during the

loop quantum cosmology induced inflationary period, one can express the matter Hamiltonian
as

H eff
φ ≈ ρ̄p

3
2 , (19)

where ρ̄ is a constant of integration. Physically, ρ̄ corresponds to the maximum energy density
that can be ‘stored’ in the effective spacetime. This also defines the energy scale associated
with the loop quantum cosmology induced inflationary scenario.

It has been shown in [32] that the effective loop quantum cosmology exhibits a generic
bounce with non-zero minimum proper volume. It follows from equations (17) and (19) that
the minimum value of the proper distance L0, defined as L2

0 := pmin = p(H eff = 0;K = 0),
is given by

L6
0 = 2πG

3ρ̄
. (20)

Self-consistency of the expression (20) requires p0 	 pmin < pj .
In standard cosmology one uses the scale factor as a geometric variable. In isotropic loop

quantum cosmology, the basic variable is the densitized triad p defined as p
3
2 := ∫

d3x
√−g =

a3V0, where V0 is the fiducial coordinate volume. Clearly, the densitized triad p here is a
dimensionful quantity whereas the scale factor a is dimensionless. Also the absolute value
of the scale factor is physically irrelevant. Rather, what matters is the ratio of scale factor at
two different periods. Naturally, there is a freedom left in relating the scale factor with the
densitized triad. We define the relation between the scale factor and the eigenvalues of the
densitized triad operator such that for a small volume limit

p̂ ˆp−1|µ〉 := a2(1+ 1
1−l )|µ〉. (21)

We have mentioned earlier that taking the ambiguity parameter value l = 2 is equivalent to
taking a large volume limit of the inverse densitized triad spectrum. Clearly, in our choice
of definition the scale factor takes the value a = 1 at the transition point from the non-
perturbatively modified matter sector to the standard matter sector. For the regime p < pj ,
one can approximate the effective equation of state (18) as

(1 + ωeff) � Cω

(
n + 2

3

)
a2(1−n), (22)

where Cω = 2
(

1+ω
1−ω

)
and n = − 1

2

(
1 + 3

1−l

)
. The last two terms in the effective Hamiltonian

constraint (17) are comparable near the bounce point. However, once the densitized triad
p starts increasing then it is clear from equation (17) that the contribution from quantum
geometry potential quickly drops out compared to the matter Hamiltonian (19). Naturally for
the region away from the bounce point, one can write the Hamiltonian constraint (H eff = 0)
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in terms of the scale factor as

3

(
ȧ

a

)2

� 8πGρ̄, (23)

where we have used Hamilton’s equation of motion ṗ = κ
3

∂H eff

∂K
. Equation (23) is nothing but

the usual Friedmann equation. Using equations (20) and (23), we can define a dimensionless
quantity

σ := 2πHL0 = 4π

(
2π

3

) 2
3

(
ρ̄

M4
p

) 1
3

, (24)

where G = M−2
p . This will be a useful quantity in the calculation of the power spectrum.

Since we consider the situation where p0 	 L2
0 < pj , i.e., the bounce occurs at a time when

the proper volume of the universe is much larger than the Planck volume. Thus, it is clear
that σ is much smaller than unity (σ 	 1) during the loop quantum cosmology induced
exponential inflationary phase.

From the definition of the FRW metric (1), it follows that the proper distance square,
say d2(a, l′), between two points separated by coordinate distance l′ on a given spatial
slice (dt = 0) is simply d2(a, l′) = (al′)2. In other words, in the classical geometry the
proper distance between two points is simply ‘coordinate distance times the scale factor’.
In the classical case one can choose the coordinate distance separation to be arbitrarily
small. Naturally, the proper distance between two points can become arbitrarily small. In
loop quantum cosmology, the basic variable is a densitized triad instead of the usual metric
variable. Further, in loop quantum cosmology, one redefines the densitized triad by absorbing
a component of the fiducial coordinate volume. This makes the proper volume of the universe
just p

3
2 . In the case of effective loop quantum cosmology, we have seen that there exists

a non-zero minimum value for the densitized triad p. To incorporate such a feature in the
definition of the proper distance in effective loop quantum cosmology, we introduce the notion
of effective coordinate length leff(a, l′). The proper distance between two points separated by
coordinate distance l′ is defined as

d2(l′, a) := (aleff)2 = L2
0 + (al′)2. (25)

The effective coordinate length keeps the usual notion of proper distance, i.e., ‘coordinate
distance times scale factor’, intact and incorporates features such as zero-point proper length.
Further, it allows one to use the standard machinery while computing the power spectrum of the
density perturbation and acts as an ultra-violet regulator of standard quantum field theory. For
large volumes (i.e., (al′) large), this definition is virtually equivalent to the standard definition
of proper distance as L0 is very small (a few Planck units).

5. The modified Klein–Gordon equation

We mentioned earlier that the kinetic term of the scalar matter Hamiltonian gets non-
perturbative modification as its classical expression involves inverse powers of the densitized
triad. The effective scalar matter Hamiltonian obtained, as outlined in the previous section, is
given by

H eff
φ = V0|F̃ j,l(p)| 3

2

∫
d3x

[
1

2
π2

φ

]
+ V

− 1
3

0 p
1
2

∫
d3x

[
1

2
(∇φ)2

]
+ V −1

0 p3/2
∫

d3x[V (φ)].

(26)

It should be noted that we have now kept the gradient term in the effective Hamiltonian.
Earlier, while computing the background evolution the gradient term was neglected as one
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assumes that the background evolution is mainly determined by the homogeneous and isotropic
contribution of the matter Hamiltonian. In other words, the inhomogeneity is assumed to be
small. Using the Hamilton equations of motion for the effective Hamiltonian (26), one can
derive the corresponding modified Klein–Gordon equation, given by

φ̈ − 3

(
1

1 − l

) (
ȧ

a

)
φ̇ + a3+ 3

1−l

(
−∇2φ

a2
+ V ′(φ)

)
= 0, (27)

where we have substituted the eigenvalue of the inverse triad operator by the scale factor
using definition (21). It is easy to see that if one takes the value of the ambiguity parameter
l = 2 then the modified Klein–Gordon equation (27) goes back to the standard Klein–Gordon
equation (7).

It is important to emphasize here that the non-perturbative modification of the scalar
matter Hamiltonian, which is being studied here, comes from the bounded spectrum of the
inverse scale factor operator. Since the modification affects the kinetic term of the scalar
matter Hamiltonian, it essentially affects all the modes. It can be seen from equation (27) as
well. This modification is distinct from other Planck-scale effects studied in the literature. For
example, in the context of trans-Planckian inflation [43, 44], one studies the possible effects
of Planck-scale modification of the dispersion relation or the possible effects of the spacetime
non-commutativity [45, 46].

6. Modified mode functions

Using the expression for the quantized scalar field (8) as in the standard case, one can derive
the modified mode-function equation for the scalar field

f̈ k − 3

(
1

1 − l

)(
ȧ

a

)
ḟ k + a3+ 3

1−l H 2

(
k2

H 2a2
+

m2
φ

H 2

)
fk = 0. (28)

One can easily check that for l = 2 (i.e., the classical case) the modified mode-function
equation goes back to the standard mode-function equation (9). To compute the power
spectrum, it is essential to know the solution of the mode-function equation (28). For
simplicity, we will neglect the mass term, i.e., we will assume k

Ha
� mφ

H
. To simplify

the mode-function equation (28) further, we make a change of variables as follows:

fk := a−nf̃k; dt = an dη (29)

with the value of n = − 1
2

(
1 + 3

1−l

)
. In loop quantum cosmology allowed values for the l

ambiguity parameter are in the range 0 < l < 1 whereas the classical situation can be obtained
simply by taking l = 2. In terms the new parameter n, the classical situation corresponds to
n = 1 and the quantum situation is described for −∞ < n < −2. One may note here that
for n = 1 the new variable η = − 1

nHan is nothing but conformal time. In terms of these new
variables (29), the mode-function equation (28) becomes

d2f̃k

dη2
−

(
2

1

2n
− 1

)
1

η

df̃k

dη
+

(
k2 +

(
1

2n

)2 − (
1 + 1

2n

)2

η2

)
f̃k = 0. (30)

Equation (30) is a modified expression of the Bessel differential equation and admits an
analytical solution of the form [37]

f̃k = η
1

2n

[
A(k,n)J−(1+ 1

2n )
(kη) + B(k,n)J(1+ 1

2n )
(kη)

]
, (31)

where A(k,n) and B(k,n) are two constants of integration corresponding to the second-order
differential equation of the mode function.
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To fix these constants of integration, we require that for large volumes (n = 1) the
modified mode function reduces to the standard ‘normalized’ mode function (10). Since the
standard mode function (10) is already ‘normalized’ to pick out the Bunch–Davies vacuum
then this requirement will automatically fix the choice of vacuum in effective loop quantum
cosmology. This fixes the mode-function solution as

fk =
√

n + 2

3
(−nH)

√
π

4k3
(kη)1+ 1

2n

[
J−(1+ 1

2n )
(kη) + iJ(1+ 1

2n )
(kη)

]
. (32)

Using Bessel function identities Jn+1(x) + Jn−1(x) = 2n
x

Jn(x), J− 1
2

=
√

2
πx

cos(x) and

J 1
2

=
√

2
πx

sin(x), one can easily check that for n = 1 the modified mode function (32)
reduces to the standard mode function (10).

It is worth pointing out that in expression (32), we have specifically chosen the power of(
n + 2

3

)
to be 1

2 . But it is clear that for any arbitrary power of
(

n + 2
3

)
, the mode function would

reduce to the standard mode function. We have made this choice precisely to absorb a similar
term coming from the effective equation of state (22) that appears in the final expression of
power spectrum. In other words, we have chosen the vacuum state such that it satisfies the
Bunch–Davies prescription and the computed power spectrum is free from trivial ambiguity
parameter dependent multiplicative factors.

7. The power spectrum

Knowing the exact solution of the mode function in principle, one can evaluate the two-point
density correlation function using expression (12). Let us recall that we are mainly interested
in finding the power spectrum at the time of horizon crossing, i.e., k

Ha
= 2π . The argument of

the Bessel function kη = k
Ha

(
a1−n

−n

) 	 1 during horizon crossing. For the super-horizon scale
the above inequality holds naturally; even for the sub-horizon scale up to reasonable extent the
same inequality will hold since for effective loop quantum cosmology −∞ < n < −2. Since
the asymptotic form of the Bessel function is Jm(x) ≈ 1


(1+m)

(
x
2

)m
for x 	 1 then clearly

the dominating contribution in the mode function (32) comes from the first term. So we will
approximate the mode function as

fk ≈
√

n + 2

3
(−nH)

√
π

4k3
(kη)1+ 1

2n

[
J−

(
1+ 1

2n

)(kη)
]

(33)

for further evaluation and will use its asymptotic form for explicit calculation.
Using the expression for the two-point density correlation function (12) and the expression

for the mode function (33), one can simply follow similar steps as in [33] to derive the
expression of the two-point density correlation function

C(l′, t) =
(

n + 2

3

)2
a4(1−n)

22− 2
n (2π)2


(
1 − 1

2n

)4

[
2H 2

(al′)6
+

a4(1−n)

(al′)8

]
. (34)

In deriving the above expression (34), it is quite helpful to use the Bessel function identity
d

dx
[xmJ−m(x)] = −xmJ1−m(x) while evaluating the time derivative of the mode function (33).

Now it is easy to check that for n = 1 (i.e., classical mode function), the expression becomes
qualitatively the same as (13). But we may note that it is quantitatively slightly different
from (13). The source of this difference can be traced back to the approximation that we
have made. In the case of loop quantum cosmology, the argument of the Bessel function
kη = k

Ha

(
a1−n

−n

) 	 1 at the time of horizon crossing. But clearly the same does not hold for
the standard case (n = 1).
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The two-point density correlation function (34) diverges as the ‘coordinate length’ l′ goes
to zero. This feature is expected from a calculation based on standard quantum field theory.
However, one can regularize this expression using the notion of zero-point proper length which
is naturally available in effective loop quantum cosmology. In section 4, we have introduced
the notion of effective coordinate length. This basically allows one to use the machinery of the
standard case. Essentially this step summarizes the ultra-violet regularization of the two-point
density correlation function. We define effective two-point density correlation function as the
regularized form of the standard two-point density correlation function as

Ceff(l′, t) := C(leff, t). (35)

Now we can evaluate the Fourier transform of the effective two-point density correlation
in the usual way:

|ρk(t)|2 :=
∫

d3l eik·lCeff(l′, t)

=
(

n + 2

3

)2
a4(1−n)

22− 2
n (2π)2


(
1 − 1

2n

)4

[
2H 2

a6
I1 +

a4(1−n)

a8
I2

]
, (36)

where the integrals I1 and I2 can be evaluated using the method of contour integration. They
are given by

I1 :=
∫

d3l eik·l(
l′2 + L2

0
a2

)3 = π2 e− kL0
a

4

(
a

L0

)3 [
1 +

kL0

a

]
, (37)

and

I2 :=
∫

d3l eik·l(
l′2 + L2

0
a2

)4 = π2 e− kL0
a

8

(
a

L0

)5
[

1 +
kL0

a
+

1

3

(
kL0

a

)2
]

. (38)

The power spectrum of the density perturbation generated during inflation, however, is
not directly observable. Rather, the observed power spectrum corresponds to the density
perturbation at the time of horizon re-entry in the post-inflationary period. In the intermediate
period between horizon exit and horizon re-entry the density contrast δ

(
:= δρ

ρ

)
remains almost

constant for the super-horizon modes. Nevertheless, the change in the equation of state of the
total matter field leads to a scaling of the amplitude of the density perturbation. Super-horizon
evolution in Bardeen’s gauge-invariant formalism [38] of the density perturbation leads to a
rather simple formula for the evolution of density contrast:∣∣∣∣ δk

1 + ω

∣∣∣∣
t=tf

≈
∣∣∣∣ δk

1 + ω

∣∣∣∣
t=ti

, (39)

where δk := ρk(t)

ρ̄
, ti and tf are initial and final time, respectively. The power spectrum of the

density perturbation at the time of re-entry is given by

Pδ(k) = k3

2π2
|δk|2re-entry = A2

[
1 + c0

(
k

2πH

)4(1−n)
]

(40)

where c0 = π2

σ 2

[
1 + σ 2

3(1+σ)

]
and the A2 is given by

A2 = (1 + ωre)
2

(2π)2C2
ω

σ 3(1 + σ) e−σ

22− 2
n 


(
1 − 1

2n

)4 . (41)

The quantity σ , defined in (24), is given by σ = 4π
(

2π
3

) 2
3

(
ρ̄

M4
p

) 1
3
. For the super-horizon modes(

k
2πH

	 1
)
, the second term in expression (40) is negligible compared to unity for the effective
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loop quantum cosmology (−∞ < n < −2). Thus, it is clear from expression (40) that power
spectrum of the density perturbation is broadly scale invariant as during the inflationary period
the Hubble parameter remains almost constant. Since the mode-function solutions (32) are
ambiguity parameter dependent, we expect the expression of the power spectrum (40) to
depend on ambiguity parameter. But it should also be noted that this dependence is rather
weak. The ambiguity parameter dependent term in the power spectrum 2− 2

n 

(
1 − 1

2n

)4
varies

only between 1 and 1.3499 for the range of ambiguity parameter value (−∞ < n < −2).
An important property of the power spectrum (40) is that A2 ∼ H 2 (σ being small

(1 + σ) e−σ ≈ 1). This behaviour is exactly similar to the behaviour of the power spectrum in
the standard inflationary scenario. This property of the power spectrum will be very useful in
comparison to the spectral index between the standard inflationary scenario and the effective
loop quantum cosmology scenario.

7.1. The amplitude of the density perturbation

In section 4, we have shown that the self-consistency of the framework that we are using
requires σ 	 1. This requirement can be physically understood in the following way. The
effective continuum (classical geometrical) description is an emergent description in the loop
quantum cosmology framework in which underlying geometry is fundamentally discrete.
Naturally, the effective Hamiltonian description which has been used in the paper has a
restricted domain. In [32], it has been shown that the dynamics described by the effective
Hamiltonian respects its own domain of validity provided the permissible values of ρ̄ are
chosen to be significantly smaller than unity when written in Planck units. In other words, the
requirement σ 	 1 essentially defines the domain of validity of the effective Hamiltonian. In
contrast, in a purely classical geometrical description (standard inflationary scenario) such a
restriction does not arise as the description itself a fundamental description of nature within
the set-up of general relativity. Thus, it is clear from expression (41) that in this scenario the
amplitude for the power spectrum of the density perturbation is naturally small. In other words,
the small amplitude of the primordial density perturbation is a prediction of the framework of
effective loop quantum cosmology.

It should be noted from equation (39) that if the equation of state is very close to −1 during
the inflationary period then the amplitude of the density perturbation gets a large multiplicative
factor at the time of horizon re-entry. In the case of loop quantum cosmology induced inflation,
the equation of state (22) indeed is very close to −1 as a 	 1 during its inflationary period.
However in this scenario, one can still produce a small amplitude for the primordial density
perturbation without fine tuning. One of the reasons behind this is the presence of the small
factor a4(1−n) in the two-point density correlation function (34). The presence of this crucial
small factor in the expression of the two-point density correlation function simply follows
from the modified mode functions of the scalar field.

Another interesting property of the amplitude (41) is that it contains an exponential
damping term e−σ . For the purpose of this paper the damping term is insignificant as σ is
required to be small in this paper. However, if one naively takes the energy scale to be of the
order of the Planck scale even then the amplitude of the density perturbation will remain small
as the exponential term becomes significant at that scale. In fact, this was the main motivation
of the papers [33, 34].

Qualitatively, the smallness of the amplitude for the primordial density perturbation is
readily predicted but to have a quantitative estimate one needs to choose some value for the
associated energy scale. Assuming the density perturbation is adiabatic, i.e. it is the same as
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the curvature perturbation, one can relate the amplitude of the power spectrum of the density
perturbation to the CMB angular power spectrum as follows [39]:

A2 =
(

3

2

)2 9

(2π2)

l̃(l̃ + 1)CAD
l̃

2π
. (42)

where l̃ is the multipole number of the angular power spectrum. We have also assumed that the
relevant modes re-enter the horizon during the radiation-dominated era. The COBE data imply

that
l̃(l̃+1)CAD

l̃

2π
� 10−10. Using expression (41), one can easily deduce that σ ≈ 5.5 × 10−3

(we have assumed here that at the end of loop quantum cosmology induced inflation, the
radiation domination begins, i.e., Cω = 4; the value of the ambiguity parameter l is chosen
to be 1

2 ). It follows from the expression of σ (24) that the corresponding energy density

is ρ̄ ≈ (2.0 × 10−3Mp)
4 = (2.0 × 1016 GeV)4. The associated energy scale comes down

slightly if one assumes that the end of loop quantum cosmology induced inflation is followed
by a standard accelerating phase (for example, if one takes Cω = 2

3

(
ω = − 1

2

)
then the

corresponding energy density is ρ̄ ≈ (0.8 × 10−3Mp)
4 = (0.8 × 1016 GeV)4).

The energy scale required to produce the observed amplitude of the density perturbation in
effective loop quantum cosmology is not very different from the standard inflationary scenario
where associated energy density is ρ̄ ≈ (2.0 × 1016 GeV)4 [39]. Then it is quite important to
understand why is it necessary to fine tune field theoretical parameters in the standard scenario
to produce a small amplitude. In this paper, we have considered a massive scalar field as a
matter source. The energy density during the standard inflationary period is ρ̄ ≈ 1

2m2
φφ2. In

the standard inflationary scenario, to produce a sufficient amount of expansion (to solve the
horizon problem and others), one needs to choose the values of the field to be φ2 ≈ 10M2

p

[39]. This in turn forces one to tune the mass parameter to mφ ≈ 10−6Mp in order to produce
a small amplitude for the primordial density perturbation. These fine tunings of field strength
and the mass term are not only severe but also extremely difficult to sustain under standard
quantum field theory. Specifically, sustaining such low mass parameters from loop corrections
often requires new ingredients [47].

In other words, in the standard inflationary scenario, to get correct amplitude of density
perturbation, the required fine tunings are directly related to the method by which inflation is
realized, namely the imposition of slow-roll condition. One the other hand, in loop quantum
cosmology the inflationary phase is realized generically [22] and not by imposing the slow-
roll condition. There is a physical understanding of it from the fundamental point of view.
The famous singularity theorems tell us that in the cosmological set-up one cannot avoid an
initial singularity if the matter contents always satisfy the strong energy condition (equation
of state ω � − 1

3 ). Naturally, to avoid an initial singularity, the quantum gravity effects must
drive the matter contents to effectively violate the strong energy condition, at least for a small
enough volume. It has been shown that in loop quantum cosmology, one generically avoids a
singularity at the quantum level [17] as well as the effective classical level [30–32]. Using the
Raychaudhuri equation, it is then easy to see that the violation of strong energy conditions,
i.e. ω < − 1

3 immediately implies an accelerating phase. In particular in [22], it has been
proved that for any positive definite scalar potential, the loop quantum cosmology induced
accelerating phase undergoes near exponential expansion. Thus, in loop quantum cosmology,
the realization of an early accelerating phase is intimately related to the removal of the
initial singularity. In this scenario, the inflation is essentially driven by the non-perturbative
modification of the scalar field dynamics, namely via the spectrum of the inverse scale factor
operator. This inflationary phase begins as soon as the system gets into the small volume
regime (non-perturbative domain). Therefore, one is not required to fine tune the field strength
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sufficiently uphill as done in the standard scenario. Consequently, one is not required to fine
tune field theoretical parameters to produce a small amplitude of density perturbation. Rather,
as is shown in this paper, the small amplitude is a prediction of the framework that has been
used in the calculation.

Nevertheless, one can impose a self-consistency requirement on the mass parameter in
this calculation. Let us recall that in simplifying mode-function equation (28), we have
neglected the mass term mφ

H
compared to the term k

Ha
. Since we are interested in calculating

the power spectrum at the time of horizon crossing, i.e., k
Ha

= 2π , then to be self-consistent
we must require that mφ < 2πH . This in turns implies that the maximum value of the mass

parameter be mφ ∼ 1
27 (ρ̄)

1
4 . We may mention here that in effective loop quantum cosmology

ρ̄ in fact is the maximum energy density, i.e. (ρ̄)
1
4 is precisely the cut-off scale. It is worth

emphasizing that the restriction on the mass parameter here is a self-consistency requirement
of the calculation as solving the modified mode-function equation (28) including the mass
term turns out to be not  so easy a task.

7.2. The spectral index

So far in the calculation we have assumed that during the inflationary period energy density
is strictly constant. But this was rather an approximation to simplify the calculation. We
can in fact compute the effect of small variation of energy density. The small variation of
the Hubble parameter leads to a small deviation from the scale-invariant power spectrum.
The scale-dependent property of the power spectrum is conveniently described in terms of
spectral index. From the conservation equation it follows that d ln ρ

d ln a
= −3(1 + ωeff) =

−Cω(n + 2)a2(1−n). Using this relation, one can compute the spectral index at the horizon
crossing

ns − 1 := d lnPδ(k)

d ln k

≈ Cω(−n − 2)

(
k

2πH

)2(1−n)

+ 4c0(1 − n)

(
k

2πH

)4(1−n)

. (43)

We may note here that the spectral index ns is extremely close to unity and the difference
(ns − 1) depends non-trivially on the ambiguity parameter. But the most important property
of the spectral index (43) is (ns − 1) > 0 for all allowed values of the ambiguity parameter
(0 < l < 1, i.e., −∞ < n < −2). This is in complete contrast to the standard single-field
inflationary scenario. We have mentioned earlier that the power spectrum for both the scenarios
varies as H 2. For the single-field standard inflationary scenario, the leading contribution to the
spectral index deviation comes from the variation of Hubble parameter during the inflationary
period. So for the standard scenario the spectral index is given by

ns − 1 := d lnPδ(k)

d ln k
≈ −6ε, (44)

where ε = 1
16πG

(
V ′(φ)

V (φ)

)2 = 4πG
φ̇

2

H 2 is the slow-roll parameter of the standard inflationary
scenario. In fact due to the time variation of ε there will be additional contributions in
(44). But those will be sub-leading for the single-field inflationary scenario. Thus, for the
single-field standard inflationary scenario the spectral index satisfies (ns − 1) < 0.

It is worth pointing out that in the standard method (indirect method) of obtaining the
power spectrum of the density perturbation, one first computes the power spectrum of the
field fluctuation. Using expression (33), one can compute the power spectrum of the field
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fluctuation at the horizon exit, given by

Pφ(k) := k3

2π2
|fk|2 =

(
1

2π

) |n + 2|
3

n22
1
n



(− 1

2n

)2 H 2, (45)

which is scale invariant. In the standard inflationary scenario, this would have led to a scale-
invariant power spectrum of density perturbation. However, we have already mentioned that
this is not straightforward in effective loop quantum cosmology. This is due to the fact that the
question of how to obtain a general effective action, consequently an effective stress–energy
tensor, from a canonical quantum theory of gravity is not yet well settled. This prevents one
computing the power spectrum of density perturbation using standard method, as one needs to
know the expression of the general effective stress–energy tensor, to relate the power spectrums
of field fluctuation to the density perturbation. Nevertheless, one may naively assume that the
power spectrum of the field fluctuation and that of the density perturbation will have a similar
relation. In that case, the computed power spectrum of the density perturbation using the
direct and indirect methods would differ from each other by an extremely weak k dependence.
This difference would then be similar in nature to the results of [33] in the context of the
standard inflationary scenario. However, this difference would at most affect the quantitative
nature (that too by a vanishingly small amount) but not the qualitative nature of the spectral
index (43) whatsoever.

Thus, it is clear that for the effective loop quantum cosmology induced inflationary scenario
the spectral index has a qualitatively distinct feature compared to that of the single-field-
driven standard inflationary scenario. In the following section, we discuss its observational
consequences.

7.3. Observational implications

The power spectrum of the density perturbation generated during the inflationary era is
not directly observable. Rather, the observed power spectrum corresponds to the density
perturbation at the time of re-entry in the post-inflationary period. At the time of re-entry,
the larger wavelength (2πk−1) enters the horizon at a later time compared to the smaller
wavelength. It is clear from expression (39) that if there is a change in the equation of state
of the universe during re-entry then there will be an additional modification of the power
spectrum. Since we are interested in estimating the original power spectrum generated during
the inflationary era then its quite important to avoid additional modification of the power
spectrum coming from other possible sources.

The observed anisotropy in the CMB sky corresponds to the density perturbation on the last
scattering surface. The last scattering surface broadly demarcates the end of the radiation-
dominated era to the beginning of the matter-dominated era. Naturally, during this period
(1 + ω) changes from 4

3 to 1. While deriving expression (43) of the spectral index, we have
assumed a constant equation of state during re-entry. Thus, for the purpose of comparison with
observations, one must consider only those modes for which the equation of state was almost
constant during re-entry. On the last scattering surface they will correspond to the modes
which are well inside the horizon at the time of decoupling. Being smaller in wavelength
these modes will subtend smaller angles in the present-day sky. Naturally these modes will
correspond to the higher multipole number. Also if one considers sufficiently narrow bands
in these parts of the spectrum then one can avoid additional modification coming from the
sub-horizon evolution of the density perturbation in the period between their re-entry and the
decoupling.
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To infer the property of the primordial density perturbation from the observed angular
power spectrum of the CMB, one needs to know the evolution of the universe for the period
between the decoupling and the present-day universe. Since a major fraction of today’s energy
density is believed to come from the mysterious dark matter and dark energy then it is quite
obvious that there will be a considerable influence from them on the inferred primordial power
spectrum. The current observational estimate of the spectral index based on WMAP+SDSS
data is ns = 0.98 ± 0.02 [48–50]. This estimate is based on the entire part of the observed
angular power spectrum; nevertheless, this agrees (rather marginally) with the expression for
the spectral index (43) which is strictly valid only for the part of the spectrum in the higher
multipole region. For this purpose, it may be more convenient to reconstruct the primordial
power spectrum using the observed CMB angular power spectrum (for example, as done in
[51–54]) and then consider the higher wavenumber part of the spectrum.

8. Discussion

In summary, we have computed the power spectrum of the density perturbation generated
during the loop quantum cosmology induced inflationary phase. The resulting power spectrum
is broadly scale invariant. Further, it has been shown that the small amplitude for primordial
density perturbation is a natural prediction of the framework of effective loop quantum
cosmology. Unlike the standard inflationary scenario, here one is not required to fine tune field
theoretical parameters to produce the observed small amplitude for the density perturbation.
The resulting power spectrum also has a qualitatively distinct feature compared to the standard
single-field inflationary scenario. The spectral index in the effective loop quantum cosmology
scenario satisfies (ns − 1) > 0 whereas for the standard inflationary scenario it satisfies
(ns − 1) < 0.

Naturally, the spectral index of the power spectrum for the density perturbation generated
during loop quantum cosmology induced inflation and the standard inflation differs in a non-
trivial and non-overlapping way. This is a consequence of the fact that during loop quantum
cosmology induced inflation the Hubble horizon shrinks marginally whereas in the standard
inflationary scenario the Hubble horizon expands. This feature leads the power spectrum for
the corresponding density perturbation to be tilted in opposite directions to each other. We have
argued that this feature is a generic property of the corresponding scenario and not a property
of some particular model. We have also pointed out the part of the observed CMB angular
power spectrum that may be better suited for testing this particular feature observationally,
namely the part corresponding to the higher multipole numbers of the CMB angular power
spectrum.

It is worth pointing out that the calculation techniques used here within the adopted
framework are analytic and the approximations used here are mostly justified. Nevertheless,
one should keep it in mind that this calculation should not be considered as the first principle
calculation of density perturbation within loop quantum cosmology. Rather, this calculation
is based on effective loop quantum cosmology. Here, we have considered the non-perturbative
modification of the kinetic term of the scalar matter Hamiltonian. In a first principle calculation
(using an inhomogeneous model), one may naively expect to get corrections also in the
gradient term of the matter Hamiltonian. This modification should depend on some ambiguity
parameter similar to that of l here. In this paper, it is shown that the ambiguity parameter
l dependence of the amplitude of the power spectrum is very weak. So the effect of such
possible modifications on the amplitude of the power spectrum is expected to be rather small.
The effect on spectral index deviation due to this modification is also expected to be small
as it is determined mainly by the background evolution itself. Thus, it is very likely that the
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calculation presented here should be a good approximation of what is expected from a first
principle calculation in the energy scale concerned.

We have used the direct method to compute the power spectrum of the density perturbation.
This method uses the same techniques that are used in the standard quantum field theory. So one
needs to have some kind of ultra-violet divergence regularization prescription. To regularize
the ultra-violet divergence we have used the method outlined and explicitly shown in [33, 34].
This method relies on the assertion that a proper theory of quantum gravity should contain
a zero-point proper length. In the effective loop quantum cosmology such a length scale is
naturally available. In this method, regularization is essentially carried out by adding a zero-
point proper length to the standard definition of proper length. In this paper, the procedure was
notationally simplified by using the notion of effective coordinate length. Nevertheless, the
regularization procedure was carried out by hand. But this was expected as the calculations
here were done using standard quantum field theory. On the other hand, one would expect
that in a first principle calculation these regulators should come built-in as has been argued in
the context of the full theory [35]. The crucial result of the paper, namely the properties of
the spectral index are insensitive to the regularization method as it is dominantly determined
by the nature of the effective equation of state during its inflationary phase.

In the standard inflationary scenario one is also interested in computing the power spectrum
for the tensor mode of the metric fluctuations, i.e., a gravitational wave. But, as we have
mentioned, the technology required to deal with inhomogeneity at the fundamental level
in loop quantum cosmology is not available yet. In the loop quantum gravity approach,
geometry is quantized in non-perturbative way. Thus, it is not very easy to ‘guess’ the
structure of the quantum fluctuation of geometry until one does an explicit calculation within
the framework. Nevertheless, one would naively expect that the power spectrum for the tensor
mode perturbation should be similar to the standard scenario as the structure of the effective
gravity sector Hamiltonian is similar to the classical Hamiltonian in the relevant length scale,
apart from the fact that the relevant energy scale during corresponding inflationary period is
also similar.

Before we discuss the implications of possible outcomes of the mentioned test, let us
compare the standard inflationary scenario and loop quantum cosmology induced inflationary
scenario. In order to have a successful inflation in the standard scenario, generally one
requires multi-level fine tuning of the field parameters. In other words, one faces several kinds
of naturalness problems to achieve a successful inflation.

The first is to start inflation. In the standard inflationary scenario, it is necessary to choose

initial field velocity to be sufficiently small so that the equation of state
1
2 φ̇

2−V (φ)

1
2 φ̇

2
+V (φ)

≈ −1. The

second is to sustain inflation. In the standard scenario, one is required to choose the field
potential to be flat enough so that field does not gain momentum quickly. The third is to
generate sufficient expansion (to solve the horizon problem and others). To achieve this in the
standard scenario, one is required to choose the initial field configuration sufficiently uphill in
the potential. In other words, one is required to fine tune the initial field configuration. The
fourth is to end inflation. In many cases, this requires a sort of potential engineering to have
a long flat plateau and then a fast fall-off in the potential profile. The fifth is to produce small
amplitude for primordial density perturbation. To produce the observed small amplitude of
density perturbation one needs to fine tune parameters of the field potential. This fine tuning
is basically required to compensate the ‘third’ fine tuning.

On the other hand, to achieve the first, second and fourth requirements in the loop quantum
cosmology induced inflationary scenario one does not require the parameters to be fine tuned.
These requirements are naturally achieved as they simply follow from the spectrum of the
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inverse scale factor operator. The fifth requirement, i.e. the small amplitude, as shown in
this paper, is a natural prediction of the effective loop quantum cosmology. The situation
regarding the third problem also improves significantly. In loop quantum cosmology, the
generated amount of expansion is controlled by the ambiguity parameter j . Clearly, to
produce sufficiently large expansion, using loop quantum cosmology alone, one is required
to choose the value of j to be large. Thus, it is very likely that only the initial part of
the inflation was driven by loop quantum cosmology modification. It has been argued in
[40–42] that the loop quantum cosmology induced inflationary phase can lead to a secondary
standard inflationary phase. This follows from the fact that the in-built inflationary period of
loop quantum cosmology can produce favourable initial conditions for an additional standard
inflationary phase. In [41], the authors have also studied the possible effects of the above
mechanism on the CMB angular power spectrum generated during the standard inflationary
phase that follows the LQC-induced inflationary phase and shown that it can lead to suppression
of power in the low CMB multipoles. Since the observed part of the CMB angular power
spectrum generally corresponds to the early period of inflation then it may well be the situation
where the observed part of the CMB angular power spectrum corresponds to the loop quantum
cosmology driven inflationary period.

It is worthwhile emphasizing that the large amount of expansion in this scenario is required
not to solve the horizon problem (being non-singular this model avoids horizon problem [22])
rather to avoid a different kind of problem. We have seen that the ‘initial size’ of the universe
was typically of the order of Planck units and the corresponding energy scale was also typically
of the order of Planck units. During the relativistic particle (radiation) dominated era energy
scale falls off typically with the inverse power of the associated length scale. It is then difficult
to understand why the universe is so large (∼1060Lp) today but still has relatively a very high
energy scale (∼10−30Mp). During the inflationary period, on the other hand, the energy scale
remains almost constant whereas the length scale grows almost exponentially with coordinate
time. It is now clear that we can avoid this discrepancy between the energy scale and length
scale of the universe provided there exists an inflationary period with sufficiently long duration
in the early universe.

Now if the observed power spectrum turns out to be not in agreement with the computed
power spectrum, then one should conclude that the phase of inflation corresponding to the
observed window could not possibly be driven by loop quantum cosmology modification. It
may then restrict the allowed choices for the ambiguity parameter j . Consequently, it will be
an important issue to understand within the framework of isotropic loop quantum cosmology
with minimally coupled scalar matter field, why the observed universe today is so large but
still has sufficiently high energy scale.
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