
ar
X

iv
:g

r-
qc

/0
50

21
16

 v
1 

  2
8 

Fe
b 

20
05

On initial conditions and global existence for
accelerating cosmologies from string theory

Makoto Narita1

Max-Planck-Institut für Gravitationsphysik,
Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm,

Germany
E-mail: maknar@aei-potsdam.mpg.de

Abstract
We construct a solution satisfying initial conditions for accelerating cosmologies from
string/M-theory. Gowdy symmetric spacetimes with a positive potential are consid-
ered. Also, a global existence theorem for the spacetimes is shown.
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1 Introduction

It is expected that the inflation paradigm would be explained within superstring/M-
theory. The theory predicts that spacetime dimension is greater than four. Since
observable spacetime dimension is four, it is thought that the extra dimensions
would be compactified within Planck scale. Recently, it has been pointed out that
it is possible to find cosmological solutions which exhibit a transient phase of ac-
celerated expansion of the universe (like inflation) if the size of the compactified
internal hyperbolic space depends on time and/or if they are S(pacelike)-brane so-
lutions [EG, TP, WMNR]. In these models, exponential potential terms like V0e

aψ

appear, where ψ denotes the compactification volume or effective dilaton field, a
is a coupling constant and V0 is positive number. Explicitly, a typical action for
the case is of the form

S =

∫

d4x
√−g

[

− 4R+
1

2
(∇ψ)2 + V0e

aψ

]

. (1)

Then, it is explained that if it would be supposed that, in the case of a > 0, the
field ψ starts at a large negative value (i.e. the potential term can be neglected)
with high kinetic energy (∂tψ is positive and large enough) 2 near cosmological

1Present address: Center for Relativity and Geometric Physics Studies, Department of Physics,

National Central University, Jhongli 320, Taiwan Electronic address: narita@phy.ncu.edu.tw
2In the case of a < 0, ψ and ∂tψ start at large positive and negative values, respectively.
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initial singularities, then, the scalar field runs up the exponential potential, turn
around and falls back. At the turning point, the potential term becomes dom-
inant, i.e. the universe makes accelerated expansion. Thus, the universe starts
out in a decelerated expansion phase (asymptotic past) and enters an accelerat-
ing phase (intermediate era), and after these, the expansion becomes deceleration
again (asymptotic future). We call this scenario paradigm-A.

We would like to investigate this interesting paradigm from viewpoint of
mathematical relativity and cosmology. It is important to study rigorously whether
or not the paradigm-A is acceptable. In particular, it should be shown that the
assumption of the initial conditions for ψ is generic because, as indicated previ-
ously [EG], the accelerated expansion of the universe is all the result of the initial
conditions. That is, (Q1): Are there singular solutions satisfying initial conditions
in paradigm-A to the Einstein-matter equations in generic?

Furthermore, to be complete the scenario of paradigm-A, we should show
global existence theorems, i.e., (Q2): Are there global solutions to the Einstein-
matter equations with such exponential potentials? Unlike BKL [BKL] or cosmic
no-hair conjectures [WR], which are problems in only asymptotic (local) regions of
spacetimes, the paradigm-A is a global (in time) problem as mentioned already. In
addition, it is also important as the first step to prove the strong cosmic censorship.

For (Q1), to construct solutions satisfying the initial condition of paradigm-A,
we will use the Fuchsian algorithm developed by Kichenassamy and Rendall [KR].
It is interpreted that the class of solutions we are looking for here is a subclass of
asymptotically velocity-terms dominated (AVTD) singular solutions since poten-
tial terms are neglected near the singularities and, in addition, signature of the time
derivative of the scalar field is restricted. By using the method, it has been shown
that there are AVTD singularities in (non-)vacuum Gowdy, polarized T 2-, polar-
ized U(1)-symmetric spacetimes and the Einstein-scalar-p-from system without
symmetry assumptions [AR, DHRW, IK, IM, NTM]. Also, systems with an expo-
nential potential as given in (1) have been discussed formally in [DHRW, RA00].
Thus, our result is not only an answer for (Q1), but also it complements previous
results.

For (Q2), we want to analyze Gowdy symmetric spacetimes. Future global
existence theorems for spatially compact, locally homogeneous spacetimes [LH03,
LH04, RA04] and hyperbolic symmetric spacetimes [TR] with a positive potential
(or a positive cosmological constant) have been proved. These spacetimes do not
include gravitational waves. Also, although global existence theorems for Gowdy
(more generally, T 2-) symmetric spacetimes with or without matter have been
shown [AH, ARW, BCIM, IW, MV, NM02, NM03, WM], it has not been prove
the theorems for the spacetimes with a positive potential. Therefore, spacetimes
with dynamical degrees of freedom of gravity and with the positive potential should
be considered as the next step.

As a model, we choose the bosonic action arising in low energy effective
superstring (supergravity) theory since we have a similar action with (1) after
the toroidal compactification of the extra dimensions. There are anti-symmetric
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two-form, Bµν , and three-form, Cµνρ fields in the action. It is known that, in
general, p-form fields in n-dimensional spacetimes may violate the strong energy
condition for p ≥ n− 1 and then, accelerated expansion of the universe would be
expected [GG]. Here, we do not consider hyperbolic compactification of the extra
higher dimensions, but the only fluxes of four-form field strengths are investigated
because these have essentially the same effects to obtain the exponential potential
terms as (1) [EG, TP, WMNR].

Then, our purposes are to construct singular solutions satisfying conditions of
paradigm-A and to show a global existence theorem for Gowdy symmetric space-
times with stringy matter fields.

1.1 Action

The dimensionally reduced effective action in the Einstein frame is given by

SIIA =

∫

d4x
√−g

[

− 4R+
1

2
(∇φ)2 +

1

2 · 3!
e−2λφH2 +

1

2 · 4!
e−2λφF 2

]

, (2)

where g is the determinant of the metric gµν on a four-dimensional spacetime
manifold M , 4R is the Ricci scalar of gµν , φ is the dilaton field, H = dB is the
three-form field strength, F = dC is the four-form field strength and λ is a coupling
constant. If λ = 1, we have the action for the type IIA supergravity in the absence
of vector fields and the Chern-Simons term [LWC].

In four dimensions, there is a duality between the three-form field strength
and a one-form, which is interpreted as the gradient of a scalar field. Then, we
may define the pseudo-scalar axion field σ as follows:

Hµνρ = ǫµνρκe2λφ∇κσ. (3)

Also, the field equation

∇µ

(

e−2λφFµνρκ
)

= 0, (4)

and the Bianchi identity

∂[αFµνρκ] = 0, (5)

for the four-form field strength can be solved by

Fµνρκ = Qǫµνρκe2λφ, (6)

where Q is an arbitrary constant. Thus, after taking the dual transformation and
solving the field equations for F , we have a reduced effective action for the IIA
system of the form

SIIA∗ =

∫

d4x
√−g

[

− 4R+
1

2

{

(∇φ)2 + e2λφ(∇σ)2 +Q2e2λφ
}

]

. (7)

Hereafter, we assume Q 6= 0. Thus, we have the action which is the same from
with (1).
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1.2 Field equations for Gowdy symmetric spacetimes

The Gowdy symmetric spacetimes admit a T 2 isometry group with spacelike orbits
and the twists associated to the group vanish [GR]. The topology of spatial section
can be accepted S3, S2 × S1, T 3 or the lens space [CP]. In this paper, we assume
T 3 spacelike topology.

Now, we will choose a coordinate, which is the areal time one. This means
that time t is proportional to the geometric area of the orbits of the isometry
group. Explicitly,

ds = −e2(η−U)αdt2 + e2(η−U)dθ2 + e2U (dx +Ady)2 + e−2U t2dy2, (8)

where ∂/∂x and ∂/∂y are Killing vector fields generating the T 2 group action,
and η, α, U and A are functions of t ∈ (0,∞) and θ ∈ S1. It is also assumed that
functions describing behavior of matter fields are ones of t and θ.

Let us show the field equations obtained by varying the action (7) in the areal
coordinate (8).
Constraint equations

η̇

t
= U̇2 + αU ′2 +

e4U

4t2
(Ȧ2 + αA′2)

+
1

4

[

φ̇2 + αφ′2 + e2λφ(σ̇2 + ασ′2) + αQ2e2λφ+2(η−U)
]

, (9)

η′

t
= 2U̇U ′ +

e4U

2t2
ȦA′ − α′

2tα
+

1

2
(φ̇φ′ + e2λφσ̇σ′), (10)

α̇ = −tα2Q2e2λφ+2(η−U). (11)

Evolution equations

η̈ − αη′′ =
η′α′

2
+
η̇α̇

2α
− α′2

4α
+
α′′

2
− U̇2 + αU ′2 +

e4U

4t2
(Ȧ2 − αA′2)

+
1

4

[

−φ̇2 + αφ′2 + e2λφ(−σ̇2 + ασ′2) + αQ2e2λφ+2(η−U)
]

, (12)

Ü − αU ′′ = − U̇
t

+
α̇U̇

2α
+
α′U ′

2
+
e4U

2t2
(Ȧ2 − αA′2) +

1

4
αQ2e2λφ+2(η−U), (13)

Ä− αA′′ =
Ȧ

t
+
α̇Ȧ

2α
+
α′A′

2
− 4(ȦU̇ − αA′U ′), (14)

φ̈− αφ′′ = − φ̇
t

+
α̇φ̇

2α
+
α′φ′

2
+ λe2λφ(σ̇2 − ασ′2) − λαQ2e2λφ+2(η−U), (15)
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σ̈ − ασ′′ = − σ̇
t

+
α̇σ̇

2α
+
α′σ′

2
− 2λ(φ̇σ̇ − αφ′σ′). (16)

Hereafter, dot and prime denote derivative with respect to t and θ, respectively.
We will call this system of partial differential equations (PDEs) Gowdy symmet-
ric IIA system. Note that these equations are not independent because the wave
equation (12) for η can be derived from other equations. Indeed, there are only two
dynamical degree of freedom (i.e. U and A) in the Gowdy symmetric spacetimes.

2 Initial singularities

Consider the problem (Q1). To begin with a brief review of the Fuchsian algorithm,
which is a method to construct exact singular solutions to a PDE system near
a singularity (t = 0). The algorithm is based on the following idea: near the
singularity, decompose the singular formal solutions into a singular part, which
depends on a number of arbitrary functions, and a regular part u. If the system
can be written as a Fuchsian system of the form

[D + N (x)] u = tf(t, x, u, ∂xu), (17)

where D := t∂t and f is a vector-valued regular function, then the following
theorem can be apply:

Theorem 1 [KR] Assume that N is an analytic matrix near x = x0 such that
there is a constant C with ‖ΛN ‖ ≤ C for 0 < Λ < 1. In addition, suppose that
f is a locally Lipschitz function of u and ∂xu which preserves analyticity in x
and continuity in t. Then, the Fuchsian system (17) has a unique solution in a
neighborhood of x = x0 and t = 0 which is analytic in x and continuous in t and
tend to zero as t → 0.

Thus, the regular part goes to zero and the singular part of the formal solution
becomes an exact solution to the original PDE system near the singularity.

Unlike the vacuum Gowdy case, the evolution equations (13)-(16) do not
decouple from the constraint equations (9)-(11), since they contain the function
α. Therefore, according to [IK], we take equations (9), (11), (13)-(16) as effective
evolution ones and (10) as the only effective constraint equation. This is not a
standard setup for the initial-value problem for the Einstein-matter equations (see
example [TM]). Therefore, it is not clear whether the initial-value problem for our
case away from the singularity at t = 0 has a unique solution or not, unless it is
shown that the constraint (10) propagates.

Let us show the local existence and uniqueness of our initial-value problem.
We can obtain the following first-order system for ~z from the PDE system (9),
(11), (13)-(16):

∂t~z = f(t, θ, ~z, ∂θ~z), (18)
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where ~z := (U, U̇ , U ′, A, Ȧ, A′, φ, φ̇, φ′, σ, σ̇, σ′, α, η). This means that the PDE sys-
tem is of Cauchy-Kowalewskaya type. Thus, ignoring the constraint equation (10),
we have a unique solution to the effective evolution equations by prescribing the
analytic initial data for t = t0 > 0 if all functions are analytic.

Now, to assure the local existence and uniqueness of the initial-value problem,
we must show that the constraint (10) propagates. Let us set

N := η′ − 2DUU ′ − e4U

2t2
DAA′ − 1

2
Dφφ′ − e2λφ

2
Dσσ′ +

α′

2α
, (19)

Computing

0 = Dη′ − (Dη)′

= DN +D

(

2DUU ′ +
e4U

2t2
DAA′ +

1

2
Dφφ′

e2λφ

2
Dσσ′ − α′

2α

)

− (Dη)′,(20)

we have a linear, homogeneous ordinary differential equation (ODE) for N of the
form

DN − Dα

2α
N = 0. (21)

Thus, the uniqueness theorem for ODEs guarantees that N is identically zero
for any time t if we set initial data for t = t0 such that N(t0) = 0. Thus, the
local existence and uniqueness of the initial-value problem for our case has been
shown in the analytic case. In appendix, we shall consider the smooth version of
the initial-value problem for our non-standard setup of the Gowdy symmetric IIA
system.

2.1 Application of the Fuchsian algorithm

Let us construct AVTD singular solutions to the Gowdy symmetric IIA system.
First, we will consider the case that a solution has a maximum number of free
functions. In this sense, the solution (given in theorem 2) is generic.

Neglecting spatial derivative and potential terms in the effective evolution
equations, we have velocity-terms dominated (VTD) equations as follow:

Dη = (DU)2 +
e4U

4t2
(DA)2 +

1

4
(Dφ)2 +

e2λφ

4
(Dσ)2, (22)

Dα = 0, (23)

D2U =
1

2α
DUDα+

e4U

4t2
(DA)2, (24)
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D2A = 2DA+
1

2α
DADα− 4DUDA, (25)

D2φ =
1

2α
DφDα+ λe2λφ(Dσ)2, (26)

D2σ =
1

2α
DσDα− 2λDφDσ. (27)

Solving this system of VTD equations, we have a VTD solution. Then, the following
formal solution is obtained:

η =

(

k(θ)2 +
κ(θ)2

4

)

ln t+ η0(θ) + tǫµ(t, θ), (28)

α = α0(θ) + tǫβ(t, θ), (29)

U = k(θ) ln t+ U0(θ) + tǫV (t, θ), (30)

A = h(θ) + t2−4k (A0(θ) +B(t, θ)) , (31)

φ = κ(θ) ln t+ φ0(θ) + tǫΦ(t, θ), (32)

σ = ω(θ) + t−2λκ (σ0(θ) + Σ(t, θ)) , (33)

where

ǫ > 0, 0 < k(θ) <
1

2
, α0 > 0 (34)

and

−1 < λκ(θ) < 0. (35)

Note that µ, β, V , B, Φ and Σ are regular parts and others are singular parts
(=VTD solutions).

Inserting this formal solution into the Einstein-matter equations, we obtain
the following Fuchsian system:

(D + N )~u = tδf(t, θ, ~u, ∂θ~u), (36)
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where ~u := ui = (V,DV, tǫV ′, B,DB, tǫB′,Φ, DΦ, tǫΦ′,Σ, DΣ, tǫΣ′, β, µ), i = 1, · ·
·, 14, f is a vector-valued regular function and

N =

















































0 −1 0 0 0 0 0 0 0 0 0 0 0 0
ǫ2 2ǫ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 2 − 4k 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 ǫ2 2ǫ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 −2λκ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ǫ 0

−2kǫ −2k 0 0 0 0 −κǫ
2 −κ

2 0 0 0 0 0 ǫ

















































. (37)

Note that δ > 0 if the condition (34), (35) and

K := (k − 1

2
)2 +

κ2

4
+ λκ+

3

4
> 0 (38)

holds.
To apply theorem 1 to our Fuchsian system (36), we must to verify that the

boundedness condition for the matrix N holds. To do this, we have P−1NP = N0,
where

N0 =

















































ǫ 1 0 0 0 0 0 0 0 0 0 0 0 0
0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 − 4k 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ǫ 1 0 0 0 0 0 0
0 0 0 0 0 0 0 ǫ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2λκ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ǫ 0
0 2k 0 0 0 0 0 κ

2 0 0 0 0 0 ǫ

















































, (39)
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and

P =

















































1 0 0 0 0 0 0 0 0 0 0 0 0 0
−ǫ −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −ǫ −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

















































. (40)

Then,

ΛN0 =

















































Λǫ Λǫ ln Λ 0 0 0 0 0 0 0 0 0 0 0 0
0 Λǫ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Λ2−4k 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Λǫ Λǫ ln Λ 0 0 0 0 0 0
0 0 0 0 0 0 0 Λǫ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Λ−2λκ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Λǫ 0
0 2kΛǫ ln Λ 0 0 0 0 0 κ

2 Λǫ ln Λ 0 0 0 0 0 Λǫ

















































, (41)

hence PΛN0P−1 = ΛN is uniformly bounded for 0 < Λ < 1 if the condition (34)
and (35) hold.

Thus, there is a unique solution of the Fuchsian system (36) which goes to zero
as t→ 0, and which is analytic in θ and continuous in t. Note that (U,A, φ, σ, α, η)
is a solution of the effective evolution equations of the Einstein-matter equations
(9), (11), (13)-(16) if we construct (U,A, φ, σ, α, η) from (28)-(33) with V = u1,
B = u4, Φ = u7, Σ = u10, β = u13 and µ = u14. This fact follows from equations
D(uI+2 − tǫu′I) = 0, where I = 1, 4, 7, 10.

Now, we want to get a constraint condition to ensure that the solution ob-
tained above is a genuine one to the full Einstein-matter equations. Since Dα/α =

9



O(tǫ),

Ṅ

N
=

α̇

2α
= O(tǫ−1), (42)

then, the right-hand-side of the above equation is integrable. From this result, we
can put a function P (t, θ) such that

N ∝ expP (t, θ). (43)

This means that N is identically zero if we would choose the singular data such
that N → 0 as t→ 0, and then, the constraint equation (10) is satisfied.

Inserting the formal solutions (28)-(33) into the constraint equation (19), we
have

N = η′0 − 2kU ′
0 − e4U0(1 − 2k)h′A0 −

κφ′0
2

+ e2λφ0κω′σ0 +
α′

0

2α0
+ O(1), (44)

where O(1) is some expression which tends to zero as t→ 0. Thus, the constraint
holds iff the singular data satisfy

η′0 − 2kU ′
0 − e4U0(1 − 2k)h′A0 −

κφ′0
2

+ e2λφ0κω′σ0 +
α′

0

2α0
= 0. (45)

To summarize, we have the following theorem:

Theorem 2 Choose data such that conditions (34), (35) and (45) are satisfied.
Suppose that ǫ is a positive constant less than min{4k, 2− 4k,−2λκ, 2+2λκ, 2K}.
For any choice of the analytic singular data η0(θ), α0(θ), k(θ), U0(θ), h(θ), A0(θ),
κ(θ), φ0(θ), ω(θ) and σ0(θ), the Gowdy symmetric IIA system has a solution of
the form (28)-(33), where µ, β, V , B, Φ and Σ tend to zero as t→ 0. 2

Although the solution given in theorem 2 is generic in the sense that the solution
has a maximum number of free functions, conditions for paradigm-A does not hold
since λκ < 0, i.e. the universe starts with large potential and wrong sign of the
time derivative of φ. To verify the validity of the paradigm-A we need to construct
a solution allowing a condition λκ > 0. Indeed, this problem can be overcame as
follows.

If an AVTD solution with λκ > 0 are needed, we replace expansion (33) with

σ = ω(θ) + tǫΣ(t, θ). (46)

In this case, −2λκ and Λ−2λκ sitting the 11th line and the 11th row in the matrices
N and ΛN0 are replaced by ǫ and Λǫ, respectively. Also, the constraint condition
for the singular data becomes

η′0 − 2kU ′
0 − e4U0(1 − 2k)h′A0 −

κφ′0
2

+
α′

0

2α0
= 0. (47)

Thus, we have the following theorem which is consistent with conditions of paradigm-
A.
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Theorem 3 Choose data such that conditions (34), (47) and λκ > −1/2 are
satisfied. Suppose that ǫ is a positive constant such that max{0,−2λκ} < ǫ <
min{4k, 2 − 4k}. For any choice of the analytic singular data η0(θ), α0(θ), k(θ),
U0(θ), h(θ), A0(θ), κ(θ), φ0(θ) and ω(θ), the Gowdy symmetric IIA system has a
solution of the form (28)-(32) and (46), where µ, β, V , B, Φ and Σ tend to zero
as t→ 0. 2

The positivity of K is automatically satisfied when 0 < k < 1/2 and λκ > −1/2
hold. Then, a solution to the Gowdy symmetric IIA system allowing the initial
conditions for paradigm-A has been constructed. Note that we do not have the
maximum number of free functions in this case. Thus, the solution given in the-
orem 3 is restricted than generic one given in theorem 2. The reason why we do
not have the maximum number is the existence of dilaton coupling with kinetic
terms of other fields (the axion field in our case). Generically, all fields arising in
superstring/M-theory couple with the dilaton field. Therefore, we may not avoid
such restriction for solutions to our problem unless the dilaton coupling is ignored.

3 Global existence

Now, consider the problem (Q2). We will show the following theorem:

Theorem 4 Let (M, g, φ, σ) be the maximal Cauchy development of C∞ initial
data for the Gowdy symmetric IIA system. Suppose that the timelike convergence
condition (TCC), which is RµνW

µW ν ≥ 0 for any timelike vector Wµ, holds and
there is a positive constant λ̄ such that |λ| ≤ λ̄ < 1/2. Then, M can be covered
by compact Cauchy surfaces of constant areal time t with each value in the range
(0,∞).

In the first place, we need a local existence theorem for the Gowdy symmetric
IIA system, which is the Einstein-(minimally coupled) scalar system with a positive
potential. Fortunately, there is no coupling caused by existence of such matter fields
in the principal part of the PDE system. For this reason, since the local existence
theorems for vacuum Gowdy (more generically, T 2-symmetric) spacetimes have
been shown [MV, CP], the same theorem for the Gowdy symmetric IIA system
can be shown as vacuum case [FR]. Thus, it is enough to verify uniform bounds
of functions (η, α, U,A, φ, σ) and their first and second derivatives to prove global
existence [MA]. The strategy is similar with the case of T 2-symmetric Einstein(-
Vlasov) system [AH, ARW, BCIM, IW, WM].

Let us define

γ := η +
1

2
lnα. (48)

By using γ we can rewrite the constraint equations as follows:

γ̇

t
= E − Q2

4
e2(γ+λφ−U), (49)

11



γ′

t
=

F√
α
, (50)

α̇ = −tαQ2e2(γ+λφ−U), (51)

where

E := U̇2 + αU ′2 +
e4U

4t2

(

Ȧ2 + αA′2
)

+
1

4

[

φ̇2 + αφ′2 + e2λφ
(

σ̇2 + ασ′2
)

]

, (52)

and

F :=
√
α

[

2U̇U ′ +
e4U

2t2
ȦA′ +

1

2

(

φ̇φ′ + e2λφσ̇σ′
)

]

. (53)

Define energies for the Gowdy symmetric IIA system

E(t) :=

∫

S1

1√
α

[

E +
1

4
αQ2e2(η+λφ−U)

]

dθ, (54)

and

Ẽ(t) :=

∫

S1

E√
α
dθ, (55)

In our case, the TCC is as follows:

φ̇2 + e2λφσ̇2 ≥ 1

2
αQ2e2(η+λφ−U) (56)

First, we will show energy decay and energy inequalities (see lemmas 1 and
3 in [IW]).

Lemma 1 Suppose the TCC and the condition |λ| ≤ λ̄ < 1/2. Then, E and Ẽ
decrease monotonically along time t, that is,

dE(t)

dt
< 0 and

dẼ(t)

dt
< 0, (57)

and E and Ẽ are bounded on (T−, T+), where 0 < T− < ti < T+ < ∞. Further-
more, there exists numbers, E− and Ẽ−, satisfying

E− = lim
t→T

−

E(t) and Ẽ− = lim
t→T

−

Ẽ(t). (58)

Proof. One can calculate directly as follows:

dE(t)

dt
= −

∫

S1

1√
αt

(

2U̇2 +
e4U

2t2
αA′2 +

φ̇2

2
+
e2λφσ̇2

2

)

dθ ≤ 0. (59)
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Thus, E(t) is controlled by E(ti) for any t ∈ [ti, T+).
The right-hand-side of equation (59) can be controlled by E:

dE

dt
≥ −4

t
E. (60)

For any t ∈ (T−, ti], we have

E(t) ≤ E(ti)

(

ti
t

)4

. (61)

Then, E(t) ≤ E(ti)
(

ti
T
−

)4

on (T−, ti). This boundedness and the monotonicity of

E(t) assert that E(t) continuously extends to T− and then E− exists.

Next, we show the same results for ˜E(t). By direct calculation, we have

dẼ(t)

dt
=

∫

S1

− 2√
αt

(

U̇2 +
e4U

4t2
αA′2 +

φ̇2

4
+
e2λφσ̇2

4

)

+
α̇

2α

( E√
α

+
1

t
√
α

[

U̇ − λφ̇
]

)

dθ. (62)

We cannot conclude the monotonicity for ˜E(t) from the above form. Now,

− 2U̇2

t
√
α

+
α̇U̇

2tα
√
α

= − 2

t
√
α

(

U̇ − α̇

8α

)2

+
1

32t
√
α

(

α̇

α

)2

, (63)

and

− 2φ̇2

4t
√
α
− λα̇φ̇

2tα
√
α

= − 1

2t
√
α

(

φ̇+
λα̇

2α

)2

+
λ2

8t
√
α

(

α̇

α

)2

. (64)

Therefore,

dẼ(t)

dt
=

∫

S1

− 2√
αt

(

(

U̇ − α̇

8α

)2

+
e4U

4t2
αA′2 +

1

4

(

φ̇+
λα̇

2α

)2

+
e2λφσ̇2

4

)

+
α̇

2α

( E√
α
−
[

1

16
+
λ2

4

]√
αQ2e2(η+λφ−U)

)

dθ, (65)

where equation (11) has been used. By using the TCC and the inequality |λ| ≤
λ̄ < 1/2, we have the conclusion of the monotonic nonincreasing property for ˜E(t),

dẼ

dt
≤
∫

S1

Cλ
2

α̇

α

E√
α
dθ ≤ 0, (66)

where Cλ < 1 is a positive constant depending only λ.
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Now, it follows that ˜E(t) ≤ E(t) for any time t. Therefore, one can see that
Ẽ(t) also extend continuously to T− by the monotonicity of it. 2

Next two lemmas will be used to control dynamical parts (i.e. U , A, φ and σ)
of the system. The method of the proof is based on the light cone estimate [MV,
BCIM].

Lemma 2 If α̇α−1 is bounded, E is bounded on (T−, T+) × S1.

Proof. Differentiating quantities, E and F , along null directions ∂ζ := ∂t −
√
α∂θ

and ∂ξ := ∂t +
√
α∂θ, we have

∂ζ(E + F) =
α̇

α
(E + F) − 1

t

[

2U̇2 +
e4U

2t2
αA′2 +

1

2
φ̇2 +

1

2
e2λφσ̇2 + F

]

− α̇

2tα

[

U̇ +
√
αU ′ − λ

(

φ̇+
√
αφ′
)]

=: L+, (67)

and

∂ξ(E − F) =
α̇

α
(E − F) − 1

t

[

2U̇2 +
e4U

2t2
αA′2 +

1

2
φ̇2 +

1

2
e2λφσ̇2 −F

]

α̇

2tα

[

U̇ −√
αU ′ − λ

(

φ̇−√
αφ′
)]

=: L−. (68)

Note that
(

U̇ ±√
αU ′

)

− λ
(

φ̇±√
αφ′
)

≤
(

U̇ ±√
αU ′

)2

+ λ2
(

φ̇±√
αφ′
)2

+
1

2

≤ (1 + λ2)(E + F) +
1

2

≤ 2(1 + λ2)E +
1

2
, (69)

where |F| ≤ E has been used. Thus,

|L±| ≤
∣

∣

∣

∣

α̇

α

∣

∣

∣

∣

{

2E +
CE
t

+
1

4t

}

+
3E
t
, (70)

where C is a positive constant.
Consider a point (t, θ) ∈ [ti, T+)×S1. Integrating the both sides of equations

(67) and (68) along null passes, ∂ζ and ∂ξ, from points (ti, θ+) and (ti, θ−) to the
point (t, θ), respectively, we have

∫

∂ζ(E + F)dζ = E(t, θ) + F(t, θ) − E(ti, θ+) −F(ti, θ+) =

∫

L+dζ, (71)

and
∫

∂ξ(E − F)dξ = E(t, θ) −F(t, θ) − E(ti, θ−) + F(ti, θ−) =

∫

L−dξ. (72)
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Adding these equations and using the inequality |F| ≤ E ,

E(t, θ) ≤ E(ti, θ+) + E(ti, θ−) +
1

2

[∫

|L+| dζ +

∫

|L−| dξ
]

. (73)

Taking supremums over all values of the space coordinate θ on the both sides of
the inequality (73), we have

sup
S1

E(t, θ) ≤ 2 sup
S1

E(ti, θ) +

∫ t

ti

[∣

∣

∣

∣

α̇

α

∣

∣

∣

∣

{

2 sup
S1

E
(

1 +
C

s

)

+
1

4s

}

+
3

s
sup
S1

E
]

ds

= C1(t) +

∫ t

ti

C2(s) sup
S1

E(s, θ)ds, (74)

where Ci(t) are bounded and positive functions of t. We now apply Gronwall’s
lemma to this inequality (74), we have boundedness for E on [ti, T+)×S1. We can
apply the same argument for t ∈ (T−, ti]×S1, and then we have the conclusion of
this lemma. 2

Lemma 3 Let us define

Ẽ := Ü2 + αU̇ ′2 +
e4U

4t2

(

Ä2 + αȦ′2
)

+
1

4

[

φ̈2 + αφ̇′2 + e2λφ
(

σ̈2 + ασ̇′2
)

]

, (75)

and

F̃ :=
√
α

[

2ÜU̇ ′ +
e4U

2t2
ÄȦ′ +

1

2

(

φ̈φ̇′ + e2λφσ̈σ̇′
)

]

. (76)

If all functions and their first derivative, α̇′ and α̈ are bounded, Ẽ is bounded on
(T−, T+) × S1.

Proof. Taking time derivative of the wave equations (13)-(16) for U , A, φ and σ,
we have wave equations for U̇ , Ȧ, φ̇ and σ̇. Now, Ẽ and F̃ satisfy equations of the
form

∂ζ(Ẽ + F̃) = L̃+ and ∂ξ(Ẽ − F̃) = L̃−, (77)

where L̃± involve nothing but controlled quantities, together with terms quadratic
in Ü , U̇ ′, Ä, Ȧ′, φ̈, φ̇′, σ̈ and σ̇′. Now, we can repeat the light cone argument and
then, we have boundedness for Ẽ on (T−, T+) × S1. 2

3.1 Past direction

Further estimates are given in the each case of past and future directions, sepa-
rately. First, consider the past direction.

15



Lemma 4 For any t, the function γ satisfies the following condition,

max
S1

γ(t, θ) − min
S1

γ(t, θ) ≤ tE(t). (78)

Furthermore, for any t ∈ (T−, ti], the functions U and φ satisfy the following
conditions,

max
S1

U(t, θ) − min
S1

U(t, θ) ≤ CE1/2(t), (79)

and

max
S1

φ(t, θ) − min
S1

φ(t, θ) ≤ CE1/2(t). (80)

Proof. (cf. Step 1 of Section 5 in [AH]). For any θ1, θ2 ∈ S1, we have

|γ(t, θ2) − γ(t, θ1)| =

∣

∣

∣

∣

∣

∫ θ2

θ1

γ′dθ

∣

∣

∣

∣

∣

≤
∫ θ2

θ1

|γ′| dθ ≤
∫ θ2

θ1

tE√
α
dθ ≤ tẼ(t) ≤ tE(t), (81)

where equation (50) and the fact |F| ≤ E have been used. Since θ1 and θ2 are
arbitrary, the first conclusion follows.

Similarly, for any θ1, θ2 ∈ S1 and any t ∈ (T−, ti], we have

|U(t, θ2) − U(t, θ1)| =

∣

∣

∣

∣

∣

∫ θ2

θ1

U ′dθ

∣

∣

∣

∣

∣

≤
(

∫ θ2

θ1

dθ√
α

)1/2(
∫ θ2

θ1

√
αU ′2dθ

)1/2

≤
(

∫ θ2

θ1

dθ
√

α(ti)

)1/2

Ẽ(t)1/2

≤ CE(t)1/2, (82)

where the Hölder inequality and the monotonicity of α have been used.
The proof for φ is used the same argument. 2

Lemma 5 The function γ is bounded from above on (T−, ti] × S1.

Proof. (cf. lemma 4 in [IW]). Note that

φ̇(ti)
2 + e2λφ(ti)σ̇(ti)

2 ≥ 1

2
α(ti)Q

2e2[η(ti)+λφ(ti)−U(ti)] > 0, (83)

since regular initial data at t = ti are supposed. This means Ẽ(ti) > 0. From
equation (66), we have

dẼ

dt
≤
∫

S1

Cλ
2

α̇

α

E√
α
dθ = −CλQ

2

2

∫

S1

te2(γ+λφ−U) E√
α
dθ, (84)
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where Cλ < 1 is a positive constant depending on only the coupling constant λ.
Suppose λ ≥ 0. Integrating this inequality from ti to t (0 < t < ti),

Ẽ(t) ≥ Ẽ(ti) +
CλQ

2

2

∫ ti

t

(∫

S1

se2(γ+λφ−U) E√
α
dθ

)

ds

≥ Ẽ(ti) +
CλQ

2

2

∫ ti

t

s exp

[

2

(

min
S1

γ + λmin
S1

φ− max
S1

U

)]

Ẽ(s)ds

≥ Ẽ(ti)

(

1 +
CλQ

2

2

∫ ti

t

s exp

[

2

(

min
S1

γ + λmin
S1

φ− max
S1

U

)]

ds

)

,(85)

where the monotonicity of Ẽ has been used. From lemma 4,

min
S1

γ + λmin
S1

φ− max
S1

U

≥ max
S1

γ + λmax
S1

φ− min
S1

U −
(

tE(t) + (C1λ− C2)E(t)1/2
)

≥ max
S1

γ + λmax
S1

φ− min
S1

U −
(

tiE(T−) + (C1λ− C2)E(τ)1/2
)

, (86)

where C1 and C2 are positive constants, τ = ti if C1λ − C2 < 0 and τ = T− if
C1λ− C2 ≥ 0. Thus, we have

Ẽ(t) ≥ Ẽ(ti)

(

1 +
CλQ

2

2
e−2(tiE(T

−
)+(C1λ−C2)E(τ)1/2)

∫ ti

t

se2(γ+λφ−U)ds

)

, (87)

and then,

∫ ti

t

se2(γ+λφ−U)ds ≤ 2

CλQ2
e2(tiE(T

−
)+(C1λ−C2)E(τ)1/2)

(

Ẽ(T−)

Ẽ(ti)
− 1

)

, (88)

where the condition (83) has been used. When one consider the case of λ < 0, we
have the same results by exchanging maxS1 φ and minS1 φ in inequalities (85) and
(86).

Now, integrating equation (49), we have

γ(t, θ) = γ(ti, θ) −
∫ ti

t

[

sE − sQ2

4
e2(γ+λφ−U)

]

ds

≤ γ(ti, θ) +
Q2

4

∫ ti

t

se2(γ+λφ−U)ds

≤ max
S1

γ(ti, θ) +
1

Cλ2
e2(tiE(T

−
)+(C1λ−C2)E(τ)1/2)

(

Ẽ(T−)

Ẽ(ti)
− 1

)

.(89)

Thus, the boundedness of γ from above has been shown. 2
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Lemma 6 For any numbers a and b, and for n ≤ 1
2 , αne2η+aφ−bU is bounded on

(T−, ti] × S1.

Proof. (cf. lemma 5 in [WM]).

∂t
(

tkαne2η+aφ−bU
)

=

(

k

t
+
nα̇

α
+ 2η̇ + aφ̇− bU̇

)

tkαne2η+aφ−bU

=

[

2t

(

U̇ − b

4t

)2

+
t

2

(

φ̇+
a

t

)2

+ 2αU ′2 +
e4U

2t2

(

Ȧ2 + αA′2
)

+
1

2

(

αφ′2 + e2λφ(σ̇2 + ασ′2)
)

+

(

1

2
− n

)

tαQ2e2(η+λφ−U)

]

tkαne2η+aφ−bU

≥ 0, (90)

where we have chosen 8k = 4a2 + b2. Then, we have

α(t, θ)ne2η(t,θ)+aφ(t,θ)−bU(t,θ) ≤
(

ti
T−

)k

α(ti, θ)
ne2η(ti,θ)+aφ(ti,θ)−bU(ti,θ), (91)

on (T−, ti] × S1. 2

Lemma 7 α is bounded on (T−, ti] × S1.

Proof. Integrating the constraint equation (11), we have

−
∫ ti

t

α̇

α
ds = lnα(t) − lnα(ti) = Q2

∫ ti

t

se2(γ+λφ−U)ds, (92)

for t ∈ (T−, ti]. By using inequality (88), we have boundedness of lnα from above.
As a result, 0 < α is also bounded. 2

Lemma 8 For any numbers a and b, eγ+aφ−bU (=
√
αeη+aφ−bU ) is bounded on

(T−, ti] × S1.

Proof. We have already a result that e2η+aφ−bU is bounded on (T−, ti] × S1

(lemma 6). Combining this and lemma 7, the boundedness of eγ+aφ−bU on (T−, ti]×
S1 follows directly. 2

Corollary 1 α̇α−1 = ∂t(lnα) is bounded on (T−, ti] × S1. Thus, lnα and α̇ are
as well.

Proof. Boundedness of αe2(η+aφ−bU) is obtained by lemma 8. From the constraint
equation (51), we have α̇α−1 = −tαQ2e2(λφ+η−U). If we set a = λ and b = 1,
the boundedness of the right-hand-side of that equation is obtained. Thus, the
conclusion of this lemma is shown. 2
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Lemma 9 The functions U , A, φ, σ and their first derivatives are bounded on
(T−, ti] × S1.

Proof. From lemma 2 and corollary 1, we have the boundedness for E on (T−, ti]×
S1. Then,

∣

∣

∣U̇
∣

∣

∣, |U ′|,
∣

∣

∣φ̇
∣

∣

∣, |φ′|,
∣

∣

∣

(

e2U/2t
)

Ȧ
∣

∣

∣,
∣

∣

(

e2U/2t
)

A′
∣

∣,
∣

∣eλφσ̇
∣

∣ and
∣

∣eλφσ′
∣

∣ are

bounded for all t ∈ (T−, T+). Once the boundedness on the first derivative of U
and φ is obtained, it follows that U and φ are bounded for all t ∈ (T−, T+). Then,
we have bounds on Ȧ, A′, σ̇ and σ′, and consequently on A and σ. 2

Lemma 10 The functions α′, α̇′ and α̈ are bounded on (T−, ti] × S1. Also, η, η̇
and η′ are as well.

Proof. (cf. Step 3 of Section 6 in [BCIM]). From the constraint equations (49) and
(50), we have boundedness for γ̇ and γ′ directly. Then, γ is controlled. Differenti-
ating both side of equation (51) with respect to θ, we have

α̇′ = α′
(

−tQ2e2(γ+λφ−U)
)

− 2tQ2e2(γ+λφ−U)α (γ′ + λφ′ − U ′) . (93)

Then, we have boundedness for α′ by integrating this differential equation for α′

in time since the coefficient of α′ and the second term in the right-hand-side of
the equation (93) are controlled. Thus, we have that η, η̇ and η′ is bounded.

The boundedness of α̇′ is obtained immediately from (93). Now, differentiat-
ing both side of equation (51) with respect to t, we have

α̈ = −Q2αe2(η+λφ−U)
[

α+ 2tα̇+ 2tα
(

η̇ + λφ̇ − U̇
)]

, (94)

which implies that α̈ is bounded. 2

Lemma 11 The second derivatives of U , A, φ and σ are bounded on (T−, ti]×S1.

Proof. By lemma 3 we have the boundedness for Ẽ on (T−, ti]×S1. Then, we have
uniform bounds on Ü , U̇ ′, Ä, Ȧ′, φ̈, φ̇′, σ̈ and σ̇′. Bounds on U ′′, A′′, φ′′ and σ′′

follows from the wave equations (13)-(16) directly. 2

Lemma 12 α′′, η̈, η̇′ and η′′ are bounded on (T−, ti] × S1.

Proof. By taking the time derivative of (49) and (50), we have bounds on γ̈ and
γ̇′. Then, bounds on η̈ and η̇′ are obtained by the definition of γ. Also, by taking
the θ derivative of (50), we have bounds on γ′′. The boundedness for α′′ follows
from the same argument in the proof of lemma 10. That is, differentiating both
side of equation (93) with respect to θ, we have

α̇′′ = α′′
(

−tQ2e2(γ+λφ−U)
)

− 4tQ2α′(γ′ + λφ′ − U ′)e2(γ+λφ−U) (95)

− 2tQ2e2(γ+λφ−U)α
[

γ′′ + λφ′′ − U ′′ + 2 (γ′ + λφ′ − U ′)
2
]

.
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Therefore, we have boundedness for α′′ by integrating this differential equation
for α′′ in time since the coefficient of α′′ and the second and third terms in the
right-hand-side of the equation (95) are bounded as shown already. Then, η′′ is
bounded by using the wave equation (12). 2

3.2 Future direction

Now, consider the future direction. We have already a monotonic decreasing prop-
erty of E(t) along increasing t, dE/dt < 0 (lemma 1). Therefore, for any t ∈
[ti, T+),

E(t) ≤ E(ti). (96)

Proofs of the following two lemmas are similar with the argument in Step 1
of Section 5 in [AH].

Lemma 13
∫ θ2
θ1
α−1/2dθ is bounded on [ti, T+).

Proof. The constraint equation (11) can be written as

∂t(α
−1/2) =

t

2

√
αQ2e2(η+λφ−U). (97)

Then,

α−1/2(t, θ) − α−1/2(ti, θ) =
Q2

2

∫ t

ti

s
√
αe2(η+λφ−U)ds, (98)

for ant t ∈ [ti, T+). Integrating this equation from θ1 to θ2 in S1, we have
∫ θ2

θ1

α−1/2(t, θ)dθ =
Q2

2

∫ t

ti

s

∫ θ2

θ1

√
αe2(η+λφ−U)dθds+

∫ θ2

θ1

α−1/2(ti, θ)dθ

≤ Q2

2
E(ti)

∫ t

ti

sds+ 2π sup
S1

α−1/2(ti, θ)

≤ Q2

4
E(ti)(t

2 − t2i ) + C, (99)

where (96) has been used. 2

Lemma 14 The functions U and φ are bounded on [ti, T+) × S1.

Proof. For any θ1, θ2 and for each t ∈ [ti, T+),

|U(t, θ2) − U(t, θ1)| =

∣

∣

∣

∣

∣

∫ θ2

θ1

U ′dθ

∣

∣

∣

∣

∣

≤
(

∫ θ2

θ1

α−1/2dθ

)1/2(
∫ θ2

θ1

α1/2U ′2dθ

)1/2

≤ C(t), (100)
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where the Hölder inequality, energy bound (96) and lemma 13 have been used.
Now,

∣

∣

∣

∣

∫

S1

U(t, θ)dθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

ti

∫

S1

U̇(t, θ)dθds + C

∣

∣

∣

∣

≤
∫ t

ti

∫

S1

∣

∣

∣U̇(t, θ)
∣

∣

∣ dθds+ |C|

≤
∫ t

ti

(∫

S1

α1/2dθ

)1/2(∫

S1

α−1/2U̇2dθ

)1/2

ds+ |C| ,(101)

where the Hölder inequality has been used. Since α is monotonically decreasing
function along increasing time t, the right-hand-side of the above inequality can
be bounded. Thus,

∣

∣

∣

∣

∫

S1

U(t, θ)dθ

∣

∣

∣

∣

≤ C(t), (102)

for some uniformly bounded function C(t).
Finally, we obtain a uniform bound on U . We have the following identity:

2πmax
S1

U(t, θ) =

∫

S1

U(t, θ)dθ +

∫

S1

(

max
S1

U(t, θ) − U(t, θ)

)

dθ. (103)

The right-hand-side of this identity is bounded from above since (100) and (102)
hold. . For minS1 U(t, θ), one can use the same argument and then, minS1 U(t, θ)
is bounded from below. Thus, U is uniformly bounded on [ti, T+) × S1.

We can obtain uniform boundedness for φ by replacing U with φ in the above
argument. 2

Lemma 15 The functions γ is bounded on [ti, T+) × S1.

Proof. (cf. Step 1 of Section 6 in [BCIM]). From the constraint equation (49) for
γ, we have two inequalities:

γ̇ ≤ te, (104)

and

γ̇ ≥ −1

4
tQ2e2(γ+λφ−U). (105)

From the inequality (104), we have

∫

S1

γ(t, θ)dθ −
∫

S1

γ(ti, θ)dθ =

∫ t

ti

d

ds

(∫

S1

γ(s, θ)dθ

)

ds
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≤ sup
S1

√
α(ti, θ)

∫ t

ti

sE(s)ds

≤ C

∫ t

ti

sE(ti)ds

=
CE(ti)

2
(t2 − t2i ), (106)

which controls
∫

S1 γ(t, θ)dθ from above. Now, we have the following identity:

∫

S1

γ(t, θ)dθ = 2πmax
S1

γ +

∫

S1

(

γ − max
S1

γ

)

dθ. (107)

By the equation (50) of γ and a basic inequality, we have

∫

S1

|γ′| dθ ≤ tE(ti). (108)

Then,

|γ(t, θ2) − γ(t, θ1)| =

∣

∣

∣

∣

∣

∫ θ2

θ1

γ′dθ

∣

∣

∣

∣

∣

≤
∫ θ2

θ1

|γ′|dθ ≤
∫

S1

|γ′| dθ ≤ tE(ti). (109)

Therefore, combining (107) and (109), we have the upper bound for γ:

max
S1

γ ≤ C(t), (110)

where C(t) is a bounded function of t ∈ [ti, T+).
From the inequalities (105) and (110), and lemma 14, if the coupling constant

λ is non-negative,

γ̇ ≥ −1

4
tQ2e2(γ+λφ−U) ≥ Ct exp

[

2

(

max
S1

γ + λmax
S1

φ− min
S1

U

)]

≥ Ctec(t),(111)

for some bounded function c(t) of t ∈ [ti, T+) and C < 0. If λ is negative, maxS1 φ
is replaced by minS1 φ. Thus, γ̇ is controlled into the future, so we have upper and
lower bounds for γ on [ti, T+) × S1. 2

Corollary 2 α̇α−1 (hence lnα and α), η and α̇ are bounded on [ti, T+) × S1.

Proof. The constraint equation (51) can be written as

α̇

α
= −tQ2e2(γ+λφ−U). (112)

With boundedness of γ (lemma 15), φ and U (lemma 14), α̇α−1 = ∂t (lnα) is
bounded on [ti, T+)×S1. As immediate results, lnα and α are bounded on [ti, T+)×
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S1. Since η = γ − 1
2 lnα, η is bounded on [ti, T+) × S1. Using these results to the

constraint equation (51), we have a conclusion that α̇ is bounded on [ti, T+)× S1.
2

Once the boundedness of α̇α−1 has been obtained, the following arguments
are similar with ones of the past direction because key lemmas (lemma 2 and
lemma 3) can be used and the arguments do not depend on time directions.

Lemma 16 The functions U , A, φ, σ and their first derivatives are bounded on
[ti, T+) × S1.

Proof. From lemma 2 and corollary 2, we have the boundedness for E on [ti, T+)×
S1. The proof is the same with one of lemma 9. 2

Lemma 17 The functions η̇, η′, α′, α̇′ and α̈ are bounded on [ti, T+) × S1.

Proof. Since the constraint equation (9) is described in terms of bounded functions
and t, we have bounds on η̇. From the constraint equation (50), we have bounds on
γ′ and then, boundedness for α′, α̇′ and α̈ can be obtained by the same argument
with the proof of lemma 10. Combining this result, boundedness of γ′ and definition
of γ, we have that η′ is bounded. 2

Lemma 18 The second derivatives of U , A, φ and σ are bounded on [ti, T+)×S1.

Proof. By lemma 3 we have the boundedness for Ẽ on [ti, T+) × S1. The proof is
the same with one of lemma 11. 2

Lemma 19 α′′, η̈, η̇′ and η′′ are bounded on [ti, T+) × S1.

Proof. The argument is the same to lemma 12. 2

3.3 Proof of theorem 4

We can continue to obtain bounds on higher derivatives of the fields by repeating
the above arguments. Fortunately, to apply the global existence theorem in [MA],
it is enough to get C2 bounds of all functions. Thus, it has been shown that the
functions η, α, U , A, φ and σ extend to t→ 0 into the past direction and to t→ ∞
into the future direction. 2

4 Comments

We should like to comment concerning the TCC and the condition for coupling
constant λ. Note that these conditions are needed to prove theorem 4 into only
the past direction. It is expected that the TCC is satisfied near initial singularities
because strong focusing effect by gravity is dominant than repulsing one by a
positive potential (cosmological constant) there. Note that spacetimes described by
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our AVTD solutions satisfy the TCC. Also, it is possible to expand in acceleration
of the spacetimes into the future direction since the TCC does not hold necessarily
there and the positive potential would become dominant. Thus, theorem 4 does
not deny paradigm-A.

The condition |λ| ≤ λ̄ < 1/2 admits λ = 0, which means that there is a
positive cosmological constant. Thus, our theorem is applicable to not only theo-
ries with dilaton coupling but also ones with a pure cosmological constant. Now,
let us discuss λ̄. It is known that there is a critical value λC in n-dimensional
homogeneous and isotropic spacetimes [TP, WMNR]. In our notation with n = 4,
|λC | = 1/2. Here, ”critical” means the boundary whether late-time attractor solu-
tions indicate accelerated expansion or not. Roughly speaking, λ describes steep-
ness of the potential. Therefore, for λ2 > λ2

C , the dilaton field falls down the
potential hill soon and then decelerating expansion solutions with transient accel-
erating one are obtained, while we have attractor solutions with eternal accelerat-
ing expansion if λ2 < λ2

C . It is believed that such critical values exist for generic
spacetimes, although we do not know λC for spacetimes we considered here, in
particular, our results give us no information about relation between λC and λ̄.
Thus, it is not clear that the solution obtained in theorem 3 is consistent with
paradigm-A at the intermediate- and late-time. To answer this question, we need
to analyze future asymptotic behavior (e.g. see [RA04]), which is left for future
research.
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A Local existence and uniqueness for smooth case

Let us consider the smooth version of the initial-value problem for our non-
standard setup formulated in section 2. A key idea is to construct a symmetric-
hyperbolic system by introducing a new variable α′ := Z14 [IK]. Let us define
~Z := Zi = (U, U̇, U ′, A, Ȧ, A′, φ, φ̇, φ′, σ, σ̇, σ′, α, α′, η). Here, i runs from 1 to 15.
The system consisting in the effective evolution equations (9), (11), (13)-(16) be-
comes the following first-order symmetric-hyperbolic one:

A0∂t ~Z = A1∂θ ~Z + F (t, θ, ~Z), (113)

where

A0 = diag(1, 1, α, 1, 1, α, 1, 1, α, 1, 1, α, 1, 1, 1), (114)
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and

A1 =













A2 0 0 0 0
0 A2 0 0 0
0 0 A2 0 0
0 0 0 A2 0
0 0 0 0 A3













, (115)

A2 =





0 0 0
0 0 α
0 α 0



 and A3 =





0 0 0
0 0 0
0 0 0



 . (116)

Thus, we have a unique solution to the effective evolution equations by prescribing
the smooth initial data for t = t0 > 0 if the constraint equations (10) and α′ = Z14

hold for any t.
Now, as the analytic case, to assure the local existence and uniqueness of the

initial-value problem, it is enough to show that the constraints propagate. Let us
set

N1 := η′ − 2DUU ′ − e4U

2t2
DAA′ − 1

2
Dφφ′ − e2λφ

2
Dσσ′ +

Z14

2α
, (117)

and

N2 := Z14 − α′. (118)

By direct calculation, we have the following linear, homogeneous ODE system:

(D + B) ~N = 0, (119)

where ~N := (N1, N2) and

B =
Dα

2α2

(

α −1
4α2 −2α

)

. (120)

Thus, the uniqueness theorem for ODE systems guarantees that ~N is identically
zero for any time t if we set initial data for t = t0 such that ~N(t0) = 0. Thus, the
local existence and uniqueness of the initial-value problem for our case has been
shown in the smooth case.
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