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Abstract

We extend the study of the quantum mechanics of BMN gauge theory to
the sector of three scalar impurities at one loop and all genus. The relevant
matrix elements of the non-planar one loop dilatation operator are computed
in the gauge theory basis. After a similarity transform the BMN gauge theory
prediction for the corresponding piece of the plane wave string Hamiltonian
is derived and shown to agree with light-cone string field theory. In the three-
impurity sector single string states are unstable for the decay into two-string
states at leading order in g2. The corresponding decay widths are computed.
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1 Introduction

The duality of superstrings in a maximally supersymmetric plane-wave back-
ground and U(N) N = 4 Super Yang-Mills theory in a particular scaling limit
proposed by Berenstein, Maldacena and Nastase [1] has been the subject of
intense study over the past two years1. This duality may be viewed as a
“corollary” to the AdS/CFT correspondence [3], as it arises through a Pen-
rose limit on the supergravity background [4] and, in parallel, through a dou-
ble scaling large N , large U(1)R charge limit on the gauge theory side [5, 6].
The remarkable feature of this novel correspondence is its seemingly pertur-
bative structure, allowing for dynamical, quantitative tests extending into
the true stringy domain of higher-level excitations [7] as well as string inter-
actions [8].

At the “heart” of the BMN correspondence lies the identification El.c./µ =
∆ − J , relating the light-cone energy of string excitations to the scaling di-
mensions ∆ and the U(1)R charge J of the suitably chosen dual gauge theory
operators, the so called “BMN operators”. Lifted to the level of interacting
strings and non-planar Yang-Mills theory the current understanding of the
duality states that [9]

Hl.c.

µ
=̂ D − J · 1 (1.1)

relating the interacting string field theory Hamiltonian Hl.c. to the dilatation
operator D of N = 4 Super Yang-Mills. Here µ is the mass parameter of
the plane wave background space-time. The perturbative expansion of D
is controlled by the effective coupling constant λ′ =

g2
YM N

J2 and the genus

counting parameter g2 = J2

N
and one works in the limit N, J → ∞ and J2/N

finite [5,6,10,11]. A large number of tests of the operator identification (1.1)
has been reported (see [2] and references therein). However, most of these
tests have been restricted to the sector of two-impurity BMN operators, or
equivalently to level two excitations of the plane wave superstring. In this
paper we will push the analysis to the level of three-impurities, corresponding
to string excitations of level three

αI †
n1
αJ †

n2
α̃K †

n3
|0, p+〉, Elc

µ
=

3
∑

i=1

√

1 + n2
iλ

′ with n1 + n2 + n3 = 0 .

(1.2)

Studies of higher-impurity interactions have been undertaken in [12] and [13].
In [12] an alternative proposition for the duality relation of (1.1) based on

1For reviews of this subject see [2].

1



gauge-theory three-point functions was tested, involving three-scalar impuri-
ties. In [13] a direct correspondence between Feynman diagrammatic calcula-
tions in gauge-theory two-point functions and string field theory calculations
for any number of impurities was observed.

In our work, we shall study the decay of three-impurity states into the
continuum of degenerate two-string states using the efficient reformulation
of BMN gauge theory in terms of a quantum mechanical system [11]. As
observed in [14] such an instability for decay also exists in the two-impurity
sector, there it is, however, suppressed at leading order in g2, i.e. the leading
order decay is of single string states into degenerate triple-string states. In the
three-impurity sector (and for more impurities [15]) a non-vanishing decay
rate occurs already at leading order in g2. Similar decay rates were computed
in the plane-wave limit of “little”-string theory in [16].

The standard way to find the scaling dimensions ∆α of a set of conformal
fields Oα in a conformal field theory is to compute the two point functions,
whose form is determined by conformal symmetry to be

〈Oα(x)Ōβ(y)〉 =
δαβ

(x− y)2∆Oα
, (1.3)

and to deduce the associated scaling dimensions ∆α. In practice, however,
it is extremely laborious to diagonalize the two-point functions starting from
a (natural) basis of gauge invariant operators due to the effect of operator
mixing. A very efficient method to compute the scaling dimensions in pertur-
bative gauge theory was introduced in [11] (see also [17]) and further refined
in [18]. The idea is to shift attention away from the explicit two-point func-
tion toward the dilatation operator D acting on fields at the origin, whose
eigenvalues ∆α are the scaling dimensions

D ◦ Oα = ∆α Oα . (1.4)

The dilatation operator can be constructed in perturbation theory. Up to
one quantum loop order and in the sector of pure scalar N = 4 Super Yang-
Mills operators (φI , i = 1, . . . , 6) the dilatation operator takes the simple
form [5, 10]2

D = Tr(φI φ̌I) (1.5)

− g2
YM

16π2

(

: Tr[φI , φJ ] [φ̌I , φ̌J ] : +1
2

: Tr[φI , φ̌J ] [φI , φ̌J ] :
)

+ O(g4
YM)

2As a matter of fact D is known for all excitations of N = 4 Super Yang-Mills at
one loop order [19] and in the subsector of two complex scalars at two- and three-loop
order [18, 20].
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where : : denotes normal ordering and φ̌I is the matrix derivative

(φ̌I)ab =
δ

δ(φI)ba

a, b = 1, . . . , N . (1.6)

In the BMN limit one considers the complexified scalar field Z = 1√
2
(φ5+iφ6)

carrying unit U(1)R charge and restricts to the subsector of operators of total
charge J . The action of (D − J · 1) on BMN operators is thus given by the
number of impurity insertions (φ1, . . . , φ4) into the string of Z’s plus the one
(and higher) loop pieces of D. The large J limit then serves as a continuum
limit of the (discrete) action of (D − J · 1) on BMN operators, yielding an
effective quantum mechanical system describing BMN gauge theory [11]. The
resulting Hamiltonian H consists of a free piece and an interacting part of
order g2 responsible for string splitting and joining processes

H = H0 + g2(H+ +H−) := lim
N,J→∞,

N/J2 fixed

(D − J · 1) . (1.7)

Hence, a string field theory Hamiltonian emerges from the gauge theory and
terminates (at O(λ′)) with order g2 terms.

However, the Hamiltonian emerging from the gauge theory cannot be
immediately compared to the Hamiltonian arising in a light-cone string field
theory treatment of the problem [8,21]. This is due to the fact that H is not
Hermitian, whereas the string field theory Hamiltonian is.

The problem can be understood as follows: In the quantum mechanical
system the inner product of states is identified with the planar part of the
free theory two point functions

〈a|b〉 := 〈Oa(x) Ōb(y)〉0,planar · |x− y|∆(0)
a , (1.8)

where the last factor on the right-hand side strips off all space dependencies
and the index “0” denotes correlation functions in the free theory. As a
matter of fact H is not Hermitian with respect to 〈 | 〉, but with respect to
〈 | 〉g2, which is the inner product induced by the full non planar, free two-
point function. One then defines a Hermitian (w.r.t. 〈 | 〉) operator S by

〈a|b〉g2 = 〈a|S|b〉 := 〈Oa(x) Ōb(y)〉0,full · |x− y|∆(0)
a , (1.9)

and therefore has
S H = H† S . (1.10)

Hence the Hamiltonian H is only quasi Hermitian. However, there is a
natural basis |ã〉, related to |a〉 through the non-unitary transformation

|ã〉 = S−1/2|a〉 , (1.11)

3



which diagonalizes 〈 | 〉g2. One then defines a new Hermitian operator H̃
through

〈ã|H|b̃〉g2 = 〈a|S−1/2HS−1/2|b〉g2 = 〈a|S1/2HS−1/2|b〉 = 〈a|H̃|b〉 , (1.12)

known as the string Hamiltonian. If we identify a BMN operator with k
traces with the state |k〉, |k̃〉 corresponds to a string state with k strings and
hence one usually refers to the basis (1.11) as the string basis. The matrix
elements of H̃ should match those obtained in light-cone string field theory
– up to a possible unitary transformation. We would like to stress that, also
from a purely gauge theoretic perspective, the Hermitization of H through
conjugation with S−1/2 is a very natural construction.

In the first part of this paper we will calculate the matrix elements of H̃
up to one-loop and first order in g2 in the three-impurity sector. They are
given by (see (1.12))

〈a|H̃|b〉 = 〈a|
(

1 + 1
2
g2Σ

)

H
(

1 − 1
2
g2Σ

)

|b〉 + O(g2
2) , (1.13)

where Σ denotes the g2 contribution to S. Thus we need to evaluate the ma-
trix elements forH (section 2.1) and Σ (section 2.2). In section 2.3 the results
for the string Hamiltonian H̃ are presented and shown to agree with string
field theory in section 3. In section 4 we finally evaluate the decay widths
for the transition of a single-string state into the continuum of degenerate
double-string states.

2 The gauge theory computation

2.1 Matrix elements of the effective 1-loop vertex op-

erator

We shall be interested in three-impurity BMN operators of total U(1)R charge
J and three (different) scalar impurity insertions φi with i = 1, 2, 3, 4. There
are three distinct ways in which these impurities can be distributed over
separate traces. If all impurities fall in a single trace one has

O123

p1,p2,p3
OJ1 . . .OJl

= Tr
[

φ1 Z
p1 φ2 Z

p2 φ3 Z
p3

]

Tr
[

ZJ1
]

. . .Tr
[

ZJl
]

(2.1)

with p1 + p2 + p3 = J0 and
∑l

k=0 Jk = J and Z = 1√
2
(φ5 + iφ6). When acting

with the Hamiltonian (1.7) on this operator one obtains, in a schematic
notation,

H0 ◦ O3;l ∝ O3;l

H− ◦ O3;l ∝ O3;l−1

H+ ◦ O3;l ∝ O3;l+1 + O2,1;l . (2.2)
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where Oa1,...,aj ;l denotes an operator with ai impurities in the ith trace and l
gives the number traces without impurities. H0 conserves the total number of
traces, while in H− (H+) one trace is removed (added). The total number of
Z’s never changes. Contributions from H+, which redistribute the impurities
among several traces, did not occur for the case of two scalar impurities [11].
Therefore we need to extend our basis of three impurity operators with

Oab

pa,pb
Oc

pc
OJ1 . . .OJl

= Tr [φa Z
pa φb Z

pb] Tr [φc Z
pc ]

[

ZJ1
]

. . .Tr
[

ZJl
]

where (a, b)(c) ∈ {(1, 2)(3); (2, 3)(1); (1, 3)(2)} (2.3)

and

O1

p1
O2

p2
O3

p3
OJ1 . . .OJl

= Tr [φ1 Z
p1] Tr [φ2 Z

p2] Tr [φ3 Z
p3] Tr

[

ZJ1
]

. . .Tr
[

ZJl
]

.
(2.4)

The action of H on these two classes of operators reads

H0 ◦ O2,1;l ∝ O2,1;l H0 ◦ O1,1,1;l = 0

H− ◦ O2,1;l ∝ O2,1;l−1 + O3;l and H− ◦ O1,1,1;l ∝ O2,1;l

H+ ◦ O2,1;l ∝ O2,1;l+1 H+ ◦ O1,1,1;l = 0 . (2.5)

The explicit expressions of (2.2) and (2.5) can be found in Appendix A.1.
In the BMN limit (N, J → ∞ with J2/N fixed) one introduces continuum

variables. The operators above are then replaced by continuum states

O123

p1,p2,p3
OJ1 . . .OJl

→
√
NJ+3

J
|x1, x2, x3〉123|r1〉 . . . |rl〉 (2.6)

Oab

pa,pb
Oc

pc
OJ1 . . .OJl

→
√
NJ+3

J
|xa, xb〉ab|xc〉c|r1〉 . . . |rl〉 (2.7)

O1

p1
O2

p2
O3

p3
OJ1 . . .OJl

→
√
NJ+3

J
|x1〉1|x2〉2|x3〉3|r1〉 . . . |rl〉 (2.8)

with xj :=
pj

J
; rk := Jk

J
; k = 0, . . . l; xj , rk ∈ [0, 1] ; x1 + x2 + x3 = r0 and

∑l
k=0 rk = 1.
In order to understand the prefactors, let us have a look at the planar

tree-level two-point function of two operators of the type O3;l (the result is
the same for O2,1;l and O1,1,1;l)

〈O123

p1,p2,p3
OJ1 . . .OJl

Ō123

q1,q2,q3
ŌK1 . . . ŌKl′

〉0,planar =

NJ+3δp1,q1δp2,q2δp3,q3δl,l′
∑

π∈Sl

l
∏

k=1

δJk,Kπ(k)
Jk , (2.9)
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which will be identified with the inner product of the corresponding states.
The factor of NJ+3 is absorbed by the definition of the states. As to the
powers of J note that we are going to deal only with operators having the
same number of Z’s. Hence we can express p3 by p3 = J0 − p1 − p2 and
analogously q3 by q3 = K0 − q1 − q2 with J =

∑l
k=0 Jk =

∑l′

k=0Kk and
thus δp3,q3 becomes redundant. The remaining p’s have to obey the condition
0 ≤ p1 + p2 ≤ J0 affecting the limits of summation (or integration for the
x’s) later on. On the other hand, we would like to compare our results to
those of string field theory, where the inner product of two states is given
by 〈i|j〉 ∝ δ(p+

i − p+
j ) with p+ being the light-cone momentum of a state.

Therefore we need a factor of Jm+2 to convert each Kronecker-delta into a
δ-function. One finds that replacing Jk by rk J gives J l and thus only an
additional factor of J2 is required. The inner products of the continuum
states are then given by

〈r1| . . . 〈rl| 123〈x1, x2, x3|x′1, x′2, x′3〉123 |r′1〉 . . . |r′l′〉 =

〈r1| . . . 〈rl| c〈xc| ab〈xa, xb|x′a, x′b〉ab |x′c〉c |r′1〉 . . . |r′l′〉 =

〈r1| . . . 〈rl| 3〈x3| 2〈x2| 1〈x1|x′1〉1 |x′2〉2 |x′3〉3 |r′1〉 . . . |r′l′〉 =

δ(x1 − x′1) δ(x2 − x′2) δl,l′
∑

π∈Sl

l
∏

k=1

δ(rπ(k) − r′k) r
′
k (2.10)

Inner products between two different classes of states (O3;l,O2,1,;l,O1,1,1;l)
vanish.

In the strict planar limit (g2 = 0) H can be regarded as a free quantum
mechanical system, with the following action on the continuum states

H0 |x1, x2, r0 − x1 − x2〉123|r1〉 . . . |rl〉

= − λ′

8π2

[

(∂x1 − ∂x2)
2 + ∂2

x1
+ ∂2

x2

]

|x1, x2, r0 − x1 − x2〉123|r1〉 . . . |rl〉
(2.11)

and

H0 |x, r0 − s− x〉ab|s〉c|r1〉 . . . |rl〉 = − λ′

4π2
∂2

x |x, r0 − s− x〉ab|s〉c|r1〉 . . . |rl〉 ,
(2.12)

This last expression is equivalent to the action of H0 on two-impurity states
[11] – the third impurity |s〉c just gets carried along. Note that the O1,1,1;l

state |x1〉1|x2〉2|x3〉3|r1〉 . . . |rl〉 is annihilated by H0 as stated in (2.5).
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This eigenvalue problem is solved by the following momentum states [6,12]

|n1, n2; r0〉|r1〉...|rl〉 =
1

r0
√
r1 . . . rl

×
∫ x1+x2≤r0

0≤x1,x2

dx1dx2

(

e2πi(n1x1+n2(x1+x2))/r0 |x1, x2, r0 − x1 − x2〉123

+ e2πi(n2x1+n1(x1+x2))/r0 |x1, x2, r0 − x1 − x2〉132

)

|r1〉...|rl〉
(2.13)

and

|n; r0 − s〉ab|s〉c|r1〉...|rl〉 =
1

√

(r0 − s)r1 . . . rl

×
∫ r0−s

0

dx e2πinx/(r0−s)|x, r0 − x− s〉ab|s〉c|r1〉...|rl〉 . (2.14)

They have the energy eigenvalues

E|n1,n2;r0〉|r1〉...|rl〉 =
λ′

2 r2
0

(n2
1 + n2

2 + (n1 + n2)
2) =

λ′

r2
0

(n2
1 + n2

2 + n1 n2) (2.15)

E|n;r0−s〉ab|s〉c|r1〉...|rl〉 =
λ′ n2

(r0 − s)2
. (2.16)

Trivially |x1〉1|x2〉2|x3〉3 is an eigenstate of H0 with zero eigenvalue. The
scalar product of the above eigenstates follows from (2.10)

〈r1| . . . 〈rl| 〈n1, n2; r0|m1, m2; r
′
0〉 |r′1〉 . . . |r′l′〉 = δn1,m1 δn2,m2 δl,l′ (∆′)l

r,r′

〈r1| . . . 〈rl| c〈s| ab〈n; r0 − s|m; r′0 − s′〉ab |s′〉c |r′1〉 . . . |r′l′〉 =

δn,m δ(s− s′) δl,l′ (∆′)l
r,r′ ,

(2.17)

where (∆′)l
r,r′ =

∑

π∈Sl

∏l
k=1 δ(rπ(k) − r′k).

3

3It should be mentioned, that if only one of the two contributions in (2.13) is included,
these eigenstates are not orthogonal due to the condition 0 ≤ x1 + x2 ≤ r0. This can be
seen for finite J as well: The corresponding BMN operator is obtained by replacing three
Z’s in the trace Tr ZJ+3 by three scalar impurities in all possible ways with appropriate
prefactors. The first part of (2.13), proportional to (2.1), represents only half of the
possibilities, because it does not contain the cases where two impurities are exchanged.
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It is straightforward, yet rather tedious, to calculate the action of H+ on
the H0 eigenstates from the discrete system, one finds

H+ |n1, n2; r0〉|r1〉 . . . |rl〉 =
λ′ g2

2π3

(

−
∫ r0

0

drl+1

∑

m1,m2
( √

rl+1

r0 − rl+1
sin(πn1

r0−rl+1

r0
) sin(πn2

r0−rl+1

r0
) sin(π(n1 + n2)

r0−rl+1

r0
)

×
[

m1(−m1 − 2m2)

m1 − n1
r0−rl+1

r0

+
m2(2m1 +m2)

m2 − n2
r0−rl+1

r0

+
−(m1 +m2)(m2 −m1)

−(m1 +m2) + (n1 + n2)
r0−rl+1

r0

]

× 1

m1n2 −m2n1

)

|m1, m2; r0 − rl+1〉|r1〉 . . . |rl+1〉

+

∫ r0

0

ds
∑

m

m√
r0 − s

sin(πn1
s
r0

) sin(πn2
s
r0

) sin(π(n1 + n2)
s
r0

)

×
∑

(a,b)(c)

1

Nc

( 1

m+Na
r0−s
r0

+
1

m−Nb
r0−s
r0

)

|m; r0 − s〉ab|s〉c|r1〉 . . . |rl〉
)

(2.18)

where the sum over (a, b)(c) runs over the triples {(1, 2)(3); (2, 3)(1); (1, 3)(2)}
as in (2.3). Moreover we have

H+|n; r0 − s〉ab|s〉c|r1〉 . . . |rl〉 =
λ′ g2

π2

∫ r0−s

0

drl+1

∑

m

√

rl+1

(r0 − s− rl+1)(r0 − s)

×
m sin2(πn

r0−s−rl+1

r0−s
)

m− n
r0−s−rl+1

r0−s

|m; r0 − s− rl+1〉ab|s〉c|r1〉..|rl+1〉 (2.19)

where t1 + t2 + t3 = r0 and N1 := −(n1 +n2), N2 := n1, N3 := n2. The action
of H− on our eigenstates is stated in Appendix A.2.

2.2 Matrix elements of Σ

As discussed in the introduction the transition to the string Hamiltonian
is performed with the help of the Hermitian operator S, which induces the
complete tree-level two point functions. We shall need only the linear term
in a small g2 expansion, S = 1 + g2 Σ + O(g2

2). It has been conjectured
in [23] that S exponentiates, i.e. S = exp[g2 Σ].

The matrix elements of Σ in the momentum basis can be computed from
the free planar two point functions of k and k + 1 trace operators, i.e. one

8



needs to know the correlators

〈O3;lŌ3;l+1〉0 , 〈O3;lŌ2,1;l〉0 , 〈O2,1;lŌ2,1;l+1〉0
〈O2,1;lŌ1,1,1;l〉0 , 〈O1,1,1;lŌ1,1,1;l+1〉0 (2.20)

at leading order in N and then take the J → ∞ limit.
The operator Σ again splits into a trace number increasing (Σ+) and

decreasing (Σ−) piece. Acting with Σ+ on our three classes of momentum
eigenstates we find

Σ+|n1, n2; r0〉|r1〉 . . . |rl〉 =

∫ r0

0

drl+1

∑

m1,m2

×
sin(πn1

r0−rl+1

r0
) sin(πn2

r0−rl+1

r0
) sin(π (n1 + n2)

r0−rl+1

r0
)

(m1 − n1
r0−rl+1

r0
)(m2 − n2

r0−rl+1

r0
)(−(m1 +m2) + (n1 + n2)

r0−rl+1

r0
)

× (r0 − rl+1)
2 √rl+1

r0π3
|m1, m2; r0 − rl+1〉|r1〉 . . . |rl+1〉

+
1

2

l
∑

i=1

∫ ri

0

drl+1

√

ri(ri − rl+1)rl+1 |n1, n2; r0〉|r1〉 . . . |ri − rl+1〉 . . . |rl+1〉

+

∫ r0

0

ds
∑

m

(r0 − s)3/2

π3
sin(πn1

s
r0

) sin(πn2
s
r0

) sin(π (n1 + n2)
s
r0

)

×
∑

(a,b)(c)

((

m+Na
r0−s
r0

)(

m−Nb
r0−s
r0

)

Nc

)−1

|m; r0 − s〉ab|s〉c|r1〉 . . . |rl〉

(2.21)

where again the sum (ab)(c) runs over the triples {(1, 2)(3); (2, 3)(1); (1, 3)(2)}
and

Σ+|n; r0 − s〉ab|s〉c|r1〉 . . . |rl〉 =

∫ r0−s

0

drl+1

∑

m
√

rl+1(r0 − s− rl+1)3

r0 − s

sin2(πn
r0−s−rl+1

r0−s
)

π2(m− n
r0−s−rl+1

r0−s
)2

|m; r0 − s− rl+1〉ab|s〉c|r1〉...|rl+1〉

+

∫ s

0

drl+1
√
rl+1 (s− rl+1) |n; r0 − s〉ab|s− rl+1〉c|r1〉 . . . |rl+1〉

+
1

2

l
∑

i=1

∫ ri

0

drl+1

√

ri(ri − rl+1)rl+1 |n; r0 − s〉ab|s〉c|r1〉...|ri − rl+1〉...|rl+1〉

−
∫ r0−s

0

dt
(r0 − s)3/2

n2 π2
sin2(πn t

r0−s
) |t〉a|r0 − s− t〉b|s〉c|r1〉 . . . |rl〉 (2.22)
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as well as

Σ+|t1〉1|t2〉2|t3〉3|r1〉 . . . |rl〉 =
∫ t1

0

drl+1 (t1 − rl+1)
√
rl+1 |t1 − rl+1〉1|t2〉2|t3〉3|r1〉 . . . |rl+1〉

+

∫ t2

0

drl+1 (t2 − rl+1)
√
rl+1 |t1〉1|t2 − rl+1〉2|t3〉3|r1〉 . . . |rl+1〉

+

∫ t3

0

drl+1 (t3 − rl+1)
√
rl+1 |t1〉1|t2〉2|t3 − rl+1〉3|r1〉 . . . |rl+1〉

+

l
∑

i=1

∫ ri

0

drl+1

√

ri(ri − rl+1)rl+1 |t1〉1|t2〉2|t3〉3|r1〉 . . . |ri − rl+1〉 . . . |rl+1〉

(2.23)

where t1 + t2 + t3 = r0 and N1 := −(n1 + n2), N2 := n1, N3 := n2. Note that
(2.22) and (2.23) are again very similar to the corresponding expressions for
two impurities computed in [24]. The action of Σ− on these states, which
also follow form Hermiticity, can be found in Appendix A.2.

In the case of two impurities it turned out to be very useful to work
with an operator Q0 being the square root of H0, as then the remarkable
relation H± = Q0[Q0,Σ±] could be proved [24]. Here, in the case of three
impurities, an analogue relation does not hold, essentially because now the
energy eigenvalues (2.15) are not perfect squares.

2.3 The String Hamiltonian H̃

We have now assembled all the necessary ingredients to establish the form
of the string Hamiltonian at order g2

〈a|H̃|b〉 = 〈a|H0|b〉 + g2 〈a|12 [Σ, H0] +H− +H+|b〉 . (2.24)
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Explicitly we find for the action of H̃ on the eigenstates

H̃ |n1, n2; r0〉|r1〉 . . . |rl〉 =

λ′

r2
0

(n2
1 + n2

2 + n1n2)|n1, n2; r0〉|r1〉 . . . |rl〉

+
λ′g2

2π3

[
∫ r0

0

drl+1

∑

m1,m2

[

sin(πn1
r0−rl+1

r0
) sin(πn2

r0−rl+1

r0
) sin(π(n1 + n2)

r0−rl+1

r0
)

×
( 1

m1 − n1
r0−rl+1

r0

+
1

m2 − n2
r0−rl+1

r0

+
1

−(m1 +m2) + (n1 + n2)
r0−rl+1

r0

)

×
(

−
√
rl+1

r0

)

|m1, m2; r0 − rl+1〉|r1〉 . . . |rl+1〉
]

+
l

∑

i=1

∑

m1,m2

[

sin(πm1
r0

r0+ri
) sin(πm2

r0

r0+ri
) sin(π(m1 +m2)

r0

r0+ri
)

×
( 1

m1 − n1
r0+ri

r0

+
1

m2 − n2
r0+ri

r0

+
1

−(m1 +m2) + (n1 + n2)
r0+ri

r0

)

×
(

√
ri

r0

)

|m1, m2; r0 + ri〉|r1〉 . . . 6|ri〉 . . . |rl〉
]

+

∫ r0

0

ds
∑

m

√
r0 − s

r0
sin(πn1

r0−s
r0

) sin(πn2
r0−s
r0

) sin(π(n1 + n2)
r0−s
r0

)

×
∑

(a,b)(c)

( 1

Na
r0−s
r0

+m
+

1

Nb
r0−s
r0

−m
+

1

Nc
r0−s
r0

)

|m; r0 − s〉ab|s〉c|r1〉...|rl〉
]

(2.25)
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as well as

H̃ |n; r0 − s〉ab|s〉c|r1〉 . . . |rl〉 =

λ′

(r0 − s)2
n2|n; r0 − s〉ab|s〉c|r1〉 . . . |rl〉

+
λ′g2

2π2

[
∫ r0−s

0

drl+1

∑

m

√

rl+1

(r0 − s− rl+1)(r0 − s)

× sin2(πn
r0 − s− rl+1

r0 − s
)|m; r0 − s− rl+1〉ab|s〉c|r1〉..|rl+1〉

+

l
∑

i=1

∑

m

√

ri

(r0 − s+ ri)(r0 − s)

× sin2(πm
r0 − s

r0 − s+ ri
)|m; r0 − s+ ri〉ab|s〉c|r1〉.. 6|ri〉..|rl〉

+
∑

m1,m2

√
r0 − s

π r0
sin(πm1

r0−s
r0

) sin(πm2
r0−s
r0

) sin(π(m1 +m2)
r0−s
r0

)

×
∑

(a,b)(c)

( 1

Ma
r0−s
r0

+ n
+

1

Mb
r0−s
r0

− n
+

1

Mc
r0−s
r0

)

|m1, m2; r0〉|r1〉 . . . |rl〉

−
∫ r0−s

0

dt
1√
r0 − s

sin2(πn t
r0−s

)|t〉a|r0 − s− t〉b|s〉c|r1〉 . . . |rl〉
]

(2.26)

and finally

H̃ |ta〉a|tb〉b|tc〉c|r1〉 . . . |rl〉 =

− λ′g2

2π2

∑

m

∑

(a,b)(c)

1√
ta + tb

sin2(πm ta
ta+tb

)|m; ta + tb〉ab|tc〉c|r1〉 . . . |rl〉 ,

(2.27)

where we have used the same definitions as in the previous sections. One may
easily check that H̃ is a Hermitian operator. In the following chapter we will
check that these matrix elements agree with string field theory calculations.

3 Comparison with Light-Cone String Field

Theory

Light-cone string field theory for superstrings in the maximally supersymmet-
ric plane-wave background has been developed in a number of works [8]. For
our purposes we shall make use of a compact expression for the three-string
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interaction vertex involving only bosonic excitations, as derived in [15]. The
interaction matrix element in question is described by a three-string state
made of 2k purely bosonic excitation operators

|A〉 =

2k
∏

j=1

α
Ij †
(rj) mj

|0〉 (3.1)

with (say) the transverse space index Ij ∈ (1, . . . , 4), rj ∈ (1, 2, 3) denoting
the string number and mj the associated excitation modes. We wish to
compare our results of (2.25) to the 3 → 2 + 1 and the 3 → 3 transition
amplitudes.

In the first case we are dealing with a three-string state of the form

|ψ3→2+1〉 = α1 †
(1)−m α

2 †
(1) m α

3 †
(2) 0 α

1 †
(3)−n1−n2

α2 †
(3) n1

α3 †
(3) n2

|0〉 , (3.2)

making use of the vertex presented in equation (15) of [15] one finds for its
matrix element

〈ψ3→2+1|H3〉 =
α(1)α(3)α(3)

2
Ñ2,3

0,n2

[

(

ω(1) m

µα(1)

+
ω(3)−n1−n2

µα(3)

)

Ñ1,3
−m,−n1−n2

Ñ1,3
−m,n1

+

(

ω(1) m

µα(1)

+
ω(3) n1

µα(3)

)

Ñ1,3
m,−n1−n2

Ñ1,3
m,n1

+

(

ω(2) 0

µα(2)
+
ω(3) n2

µα(3)

)

Ñ1,3
−m,−n1−n2

Ñ1,3
−m,n1

]

,

(3.3)

where the r’th string frequencies are given by ω(r) m =
√

m2 + µ2 α2
(r) and

the fractions of p+ momenta for the three-strings read α(1) = (1−s), α(2) = s

and α(3) = −1 in our conventions. Moreover the Neumann matrices Ñ r,s
m,n are
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given by (m,n 6= 0) [21]4

Ñ r,s
0,n = 1√

2
N̄ r,s

0,|n|

Ñ r,s
m,n = 1

2

(

N̄ r,s
|m|,|n| − sign(m · n) N̄ r,s

−|m|,−|n|

)

N̄ r,s
0,|n| =

(−1)s(|n|+1) s(s) n

2π

√

|α(s)|
α(r) ω(s) n(ω(s)n + µα(s))

N̄ r,s
±|m|,±|n| = ±(−1)r(|m|+1)+s(|n|+1)s(r) s(s) n

2π(α(s)ω(r) m − α(r)ω(s) n)

×
√

|α(r) α(s)| (ω(r)m ± µα(r)) (ω(s)n ± µα(s))

ω(r) m ω(s) n

s(1) m = 1 = s(2) m s(3) m = 2 sin

(

π |m| α(1)

α(3)

)

(3.4)

Expanding out (3.3) to leading order in 1
µ

using the above formulas yields

〈ψ3→2+1|H3〉 = −
√
s (1 − s)

2π3 µ2
sin(π n1 s) sin(π n2 s) sin(π (n1 + n2) s)

×
[

1

(−n1 − n2)(1 − s) +m
+

1

n1(1 − s) −m
+

1

n2(1 − s)

]

+ O(
1

µ4
) (3.5)

which is (up to a normalization factor of
√

s(1 − s) ) precisely equal to the
gauge theory result of the last two lines of (2.25)!

Similarly one obtains for the 3 → 3 matrix element associated to the
three-string state

|ψ3→3〉 = α1 †
(1) m1

α2 †
(1) m2

α3 †
(1)−m1−m2

α1 †
(3) n1

α2 †
(3) n2

α3 †
(3)−n1−n2

|0〉 (3.6)

4There are corrections to these formulas of the form exp(−2π|α(r)|µ), which have been
computed recently [22]. These, however, are not effective in the large µ limit we are
considering.
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the amplitude

〈ψ3→3|H3〉 =
α(1)α(3)α(3)

2
×

[

(

ω(1) m1

µα(1)
+
ω(3) n1

µα(3)

)

Ñ1,3
−m1,n1

Ñ1,3
m2,n2

Ñ1,3
−m1−m2,−n1−n2

+

(

ω(1) m2

µα(1)

+
ω(3) n2

µα(3)

)

Ñ1,3
m1,n1

Ñ1,3
−m2,n2

Ñ1,3
−m1−m2,−n1−n2

+

(

ω(1) m1+m2

µα(1)

+
ω(3) n1+n2

µα(3)

)

Ñ1,3
m1,n1

Ñ1,3
m2,n2

Ñ1,3
m1+m2,−n1−n2

]

, (3.7)

which in the µ→ ∞ limit reduces to

〈ψ3→3|H3〉 =
s
√

1 − s

2π3 µ2
sin(π n1 s) sin(π n2 s) sin(π (n1 + n2) s)

×
[ 1

m1 − n1(1 − s)
+

1

m2 − n2(1 − s)

+
1

−(m1 +m2) + (n1 + n2)(1 − s)

]

+ O(
1

µ4
) . (3.8)

This result similarly agrees with our gauge theory findings in (2.25) modulo
the identical normalization factor of

√

s(1 − s). This concludes our investi-
gations on the dual string field theory side.

4 Decay of a single trace state

Finally we turn to the evaluation of the decay widths of a single trace (string)
state into the continuum of degenerate double trace (string) states. A given
state |n1, n2; 1〉 has two possible decay channels, namely

1. |n1, n2; 1〉 → |m1, m2; 1 − r〉|r〉

2. |n1, n2; 1〉 → |m; 1 − s〉ab|s〉c

where in both cases the final state spectrum is continuous. The decay width
for each channel can be computed in terms of quantum mechanical time-
dependent perturbation theory. At leading order the decay width is given
by

Γ =
∑

f

2π
∣

∣〈f |H̃|i〉
∣

∣

2
δ(Ei − Ef) (4.1)
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where 〈f |H̃|i〉 is the transition amplitude between the initial (i) and a partic-
ular final (f) state and the sum

∑

f runs over all possible final states, which
are degenerate in energy Ei = Ef .

We will first concentrate on decay channel 1. There (4.1) reads

Γ(1) = 2π
∑

m1,m2

∫ 1

0

dr
∣

∣〈r|〈m1, m2; 1 − r|H̃|n1, n2; 1〉
∣

∣

2

× δ(E|n1,n2;1〉 −E|m1,m2;1−r〉|r〉)

(4.2)

with E|n1,n2;1〉 = λ′(n2
1 + n2

2 + n1n2)

and E|m1,m2;1−r〉|r〉 = λ′

(1−r)2
(m2

1 +m2
2 +m1m2)

The δ-function can be rewritten into a δ-function for r

δ(E|n1,n2;1〉 −E|m1,m2;1−r〉|r〉) −→
1

2λ′

[m2
1 +m2

2 +m1m2

(n2
1 + n2

2 + n1n2)3

]1/2

δ
(

r −
(

1 −
[m2

1 +m2
2 +m1m2

n2
1 + n2

2 + n1n2

]1/2))

(4.3)

with m2
1 +m2

2 +m1m2 ≤ n2
1 + n2

2 + n1n2. (4.4)

We have omitted a term with an opposite sign in the δ-function, because
it does not satisfy r ∈ [0, 1]. For the same reason the condition (4.4) has
to be imposed on the sums over m1 and m2 in (4.2). The meaning of this
condition can be illustrated by analyzing the discrete energy spectrum of the
states |n1, n2; 1〉 more carefully.
Consider the equation

x2 + y2 + xy = R2. (4.5)

By expressing (x, y) via the rotated coordinates (x′, y′)

R2 =
1

2

(

(x′ − y′)2 + (x′ + y′)2 + (x′ − y′)(x′ + y′)
)

=
1

2

(

3 x′2 + y′2
)

(4.6)

one can easily see, that (4.5) defines an ellipse, which is rotated by π
4

about
the origin. Hence the points (n1, n2) of states with degenerate energies lie on
an ellipsis. Two outstanding classes of states, which form symmetry axes of
the spectrum are

• (n1, n2) ∈ {(n, 0) ; (0, n) ; (n,−n)} with E = λ′n2

• (n1, n2) ∈ {(n, n) ; (n,−2n) ; (−2n, n)} with E = 3λ′n2,
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n1

n2

Figure 1: Schematic structure of the energy spectrum. The ellipses correspond to
levels of different energies, states with E = λ′n2 (E = 3λ′n2) lie on continuous
(dashed) lines. The shaded area contains the full information of the spectrum.

They will appear again in the calculation of the decay widths. For symmetry
reasons it is obvious that the full information of the spectrum is already
contained in the area bordered by the lines (n, n) and (n,−n). The structure
of the spectrum is schematically depicted in figure 1. The condition (4.4)
can now be interpreted as the restriction to the set of states, where (m1, m2)
lies within the ellipse given by E|n1,n2;1〉. Although this picture appears to
be rather simple, it remains a nontrivial problem to specify the limits of the
sums over m1 and m2 explicitly. However, this problem can be solved at
least numerically. The resulting decay widths have been plotted in figure
2 for n1, n2 ∈ [−8, 8]. We will not describe this method in detail and turn
instead to the second decay channel, where this problem does not occur.

For the decay channel 2 the condition (4.4) is replaced by |m| ≤ n2
1 +n2

2 +
n1n2 and thus (4.1) is given by

Γ(2) = 2π
∑

(a,b)(c)

[Q]
∑

m=−[Q]

∫ 1

0

ds
∣

∣

c〈s| ab〈m; 1 − s|H̃|n1, n2; 1〉
∣

∣

2

× δ(E|n1,n2;1〉 −E|m;1−s〉|s〉) , (4.7)

where Q ≡
√

n2
1 + n2

2 + n1n2 and [Q] denotes the integer part of Q. Plugging
in the matrix element of H̃ from (2.25) and rewriting the δ-function in the
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same manner as it was done in (4.3) leads to

Γ(2) =
λ′ g2

2

4π5

1

Q2
An1,n2 Bn1,n2 with (4.8)

An1,n2 =

[Q]
∑

m=1

sin2
(

π n1
m

Q

)

sin2
(

π n2
m

Q

)

sin2
(

π (n1 + n2)
m

Q

)

,

Bn1,n2 =
∑

(a,b)(c)

{( 1

Na +Q
+

1

Nb −Q
+

1

Nc

)2

+
( 1

Na −Q
+

1

Nb +Q
+

1

Nc

)2}

= 18
Q4

n2
1 n

2
2 (n1 + n2)2

after the integration over s. The sum An1,n2 is calculated in Appendix B. We
finally find the result

Γ(2) =
9λ′ g2

2

2π5
A′

n1,n2
(4.9)

with

A′
n1,n2







































































= 0

for n1 = n2 = 0, n1 = 0 ∧ n2 6= 0, n1 6= 0 ∧ n2 = 0 , n1 = −n2

= 1
32

3
4n2

(

5
2
(1 + 2[Q]) − 2s(1)(1) − 2s(1)(2) + 2s(1)(3) − 1

2
s(1)(4)

)

for n ≡ n1 = n2, n ≡ n1 = −2n2 , n ≡ −2n1 = n2

= 1
32

Q2

n2
1 n2

2 (n1+n2)2

(

3
2
(1 + 2[Q]) − s(2)(n1) − s(2)(n2) − s(2)(n1 + n2)

− 1
2
s(2)(2n1) − 1

2
s(2)(2n2) − 1

2
s(2)(2(n1 + n2))

+ s(2)(n1 − n2) + s(2)(2n1 + n2) + s(2)(n1 + 2n2)
)

else,

where we have defined

s(1)(x) =
sin(π x (1 + 2[Q])/

√
3)

sin(πx/
√

3)
and s(2)(x) =

sin(π x (1 + 2[Q])/Q)

sin(πx/Q)
.

(4.10)
Note that the two classes of symmetry axes reappear in the first two cases

of A′
n1,n2

. In figure 2 the decay width Γ(2) is plotted against n1 and n2. The
axes with E = λ′n2 and E = 3λ′n2 are highly visible. It is remarkable, that
although the range in which Γ(1) was computed is comparatively small, one
can already recognize the same structures.

Finally, let us note that the decay width (4.1) could have equally well
been computed with the (non Hermitian!) gauge theory Hamiltonian H , a

18



Figure 2: The decay width is plotted against (n1, n2) (left: decay channel 1 (nu-
merical result), n1, n2 ∈ [−8, 8]; right: decay channel 2, n1, n2 ∈ [−100, 100]),
where the relative brightness of the cells is a measure for the relative size of Γ (e.g.
Γ = 0 corresponds to black cells).

fact also noted in the two-impurity sector in [14]. To see this, consider the
string Hamiltonian matrix element

〈f |H̃|i〉 = 〈f |H|i〉 +
g2

2
(Ei − Ef) 〈f |Σ|i〉 + O(g2

2) (4.11)

upon using (2.24). Hence for degenerate states |i〉 and |f〉 the discrepancy
between matrix elements of H̃ and H vanishes up to order g2

2 – provided
there are no poles at degeneracy in 〈f |Σ|i〉, which is not the case. Therefore
the decay width Γ of (4.1) may also be written as

Γ =
∑

f

2π〈i|H|f〉 〈f |H|i〉 δ(Ei −Ef ) (4.12)

and the knowledge of the Σ matrix elements is irrelevant for the computation
of this physical quantity.

5 Conclusions

Finally we have a brief look at the 2-loop calculation. In [18] the 2-loop
dilatation operator D4 was computed. Applied to two-impurity states in the
BMN limit D4 just acts as the square of D2, i.e.

lim
N,J→∞,

N/J2 fixed

D4 ◦ O2imp ∝ H2 ◦ O2imp . (5.1)
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This simple relation does not hold for more than two impurities. Instead,
one obtains for three impurities at the planar level

(D4)planar|x1, x2, 1 − x1 − x2〉 ∝
[

∂4
x1

+ (∂x1 − ∂x2)
4 + ∂4

x2

]

|x1, x2, 1 − x1 − x2〉 ,
(5.2)

which will lead to “energy” eigenvalues EO(λ′2) ∝ n4
1 + n4

2 + (n1 + n2)
4 not

being a perfect square. This result confirms what one would expect from the
string theory point of view from expanding out the square root in (1.2).

In this paper we have studied the quantum mechanics of BMN gauge
theory in the sector of three scalar impurities. The relevant matrix elements
of the Hamiltonian in the gauge and string theory basis were computed and
agreement with string field theory was demonstrated. Finally the decay
widths of three-impurity single trace states into double trace states were
found. It was shown that in the three-impurity sector the instability of
single trace states is a first order process.

Our results represent another non-trivial check of the proposed duality
of plane wave strings and N = 4 Super Yang-Mills. Despite of this success,
a number of worrying disagreements between plane wave string and gauge
theory are known: The reported discrepancy in the two-impurity sector at
two quantum-loop order (λ′2) noted in [24] is unresolved, although there only
matrix elements in string and gauge theory were compared. A priori these
need not agree. It would be highly desirable to compute a physical quantity,
such as an energy shift or a decay width at order λ′2 in string field theory to
see whether this disagreement is really there. A further discrepancy consists
in the existence of impurity non-conserving amplitudes in string field theory
at order

√
λ′, which obviously have no counterpart in perturbative Yang-

Mills [25]. The number of disagreements grows as one moves away from the
plane-wave limit: Incorporating the first curvature corrections to the plane-
wave limit of superstring theory yields different corrections to the spectrum
than the corresponding 1/J corrections on the gauge side, starting at three
loop order in the planar sector [26,20]. Similarly, discrepancies at three loop
order appear in the comparisons of gauge theory scaling dimensions and
semiclassical spinning string solutions in the full AdS5 × S5 theory [27].

It remains to be seen how this miraculous mosaic of perturbative agree-
ments and disagreements of string and gauge theory is to be understood.
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Appendix

A.1 Action of the 1-loop vertex operator on O3;l, O2,1;l

and O1,1,1;l

In this Appendix we present the expressions for H ◦ O (O stands for the
three different types of operators we introduced in section 2), which can be
obtained by performing Wick contractions. We begin with operators of the
type O3;l. The trace-conserving part H0 ◦ O3;l reads

H0 ◦ O123

p1,p2,J0−p1−p2
OJ1 . . .OJl

=

g2
YMN

8π2

[

6O123

p1,p2,J0−p1−p2
−O123

p1−1,p2,J0−(p1−1)−p2
−O123

p1+1,p2,J0−(p1+1)−p2

−O123

p1,p2+1,J0−p1−(p2+1) −O123

p1,p2−1,J0−p1−(p2−1)

−O123

p1+1,p2−1,J0−p1−p2
−O123

p1−1,p2+1,J0−p1−p2

]

OJ1 . . .OJl
, (A.1)

while H± ◦ O3;l, where the number of traces in- and decreases, are given by

H+ ◦ O123

p1,p2,J0−p1−p2
OJ1 . . .OJl

=

g2
YM

8π2

{ p1−1
∑

i=1

(

2O123

p1−i,p2,J0−p1−p2
−O123

p1−i−1,p2+1,J0−p1−p2

−O123

p1−i−1,p2,J0−(p1−1)−p2

)

Oi

+

p2−1
∑

i=1

(

2O123

p1,p2−i,J0−p1−p2
−O123

p1,p2−i−1,J0−p1−(p2−1)

−O123

p1+1,p2−i−1,J0−p1−p2

)

Oi

+

J0−p1−p2−1
∑

i=1

(

2O123

p1,p2,J0−p1−p2−i −O123

p1+1,p2,J0−(p1+1)−p2−i

−O123

p1,p2+1,J0−p1−(p2+1)−i

)

Oi

+

p1−1
∑

i=0

(

O1

J0−p1−p2+i

[

O23

p2,p1−i −O23

p2+1,p1−i−1

]

+ O2

p2+i

[

O31

J0−p1−p2,p1−i −O31

J0−(p1−1)−p2,p1−i−1

])
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+

p2−1
∑

i=0

(

O2

p1+i

[

O31

J0−p1−p2,p2−i −O31

J0−p1−(p2−1),p2−i−1

]

+ O3

J0−p1−p2+i

[

O12

p1,p2−i −O12

p1+1,p2−i−1

])

+

J0−p1−p2−1
∑

i=0

(

O3

p2+i

[

O12

p1,J0−p1−p2−i −O12

p1+1,J0−(p1+1)−p2−i

]

+ O1

p1+i

[

O23

p2,J0−p1−p2−i −O23

p2+1,J0−p1−(p2+1)−i

])

}

OJ1 . . .OJl

(A.2)

and

H− ◦ O123

p1,p2,J0−p1−p2
OJ1 . . .OJl

=

g2
YM

8π2

l
∑

i=1

Ji

(

2O123

p1+Ji,p2,J0−p1−p2
−O123

p1+Ji−1,p2+1,J0−p1−p2

−O123

p1+Ji−1,p2,J0−(p1−1)−p2

+ 2O123

p1,p2+Ji,J0−p1−p2
−O123

p1,p2+Ji−1,J0−p1−(p2−1)

−O123

p1+1,p2+Ji−1,J0−p1−p2

+ 2O123

p1,p2,J0−p1−p2+Ji
−O123

p1+1,p2,J0−(p1+1)−p2+Ji

−O123

p1,p2+1,J0−p1−(p2+1)+Ji

)

×OJ1 . . . 6OJi
. . .OJl

. (A.3)

The same can be done for O2,1;l with

H0 ◦ Oab

p,J0−p−qOc

qOJ1 . . .OJl
=

g2
YMN

4π2

[

2Oab

p,J0−p−q −Oab

p+1,J0−(p+1)−q −Oab

p−1,J0−(p−1)−q

]

Oc

qOJ1 . . .OJl
, (A.4)

H+ ◦ Oab

p,J0−p−qOc

qOJ1 . . .OJl
=

g2
YM

4π2

[ p−1
∑

i=1

(

Oab

p−i,J0−p−q −Oab

p−1−i,J0−(p−1)−q

)

Oi

+

J0−p−q−1
∑

i=1

(

Oab

p,J0−p−q−i −Oab

p+1,J0−(p+1)−q−i

)

Oi

]

Oc

qOJ1 . . .OJl
(A.5)
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and

H− ◦ Oab

p,J0−p−qOc

qOJ1 . . .OJl
=

g2
YM

4π2

{ l
∑

i=1

Ji

[

Oab

p+Ji,J0−p−q −Oab

p−1+Ji,J0−(p−1)−q

+ Oab

p,J0−p−q+Ji
−Oab

p+1,J0−(p+1)−q+Ji

]

Oc

qOJ1 . . . 6OJi
. . .OJl

+ 1
2

[ p−1
∑

i=0

(

Oacb

q+i,p−i,J0−p−q −Oacb

q+1+i,p−1−i,J0−p−q

+ Oacb

p−i,q+i,J0−p−q −Oacb

p−1−i,q+1+i,J0−p−q

)

+

J0−p−q−1
∑

i=0

(

Oabc

p,q+i,J0−p−q−i −Oabc

p,q+1+i,J0−p−(q+1)−i

+ Oabc

p,J0−p−q−i,q+i −Oabc

p,J0−p−(q+1)−i,q+1+i

)

+

q−1
∑

i=0

(

Oabc

p,q−i,J0−p−q+i −Oabc

p+1,q−1−i,J0−p−q+i

+ Oabc

p,J0−p−q+i,q−i −Oabc

p+1,J0−p−q+i,q−1−i

+ Oacb

q−i,p+i,J0−p−q −Oacb

q−1−i,p+i,J0−p−(q−1)

+ Oacb

p+i,q−i,J0−p−q −Oacb

p+i,q−1−i,J0−p−(q−1)

)

]

OJ1 . . .OJl

}

. (A.6)

The only non-vanishing contribution of H ◦ O1,1,1;l is

H− ◦ O1

p1
O2

p2
O3

J0−p1−p2
OJ1 . . .OJl

=

g2
YM

8π2

[ p1−1
∑

i=0

([

O12

p2+i,p1−i −O12

p2+1+i,p1−1−i

+ O12

p1−i,p2+i −O12

p1−1−i,p2+1+i

]

O3

J0−p1−p2

+
[

O13

J0−p1−p2+i,p1−i −O13

J0−(p1−1)−p2+i,p1−1−i

+ O13

p1−i,J0−p1−p2+i −O13

p1−1−i,J0−(p1−1)−p2+i

]

O2

p2

)
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+

p2−1
∑

i=0

([

O12

p2−i,p1+i −O12

p2−1−i,p1+1+i

+ O12

p1+i,p2−i −O12

p1+1+i,p2−1−i

]

O3

J0−p1−p2

+
[

O23

J0−p1−p2+i,p2−i −O23

J0−p1−(p2−1)+i,p2−1−i

+ O23

p2−i,J0−p1−p2+i −O23

p2−1−i,J0−p1−(p2−1)+i

]

O1

p1

)

+

J0−p1−p2−1
∑

i=0

([

O13

J0−p1−p2−i,p1+i −O13

J0−(p1+1)−p2−i,p1+1+i

+ O13

p1+i,J0−p1−p2−i −O13

p1+1+i,J0−(p1+1)−p2−i

]

O2

p2

+
[

O23

J0−p1−p2−i,p2+i −O23

J0−p1−(p2+1)−i,p2+1+i

+ O23

p2+i,J0−p1−p2−i −O23

p2+1+i,J0−p1−(p2+1)−i

]

O1

p1

)

]

OJ1 . . .OJl

(A.7)

A.2 H− and Σ−

Here we summarize the action of H− and Σ− on the different types of con-
tinuum states. The action of H− can be deduced out of the corresponding
expressions of Appendix A.1 by taking J → ∞. One gets

H−|n1, n2; r0〉|r1〉 . . . |rl〉 =

λ′

2π3

l
∑

i=1

∑

m1,m2

(√
ri

r0
sin(πm1

r0

r0+ri
) sin(πm2

r0

r0+ri
) sin(π(m1 +m2)

r0

r0+ri
)

×
[

n1(−m1 − 2m2)

m1 − n1
r0+ri

r0

+
n2(2m1 +m2)

m2 − n2
r0+ri

r0

+
−(n1 + n2)(m2 −m1)

−(m1 +m2) + (n1 + n2)
r0+ri

r0

]

× 1

m1n2 −m2n1

)

|m1, m2; r0 + ri〉|r1〉 . . . 6|ri〉 . . . |rl〉 (A.8)

24



and

H−|n; r0 − s〉ab|s〉c|r1〉 . . . |rl〉 =

λ′

π2

( l
∑

i=1

∑

m

√

ri

(r0 − s+ ri)(r0 − s)

×
m sin2(πm r0−s

r0−s+ri
)

m− n r0−s+ri

r0−s

|m; r0 − s + ri〉ab|s〉c|r1〉 . . . 6|ri〉 . . . |rl〉

+
1

2

∑

m1,m2

√
r0 − s

r0 π
sin(πm1

s
r0

) sin(πm2
s
r0

) sin(π(m1 +m2)
s
r0

)

×
∑

(a,b)(c)

1

Mc

( Mc −Mb

n +Ma
r0−s
r0

− Mc −Ma

n−Mb
r0−s
r0

)

|m1, m2; r0〉|r1〉 . . . |rl〉
)

(A.9)

as well as

H−|t1〉1|t2〉2|t3〉3|r1〉 . . . |rl〉 =

− λ′

π2

∑

m

∑

(a,b)(c)

sin2(πm ta
ta+tb

)
√
ta + tb

|m; ta + tb〉ab|tc〉c|r1〉 . . . |rl〉 . (A.10)

On the other hand, the matrix elements of Σ− can be read off from the
corresponding two-point functions, where again J is taken to infinity. Then
we obtain for the action on states like |n1, n2; r0〉 . . .

Σ−|n1, n2; r0〉|r1〉 . . . |rl〉

= −
l

∑

i=1

∑

m1,m2

sin(πm1
r0

r0+ri
) sin(πm2

r0

r0+ri
) sin(π (m1 +m2)

r0

r0+ri
)

(m1 − n1
r0+ri

r0
)(m2 − n2

r0+ri

r0
)(−(m1 +m2) + (n1 + n2)

r0+ri

r0
)

× (r0 + ri)
2 √ri

r0π3
|m1, m2; r0 + ri〉|r1〉 . . . 6|ri〉 . . . |rl〉

+
1

2

l
∑

i,j=0
i6=j

√

rirj(ri + rj) |n1, n2; r0〉|r1〉 . . . 6|ri〉 . . . 6|rj〉 . . . |rl〉|ri + rj〉 ,

(A.11)

for states like |n; r0 − s〉ab|s〉c . . .
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Σ−|n; r0 − s〉ab|s〉c|r1〉 . . . |rl〉

=
l

∑

i=1

(

∑

m

√

ri(r0 − s+ ri)3

r0 − s

sin2(πm r0−s
r0−s+ri

)

π2(m− n r0−s+ri

r0−s
)2

|m; r0 − s+ ri〉ab|s〉c

+
√
ri s |n; r0 − s〉ab|s+ ri〉c

)

|r1〉 . . . 6|ri〉 . . . |rl〉

+
1

2

l
∑

i,j=0
i6=j

√

rirj(ri + rj) |n; r0 − s〉ab|s〉c|r1〉 . . . 6|ri〉 . . . 6|rj〉 . . . |rl〉|ri + rj〉

−
∑

m1,m2

r2
0

π3(r0 − s)1/2
sin(πm1

s
r0

) sin(πm2
s
r0

) sin(π (m1 +m2)
s
r0

)

×
((

Ma + n r0

r0−s

)(

Mb − n r0

r0−s

)

Mc

)−1

|m1, m2; r0〉|r1〉 . . . |rl〉
(A.12)

and finally for states like |t1〉1|t2〉2|t3〉3 . . .

Σ−|t1〉1|t2〉2|t3〉3|r1〉 . . . |rl〉

=

l
∑

i=1

√
ri

(

t1 |t1 + ri〉1|t2〉2|t3〉3 + t2 |t1〉1|t2 + ri〉2|t3〉3

+ t3 |t1〉1|t2〉2|t3 + ri〉3

)

|r1〉... 6|ri〉...|rl〉

+
1

2

l
∑

i,j=0
i6=j

√

rirj(ri + rj) |t1〉1|t2〉2|t3〉3|r1〉 . . . 6|ri〉 . . . 6|rj〉 . . . |rl〉|ri + rj〉

−
∑

m

∑

(a,b)(c)

(ta + tb)
3/2

m2 π2
sin2(πm ta

ta+tb
) |m; ta + tb〉ab|tc〉c|r1〉 . . . |rl〉 ,

(A.13)

with t1 + t2 + t3 = r0 and M1 := −(m1 +m2), M2 := m1, M3 := m2.

B The sum An1,n2

In the following we will use the short cuts

p ≡ π n1

Q
and q ≡ π n2

Q
. (B.1)
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The sum An1,n2 then reads

Ap,q =

[Q]
∑

m=1

sin2(pm) sin2(q m) sin2((p+ q)m) (B.2)

= 1
32

[Q]
∑

m=1

(

3 − 2 cos(2 pm) − 2 cos(2 q m) − 2 cos(2 (p+ q)m)

− cos(4 pm) − cos(4 q m) − cos(4 (p+ q)m)

+ 2 cos(2 (p− q)m) + 2 cos(2 (2p+ q)m) + 2 cos(2 (p+ 2q)m)
)

.

Before calculating the sum we study the cases, where at least one of the
arguments of the cosines vanishes, namely

• p = q = 0, p = 0 ∧ q 6= 0, p 6= 0 ∧ q = 0 and p = −q : Γ(2) → 0

• r ≡ p = q, r ≡ p = −2q and r ≡ −2p = q :

Ap,q → Ar = 1
32

∑[Q]
m=1

(

5 − 4 cos(2 rm) − 4 cos(4 rm) + 4 cos(6 rm) −
cos(8 rm)

)

.

Using

[Q]
∑

m=1

cos(xm) = −1 + cos( [Q]x
2

) csc(x
2
) sin(x

2
(1 + [Q])) for

x

2π
6∈ Z

An1,n2 as stated in (4.9) and (4.10) follows.
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