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We briefly review the status quo of the application of integrable systems techniques
to the AdS/CFT correspondence in the large charge approximation, a rapidly
evolving topic. Intricate string and gauge computations of, respectively, energies
and scaling dimensions agree at the one and two-loop level, but disagree starting
from three loops. To add to this pattern, we present further computations which
demonstrate that for folded and circular spinning strings the full tower of infinitely
many hidden commuting charges, responsible for the integrability, also agrees up
to two, but not three, loops.

1. The status quo

A fresh approach to the AdS/CFT correspondence was initiated in [1].

The proposal involved e.g. the study of composite operators in the planar

N = 4 gauge theory containing as constituents complex scalar fields Z,Φ

of the form

Tr ZJ1ΦJ2 + . . . , (1)

and to consider the situation where J = J1 + J2 becomes large, while J2

remains small. The dots indicate arbitrary orderings of the scalars inside

the trace. It was argued that in this limit the conjectured dual string

becomes essentially free, and the spectrum therefore explicitly calculable.

Furthermore, the string energies turned out to be analytic at small BMN

coupling

λ′ =
λ

J2
, (2)

where λ is the usual large color ’t Hooft coupling. The string energy is inter-

preted on the gauge side as the anomalous dimension of the corresponding

1
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operator eq.(1). Expanding in λ′ therefore looks like a perturbative ex-

pansion of the dimension in the dual gauge theory. And indeed the one-

and two-loop predictions for the BMN operators eq.(1) were successfully

reproduced in [1],[2].

The large J limit of [1] was given in [3] an alternative interpretation

as a semi-classical approximation to the string sigma model. This way

of thinking allows for a generalization of the BMN limit: One may, more

generally, assume several charges to be large [4] (see also [5], and the closely

related earlier work [6]). In the case of our operators in eq.(1) one thus

assumes both J1 and J2 to be large. It was then shown [4] that the semi-

classical computations of string energies could be performed exactly, leading

to predictions for the anomalous dimensions of these operators which are

rather intricate as they generically depend in mathematically complicated

ways on both the coupling λ′ and the ratio

α =
J2

J
. (3)

In subsequent papers it was understood that the reason for the exact solv-

ability of the semi-classical string motions may be traced back to integra-

bility [7]. For a string propagating on a five-sphere the evolution equations

are those of the O(6) sigma model. In light-cone coordinates (ξ, η), where

τ = ξ + η and σ = ξ − η, they read

Xξη + (Xξ · Xη)X = 1 , (X · X) = 1. (4)

Here X is a six-dimensional vector describing the embedding of the string

world-sheet in S5. The equations are supplemented by the Virasoro con-

straints. The simplest solutions correspond to rigid strings, i.e. string con-

figurations with a time-independent shape. Rigid strings are naturally clas-

sified in terms of the Neumann integrable system [7], which is a special

one-dimensional reduction of eqs.(4).

The string equations of motion inherit their integrability from the one

of the string sigma model [8]. The underlying reason for the solvability is

then an infinite family of mutually commuting Pohlmeyer charges {Qk},
where {Q2} denotes the string energy.

How to check these predictions for the N = 4 gauge theory? The prob-

lem is a priori difficult, even at one-loop, due to the complicated mixing

between operators differing by the ordering of the scalars inside the trace.

To deal with these problems, operatorial methods were developed in [9],

not necessarily restricted to the planar case. However, for the planar case,
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a very important feature was noticed in [10]: The one-loop anomalous di-

mensions may be obtained by the diagonalization of an integrable quantum

spin chain. In the example of the operators of eq.(1) the Z and Φ fields

correspond to “up” and “down” spins. This integrable structure leads to

the appearance of an infinite set of mutually commuting one-loop gauge

charges {Q(1)
k }, which generate (planar) symmetries which, mysteriously

and yet-to-be-understood, are not part of the known symmetries of the

superconformal N = 4 theory. With one exception: {Q(1)
2 }, which is the

one-loop approximation to the model’s dilatation operator. Excitingly, in-

vestigating two-loop corrections, it was found that the charges continue to

commute beyond the one-loop level [11]. This led to the conjecture [11]

that the one-loop charges are actually only the leading order approxima-

tion of coupling constant dependent commuting charges {Qk(λ)}, and that

the exact dilatation operator {Q2(λ)} might thus be integrable.

The integrability of the one-loop planar gauge theory for scalar opera-

tors leads to the existence of a Bethe Ansatz for the anomalous dimensions

[10]. Incidentally, one can show that this remains true for the set of all

planar one-loop anomalous dimensions [12], as the one-loop dilatation op-

erator, not necessarily restricted to the planar limit, is known for the most

general N = 4 composite operator [13]. The Bethe Ansatz allows one to

quantitatively address the problem of the large J1,J2 limit of the oper-

ators in eq.(1), and to subsequently compare to the semi-classical string

results. And indeed, this programme recently enjoyed considerable suc-

cess. Investigating the two simplest types of string motions corresponding

to the operators eq.(1) (the folded and the circular string), it was shown in

[14],[16] that the one-loop string energies [4],[15],[7] and the gauge theory

anomalous dimensions agree: Q(1)
2 ∼ Q

(1)
2 . For agreement for other types

of motion, see the string [17] and gauge computations [18]; for a review, see

also [19].

In [20] it was shown, for folded and circular strings, that all one-loop

charges Q(1)
2k ∼ Q

(1)
2k agree, establishing a direct connection between the

respective integrable structures. This involved applying a Bäcklund trans-

formation to the string motions, and extracting the charges from the Bethe

Ansatz for the gauge theory. For a beautiful extension of this approach to

the case involving three complex scalars, see [21]. In [22] it was shown that

the two-loop energies Q(2)
2 ∼ Q

(2)
2 agree. This required a generalization of

the spin chain picture to a long range chain, and an extension of the Bethe
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Ansatz to higher loopsa.

Below we will extend these matchings by proving that also the two-loop

charges Q(2)
2k ∼ Q

(2)
2k coincide.

While the matching is done for the two specific cases we are convinced

that the relations between string and gauge charges are universal. As we

will see, they are not only independent of the type of motion, but also of

the parameter α in eq.(3). Of course it would be nice to present a general,

solution independent proof. A first important step into this direction was

undertaken, at one loop, in [24].

Very recently the most general one- and two-loop solution of the large

J gauge theory scaling dimensions for the operators eq.(1) was obtained by

Kazakov, Marshakov, Minahan and Zarembo [25]. Furthermore, a Bethe

equation for the classical string sigma model was derived, and it was ar-

gued that the quantum spin chain Bethe equations may be obtained from

it, mapping the integrable structures up to two loops for the most general

solution. These results based on the monodromy approach are completely

consistent with our extension of the Bäcklund approach to two loops de-

scribed in this work below.

Not all is well, however. Serious problems appear at the three loop

level. Indeed, the three-loop dilatation operator for the operators eq.(1)

had been conjectured in [11], see also [23], and rigorously derived in [26].

Completely independent confirmation comes from a conceptually, but not

technically related study of plane wave matrix theory at three loops [27].

Strictly speaking, the three loop dilatation generator is only known up to

two unknown constants: The procedure of [26] allows, to the considered

order, to add to Q
(3)
2 , with arbitrary coefficients, the second (Q

(1)
2 ) and

fourth (Q
(1)
4 ) one-loop conserved charge. However, both additions would

be inconsistent with the perturbative BMN limit, and therefore certainly

also with the large J1,J2 “spinning limit”. However, three-loop integrability

is proven in [26]. Therefore, the Bethe Ansatz of [22] applies, but the

obtained three loop string and gauge energies disagree, Q(3)
2 ≁ Q

(3)
2 , and

the same is true for all other charges. Below we will show that the difference

is nevertheless “small” in the sense that it may always be accounted for

aThe procedure applied in [22], using a long range chain invented by Inozemtsev, ac-
curately diagonalizes the dilatation operator for the states eq.(1) up to three loops. At
four loops, a violation of BMN scaling was detected. This might either indicate that

BMN scaling is indeed violated in the gauge theory, or alternatively, that a further inte-
grable long range chain, different from Inozemtsev, exists. Some evidence for the second
scenario comes from the results of [23]. However, this issue is beyond the present scope.
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by a simple non-local combination of charges, generalizing the “curious

observation” of [22]. An earlier three-loop string-gauge disagreement was

reported for the easier (on the gauge side) case of 1/J corrections to the

BMN limit in [28].

Let us assume that the AdS/CFT correspondence is not a near-

symmetry, but actually correct. One possible explanation for the disagree-

ment might be the fact that the parameter λ′ in eq.(2) is not obtained

in the same fashion in string and gauge theory. This possibility was first

discussed, to our knowledge, in [22]. For an earlier discussion in a slightly

different but related context, see [29]. In the “semiclassical” string theory

calculations we take λ and J to be large in a coupled fashion, and form

the finite coupling λ′. In perturbative gauge theory, we first assume λ to

be small, and subsequently take J to infinity. The difference in procedure

might be expressible as certain non-perturbative corrections on either side

of the correspondence. Taking them into account will hopefully eventually

show that indeed IIB string theory on the background AdS5×S5 and N = 4

gauge theory are one and the same thing.

2. Two-loop string/gauge matching of infinitely many

higher commuting charges

Let us now show explicitly that the integrable structures on both sides of

the correspondence agree, up to two loops, in the two distinct cases of the

folded and the circular spinning string. This will be done by combining the

results of [20] and [22] in order to show that the full tower of commuting

charges matches up to O(λ′2). In the following we will concentrate on the

new, two-loop aspects of this matching, and refer to [20],[22] for further

background, technical details, and precise notations. On the string side

the generating function of charges (resolvent) was found by applying the

Bäcklund transformation to the solutions of the classical string equations

of motion, cf. eqs.(4). The result for the “nearly improved” string resolvent

reads, in both cases,

Ẽ(µ) =
4µ3

π

√

(1 − z)(1 − tz)√
z

Π(tz, t). (5)

Here µ is the string spectral parameter, t is the string modulus, and the

function Π(tz, t) is the complete elliptic integral of the third kind. The

auxiliary parameter z depends on µ, t, and J = J/
√

λ, i.e. the charge

in units of the string tension. In order to expand this expression, it is



March 17, 2004 14:36 WSPC/Trim Size: 9in x 6in for Proceedings varna3

6

convenient to use the form

Q̃(ϕ, λ′) =
1

2
− 1

2
µ−2 Ẽ(µ)

J =
1

2
− 2ϕ

√

∓(1 − z)(1 − tz)√
z

Π(tz, t) , (6)

The string resolvent then becomes a function of the rescaled spectral pa-

rameter ϕ and the BMN coupling constant λ′,

ϕ2 = ∓ µ2

π2J 2
and λ′ =

1

J 2
. (7)

Here and in the following the sign ∓ depends on the type of string mo-

tion (folded: upper sign, circular: lower sign), which is entirely due to

our conventions. The modulus t = t(λ′; α) depends on the coupling con-

stant λ′, and also encodes information on the filling fraction α = J2/J ,

cf. eqs.(19),(20) and eqs.(31),(32). The auxiliary parameter z = z(ϕ, λ′; α)

also slightly differs in the two considered cases. It is determined by

eqs. (21),(33) below.

This “nearly improved” string resolvent generates a set of string charges

{Q̃2k(λ′)}

Q̃(ϕ, λ′) =
∞
∑

k=0

Q̃2k(λ′) ϕ2k, (8)

such that the lowest (zeroth) charge is linearly related to the string energy

Q2(λ
′) = E/J by Q̃0(λ

′) = 1
2 (1 −Q2(λ

′)). Of course we can alternatively,

or in addition, expand in the coupling constant λ′:

Q̃(ϕ, λ′) =

∞
∑

n=0

Q̃(n+1)(ϕ) λ′n =

∞
∑

n,k=0

Q̃(n+1)
2k λ′n ϕ2k. (9)

On the gauge side the resolvent for a set of gauge charges {Q̄2k(λ′)}
was also found perturbatively, up to three loops, by using a Bethe Ansatz

for a long range spin chain originally invented by Inozemtsev [30],[31]:

H(ϕ, λ′) = ±
∞
∑

k=1

Q̄2k(λ′) ϕ2k . (10)

Here ϕ is a gauge spectral parameter which is obtained from the scaled

rapidity of the Inozemtsev-Bethe Ansatz. Expanding in λ′, we have

H(ϕ, λ′) = ±
2
∑

n=0

Q̄(n+1)(ϕ) λ′n = ±
2
∑

n=0

∞
∑

k=1

Q̄
(n+1)
2k λ′n ϕ2k. (11)
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It is important to note that the charges Q̄
(n)
2k are not the correct “observ-

ables” of the spin chain. E.g. the three-loop gauge anomalous dimension is

obtained by the following specific linear combination:

Q2(λ
′) = 1 ∓ λ′

4π2
Q̄2(λ

′) − 3λ′2

64π4
Q̄4(λ

′) ∓ 5λ′3

512π6
Q̄6(λ

′). (12)

Likewise, while in the spin chain any linear combination of local charges

leads again to a set of local charges, in the gauge theory these linear super-

positions are essentially fixed: At one loop, the charges are required to obey

BMN scaling [20], and loop corrections are then determined by quantum

field theory. The proper three-loop charges will thus look like (k > 0)

Q2k(λ′) = Q̄2k(λ′) ∓ ek,1λ
′ Q̄2k+2(λ

′) + ek,2λ
′2 Q̄2k+4(λ

′) . (13)

While it is certainly possible to find these (universal) numbers ek,1, ek,2,

it is easily seen that we do not require them for the present purposes of

two-loop matching: All we need to showb is that a linear map from the set

of “nearly improved” string charges {Q̃2k(λ′)} to the set of gauge charges

{Q̄2k(λ′)} exists to leading and next-to-leading order in λ′! By explicit

inspection of the first few two-loop string and gauge charges, one finds that

(k ≥ 0, and Q̄
(2)
0 ≡ 0)

Q̃(2)
2k = ±Q̄

(2)
2k ± 1

8π2
(2k + 1) Q̄

(1)
2k+2 . (14)

This leads to the following proposition

Q̃(ϕ, λ′) = Q̄(1)(ϕ) ± λ′

[

Q̄(2)(ϕ) +
1

8π2

∂

∂ϕ

1

ϕ
Q̄(1)(ϕ)

]

+ O(λ′2) (15)

It can be written in an elegant fashion as follows:

Q̃(ϕ, λ′) =
(

1 ∓ λ′

8π2ϕ2

)

H
(

ϕ ± λ′

8π2ϕ
, λ′
)

+ O(λ′2) . (16)

This is our main new result, and will be proven in the next sections for

the case of the folded and circular string. It proves our assertion of the

two-loop matching of string and gauge charges. Although derived starting

from particular solutions, we believe that (16) is universal in the sense that

bThis also relieves us from applying the procedure of “full improvement” to the string
resolvent eq.(5), as discussed in [20], p. 24. At any rate, the latter would only assure

us of the correct leading BMN scaling behavior of the charges; one can show that the
obtained charges do not agree with the “proper” gauge charges at the two-loop level.
Thus a further linear, upper triangle redefinition would be required.



March 17, 2004 14:36 WSPC/Trim Size: 9in x 6in for Proceedings varna3

8

it does not depend on specific solutionsc, and that it expresses the general

matching of string/gauge integrable structures at two loops.

Now we discuss the three-loop case. As was already noticed in [22]

the gauge/string energies disagree starting from three loops. It is however

remarkable that the disagreement between the whole towers of gauge/string

commuting charges admits a uniform description.

First, we expand eq.(6) up to λ′2 and identify the term Q̃(3)(ϕ). Then

we perform the Gauss-Landen transformation (30) to bring this term to

the gauge theory frame. Our two-loop matching formula (14) would seem

to suggest that the matching of the three-loop gauge and string resolvents

should again be given by a linear relation

Q̃(3)
2k

?
= Q̄

(3)
2k + αk,1 Q̄

(2)
2k+2 + αk,2 Q̄

(1)
2k+4 . (17)

Working out explicitly the first few Inozemtsev charges one may verify that

this proposal does not work, since the coefficients αk,1 and αk,2 then appear

to be functions of the modular parameter q0. Thus, linear combinations of

Inozemtsev charges with constant coefficients cannot reproduce the string

result. This motivates us to extend the set of charges by adding also their

products. By trial and error we found the following remarkable formula

(k ≥ 0, and Q̄
(2)
0 ≡ Q̄

(3)
0 ≡ 0)

Q̃(3)
2k = Q̄

(3)
2k +

2k + 1

8π2
Q̄

(2)
2k+2 +

(2k + 1)(2k + 3)

128π4
Q̄

(1)
2k+4

− 1

8π2
Q̄

(1)
2 Q̄

(2)
2k (18)

which describes the relation between the gauge and string towers of com-

muting charges up to and including three loops.

2.1. Folded string

The classical motion of the folded string leads to the following parametric

result for the all-loop string energy Q2:

λ′ =
π2

4K(t0)2

[

(

K(t0) − E(t0)

K(t) − E(t)

)2

−
(

E(t0)

E(t)

)2
]

, (19)

Q2 =
K(t)

K(t0)

√

(1 − t)

(

E(t0)

E(t)

)2

+ t

(

K(t0) − E(t0)

K(t) − E(t)

)2

.

cThe sign flips are entirely due to a slight difference in the normalization of gauge theory
charges for the folded and circular cases, cf. [20]. Defining the charges in an identical
fashion in both cases removes this difference.
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Here the modulus t contains the information about the coupling λ′. In

addition, its constant piece t0 parametrizes the “filling fraction”

α = 1 − E(t0)

K(t0)
. (20)

The charges are found by the Bäcklund transformation; the final result

for the string resolvent is given in eq.(6), where the “auxiliary” and true

spectral parameters z, ϕ are related through

ϕ2 +

(

1

4K(t0)

E(t0)

E(t)

)2
z(1 − tz)

1 − z
+

λ′

4π2
tz = 0 . (21)

Expanding this in λ′ one finds

Q̃(ϕ, λ′) = Q̃(1)(ϕ) + λ′Q̃(2)(ϕ) + O(λ′2) . (22)

Here the leading piece is

Q̃(1)(ϕ) =
1

2
− 2ϕ

√

(1 − z0)(t0z0 − 1)√
z0

Π(t0z0, t0) . (23)

where

ϕ2 +

(

1

4K(t0)

)2
z0(1 − t0z0)

1 − z0
= 0 . (24)

The next term Q̃(2)(ϕ) is rather complicated and we will not write it out.

The Bethe Ansatz for the spin chain describing two-loop gauge theory

in the large J limit quite generally leads to a singular integral equation. In

the present case this equation is of elliptic type, and closely related to the

one appearing in the so-called O(N) matrix model, see e.g. [32]. Its solution

leads to the following generating functions for the one-loop charges Q̄
(1)
2k

Q̄(1)(ϕ) =
1

4
− a2

0

b0

√

b2
0 − ϕ2

a2
0 − ϕ2

Π

(

−q0
ϕ2

a2
0 − ϕ2

, q0

)

(25)

and two-loop charges Q̄
(2)
2k

Q̄(2)(ϕ) =
1

32π2ϕ2

(

1 − b0

2a0

√

a2
0 − ϕ2

b2
0 − ϕ2

− a0

2b0

√

b2
0 − ϕ2

a2
0 − ϕ2

)

. (26)

Here the natural modulus q0 parametrizes the filling fraction through

α =
1

2
− 1

2
√

1 − q0

E(q0)

K(q0)
. (27)
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while the leading-order rapidity boundaries a0, b0 are given by

a0 =
1

4K(q0)
, b0 =

1

4
√

1 − q0 K(q0)
. (28)

It is now straightforward to calculate the expression

Q̄(2)(ϕ) +
1

8π2

∂

∂ϕ

1

ϕ
Q̄(1)(ϕ) =

a2
0 + b2

0 − 8a0b
2
0E(q0)

64π2a0b0

√

(a2
0 − ϕ2)(b2

0 − ϕ2)
. (29)

As was shown in [20] after a Gauss-Landen transformation of the moduli

t0 = − (1 −√
1 − q0)

2

4
√

1 − q0
, (30)

eq.(23) becomes identical to eq.(25). Now we observe that the same trans-

formation nicely turns the rather complicated expression Q̃(2)(ϕ) in eq.(22)

into the r.h.s. of eq.(29), proving our main assertion eq.(15).

2.2. Circular string

The analysis of the circular string is very similar to one for the folded case.

The BMN coupling constant λ′ and the string energy Q2 are given by

λ′ =
π2t

4t20K(t0)2

[

(

K(t0) − E(t0)

K(t) − E(t)

)2

−
(

E(t0) − (1 − t0)K(t0)

E(t) − (1 − t)K(t)

)2
]

, (31)

Q2 =
tK(t)

t0K(t0)

√

1

t

(

K(t0) − E(t0)

K(t) − E(t)

)2

− 1 − t

t

(

E(t0) − (1 − t0)K(t0)

E(t) − (1 − t)K(t)

)2

,

where the parameter t0 is determined via the filling fraction as follows

α = 1 − 1

t0
+

1

t0

E(t0)

K(t0)
. (32)

The string spectral parameters z and ϕ are related through

ϕ2 − t2

t20

(

1

4K(t0)

K(t0) − E(t0)

K(t) − E(t)

)2
z(1 − z)

1 − tz
− λ′

4π2

(1 − t)z

1 − tz
= 0 . (33)

On the gauge theory side the configuration of Bethe roots corresponding to

the circular string is described by two cuts on the imaginary axis: ic < iϕ <

id and −id < iϕ < −ic, with a constant condensate in between. For the one-

loop problem we denote the endpoints of the cut as c0 and d0 and introduce

the gauge theory modulus as r0 =
c2

0

d2

0

, where c0 = 1
8K(r0)

. The modulus
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r0 is related to the filling fraction α as follows α = 1
2 − 1

2
√

r0

+ 1
2
√

r0

E(r0)
K(r0)

.

Then the one-loop resolvent is

Q̄(1)(ϕ) =
1

4
− 2

d0

√

(d2
0 − ϕ2)(c2

0 − ϕ2) Π

(

ϕ2

d2
0

, r0

)

. (34)

The two-loop correction found from the Inozemtsev-Bethe Ansatz reads

Q̄(2)(ϕ) =
1

32π2ϕ2

(

1 − d0

2c0

√

c2
0 − ϕ2

d2
0 − ϕ2

− c0

2d0

√

d2
0 − ϕ2

c2
0 − ϕ2

)

. (35)

Using the two formulae above one finds

Q̄(2)(ϕ) +
1

8π2

∂

∂ϕ

1

ϕ
Q̄(1)(ϕ) =

c2
0 − d2

0 + 16c0d
2
0E(r0)

64π2c0d0

√

(c2
0 − ϕ2)(d2

0 − ϕ2)
(36)

Expanding in λ′ the resolvent (6) corresponding to the circular string one

identifies the leading and the subleading terms, which are Q̃(1)(ϕ) and

Q̃(2)(ϕ) respectively. Quite remarkably, the Gauss-Landen transformation

t0 = − 4
√

r0

(1 −√
r0)2

(37)

transforms these expressions into eqs.(34) and (36).
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