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Abstract

Minimal Surfaces in S3 are shown to yield spinning membrane solutions in
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The AdS/CFT correspondence (see [1] for review) offers a powerful tool to study interest-

ing aspects of supersymmetric large-N gauge theories beyond perturbation theory. The

first stage of these developments relied mainly on the isomorphism between Kaluza-Klein

states of classical type IIB supergravity compactified on AdS5 × S5 and BPS observables

of N = 4 super-Yang-Mills theory in four dimensions. Many variations on this theme

involving theories with less supersymmetry, with and without conformal invariance, were

also studied, leading to quantitative results about the spectrum and phase structure of

QCD-like theories [2][3][4][5][6].

The problem to go beyond the SUGRA approximation is related to the difficulties to quan-

tize string theory in Ramond-Ramond backgrounds. Even though a covariant quantization

scheme has been developed [7], it has so far not been possible to use it to compute the

string excitation spectrum on these backgrounds. An exception is the gravitational plane

wave background which is obtained as the Penrose limit of the AdS5 ×S5 vacuum of type

IIB string theory. In this background light-cone quantization leads to a free theory on

the world-sheet whose spectrum is easily computed [8]. This opens the way to the duality

between string theory and another sector of large-N SYM, which is characterized by large

R-charge (∼
√

N) and conformal weight (∼
√

N). The extensive activity to which this has

led was initiated in [9].

Studying time-dependent classical solutions of the string sigma-model in an AdS5 × S5

target space-time and relating them to the dual conformal field theory, extends the testable

features of the duality between string theory and N = 4 SYM. This was proposed and

demonstrated in [10]. Subsequent interesting developments are summarized and reviewed

in [11].

A likely extension of these ideas is to go from strings to M-theory, where the funda-

mental objects are membranes rather than strings. In this case, maximally supersym-

metric backgrounds, aside from eleven-dimensional Minkowski space, are AdS7 × S4 and

AdS4 × S7. The former is the near-horizon limit of a stack of N coincident M5 branes

with 1
2RAdS = RS = lp(πN)1/3 and the latter is the near-horizon limit of a stack of N M2

branes with 2RAdS = RS = lP (32π2N)1/6. The dualities between classical supergravity

on these background and the conformal field theories on the world-volume of the branes

which create them has been studied. In particular for the AdS4 × S7 case, if the duality

holds, nontrivial information about the (0, 2) conformal field theory of N interacting ten-

sor multiplets in six dimensions has been obtained, e.g. its conformal anomaly has been

computed [12][13]. Direct verifications have, however, so far been impossible, mainly due

to the lack of knowledge of the interacting (0,2) theory.

1



The problems which one encounters in quantizing string theory on non-trivial backgrounds

are of course much more severe in M-theory where quantization on any background is still

elusive. The semiclassical analysis, which in the case of string theory provides valuable

non-trivial information about the dual conformal field theory, can, however, be extended

to M-theory. While the equations of motion of strings on AdS5 × S5 reduce, for special

symmetric configurations, to classical integrable systems [14][15], this is not as simple for

membranes. Also, the integrable spin-chains which appear in the discussion of the dual

gauge theory [16][17], have so far no known analogue in the (0,2) tensor theory.

In this letter we make a first step towards the semiclassical analysis of M-theory on AdSp×
Sq backgrounds. We will find that the equations of motion, upon imposing a suitable

Ansatz (analogous to the corresponding string theory analysis, and similar to the Ansatz

made in [18]), may be reduced to the equations describing minimal embeddings of 2-surfaces

into higher spheres (as well as generalizations thereof).

Let us consider closed bosonic membranes in AdSp × Sq. Their dynamics is derived from

the action

S =

∫

d3ϕ
(√

G + λ(~x2 − 1) + λ̃(y2 − 1)
)

(1)

where yµ(ϕα) (µ = 1, . . . , p; α = 0, 1, 2) and xk(ϕα) (k = 1, . . . , q + 1) are the embedding

coordinates, ~x2 =
∑q+1

k=1 xkxk, y2 = yµyνηµν = y2
0 + y2

p − ∑p−1
µ′=1(yµ′)2 and

Gαβ = ∂αyµ∂βyνηµν − ∂α~x · ∂β~x . (2)

The constraints

y2 = 1 = ~x2 (3)

follow by varying (1) w.r.t. the Lagrange multipliers λ and λ̃ while variation w.r.t. yµ and

xk yields the equations of motion

∂α(
√

GGαβ∂βyµ) = 2λ̃yµ , (4)

∂α(
√

GGαβ∂β~x) = −2λ~x . (5)

Note that we take the radii of the AdS spaces and the sphere to be equal. It is straight-

forward to generalize the discussion to the case of unequal radii, which is the situation in

the M-theory context. Contracting (4) with yµ and (5) with ~x, respectively and using (3),

one finds that
2λ̃ = −

√
GGαβ∂αyµ∂βyνηµν

2λ = +
√

GGαβ∂α~x · ∂β~x
(6)
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implying

λ + λ̃ = −1

2

√
GGαβ (∂αyµ∂βyµ − ∂α~x · ∂β~x)

= −3

2

√
G .

(7)

Denoting ϕ0 by t, let us make the Ansatz

y0 = sin(ω0t), yp = cos(ω0t), yµ′ = 0 (µ′ = 1, . . . , p − 1)

~x(t, ϕ1, ϕ2) = R(t)~m(ϕ1, ϕ2)
(8)

with

R(t) =













cos(ω1t) − sin(ω1t)
sin(ω1t) cos(ω1t)

cos(ω2t) − sin(ω2t)
sin(ω2t) cos(ω2t)

. . .













. (9)

Let us further demand ~̇x · ∂1~x = 0 = ~̇x · ∂2~x, which, writing

~mT = (r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2, . . .) reads

d≡[ 1
2
(q+1)]

∑

a=1

ωar2
a∂1θa = 0 =

d
∑

a=1

ωar2
a∂2θa . (10)

The world-volume metric is then block-diagonal

Gαβ =





ω2
0 − ~̇x2 0 0

0 −grs0



 (11)

with grs = ∂r~x · ∂s~x = ∂r ~m · ∂s ~m (r, s = 1, 2) and ~̇x2 =
∑d

a=1 ω2
ar2

a. As is not difficult to

see, (4) implies that

ρ :=
√

GG00 =

√
g

√

ω2
0 − ∑d

a=1 ω2
ar2

a

=
g√
G

(12)

is (a) time-independent (density). In any case,

d
∑

a=1

ω2
ar2

a +
g

ρ2
= ω2

0 (13)

has to hold and λ̃ is determined as −ρω2
0/2.
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Let us now turn to the equation for ~x which determines ~m(ϕ1, ϕ2), i.e. the shape of the

membrane that is being rotated inside Sq by the orthogonal matrix R(t) (cf. (9)), in order

to yield an extremal three-manifold in AdSp × Sq. With (11), (5) becomes

1

ρ
∂r

(

g
grs

ρ
∂s~x

)

= ~̈x +
2λ~x

ρ
. (14)

Due to eqs.(8),(9) and (6), implying ~̈x = R̈(t)~m,

2λ

ρ
= ~̇x2 −

√
G

ρ
grs∂r ~m · ∂s ~m

=
d

∑

a=1

ω2
ar2

a − 2g

ρ2

(15)

(14) reduces to

{{mi, mj}, mj} =

(

−ω2
(i) +

∑

ω2
ar2

a − 2g

ρ2

)

mi (16)

where ω(1) = ω(2) := ω1, ω(3) = ω(4) := ω2, etc.,

g = det(∂r~x · ∂s~x) = det(∂r ~m · ∂s ~m) = ρ2
∑

i<j

{mi, mj}2

and the (Poisson) bracket is defined as (ǫ12 = −ǫ21 = 1)

{f, g} =
1

ρ
ǫrs∂rf∂sg (17)

for any two differentiable functions on the two-dimensional parameter manifold. The den-

sity ρ, though time-independent, was defined in (12) in a ‘dynamical’ way, i.e. depending on

~x(t, ϕ1, ϕ2). However, due to [19] we may assume it to be any given ‘non-dynamical’ density

having the same ‘volume’
∫

ρ(ϕ1, ϕ2)d2ϕ. This frees (17) from its seeming ~x-dependence

while reducing the original (ϕ1, ϕ2)-diffeomorphism invariance to those preserving ρ.

Confining ourselves (for the time being) to solving (10) in a trivial way by letting the

θa(ϕ1, ϕ2) be constants, i.e. independent of ϕ1,2, the equations to be solved are

{{ra, rb}, rb} =

(

−ω2
a +

∑

ω2
cr2

c − 2g

ρ2

)

ra , a = 1, . . . , d (18)

subject to (13) and to
∑

r2
a = 1. In the case of the string, rather than the membrane,

this equation becomes [14], for d = 3, the equation of motion of the Neumann system,
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namely the constrained motion of a three-dimensional harmonic oscillator on the surface

of a two-sphere.

If the ‘spatial’ frequencies ωa are chosen to be all equal, it follows that
∑

ω2
cr2

c = ω2 =

constant as well as (from (13)) g/ρ2 = ω2
0 − ω2 = const. This simplifies (18) to

{{ra, rb}, rb} = −2(ω2
0 − ω2)ra (19)

which can be explicitly solved by (known) minimal embeddings of two-surfaces into d =

[ 12(q + 1)]-dimensional unit spheres.

To see this, one could recall (12), which shows that (19), rewritten as

1

ρ
∂s

(

g
gsu

ρ
∂u~r

)

= −2(ω2
0 − ω2)~r , (20)

is identical to the standard ‘minimal surface’ equation

1√
g
∂s(

√
ggsu∂u~r) = −2~r . (21)

This is the Euler-Lagrange equation which one obtains if one varies

∫

d2ϕ
(√

g − µ(ϕ)(~r2 − 1)
)

(22)

w.r.t. the embedding coordinates ra(ϕ1, ϕ2) and the local Lagrange multiplier µ(ϕ) (which

guarantees ~r2 = 1).

Another way to show the equivalence of (20) (hence (19)) to (21) is as follows: the results

of ref.[19] allow one to choose the coordinates ϕs in the diffeomorphism invariant equation

(21) such that
√

g/(ω2
0 − ω2) is equal to any given density with the same ‘volume’ (i.e.

integral over d2ϕ). Choosing it to be ρ shows that solutions of (21) give solutions of

(20). To show the converse, one notes that (20) automatically implies that g
ρ2 = ω2

0 − ω2

(multiply (20) by ~r, and use ~r2 = 1 three times: once on the r.h.s., once for ~r · ∂u~r = 0

and, finally, to write ~r · ∂s∂u~r as −gsu).

Concerning explicit solutions of (19), resp. (21) (from now on we put ω2
0 − ω2 = 1 by

rescaling ρ) let us only mention the two simplest ones:

r1 = sin θ cos ϕ r2 = sin θ sin ϕ , r3 = cos θ , ra>3 = 0 (23)

5



(the equator 2-sphere in Sd−1≥2, ϕ1 = θ ∈ [0, π], ϕ2 = ϕ ∈ [0, 2π], ρ = sin θ) and

~r =
1√
2

(cos ϕ1, sinϕ1, cosϕ2, sinϕ2, 0, . . . , 0) (24)

(the Clifford-torus in Sd−1≥3). Lawson [20] proved that there exist minimal embeddings

into S3 of any topological type. Minimal tori in S7 are given in [21].
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