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Abstract

Important characteristics of the loop approach to quantum gravity are a specific
choice of the algebra A of observables and of a representation of A on a measure
space over the space of generalized connections. This representation is singled out
by its elegance and diffeomorphism covariance.

Recently, in the context of the quest for semiclassical states, states of the theory
in which the quantum gravitational field is close to some classical geometry, it was
realized that it might also be worthwhile to study different representations of the
algebra A of observables.

The content of the present note is the observation that under some mild assump-
tions, the mathematical structure of representations of A can be analyzed rather
effortlessly, to a certain extent: Each representation can be labeled by sets of func-
tions and measures on the space of (generalized) connections that fulfill certain
conditions.

These considerations are however mostly of mathematical nature. Their physical
content remains to be clarified, and physically interesting examples are yet to be
constructed.

1 Introduction

Loop quantum gravity (LQG for short) is a promising approach to the problem of finding
a quantum theory of gravity, and has led to many interesting insights. It is based on
the formulation of gravity as a constrained canonical system in terms of the Ashtekar
variables [1], a canonical pair of an SU(2)-connection (in its real formulation) and a
triad field.
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One of the interesting features of LQG (and perhaps one reason for its success)
is its specific choice of basic observables: The configuration variables are holonomies
along curves in the spacial slices of the spacetime, the basic momentum variables are
integrals of a triad field over surfaces in the spacial slices of the spacetime. This is
in contrast to ordinary quantum field theories, where both the configuration and the
momentum observables are three dimensional integrals of the basic field and its conjugate
momentum. The choice of basic variables in LQG is, however, well motivated, since in
contrast to other possibilities, these variables can be defined without recurse to a fixed
classical background geometry, and it furthermore leads to well defined operators for
interesting geometric quantities such as area and volume.

A quantum theory for this type of basic variables was first given by Rovelli and
Smolin in [2]. Since then, much work has gone into extracting the essence of this quanti-
zation and putting it onto firm mathematical ground. Key ideas in this context were the
use of C∗-algebraic methods [3] and projective limit techniques [4, 5] resulting in what is
now called the connection representation. This representation is based on a Hilbert space
which is an L2 space over the space of connections with respect to a certain measure,
the Ashtekar-Lewandowski measure. The holonomies act as multiplication operators
and the integrated triad fields as certain vector fields. Due to its diffeomorphism in-
variance and mathematical elegance, this representation is considered the fundamental
representation of LQG.

That it might nevertheless be interesting to also consider representations other than
the AL-representation was realized when attempts were made to construct states for
LQG in which the quantum gravitational field behaves almost classical. The first pro-
posal in this direction was contained in [6]. There, the goal was to find states for LQG
that have semiclassical properties for spacetimes with non-compact spacial slices. Rep-
resentations that are inequivalent to the AL-representation also seem to arise if one
implements the ideas [7] about the use of statistical geometry for the construction of
semiclassical states. Finally, in a series of recent works [8, 9, 10], measures on the space
of generalized connections were constructed that derive from the Gaussian measure of
ordinary (background dependent) free quantum field theory.

The representation theory for the holonomy algebra is well understood and many
representations inequivalent to the AL-representation have been considered in the liter-
ature. Less attention has been paid to the question of what happens when one also takes
the integrated triads into consideration. The main observation of the present note is
that due to the structure of its commutation relations, representations of the combined
algebra of holonomies and integrated triads can, without effort, be analyzed to a certain
extent: Each representation can be labeled by sets of functions and measures on the
space of (generalized) connections that fulfill certain conditions.

However, a cautionary remark is in order here. The considerations of the present
note are mostly of mathematical nature. Truly interesting, albeit difficult, tasks would
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be to state physically motivated criteria for singling out interesting classes of repre-
sentations, actually constructing such representations, and understanding the physical
content of representations constructed by mathematical considerations. None of this
will be addressed in this note. However, we hope that it can be used as a starting point
when approaching those questions motivated by physics.

To finish this introduction, we should mention that the occurrence of inequivalent
representations of the observable algebra is well known from quantum field theory and
quantum statistical mechanics [11]: In that context, it was realized that the choice
of representation for the observable algebra contains important physical information:
Roughly speaking, whereas the algebraic structure of the theory encodes the physical
system one is considering, the chosen representation carries the global information about
the physical state, the system is in. It might for example decide whether the system is
in a ground or in a thermal state or whether the state carries a global charge. Since
the change of the global properties of a state of the system is not always physically
realizable (it might necessitate an infinite amount of energy or the creation of charges)
the emergence of inequivalent representations is quite natural. The considerations of
representations different from the AL-representation in the quest for the semiclassical
regime of LQG fits quite nicely into this general picture.

2 CQG briefing

It is sometimes helpful to quantize a given classical system in two steps. The first consists
in associating to each member of a chosen set of classical observables, an operator in
some (abstract) *-algebra A, such that

• The Poisson structure of the classical observables is mirrored as closely as possible
by the commutators within the algebra (”Poisson brackets go to commutators”).

• Complex conjugate on classical observables are mapped to conjugates under the
∗-operation on A.

The importance of the second condition lies in the fact that it ensures that real classical
quantities will be associated with symmetric operators, which in turn have spectrum on
the real line and real expectation values. If this would not be the case, the interpretation
of the resulting quantum theory would be completely obscure.

The second step consists in choosing a ∗-representation of the algebra A, thus en-
abling one to compute expectation values and hence make physical predictions.

The purpose of this section is to look at the first of these two steps in the context
of LQG. It has been extensively studied there and the choice of the set of classical
observables as well as the corresponding ∗-algebra which is made can be regarded as the
very essence of LQG. In this section, we will briefly review these developments to make
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the paper self contained as well as fix the notation. Thus the pedagogical value of this
section will be very low. For an extensive recent review see [12].

As a first step recall that the canonical pair in LQG is a SU(2) connection one-form
A and a frame field EI with a nontrivial density weight. Both of these take values
on a spacial slice Σ of the four-manifold M . Being a one-form, A can be integrated
naturally (that is, without recurse to background structure) along curves e in Σ, to
form holonomies

he[A] = P exp

[
i

∫

e

Aadsa

]
.

It turns out to be convenient to consider functions of A which are slightly more
general.

Definition 2.1. A graph in Σ is a collection of analytic, oriented curves in Σ which
intersect each other at most in their endpoints.

A function c depending on connections A on Σ just in terms of their holonomies
along the edges of a graph, i.e.

c[A] ≡ c(he1
[A], he2

[A], . . . , hen [A]), e1, e2, . . . , en edges of some γ,

where c(g1, . . . , en) viewed as a function on SU(2)n is continuous, will be called cylin-
drical.

Analyticity of the edges is required to exclude certain pathological intersection struc-
tures of the edges with surfaces which would render the Poisson brakets which will be
introduced below ill-defined.

It turns out that the set of cylindrical functions can be equipped with a norm (es-
sentially the sup-norm for functions on SU(2)n) such that its closure Cyl with respect
to that norm is a commutative C∗-algebra. We will not spell out the details of this
construction but refer the reader to the beautiful presentations [4, 5]. We note fur-
thermore that by changing the word “continuous” in the above definition to “n times
differentiable”, we can define subsets Cyln of Cyl and, most importantly for us,

Cyl∞
.
=
⋂

n

Cyln,

the space of smooth cylindrical functions.
The density weight of E on the other hand is such that, using an additional real

(co-)vector field f i, it can be naturally integrated over oriented surfaces S to form a
quantity

ES,f =

∫

S

Ea
i f iǫabc dxb dxc
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analogous to the electric flux through S.
One of the defining choices of LQG is to base the quantization precisely on the

elements of Cyl and the fluxes ES,f as classical observables. From the Poisson brackets
of A and E on can compute the Poisson brackets for the c, ES,f . Call γ adapted to S if
all p in S∩γ are vertices of γ. Let c be a function cylindrical on γ and S some analytical
surface. Without restriction of generality we assume that γ is adapted to S1. Then

{ES,f , c} =
κ

2

∑

p∈S∩γ

∑

ep

κ(ep)fiX
i
ep

[c],

where the second sum is over the edges of γ adjacent to p,

κ(ep) =





1 if e lies above S

0 if e is tangential to S

−1 if e lies below S

,

and XI
ep

is the Ith left-invariant (right-invariant) vector field on SU(2) acting on the
argument of c corresponding to the holonomy hep if ep is pointing away from (towards)
S. κ is the coupling constant of gravity.

Surprisingly, the Poisson brackets of the ES,f among themselves do not vanish as
one would expect for the momentum observables. This poses two questions: Can one
nevertheless give some well defined “Poisson bracket goes to commutator”-prescription
to associate algebra elements to classical observables? And: Can one understand where
this non-commutativity of the momentum observables come from? As shown in [14],
both questions can be answered affirmatively. We do not want to repeat the discussion
of [14] here but just give its result, condensed in a definition of the algebra A on which
the quantum theory will be based, as well as the association of classical observables to
algebra elements. Let

XS,f [c] :=
il2P
2

∑

p∈S∩γ

∑

ep

κ(ep)fiX
i
ep

[c],

where we have used the notation introduced above.

Definition 2.2. Let A be the algebra generated by the cylindrical functions Cyl, together
with the derivations XS,f on Cyl. On A a ∗-operation is given by the usual complex
conjugation on Cyl and the trivial (XS,f )∗ := XS,f on X.

1There is always γ′ that contains γ such that γ′ is adapted to S. A c cylindrical on γ is clearly also
cylindrical on γ′. For details see [13].
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The association of the classical functionals Cyl, E with elements of A is then given
by

c 7→ c,

ES,f 7→ XS,f ,
{
ES,f , ES′,f ′

}
7→ i~−1

[
XS,f , XS′,f ′

]
,

and higher order Poisson brackets of elements of E are mapped to the higher order
commutators of the corresponding derivations.

Note that since A is generated by the elements of Cyl and X, a representation π of
A is completely determined once the representors π (Cyl) and π (X) are known.

3 Remarks on the representation theory of A

In the present section we will make some simple observations on the structure of repre-
sentations of A. Before we proceed to the details, let us give a brief outline of what we
are going to do.

We assume that a representation of A is given. As a first step, we appeal to the
powerful machinery available for representation of C∗-algebras, to decompose the rep-
resentation space into subspaces on which Cyl acts cyclic. Then we look at the action
of the representors of the ES,f with respect to this decomposition. Since the respective
operators will be unbounded, we have to make an assumption that gets possible domain
problems out of the way: We assume that the π (ES,f ) share a certain dense set in their
domains. Then we make the central observation that under this assumption, the action
of the π (ES,f ) is rather simple: Roughly speaking it is the sum of a derivative defined
by XS,f and a multiplication operator. As a consequence, we can show that each repre-
sentation of A is uniquely determined by a set of measures and functions on the space
of (generalized) connections fulfilling certain compatibility conditions. Since despite our
assumption the considerations might appear exceedingly general, we will finish by giving
a useful corollary of our results in a rather simple case.

Before we start our analysis of the representations of A we want to recall some basic
facts about the representation theory of Cyl. As was realized in [3, 4], many powerful
results are at hand because Cyl is an unital Abelian C∗-algebra. Firstly we recall that,
due to a theorem of Gelfand (see for example [15]), since Cyl is Abelian, it is isomorphic,
via some isomorphism ι, to the algebra of continuous functions on the spectrum A, a
compact Hausdorff space, of Cyl. From this and the Riesz-Markov Theorem (see for
example [16]) it follows that every positive linear functional on Cyl is given by a positive
Baire measure on A. The converse trivially holds true: Every positive Baire measure
on A gives a positive functional on Cyl.
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Now let (π,H) be a cyclic representation of Cyl. Since the representation is cyclic,
it defines a positive linear functional ω on Cyl and certainly is unitarily equivalent to
the GNS representation coming from ω. Moreover as concluded above ω must be given
by a positive Baire measure on A. Vice versa, every cyclic representation of Cyl is given
by a positive Baire measure on A. Thus, we conclude that the cyclic representations of
Cyl are all of the form

Hν = L2(A, dµν), πν(c) = ι(c), (1)

where µν is some positive Baire measure on A. Note that we did not have to assume
continuity of the cyclic representation. Rather, continuity follows automatically from
cyclicity.

It is important for the rest of this work, that because of their structure (1), for cyclic
representations the π (c) play a double role: On the one hand they are operators on the
representation space, on the other hand they are L2 functions. Let us note the following
Lemma which will be useful, later on:

Lemma 3.1. Let (π,H) be some cyclic representation of Cyl. Then π (Cyl∞) is dense
in L2(A, dµ).

Sketch of the proof. Since we do not want to introduce the projective limit machinery
that is used to define the closure Cyl of the set of cylindrical functions, we will only
sketch the proof. The details can however be easily fixed using the methods of [4, 5].

The idea for the proof is that functions in Cyl∞ can essentially be viewed as subset
of the continuous functions on a compact space. They are separating points and the
constant functions are among them, so the Stone-Weierstrass Theorem (see for example
[17]) applies, showing that they are dense in Cyl (wrt. its C∗ norm). Now cyclicity of
the representation just means that π (Cyl) is dense in H, whence π (Cyl∞) is dense in
H as well.

Let now a representation (π,H) of A be given. It is well known that every representation
of a C∗-algebra is a direct sum of cyclic representations (see for example [18]). Applying
this to the representation π|Cyl of Cyl yields

H ∼=
⊕

ν

Hν , π ∼= ⊕νπν .

where the (πν ,Hν) are cyclic and therefore

Hν
∼= L2(A, dµν), πν(c) ∼= ι(c).
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To simplify notation in what follows, we will take all isometries as identities. Further-
more, we denote by Iν the canonical inclusion

Iν : Hν →֒ H

and by Pν the canonical projection followed by the inverse of Iν

Pν : H → Hν .

Now we have to analyze the action of the operators π (ES,f ) on H. This gets complicated
by the fact that they represent vector fields and will therefore be unbounded operators.
To get these complications out of the way, we will make an assumption on π. To this
end, let us define the following subspace of H:

h := span

[
⋃

ν

Iν (Cyl∞)

]
.

Note that h is dense in H because Cyl∞ is dense in Hν . With this definition at hand,
we can state our assumption:2

Assumption 3.2. The representation π should be such that h ⊂ dom (π (ES,f )) for all
surfaces S and co-vector fields f on S.

Under this assumption, the action of the π (ES,f ) can be computed rather explicitely:
Let c be a cylindrical function. Then

π (ES,f ) [Iν(c)] = π (ES,f) π (c) [Iν(1)]

= [π (ES,f ) , π (c)] [Iν(1)] + π (c) π (ES,f ) [Iν(1)]

= Iν (XS,f [c]) +
∑

ι

Iι

(
cF ιν

S,f

)

where we have made the definition

F ιν
S,f := Pι (π (ES,f ) [Iν(1)]) . ∈ Hι

Thus the action of the fluxes on h and hence on H is completely determined by the F ιν
S,f .

Let us exhibit some further properties of this family:
Because of Assumption 3.2, we have that3

∑

ι

Iι

(
F ιν

S,f

)
∈ H. (dom)

2Note that this assumption does not automatically follow from the perhaps more natural one that
{π (c) | c ∈ Cyl} should be contained in the domains of the ES,f .

3Note that from Assumption 3.2 we directly get c
∑

ι
Iι

(
F ιν

S,f

)
∈ H for cylindrical functions c. But

since Cyl also contains the constant functions, (dom) follows.
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More properties come from the fact that the π (ES,f ) represent the ES,f . First of all,
for co-vector fields f, f ′′ on a surface S and f ′ on S′

F ιν
S,f+f ′′ = F ιν

S,f + F ιν
S,f ′′ ,

F ιν
S,f + F ιν

S′,f ′ = F ιν
S\S′,f + F ιν

S′\S,f ′ + F ιν
S∩S′,f±f ′ ,

(rep)

where in the second line S ∩ S′ is given the orientation of S and the sign depends on
the relative orientation of S and S′ on their intersection.

Further relations come from the fact that π is a *-representation: For c, c′ ∈ Cyl let

∆
(ι)
S,f (c, c′) :=

〈
XS,f [c] , c′

〉
Hι

−
〈
c , XS,f [c′]

〉
Hι

denote the divergence of the vector field XS,f with respect to the measure µι. As the
π (ES,f) have to be symmetric, we have

〈
π (ES,f) Iν(c) , Iι(c

′)
〉

=
〈
Iν(c) , π (ES,f ) Iι(c

′)
〉

⇔ δνι∆
ι
S,f(c, c′) =

〈
c , F νι

S,f c′
〉
Hν

−
〈
F ιν

S,fc , c′
〉
Hι

which can easily seen to be equivalent to

∆
(ι)
S,f (c, c′) = 2i

〈
c , Im

(
F ιι

S,f

)
c′
〉
,

F νι dµν = F ιν dµι for ι 6= ν.
(div)

Let us summarize our findings

Proposition 3.3. Any representation (π,H) of A, fulfilling our Assumption 3.2, deter-
mines

• A family of positive measures {µν} on A,

• A family of functions {F ιν
S,f}, where F ιν

S,f ∈ L2(A, dµι),

such that (dom), (rep), (div) are fulfilled.

It is probably more interesting to note that also the converse holds true:

Proposition 3.4. Let a family of measures {µν} on A and a family of functions {F ιν
S,f},

where F ιν
S,f ∈ L2(A, dµν) that fulfill (dom), (rep), (div). From this data, one can con-

struct a representation π of A that fulfills the Assumption 3.2.

Proof. The proof is quite obvious: Let {µν}, {F ιν
S,f} fulfilling (dom), (rep), (div) be

given. The representation space is defined as

H
.
=
⊕

ν

L2(A, dµν)
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whence

π (c) ⊕ν fν
.
= ⊕νcfν , fν ∈ L2(A, dµν).

Now

π (ES,f) [⊕νcν ]
.
= ⊕ν

(
XS,f [cν ] + cν

∑

ι

F νι
S,f

)
, cν ∈ Cyl∞ (2)

defines operators that are well defined on h because of (dom), hence Assumption 3.2
is fulfilled. Moreover they are symmetric because of (div) and give a representation of
the ES,f since the commutator with the representors of cylindrical functions is right and
(rep) holds. Finally, (2) completely determines the action of the π (ES,f ) on h and hence
on H.

The above results may appear exceedingly general. Let us therefore reduce consideration
to representations in which Cyl acts cyclic and state the following corollary which is
perhaps closer to applications than the above general results:

Proposition 3.5. Let a cyclic representation (π,H) of Cyl be given. Then a necessary
and sufficient condition for π to be extendable to a representation, fulfilling Assumption
3.2, of the whole A is that for each surface S and co-vector field f on S there exists a
constant CS,f such that

|∆S,f(c,1)| ≤ CS,f ‖c‖H for all c ∈ Cyl∞ (3)

where the sesquilinear form ∆S,f is given by

∆S,f (c, c′)
.
=
〈
π (XS,f [c]) , π

(
c′
)〉

H
−
〈
π (c) , π

(
XS,f [c′]

)〉
H

, c, c′ ∈ Cyl .

Proof. Let us first prove necessity: Let a representation (π̃,H) of A be given such that
π̃|Cyl = π. Application of Proposition 3.3 then yields a measure µ and a family of
functions {FS,f} satisfying (dom), (rep), (div). Thus we can finish by noting that (div),
(dom) imply (3).

Sufficiency can be proved by straightforward construction: Let a cyclic representation
(π,H) of Cyl, fulfilling the condition (3), be given. Because of cyclicity, H is isomor-
phic to L2(A, dµ) for some positive regular measure µ. Moreover, π (Cyl∞) is dense in
H. Therefore the Riesz Representation Theorem (see for example [16]) shows that (3)
implies that ∆S,f(c,1) is given by an element F̃S,f of H, i.e. ∆S,f(c,1) = 〈π (c) , F̃S,f 〉.
Using the fact that H is an L2 space, one can easily see that ∆S,f (c, c′) is determined

by F̃S,f as well and that Re(F̃S,f ) = 0. Set FS,f
.
= F̃S,f/2. The FS,f fulfill (dom),

(rep) because the F̃S,f do. Moreover, the FS,f satisfy (div). So one can construct a
representation of A from the data µ, {FS,f} by Proposition 3.4.
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4 Discussion

Let us start the discussion of the above results by describing the simplest case, the AL-
representation. In that representation, Cyl acts cyclic, the corresponding measure on A
is the Ashtekar-Lewandowski measure µAL constructed in [4] and the FS,f are all equal
to zero.

Next, we remark that Assumption 3.2 precludes the possibility that the generalized
divergences ∆S,f are given by functions which however are not L2. This case does not
seem unnatural, so it might appear too restrictive to exclude it. Note however that
admitting that case as well would mean that not all of Cyl (especially not the constant
functions) would be contained in the domains of the π (ES,f ). On the other hand the
cylindrical functions are the only ones we have direct control on, and removing some of
them would most likely leave us with a set that is not dense anymore. Thus it would be
extremely difficult to work with such more general representations.

Also, we would like to make some remarks concerning Proposition 3.5: As we saw, it
is simple to derive that result. It turns out to be much more difficult to actually come up
with an example for a measure on A fulfilling the condition, other then the AL-measure.
All measures constructed so far, with the remarkable exception of the AL-measure,
violate (3). The interested reader is referred to [19] for a closer investigation of this
subject. A class of representations that avoids this problem is the one obtained by using
the AL-measure but having the FS,f real and not equal to zero. In such representations,
the π (ES,f ) have non vanishing expectation values.

As the last remark showed, this note merely provides a starting point for the analysis
of the representations of A, and much more difficult and interesting problems remain
to be tackled. Nevertheless, we hope that this note is a useful preparation for that
task, and we would like to come back to some of the questions related to it in future
publications.
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