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1. Introduction

In this article we explain in detail the construction of maximal gauged supergravities

in three dimensions, recently announced in [1]. While maximal gauged supergravities

in higher dimensions have been known for a long time, starting with the gaugedN = 8

theory in four dimensions [2], and subsequently for dimensions 5 ≤ D ≤ 8 [3]–[7],
the results on gauged supergravities in three dimensions and below have remained

somewhat fragmentary until now. The results presented in this paper close this gap.

In addition they open up new perspectives: unlike maximal gauged supergravities
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in higher dimensions, the maximal AdS3 supergravities, which we obtain here, are

neither contained in nor derivable by any known mechanism from the known maximal

supergravities in higher dimensions. The new, and purely field theoretic, evidence

for a theory beyond D = 11 supergravity [8] and type-IIB supergravity [9, 10] that

we have thus obtained is perhaps the most important consequence of the present

work.

Topological gauged supergravities in three dimensions were first constructed

in [11]; these theories are supersymmetric extensions of Chern-Simons (CS) theo-

ries with (nL, nR) supersymmetry and gauge group SO(nL) × SO(nR), but have no
propagating matter degrees of freedom (see also [12] for earlier work on D = 3 super-

gravity). Matter coupled gauged supergravities can, of course, be obtained by direct

dimensional reduction of gauged supergravities in D ≥ 4 to three dimensions and
below, but these do not preserve the maximal supersymmetry [13]. Another matter

coupled theory with half maximal supersymmetry, obtained by compactifying the

ten-dimensional N = 1 supergravity on a seven-sphere, has been discussed in [14]

(however, [14] deals only with the bosonic part of the lagrangian). In a different

vein, [15] constructs an abelian gauged supergravity by deforming the D = 3, N = 2

supergravity whose matter sector is described by an SO(n, 2)/ SO(n)× SO(2) coset
space sigma model. This model bears some resemblance to the present construction

in that the vector fields appear via a CS term rather than a Yang-Mills term, unlike

the matter-coupled theories mentioned before. However, the construction is limited

to the abelian case, whereas the present construction yields non-abelian CS theories,

thereby providing the first examples of a non-abelian duality between scalars and

vector fields in three space-time dimensions.

Gauged supergravities have attracted strong interest again recently in the context

of the conjectured duality between AdS supergravities and superconformal quantum

field theories on the AdS boundary [16]. For instance, classical supergravity domain

wall solutions are claimed to encode the information on the renormalization group

flow of the strongly coupled gauge theory [17]. The theories admitting AdS3 ground

states are expected to be of particular interest for the AdS/CFT duality due to the

rich and rather well understood structure of two-dimensional superconformal field

theories. However, a large part of the recent work dealing with the conjectured

AdS/CFT correspondence in AdS3 has been based on the BTZ black hole solution

of [18], which has no propagating matter degrees of freedom in the bulk. We will see

that the gauged N = 16 theories yield a rich variety of supersymmetric groundstates,

virtually exhausting all the possible vacuum symmetries of AdS type listed in [19],

and thus an equally rich variety of superconformal theories on the boundary.

As is well known [20], the scalar fields in the toroidal compactification of D = 11

supergravity [8] on a d-torus form a coset space sigma model manifold G/H with the

exceptional group G = Ed(d) and H its maximally compact subgroup; in particular,

for d = 8 one obtains a theory with global E8(8) symmetry and local SO(16) [21, 22].
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The complete list of ungauged matter coupled supergravities in three dimensions

(which unlike topological supergravities only exist with N ≤ 16 supersymmetries)
has been presented in [23]. Gauging any of these theories corresponds to promoting

a subgroup G0 of the rigid G symmetry group to a local symmetry in such a way

that the full local supersymmetry is preserved. The latter requirement engenders ad-

ditional Yukawa-like couplings between the scalars and fermions, as well as a rather

complicated potential for the scalar fields. As we will demonstrate by explicit con-

struction, the possible compact and non-compact non-abelian gauge groups, all of

which are subgroups of the global E8(8) symmetry of the ungauged maximal super-

gravity theory and preserve the full local N = 16 supersymmetry, are more numerous

in three dimensions than in higher dimensions.

There are essentially two properties which distinguish the three dimensional

models from all their higher dimensional relatives. First, the gravitational sector does

not contain any propagating degrees of freedom such that the theories without matter

coupling may be formulated as CS theories of AdS supergroups [11]; see also the

classic article [24] for a description of the peculiarities of gravity in three space-time

dimensions. In fact, pure quantum gravity [25, 26] and quantum supergravity [27] are

exactly solvable in three space-time dimensions. Second, in three dimensions scalar

fields are on-shell equivalent to vector fields. At the linearized level, this duality is

encapsulated in the relation

εµνρ ∂
ρϕm = ∂[µBν]

m . (1.1)

This relation plays a special role in the derivation of maximal N = 16 supergravity

in three dimensions [21, 22, 28, 29]: in order to expose its rigid E8(8) symmetry, all

vector fields obtained by dimensional reduction of D = 11 supergravity [8] on an

8-torus must be dualized into scalar fields. Vice versa, the duality (1.1) allows us to

redualize part of the scalar fields into vector fields, such that the ungauged theory

possesses different equivalent formulations which are related by duality [28].

As explained there, the replacement of scalar fields by vector fields breaks the

exceptional E8(8) symmetry; when attempting to gauge this theory while maintaining

its E8(8) structure and thus keeping all the scalars, it is therefore a priori not clear

how to re-incorporate the vector fields necessary for the gauging without introducing

new and unwanted propagating degrees of freedom. We will circumvent this appar-

ent problem by interpreting (1.1) as defining up to 248 vector fields as (nonlocal)

functions of the scalar fields. This freedom in the choice of the number of vector

fields is at the origin of the large number of possible gauge groups that we encounter

in three dimensions.

In higher dimensions, the gauge group is to a large extent determined by the

number and transformation behavior of the vector fields under the rigid G symmetry

of the ungauged theory. As a necessary condition for gauging a subgroup G0 ⊂ G,

the vector fields or at least a maximal subset thereof must transform in the adjoint
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representation of G0. In the latter case there may remain additional vector fields

which transform nontrivially under the gauge group. Upon gauging, these charged

vector fields would acquire mass terms and thereby spoil the matching of bosonic and

fermionic degrees of freedom; to avoid such inconsistencies one needs some additional

mechanism to accommodate these degrees of freedom. Altogether, this does not leave

much freedom for the choice of the gauge group. In D = 4 and D = 7 one must

make use of the full set of vector fields transforming in the adjoint representation

of the gauge groups SO(8) and SO(5), respectively. The situation is more subtle in

dimensions D = 5, 6 where only a subset of the vector fields transforms in the adjoint

representation of the gauge groups SO(6) and SO(5), respectively. The problem of

coupling charged vector fields is circumvented in D = 5 by dualizing the additional

vector fields into massive self-dual two forms [4, 6]; in D = 6 they are absorbed by

massive gauge transformations of the two forms [7].

By contrast the proper choice of gauge group is much less obvious in three

dimensions. With (1.1), we may introduce for any subgroup G0 ⊂ E8(8) a set of ν =

dimG0 vector fields transforming in the adjoint representation of G0. A priori, there

is no restriction on the choice of G0; however, demanding maximal supersymmetry

of the gauged theory strongly restricts the possible choices for G0. It is one of our

main results that the entire set of consistency conditions for the three-dimensional

gauged theory may be encoded into a single algebraic condition

P27000 Θ = 0 , (1.2)

where Θ is the embedding tensor characterizing the subgroup G0, and P a projector

in the E8(8) tensor product decomposition (248 × 248)sym = 1 + 3875 + 27000.
Solutions to (1.2) may be constructed by purely group theoretical considerations.

Having formulated the consistency conditions of the gauged theory as a projector

condition for the embedding tensor of the gauge group allows us to construct a

variety of models with maximal local supersymmetry. As a result, we identify a

“regular” series of gauged theories with gauge group SO(p, 8 − p) × SO(p, 8 − p),

including the maximal compact gauge group SO(8) × SO(8) as a special case. In
addition, we find several theories with exceptional noncompact gauge groups, among

them an extremal theory which gauges the full E8(8) symmetry. These theories have

no analog in higher dimensions.

This collection of maximal admissible gauge groups is presented in table 1; all

the gauge groups — apart from the theory with local E8(8) — have two simple

factors with a fixed ratio of coupling constants. As a by-product of our construction

we can understand and re-state the corresponding consistency conditions for the

higher dimensional gauged supergravities of [2, 6] in very simple terms; in particular,

the derivation of the T -identities for the D = 4, 5 theories can now be simplified

considerably by reducing it to purely group theoretical condition analogous to (1.2).

Remarkably, and even though the rigid G = Ed(d) symmetry of the ungauged theory
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gauge group G0 ratio of coupling constants

SO(p, 8− p)× SO(p, 8− p) g1/g2 = −1
G2(2) × F4(4) gG2/gF4 = −3/2
G2 × F4(−20)
E6(6) × SL(3)
E6(2) × SU(2, 1) gA2/gE6 = −2
E6(−14) × SU(3)
E7(7) × SL(2) gA1/gE7 = −3
E7(−5) × SU(2)

E8(8) gE8

Table 1: Regular and exceptional admissible gauge groups.

is broken, the construction and proof of consistency of the gauged theory makes

essential use of the properties of the maximal symmetry group Ed(d) in all cases.

This paper is organized as follows. In section 2 we review the ungauged N = 16

theory and in particular discuss the full nonlinear version of the duality (1.1) between

scalar and vector fields. In section 3 we present the lagrangian of the gauged theory.

It is characterized by a set of tensors A1,2,3 which are nonlinear functions of the scalar

fields and describe the Yukawa-type couplings between fermions and scalars as well

as the scalar potential. We derive the consistency conditions that these tensors must

satisfy in order for the full N = 16 supersymmetry to be preserved, and show that

A1,2,3 combine into a “T -tensor” analogous to the one introduced in [2], but now

transforming as the 1 + 3875 of E8(8). In section 4 we show that these consistency

conditions imply and may entirely be encoded into the algebraic equation (1.2) for

the embedding tensor of the gauge group, which selects the admissible gauge groups

G0 ⊂ E8(8). In turn, every solution to (1.2) yields a nontrivial solution for A1,2,3
in terms of the scalar fields which satisfies the full set of consistency conditions.

Maximal supersymmetry of the gauged theory thus translates into a simple projector

equation for the gauge group G0.

In section 5 we analyze equation (1.2) and its solutions among the maximal

subgroups of SO(16) and E8(8), respectively. We find the maximal compact ad-

missible gauge group G0 = SO(8) × SO(8) as well as its noncompact real forms
SO(p, 8− p)× SO(p, 8− p) for p = 1, . . . , 4. In addition, we identify the exceptional
noncompact gauge groups given in table 1. Each of these groups gives rise to a

maximally supersymmetric gauged supergravity. Section 6 is devoted to an analysis

of stationary points of the scalar potential which preserve the maximal number of

16 supersymmetries. We show that all our theories admit a maximally symmetric

ground state and determine their background isometries. Finally we speculate on a

possible higher dimensional origin of these theories.
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2. The ungauged N = 16 theory

We first summarize the pertinent results about (ungauged) maximal N = 16 super-

gravity in three dimensions. The complete lagrangian and supersymmetry transfor-

mations were presented in [22], whose conventions and notation we follow throughout

this paper.1 The physical fields of N = 16 supergravity constitute an irreducible

supermultiplet with 128 bosons and 128 fermions transforming as inequivalent fun-

damental spinors of SO(16). In addition, the theory contains the dreibein eµ
α and

16 gravitino fields ψIµ, which do not carry propagating degrees of freedom in three

dimensions. As first shown in [21], it possesses a “hidden” invariance under rigid

E8(8) and local SO(16) transformations. Consequently, the scalar fields are described

by an element V of the non-compact coset space E8(8)/ SO(16) in the fundamental
248-dimensional representation of E8(8), which transforms as

V(x) −→ g V(x) h−1(x) , g ∈ E8(8) , h(x) ∈ SO(16) , (2.1)

(see appendix A for our E8(8) conventions). The scalar fields couple to the fermions

via the currents

V−1∂µV = 1
2
QIJµ X

IJ + PAµ Y
A . (2.2)

The composite SO(16) connection QIJµ enters the covariant derivative Dµ in

Dµψ
I
ν := ∂µψ

I
ν +
1

4
ωµ
ab γab ψ

I
ν +Q

IJ
µ ψ

J
ν ,

Dµχ
Ȧ := ∂µχ

Ȧ +
1

4
ωµ
ab γab χ

Ȧ +
1

4
QIJµ Γ

IJ
ȦḂ

χḂ . (2.3)

Definition (2.2) implies the integrability relations:

QIJµν +
1

2
ΓIJAB P

A
µ P

B
ν = 0 , D[µP

A
ν] = 0 , (2.4)

where the SO(16) field strength is defined as

QIJµν := ∂µQ
IJ
ν − ∂νQIJµ + 2QK[Iµ QJ ]Kν .

The full supersymmetry variations read [22]

δeµ
α = iεIγαψIµ , δ ψIµ = Dµε

I − 1
4
iγνεJ χΓIJγµνχ ,

V−1δV = ΓI
AȦ

χȦεIY A , δ χȦ =
i

2
γµεI ΓI

AȦ
P̂Aµ , (2.5)

with the supercovariant current

P̂Aµ := P
A
µ − ψIµχȦΓIAȦ .

1In particular we use the metric with signature (+−−) and three-dimensional gamma matrices
with e γµνρ = −iεµνρ, where ε012 = ε012 = 1, and e ≡ det eµα is the dreibein determinant.
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As shown in [22], they leave invariant the lagrangian 2

L = −1
4
eR+

1

4
eP µAPAµ +

1

2
ελµνψIλDµψ

I
ν −

− i
2
eχȦγµDµχ

Ȧ − 1
2
e χȦγµγνψIµ Γ

I
AȦ
PAν −

−1
8
e
(
χγρΓ

IJχ
(
ψIµγ

µνρψJν − ψIµγρψµJ
)
+ χχψIµγ

νγµψIν

)
+

+e
(1
8
(χχ)(χχ)− 1

96
χγµΓIJχχγµΓ

IJχ
)
. (2.6)

The invariance is most conveniently checked in 1.5 order formalism, with the torsion

Tµν
ρ =
1

2
iψKµ γ

ρψKν +
1

4
iχȦ γµν

ρχȦ . (2.7)

A central role in our construction is played by the on-shell duality between scalar

fields and vector fields in three dimensions, which we shall now discuss. The scalar

field equation induced by (2.6) is given by

Dµ

(
e (P µA − ψIνγµγνχȦΓIAȦ)

)
=
1

2
εµνρψ

I

µψ
J
ν Γ
IJ
ABP

B
ρ +

1

8
ie χγµΓIJχΓIJABP

B
µ . (2.8)

Upon use of the Rarita-Schwinger and Dirac equations for ψIµ and χ
Ȧ, respectively,

this equation may be rewritten in the form

∂µ (eJµM) = 0 , (2.9)

where JµM is the conserved Noether current associated with the rigid E8(8) symme-
try [31]:

J µM = 2VMBP̂ µB −
i

2
VMIJ χγµΓIJχ−

−2e−1εµνρ
(
VMIJ ψIνψJρ − i ΓIAȦVMA ψIνγρχȦ

)
. (2.10)

In writing this expression we have made use of the equivalence of the fundamental

and adjoint representations of E8(8) which yields the relation (see also appendix A)

VMA := 1
60
Tr(tMVtAV−1) .

The existence of the conserved current (2.10) allows us to introduce 248 abelian

vector fields Bµ
M (with indexM = 1, . . . , 248), via

εµνρBνρ
M = eJ µM , (2.11)

2Note that the factor in front of the last term (χγµΓ
IJχ)2 differs from the one given in [22] as

was already noticed in [30].
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where Bµν
M := ∂µBν

M − ∂νBµM denotes the abelian field strength. This equation
defines the vector fields up to the [U(1)]248 gauge transformations

Bµ
M → Bµ

M + ∂µΛ
M . (2.12)

In accordance with (2.1) these vector fields transform in the adjoint representation of

rigid E8(8) and are singlets under local SO(16). The supersymmetry transformations

of the vector fields have not been given previously; they follow by “E8(8) covarianti-

zation” of the supersymmetry variations of the 36 vector fields obtained by direct

dimensional reduction of D = 11 supergravity to three dimensions [32]

δBµ
M = −2VMIJ εIψJµ + iΓIAȦ VMA εIγµχȦ . (2.13)

This transformation must be compatible with the duality relation (2.11). To check

this, it is convenient to rewrite the latter in terms of the supercovariant field strength

B̂µν
M := Bµν

M + 2VMIJ ψIµψJν − 2i ΓIAȦVMA ψI[µγν]χȦ ,
whose supercovariance is straightforwardly verified from (2.13). The duality rela-

tion (2.11) then takes the following supercovariant form

εµνρB̂νρ
M = 2eVMAP̂ µA −

i

2
eVMIJ χγµΓIJχ . (2.14)

Equation (2.14) consistently defines the dual vector fields as nonlocal and non-

linear functions of the original 248 scalar fields (including the 120 gauge degrees of

freedom associated with local SO(16)), provided the latter obey their equations of

motion. We emphasize that in this way we can actually introduce as many vector

fields as there are scalar fields, whereas the direct dimensional reduction of D = 11

supergravity to three dimensions produces only 36 vector fields. The “E8(8) covari-

antization” alluded to above simply consists in extending the relevant formulas from

these 36 vectors to the full set of dimG0 ≤ 248 vector fields in a way that respects
the E8(8) structure of the theory. In the ungauged theory the vector fields have been

introduced merely on-shell; there is no lagrangian formulation that would comprise

the scalar fields as well as their dual vector fields. However, we shall see that the

gauged theory provides a natural off-shell framework which accommodates both the

scalars and their dual vectors.

From (2.14) we can also extract the equation of motion of the dual vectors:

acting on both sides with ερµν∂
ν and making use of the integrability relations (2.4),

we obtain

∂νB
µνM = −1

2
e−1 εµνρ VMIJ QIJνρ + fermionic terms . (2.15)

Also the fermionic terms still depend on the original scalar fields. This is obvious

from the fact that we need the scalar field matrix V to convert the SO(16) indices on

8
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the fermions into the E8(8) indices appropriate for the l.h.s. of this equation. (Let us

note already here that in the gauged theory, the r.h.s. of this equation will acquire

additional contributions containing Bµν
M in order of the coupling constant). We

recognize an important difference between the “dual formulations” of the theory:

whereas the vectors disappear completely in the standard formulation of the theory,

the vector equations of motion in general still depend on the dual scalar fields. It is

only under very special circumstances, and for special subsets of the 248 vector fields,

that one can completely eliminate the associated dual scalars. This is obviously the

case for the version obtained by direct reduction of D = 11 supergravity to three

dimensions where only 92 bosonic degrees of freedom appear as scalar fields while

36 physical degrees of freedom appear as vector fields. As shown in [28], the latter

are associated with the 36-dimensional maximal nilpotent commuting subalgebra of

E8(8), but there are further intermediate possibilities.

To conclude this section, we recall that the three dimensional Einstein-Hilbert

term can be rewritten in Chern-Simons form as

−1
4
eR =

1

4
εµνρ eµ

a Fνρ a , (2.16)

by means of the dual spin connection

Aaµ = −
1

2
εabcωµ bc ,

with field strength F aµν = 2∂[µA
a
ν]+ε

a
bcA

b
µA
c
ν . When gauging the theory the Minkow-

ski background space-time will be deformed to an AdS3 spacetime characterized by

Rµν = 2m
2gµν , (2.17)

with (negative) cosmological constant Λ = −2m2. The Lorentz-covariant derivative
is accordingly modified to an AdS3 covariant derivative

D±µ := ∂µ +
1

2
iγa(Aµ

a ±meµa) , (2.18)

with commutator

[D±µ ,D±ν ] =
1

2
iγa(Fµν

a +m2εabceµbeνc) .

We will return to these formulas when discussing the conditions for (nL, nR) super-

symmetry in AdS3 in section 6.

3. Gauged N = 16 supergravity

The lagrangian (2.6) is invariant under rigid E8(8) and local SO(16). To gauge the

theory, we now select a subgroup G0 ⊂ E8(8) which will be promoted to a local

9
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symmetry. The resulting theory will then be invariant under local G0 × SO(16),

such that (2.1) is replaced by

V(x) −→ g0(x)V(x) h−1(x) , g0(x) ∈ G0 , h(x) ∈ SO(16) , (3.1)

However, it should be kept in mind that the local symmetries are realized in dif-

ferent ways: as before, the local SO(16) is realized in terms of “composite” gauge

connections, whereas the gauge fields associated with the local G0 symmetry are in-

dependent fields to begin with. Restricting to semisimple subgroups, G0 is properly

characterized by means of its embedding tensor ΘMN which is the restriction of the

Cartan-Killing form ηMN onto the associated algebra g0. The embedding tensor will

have the form

ΘMN =
∑
j

εj η
(j)
MN , (3.2)

where ηMNη
(j)
NK project onto the simple subfactors of G0, and the numbers εj cor-

respond to the relative coupling strengths. It will turn out that these coefficients

are completely fixed by group theory, so there is only one overall gauge coupling

constant g. Owing to the symmetry of the projectors η(j) the embedding tensor is

always symmetric:

ΘMN = ΘNM . (3.3)

As discussed in the introduction we introduce a subset of ν = dimG0 vector fields,

obtained from (2.14) by projection with ΘMN . For these we introduce special labels

m,n, . . ., with the short hand notation

Bµ
mtm ≡ Bµ

MΘMN t
N , etc. (3.4)

Note that we do not make any assumption about G0 at this point; in particular,

our ansatz allows for compact as well as noncompact gauge groups. The possible

choices for G0 will be determined in section 5. The first step is the covariantization

of derivatives in (2.2) according to

V−1DµV ≡ V−1∂µV + g Bµm V−1tmV ≡ PAµ Y A +
1

2
QIJµ XIJ , (3.5)

with gauge coupling constant g. The non-abelian field strength reads

Bµνm := ∂µBν
m − ∂ν Bµm + g fmnpBµnBνp . (3.6)

The integrability relations (2.4) are modified to

QIJµν +
1

2
ΓIJAB PAµ PBν = g BµνmΘmnV nIJ ,
2D[µPAν] = g BµνmΘmnV nA . (3.7)

10
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With the hidden g dependent extra terms in the definition of the currents in (3.5),

their supersymmetry variations become

δQIJµ =
1

2
(ΓIJΓK)AȦPAµ χȦεK + g(δBµm)ΘmnV nIJ ,

δPAµ = ΓIAȦDµ(χȦεI) + g(δBµ
m)ΘmnV nA , (3.8)

with the variation of the vector fields given in (2.13).

Both modifications violate the supersymmetry of the original lagrangian. In

order to restore local supersymmetry we follow the standard Noether procedure as

in [2], modifying both the original lagrangian as well as the transformation rules by

g-dependent terms. We will first state the results, and then explain their derivation

and comment on the special and novel features of our construction.

The full lagrangian can be represented in the form

L = L(0) + L(1) + L(2) + L(3) , (3.9)

where L(0) is just the original lagrangian (2.6), but with the modified currents defined
in (3.5); thus L(0) and L differ by terms of order O(g). The contributions L(1) and
L(2) are likewise of order g and describe the Chern-Simons coupling of the vector
fields and the Yukawa type couplings between scalars and fermions, respectively:

L(1) = −1
4
g εµνρBµ

m
(
∂νBρ m +

1

3
gfmnpBν

nBρ
p
)
, (3.10)

L(2) = 1
2
geAIJ1 ψ

I
µ γ
µν ψJν + igeA

IȦ
2 χ

Ȧ γµ ψIµ +
1

2
geAȦḂ3 χȦ χḂ , (3.11)

where the tensors A1,2,3 are functions of the scalar matrix V which remain to be
determined. At order O(g2), there is the scalar field potential W (V):

L(3) = eW ≡ 1
8
g2 e
(
AIJ1 A

IJ
1 −

1

2
AIȦ2 A

IȦ
2

)
. (3.12)

Besides the extra g dependent terms induced by the modified currents, the super-

symmetry variations must be amended by the following O(g) terms:

δgψ
I
µ = ig A

IJ
1 γµε

J , δgχ
Ȧ = g AIȦ2 εI . (3.13)

Of course, the above modifications of the lagrangian and the supersymmetry trans-

formation rules have not been guessed “out of the blue”, but at this point simply

constitute an ansatz that has been written down in analogy with known gauged su-

pergravities, in particular the N = 8 theory of [2]. The consistency of this ansatz

must now be established by explicit computation.

The SO(16) tensors A1,2,3 depending on the scalar fields V introduce Yukawa-
type couplings between the scalars and the fermions beyond the derivative couplings
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generated by (2.2), as well as a potential for the scalar fields. As is evident from

their definition, the tensors AIJ1 and A
ȦḂ
3 are symmetric in their respective indices.

Therefore, AIJ1 decomposes as 1 + 135 under SO(16),
3 viz.

AIJ1 = A
(0)
1 δ

IJ + ÃIJ1 , (3.14)

with ÃJJ = 0, while for AȦḂ3 we have the decomposition

AȦḂ3 = A
(0)
3 δ

ȦḂ + ÃȦḂ3 , (3.15)

where

ÃȦḂ3 =
1

4!
A
(4)
3 IJKLΓ

IJKL
ȦḂ

+
1

2 · 8!A
(8)
3 I1...I8

ΓI1...I8
ȦḂ

.

Therefore A3 can contain the representations 1 + 1820 + 6435. However, we will see

that the 6435 drops out. Due to the occurrence of the 1820 in this decomposition,

the tensor A3 cannot be expressed in terms of A1,2 unlike for D = 4 and D = 5. The

independence of A3 is a new feature of the D = 3 gauged theory.

Several restrictions on the tensors A1,2,3 can already be derived by imposing

closure of the supersymmetry algebra on various fields at order O(g). Computing the
commutator on the dreibein field we obtain an extra Lorentz rotation with parameter

Λαβ = 2gA
IJ
1 εI1γαβε

J
2 , (3.16)

while evaluation of the commutator on the vector fields and the scalar field matrix

V yields an extra gauge transformation with parameter
Λm = 2V mIJ εI1εJ2 + iBµm εI1γµεI2 . (3.17)

The latter induces a further SO(16) rotation with parameter ωIJ = gΛmVmIJ on V
(as well as the fermions which transform under SO(16)). For the derivation of this

result we need the relations

V mA Γ(IAȦA
J)Ȧ
2 = V mIK AJK1 + V mJK AIK1 , (3.18)

Γ
[I

AȦ
A
J ]Ȧ
2 = V CIJΘCDV DA , (3.19)

which give the first restrictions on the tensors A1,2,3. A peculiarity is that the clo-

sure of the superalgebra on Bµ
m requires use of the duality equation, whereas the

equations of motion are not needed to check closure on the remaining bosonic fields.

Tracing (3.18) over the indices I and J and using the symmetry of AIJ1 we

immediately obtain

ΓI
AȦ
AIȦ2 = 0 . (3.20)

The tensor AIȦ2 thus transforms as the 1920 (traceless vector spinor) representation

of SO(16).
3Here and in the following, representations of SO(16) are written with ordinary numbers, while

representations of E8(8) are given in boldface numbers.
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To state the restrictions imposed on these tensors by the requirement of local

supersymmetry more concisely, we now define the T -tensor

TA|B := VMAV NBΘMN . (3.21)

Clearly TA|B = TB|A by the symmetry of Θ. Unlike the cubic expressions in [2] and [6],
however, the T -tensor is quadratic in V due to the equivalence of the fundamental and
adjoint representations for E8(8), see (A.4). The tensors A1,2,3 must be expressible in

terms of T if the theory can be consistently gauged. The detailed properties of the

T -tensor will be the subject of the following section.

Let us next consider the consistency conditions for local supersymmetry of (3.9)

step by step. All cancellations that are G0-covariantizations of the corresponding

terms in the ungauged theory will work as before, and for this reason we need only

discuss those variations which have no counterpart in the ungauged theory. Variation

of L(1) produces only the contribution

δL(1) = −1
4
gεµνρδBµ

mBνρm ,

because the CS term depends on no other fields but Bµ
m. Inserting (2.13) the above

variation can be seen to cancel against the extra terms in the variation of L(0) arising
in the integrability conditions, cf. (3.7).

A second set of g-dependent terms is obtained by varying Bµ
m in Qµ and Pµ,

cf. (3.8). Expressing the result by means of the T -tensor, we obtain

g
(
2TIJ |KL ε

IψJµ − iTKL|A ΓIAḂεIγµχḂ
)(

ψ
K

ν γ
µνρ ψLρ +

i

4
χγµΓKLχ

)
−

− g
(
TA|KL ε

KψLµ −
1

2
iTA|B Γ

K
BḂ
εKγµχ

Ḃ

)(
PµA − χȦγνγµψIν ΓIAȦ

)
.

These terms combine with the variations of the fermionic fields from L(2) and the
new variations (3.13) in L(0). Consideration of the εψP and εχP terms now repro-
duces (3.19), but in addition requires the differential relations

DµAIJ1 = PµA Γ(IAȦA
J)Ȧ
2 ,

DµAIȦ2 =
1

2
PµA
(
ΓI
AḂ

AȦḂ3 + Γ
J
AȦ
AIJ1

)
− 1
2
PµA ΓIBȦ TA|B . (3.22)

Multiplying the second relation by ΓI
AȦ
and invoking (3.20) yields

TA|B = (A
(0)
1 + A

(0)
3 ) δAB +

1

16
ΓI
AȦ
ÃȦḂ3 Γ

I
ḂB

. (3.23)

Since ΓIΓ(8)ΓI = 0 there is no 6435 of SO(16) in TA|B. However, the argument does
not yet suffice to rule out such a contribution in A3.
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As in [2], the supersymmetry variation of the tensors A1,2 is obtained from (3.22)

by replacing PAµ by ΓIAȦεIχȦ:

δÃIJ1 = Γ
K
AḂ
εKχḂ Γ

(I

AȦ
A
J)Ȧ
2 ,

δAIȦ2 =
1

2
ΓK
AḂ
εKχḂ

(
ΓI
AĊ

AȦĊ3 + Γ
J
AȦ
AIJ1 − ΓIBȦ TA|B

)
. (3.24)

The tracelessness of AIȦ2 in (3.20) in conjunction with (3.22) also implies that A
(0)
1

and A
(0)
3 are constant. This is consistent with the fact that the trace parts drop out

from the above variations. Observe that the supersymmetry variation of A3 does not

yet enter at this point as it appears only at cubic order in the fermions.

At O(g2) we get two quadratic identities. The first multiplies the g2ψε variations
and is straightforwardly obtained

AIK1 AKJ1 −
1

2
AIȦ2 A

JȦ
2 =

1

16
δIJ
(
AKL1 AKL1 −

1

2
AKȦ2 AKȦ2

)
. (3.25)

The second comes from the g2χε variations: performing the O(g) variations in L(2)
we obtain

δgL(2) = g2eχȦεI
(
−3AIJ1 AIȦ2 + AȦḂ3 AIḂ2

)
.

Varying A1,2 in the potential, on the other hand, and making use of the above

formulas (3.24) together with (3.20), we arrive at:

χȦεK(ΓKΓI)ȦḂ

(
3

16
ÃIJ1 A

JḂ
2 −

1

16
ÃḂĊ3 AIĊ2

)
.

By the tracelessness of AIȦ2 we can drop the tildes in this expression, and thus obtain

the second relation

3AIJ1 A
JȦ
2 − AIḂ2 AȦḂ3 =

1

16
(ΓIΓJ)ȦḂ

(
3AJK1 AKḂ2 −AJĊ2 AḂĊ3

)
, (3.26)

which must be satisfied for local supersymmetry to hold.

Thus, at linear order in the fermions, supersymmetry requires the tensors A1,2,3
to satisfy the identities (3.18), (3.19), and (3.22)–(3.26). However, these do not

yet constitute a complete set of restrictions. In marked contrast to the D ≥ 4
gauged supergravities, we get further and independent conditions at cubic order in

the fermions. This special feature is again related to the algebraic independence

of the third tensor A3. Although the necessary calculations are quite tedious, we

here refrain from giving details and simply state the results, as the relevant Fierz

technology is (or should be) standard by now. Interested readers may find many

relevant formulas in [22].

The analysis of the (ψψ)(ψε) terms gives

TIJ |KL = 2δ
I[K
A
L]J
1 +T[IJ |KL] . (3.27)
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The structure of the r.h.s. of this equation thus restricts TIJ |KL to the SO(16) com-
ponents 1, 135 and 1820. Demanding the cancellation of (χχ)(ψε) terms yields three

more constraints:

A
(0)
3 + 2A

(0)
1 = 0 , A

(8)
3 I1...I8

= 0 , T[IJ |KL] = 2Ã
(4)
3 IJKL , (3.28)

such that with (3.19), (3.23), and (3.27) the T -tensor (3.21) may be entirely expressed

in terms of the tensors A1,2,3:

TIJ |KL = 2 δ
IJ
KLA

(0)
1 + 2 δ

I[K
Ã
L]J
1 +2 Ã

(4)
3 IJKL ,

TIJ |A = Γ
[I

AȦ
A
J ]Ȧ
2 ,

TA|B = −A(0)1 δAB +
1

2 · 4! Γ
IJKL
AB Ã

(4)
3 IJKL . (3.29)

In particular, the two singlets and the two 1820 representations in TIJ |KL and TA|B
coincide. Finally, the analysis of the (χχ)(χε) terms yields

δA
(4)
3 IJKL = −

1

2
εMχȦ

(
ΓMΓ[IJK

)
ȦḂ

A
L]Ḃ
2 . (3.30)

In order to derive this condition and to prove the vanishing of the (χχ)(χε) terms,

one needs the additional Fierz identity, which cannot be derived from the relations

given in [22, appendix]

(χΓKLMNχ) (χȦεI) (ΓIΓKLM)ȦḂA
NḂ
2 =

= 36 (χγµΓ
IJχ) (χȦγµεI)AJȦ2 − 4 (χγµΓKLχ) (χȦγµεI) ΓKLȦḂAIḂ2 +

+48 (χχ) (χȦεI)AIȦ2 − 12 (χγµΓKLχ) (χȦγµεI) ΓIKȦḂALḂ2 .

The tracelessness of AIȦ2 is again crucial in obtaining this result.

Let us summarize our findings. The complete set of consistency conditions en-

suring supersymmetry of the gauged lagrangian (3.9) is given by the linear rela-

tions (3.29), the differential identities (3.22), (3.30), the relation (3.18), and the

quadratic identities (3.25), (3.26). The tensors A1,2,3 can contain only the SO(16)

representations 1, 135, 1820 and 1920. Equations (3.29) show that likewise the T -

tensor may contain only these representations. The remarkable fact — which even-

tually allows the resolution of all identities — is that these SO(16) representations

combine into representations of E8(8). More specifically, we have

135 + 1820 + 1920 = 3875 , (3.31)

while the first relation from (3.28) ensures that the two SO(16) singlets originate

from one singlet of E8(8), such that the full E8(8) content of the tensors A1,2,3 is

contained in the E8(8) representations 1 + 3875. Apart from the occurrence of an
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extra singlet, this fusion of tensors into representations of the hidden global Ed(d)
takes place already in dimensions D = 4 and D = 5, where the Yukawa couplings

are given by tensors transforming in the 912 of E7(7) [33] and in the 351 of E6(6) [6],

respectively. We shall come back to this point in the next section.

Perhaps the most unexpected feature of our construction is the fact that the

vector fields appear via a CS term (3.10) in order g, rather than the standard Yang-

Mills term. This has no analog in higher dimensions, where the vector fields appear

already in the ungauged theory via an abelian kinetic term. In hindsight this coupling

of the vector fields turns out to be the only consistent way to bring in the dual

vector fields without introducing new propagating degrees of freedom, and thereby

to preserve the balance of bosonic and fermionic physical degrees of freedom.

The emergence of non-abelian CS terms in the maximally supersymmetric the-

ories naturally leads to a non-abelian extension of the duality relation (2.14)

εµνρB̂µνm = 2 eV mA P̂ ρA −
i

2
eV mIJ χγρΓIJ χ , (3.32)

which consistently reduces to (2.14) in the limit g → 0. However, in this limit,
the vector fields drop from the lagrangian such that the duality relation (2.14) no

longer follows from a variational principle in the ungauged theory but rather must be

imposed by hand. This can be viewed as a very mild form of the gauge discontinuity

encountered for gauged supergravities in odd dimensions [3, 4, 6]. In contrast to

those models however, the lagrangian (3.9) has a perfectly smooth limit as g → 0.
Because of the explicit appearance of the gauge fields on the r.h.s. of the non-

abelian duality relation it is no longer possible to trade the vector fields for scalar

fields and thereby eliminate them, unlike in [28]. Vice versa, the explicit appear-

ance of the scalar fields in the potential of (3.9) also excludes the possibility to

eliminate some of these fields by replacing them by vector fields. In contrast to the

ungauged theory which allows for different equivalent formulations related by duality,

the gauged theory apparently comes in a unique form which requires the maximal

number of scalar fields together with the dual vectors corresponding to the gauge

group G0.

Note that unlike in (2.14), the nonabelian duality relation (3.32) may be im-

posed only for those vector fields which belong to the gauge group G0. Having

gauged the theory, we can no longer introduce additional vector fields as was the

case for the ungauged theory. This is because additional vector fields transforming

nontrivially under the gauge group G0 would acquire mass terms in the gauged the-

ory, entailing a mismatch between bosonic and fermionic degrees of freedom. As a

consequence, (3.32) does not imply the full set of bosonic equations of motion, but

just their projection onto the subgroup G0. However, just as in (2.15) we may deduce

the equations of motion for the vector fields from (3.32) by acting on both sides with
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ερµνDν and making use of (3.7):

DνBµνm = 1
2
ge−1εµνρ

(
V mAV nA + V mIJV nIJ

)
Θnk Bνρk −

− 1
2
e−1εµνρ V mIJ QIJνρ + fermionic terms

= g
(
V mBTB|A + V mIJTIJ |A

)
PµA − 1

2
e−1εµνρ V mIJ QIJνρ +

+fermionic terms . (3.33)

4. T -identities

In the foregoing section we have derived the consistency conditions which must be sat-

isfied by the tensors A1,2,3 and the T -tensor in order to ensure the full supersymmetry

of the gauged action (3.9). It remains to show that these conditions admit nontrivial

solutions A1,2,3(V). This will single out the possible gauge groups G0 ⊂ E8(8). Recall

that in the three dimensional model the choice of gauge group is less restricted than

in higher dimensions where the gauge group G0 ⊂ G is essentially determined by the

fact that a maximal subset of the vector fields of the theory must transform in its

adjoint representation.

Up to this point, we have made no assumptions on the gauge group G0 ⊂ E8(8),

which is characterized by its embedding tensor ΘMN , cf. (3.2). We will now show

that all the consistency conditions derived in the previous section may be encoded

into a single algebraic equation for the embedding tensor.

According to (3.3), ΘMN transforms in the symmetric tensor product

(248× 248)sym = 1+ 3875+ 27000 . (4.1)

The explicit projectors of this decomposition have been computed in [34]

(P1)MN
KL =

1

248
ηMN η

KL ,

(P3875)MN
KL =

1

7
δ K(Mδ

L
N) −

1

56
ηMN η

KL − 1
14
fPM

(KfPN
L) ,

(P27000)MN
KL =

6

7
δ K(Mδ

L
N) +

3

217
ηMN η

KL +
1

14
fPM

(KfPN
L) . (4.2)

Accordingly, ΘMN may be decomposed as

ΘMN = θ ηMN +Θ
3875
MN +Θ

27000
MN , (4.3)

with

Θ3875MN = (P3875)MN
KLΘKL , Θ27000MN = (P27000)MN

KLΘKL .

The T -tensor as it has been defined in (3.21) is given by a rotation of ΘMN by the

matrix V. It may likewise be decomposed
TA|B = T

1
A|B + T

3875
A|B + T 27000A|B , (4.4)
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with

T 3875A|B = (P3875)AB
CD TC|D = VMAV NBΘ3875MN , etc.

where the second equality is due to invariance of the projectors under E8(8). Anal-

ogous tensors have been defined in [2] and [6] for the maximally gauged models in

D = 4 and D = 5, respectively. Unlike those T -tensors, however, the T -tensor here

is quadratic in V, as already emphasized before.

4.1 The constraint for the embedding tensor

We have seen that supersymmetry of the gauged lagrangian in particular implies the

set of relations (3.29) for the T -tensor. As discussed above, these relations show that

T may only contain the SO(16) representations contained in the 1 + 3875 of E8(8).

It follows that equations (3.29) can be solved for A1,2,3 if and only if

T 27000A|B = 0 ⇐⇒ Θ27000MN = 0 . (4.5)

This is a set of linear algebraic equations for the embedding tensor ΘMN . We stress

once more the remarkable fact that the equations (3.29) combine into an E8(8) covari-

ant condition for the T -tensor which makes it possible to translate these equations

into a condition for the constant tensor ΘMN . In particular, each single equation

from (3.29) yields an SO(16) covariant restriction on the T -tensor (3.21) which al-

ready implies the full set of relations (3.29), if it is to be satisfied for all E8(8) valued

matrices V.
We shall show in the following sections that (4.5) not only reproduces the lin-

ear equations (3.29) but indeed implies the complete set of consistency conditions

(including the differential and quadratic ones) identified in the last section.4

4.2 Linear identities

Making use of the explicit form of the projectors (4.2), equation (4.5) takes the form

ΘIJ,KL = −2
7
δI[K ΘL]M,MJ +Θ[IJ,KL] +

16

7
θ δIJKL ,

ΘIJ,A =
1

7
(ΓIΓ

L)AB ΘB,LJ ,

ΘA,B =
1

96
ΓIJKLAB ΘIJ,KL + θ δAB , (4.6)

and likewise for T . These equations contain the complete set of linear identities

among different components of the T -tensor. Once they are satisfied, the T -tensor

4Let us stress once more that in addition to (4.5), Θ must project onto a subgroup. If that

condition is dropped, further solutions to (4.5) can be found, but the T -tensor would then fail to

satisfy the quadratic identities of section 4.4.
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may be entirely expressed in terms of the tensors A1,2,3 as found in (3.29) above:

TIJ |KL = 2 δ
I[K

A
L]J
1 +

1

64
ΓIJKL
ȦḂ

AȦḂ3 ,

TIJ |A = Γ
[I

AȦ
A
J ]Ȧ
2 ,

TA|B =
1

6144
ΓIJKLAB ΓIJKL

ȦḂ
AȦḂ3 + θ δAB . (4.7)

These equations may be inverted and give the solution for the tensors A1,2,3 in terms

of the T -tensor:

AIJ1 =
8

7
θ δIJ +

1

7
TIK|JK ,

AIȦ2 = −
1

7
ΓJ
AȦ

TIJ |A ,

AȦḂ3 = 2θ δȦḂ +
1

48
ΓIJKL
ȦḂ

TIJ |KL . (4.8)

4.3 Differential identities

With the linear identities derived in the last section we may now compute the vari-

ation of the tensors A1,2,3 when V is varied. Since the matrix V lives in the adjoint
representation, its variation along an invariant vector field ΣA is given by

δVMB
δΣA

= fB
CA VMC =⇒



δVMIJ
δΣA

= −1
2
ΓIJAB VMB

δVMB
δΣA

= −1
4
ΓIJAB VMIJ

. (4.9)

From (4.8) we then obtain

δAIJ1
δΣA

=
1

14

(
ΓIKAB TKJ |B + Γ

JK
AB TKI|B

)
,

δAIȦ2
δΣA

=
1

14
ΓJ
BȦ

(
ΓIJAC TB|C +

1

2
ΓMNAB TIJ |MN

)
,

δAȦḂ3
δΣA

= − 1
48
ΓIJKL
ȦḂ

ΓKL
AB

TIJ |B .

Rewriting the expressions on the r.h.s. in terms of the tensors A1,2,3 by means of (4.7)

we get

δAIJ1
δΣA

= Γ
(I

AȦ
A
J)Ȧ
2 ,

δAIȦ2
δΣA

=
1

2

(
ΓM
AȦ
AIM1 + Γ

I
AḂ

AȦḂ3 − ΓIBȦ TA|B
)
,

δAȦḂ3
δΣA

=
1

48
ΓIKMN
ȦḂ

ΓKMN
AĊ

AIĊ2 . (4.10)
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This reproduces equations (3.24) and (3.30) from the last section. In particular, we

obtain the covariant derivatives of the tensors A1,2

DµAIJ1 = Γ(IAȦA
J)Ȧ
2 PAµ ,

DµAIȦ2 =
1

2

(
ΓM
AȦ

AIM1 + Γ
I
AḂ

AȦḂ3 − ΓIBȦ TA|B
)
PAµ , (4.11)

which coincide with equations (3.22) found before. The variation (4.10) further allows

to compute the variation of the scalar potential (3.12)

δ

δΣA

(
AIJ1 A

IJ
1 −

1

2
AIȦ2 A

IȦ
2

)
=
1

2
ΓM
AȦ

(
3AMN1 ANȦ2 −AȦḂ3 AMḂ2

)
,

which has also been used in the last section. Together with the quadratic iden-

tity (4.20) to be derived below, this yields the condition for stationary points of the

potential
δW

δΣA
= 0 ⇐⇒ 3AIM1 AMȦ2 = AȦḂ3 AIḂ2 . (4.12)

Obviously, a sufficient condition for stationarity is AIȦ2 = 0 .

4.4 Quadratic identities

So far, we have exploited the projector condition (4.5) to derive linear identities in

TA|B. However, additional information stems from the fact that the tensor ΘMN is
built from projectors onto subgroups, cf. (3.2). This can be used to derive further

identities quadratic in the tensors A1,2,3. As we have seen in the previous section,

identities of this type are also needed to ensure supersymmetry of the gauged theory.

Since ΘMN projects onto a subgroup G0 ⊂ G, it satisfies:

ΘK(M fN)
KLΘLP = 0 , (4.13)

which follow from closure of G0 and the antisymmetry of the structure constants.

Invariance of the structure constants then implies

Θmn V nCf CD(A TB)|D = 0 . (4.14)

Evaluate this expression for (A,B) = ([IM ], [KM ]):
4V mN(I TK)M |MN + ΓIMAB V mA TKM |B + ΓKMAB V mA TIM |B = 0 ,

where the index m is projected onto the subalgebra g0. Inserting (4.7) yields

V mA Γ(IAȦA
K)Ȧ
2 = V mIM AMK1 + V mKM AMI1 , (4.15)

and thus the identity (3.18), required above for closure of the supersymmetry algebra

in the gauged theory. If we contract this equation with V nJKΘmn, symmetrize in (IJ)
and once more insert (4.7), we obtain

AIK1 AKJ1 −
1

2
AIȦ2 A

JȦ
2 =

1

16
δIJ
(
AKL1 AKL1 −

1

2
AKȦ2 AKȦ2

)
. (4.16)
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This gives already the quadratic identity (3.25). If on the other hand we con-

tract (4.15) with ΓK
BȦ
V nBΘmn, we obtain after inserting (4.7)

1

64
ΓIKMN
ĊḊ

ΓMN
ȦḂ

AKḂ2 AĊḊ3 = −32AIN1 ANȦ2 + 2 (ΓIΓK)ȦḂ A
KN
1 ANḂ2 − 16 θ AIȦ2 +

+10AIḂ2 A
ȦḂ
3 − (ΓIΓK)ȦḂ AKĊ2 AḂĊ3 . (4.17)

Evaluating (4.14) for (A,B) = ([IJ ], A) and contracting with ΓJ
AȦ
leads to

1

6
(ΓJΓMNKL)AȦ V mA TMN |KL −

1

12
(ΓMNKLΓJ)AȦ V mA TMN |KL =

=
4

7
(ΓKΓMN)AȦ V mMN TJK|A −

16

7
ΓK
AȦ
V mJM TMK|A +

+
8

7
ΓK
AȦ
V mA TJM |MK +

1

14
ΓJ
AȦ
V mA TMN |MN , (4.18)

again, if the index m is projected onto the subalgebra g0. To obtain the desired iden-

tity, we contract this equation with V nIJΘmn and insert (4.7). After some calculation
we arrive at

1

64
ΓIKMN
ĊḊ

ΓMN
ȦḂ

AKḂ2 AĊḊ3 = 64AIN1 ANȦ2 − 4 (ΓIΓK)ȦḂ AKN1 ANḂ2 − 16 θ AIȦ2 −
− 22AIḂ2 AȦḂ3 + (Γ

IΓK)ȦḂ A
KĊ
2 AḂĊ3 . (4.19)

Equating (4.17) and (4.19), we finally obtain

3AIJ1 A
JȦ
2 − AIḂ2 AȦḂ3 =

1

16
(ΓIΓJ)ȦḂ

(
3AJK1 AKḂ2 − AJĊ2 AḂĊ3

)
. (4.20)

We have thus shown that the condition (4.5) together with the fact that ΘMN
projects onto a subalgebra implies the quadratic identities (4.16) and (4.20) which

coincide with (3.25), (3.26) found above. Altogether, we recover in this fashion all

the identities required in section 3 from the single projector condition (4.5) for the

embedding tensor ΘMN .

5. Admissible gauge groups G0

Having reduced the consistency conditions required by local supersymmetry to a set

of algebraic conditions (4.5) for the embedding tensor of the gauge group G0 ⊂ G,

we must now ascertain that this condition admits non-trivial solutions and classify

them. This is the objective of the present section. As we will see the variety of

solutions of (4.5), each of which gives rise to a maximally supersymmetric gauged

supergravity, is far richer than in dimensions D ≥ 4.
The power of equation (4.5) is based on its formulation as a single projector

condition in the tensor product decomposition (4.1). This permits the construction
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of solutions by purely group theoretical means. To demonstrate that these methods

also clarify the structure of the T -identities in D ≥ 4, we derive the analog of (4.5)
to re-obtain the results of [2] and [6]. Group theoretical arguments then show im-

mediately that the gauge groups SO(8) and SO(6), respectively, solve the relevant

equations. In particular, this provides a unifying argument for the consistency of all

the noncompact gaugings found subsequently in [35, 36, 6].

The analysis for three dimensions turns out to be more involved, but extending

the above arguments we arrive at a variety of admissible gauge groups. There is

a regular series of gauge groups SO(p, 8 − p) × SO(p, 8 − p) including the maximal
compact SO(8)×SO(8), and several exceptional noncompact gauge groups, summa-
rized in table 2 below. Still this is not a complete classification of admissible gauge

groups, as we restrict the analysis of compact and noncompact gauge groups to the

maximal subgroups of SO(16) and E8(8), respectively. We leave the exploration of

smaller rank gauge groups to future work.

5.1 T -identities and gauge groups in higher dimensions

As a “warm-up” let us first apply our techniques to the gauged maximal super-

gravities in D = 4, 5. This will allow us to shortcut the derivation of the (linear)

T -identities given in the original work.

5.1.1 D = 4

Like (4.4), the D = 4 T -tensor is obtained from a constant G0-invariant tensor Θ by

a field dependent rotation with the matrix V ∈ E7(7) in the fundamental representa-
tion. The constant tensor Θ there transforms in the product of the adjoint and the

fundamental representation

56× 133 = 56+ 912+ 6480 , (5.1)

of E7(7),
5 such that T is cubic rather than quadratic in the matrix entries of V.

Computations similar to those presented in the last section then show that full su-

persymmetry of the gauged lagrangian is equivalent to

T = T 912 ⇐⇒ Θ = Θ912 , (5.2)

providing the analogue of (4.5). It is now straightforward to see that G0 = SO(8)

indeed gives a solution to (5.2): consider the decomposition of (5.1) under SO(8):6

56 → 2 · 28 ,
912 → 2 · 1 + 2 · 35v + 2 · 35s + 2 · 35c + · · · ,
6480 → 6 · 28 + 2 · 35v + 2 · 35s + 2 · 35c + · · · . (5.3)

5It is only for E8(8) that the fundamental representation coincides with the adjoint representation

and the tensor Θ hence coincides with the embedding tensor of the group G0.
6LiE [37] has been very helpful to quickly determine these decompositions.
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As the singlets appear only in the 912, any SO(8) invariant tensor in (5.1) automat-

ically satisfies (5.2). The same argument proves the consistency of the noncompact

SO(p, 8− p) gaugings found in [36]. As shown in [38] equation (5.2) indeed contains
no other solutions than those found in [2, 36].

5.1.2 D = 5

For D = 5, the constant tensor Θ transforms in the product of the adjoint and the

fundamental representation

27× 78 = 27+ 351+ 1728 , (5.4)

of E6(6). Rotation by V in the fundamental representation of E6(6) converts Θ into the
T -tensor, cubic in the matrix entries of V. Supersymmetry of the gauged lagrangian
then is shown to be equivalent to

T = T 351 ⇐⇒ Θ = Θ351 , (5.5)

in analogy with (4.5) and (5.2). Again, it is straightforward to see that G0 = SO(6)

yields a solution to (5.5): under SO(6), (5.4) decomposes as

27 → 2 · 6 + 15 ,
351 → 1 + 2 · 6 + 2 · 10 + 2 · 10 + 4 · 15 + · · · ,
1728 → 10 · 6 + 2 · 10 + 2 · 10 + 9 · 15 + · · · . (5.6)

Now the singlet appears only in the 351, hence there is just one SO(6) invariant tensor

in (5.4) which automatically satisfies (5.5). As before, this argument generalizes to

all the noncompact gauge groups found in [6].

5.2 Compact gauge groups

Let us now come back to (4.5). We will first consider compact gauge groups G0 ⊂
SO(16). Their embedding tensors satisfy

ΘIJ,A = 0 = ΘA,B ; (5.7)

the only nonvanishing component is ΘIJ,KL which under SO(16) decomposes as

ΘIJ,KL ∼ 1 + 135 + 1820 + 5304 . (5.8)

According to (3.31), the 5304 is part of the 27000 and must vanish for (4.5) to be

satisfied. From (4.6) it further follows that the 1 and the 1820 coincide with the

corresponding parts in ΘA,B and thus must vanish due to (5.7). Hence, for compact

G0, only the 135 representation survives, and the condition (4.5) reduces to

ΘIJ,KL = δI[K ΞL]J , with ΞIJ =
7

2
ΘIK,JK , ΞII = 0 . (5.9)

The tracelessness of Θ in particular rules out any simple compact gauge group.
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In principle, the elementary form of the constraint (5.9) should allow a complete

classification of the possible compact gauge groups; however, in the following, we

restrict attention to the maximal subgroups of SO(16). They are

SO(9) , SO(5)× SO(5) , SO(3)× USp(8) ,
and SO(p)× SO(16− p) , for p = 0, . . . , 8 . (5.10)

A necessary condition for a compact gauge group to be admissible immediately fol-

lows from (5.9): there must exist a G0-invariant tensor ΞIJ in the 135 of SO(16). In

other words, there must be a singlet in the decomposition of 135 w.r.t. G0. From the

maximal subgroups (5.10) this already rules out the first three. It remains to study

the SO(p)× SO(16− p). These groups have a unique invariant tensor in the 135:

Ξij = (16− p) δij , Ξij = −p δij , (5.11)

where i, j = 1, . . . p and i, j = p+ 1, . . . , 16 denote the splitting of the SO(16) vector

indices I, and the relative factor between Ξij and Ξij is determined from tracelessness.

By (5.9), the tensor ΘIJ,KL satisfying (4.5) is

Θij,kl = (16− p) δijkl , Θij,kl = −p δijkl , Θij,kl =
1

2
(8− p) δik δjl .

However, due to the nonvanishing mixed components Θij,kl, this tensor coincides

with the embedding tensor of SO(p)×SO(16−p) if and only if p = 8. Hence we have
shown that the only maximal subgroup of SO(16) whose embedding tensor satisfies

the condition (4.5) is

G0 = SO(8)× SO(8) ⊂ SO(16) , (5.12)

where the ratio of coupling constants of the two factors is g1/g2 = −1; in particular
the trace part θ of ΘMN vanishes. Combining this with the results of the previous

sections, we have thus shown the existence of a maximally supersymmetric gauged

supergravity with compact gauge group G0 = SO(8)× SO(8). Under G0, the scalar
degrees of freedom decompose as

120→ (1, 28) + (28, 1) + (8s, 8c) , 128→ (8v, 8v) + (8c, 8s) , (5.13)

while the spinors split into

16→ (1, 8c) + (8s, 1) , 128→ (8v, 8s) + (8c, 8v) . (5.14)

Amongst other things we here recognize the standard decomposition of the on-shell

IIA supergravity multiplets in terms of left and right moving string states.
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5.3 Regular noncompact gauge groups

In order to identify the allowed noncompact gauge groups, we first recall that for the

maximal gauged supergravity in D = 4, several noncompact gaugings were found by

analytic continuation [35, 36]. The noncompact gauge groups are thus alternative

real forms of the complexified gauge group SO(8,C), and the consistency of the

noncompact gaugings was basically a consequence of the consistency of the original

theory [2] with compact gauge group. The results of the last section suggest that

analogous gaugings should exist for the different real forms of (5.12).

The complexification of (5.12) is SO(8,C)× SO(8,C). Its real forms which are
also contained in E8(8) are given by

G0 = SO(p, 8− p)(1) × SO(p, 8− p)(2) , for p = 1, . . . , 4 . (5.15)

They are embedded in E8(8) via the maximal noncompact subgroup SO(8, 8). There-

fore the latter group is the analogue of the subgroups SL(8,R) ⊂ E7(7) in D = 4

and SL(6,R)× SL(2,R) ⊂ E6(6) in D = 5. To further illustrate the embedding, we

have denoted the two factors of G0 by superscripts (1), (2) whereas we denote the

two factors of (5.12) by subscripts L,R. The maximal compact subgroup of (5.15) is

given by

H0 = H(1) ×H(2)
≡
(
SO(p)

(1)
L × SO(8− p)(1)R

)
×
(
SO(p)

(2)
R × SO(8− p)(2)L

)
, (5.16)

with

H(1) ⊂ SO(p, 8− p)(1) , SO(p)(1)L × SO(8− p)(2)L ⊂ SO(8)L ,
H(2) ⊂ SO(p, 8− p)(2) , SO(p)(1)R × SO(8− p)(2)R ⊂ SO(8)R .

The embedding of H0 into SO(8)L×SO(8)R is the standard one, without any triality
rotation. In other words, the 8v of SO(8)L decomposes into (p, 1) + (1, 8− p) under
SO(p)

(1)
L × SO(8− p)(2)L , etc.
Consistency of the gauged theories with noncompact gauge groups (5.15) could

in principle be shown in analogy with [36, 39] by the method of analytic continuation.

Alternatively, their consistency follows from an algebraic argument along the lines

of the last section by use of our form of the consistency condition (4.5). This gives

the analogue of the noncompact gaugings found in higher dimensions [36, 6].

5.4 Exceptional noncompact gauge groups

Next, we discuss noncompact gauge groups which unlike the groups identified in

(5.15) do not share the same complexification with any compact subgroup contained

in E8(8). Their existence is again a consequence of the absence of any a priori restric-

tion on the number of vector fields in three dimensions.
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These noncompact solutions to (4.5) may be found by a purely group theoretical

argument. As an example, consider the maximal subgroup G0 = G2(2)×F4(4). Under
G0 the adjoint representation of E8(8) decomposes as

248→ (14, 1) + (1, 52) + (7, 26) . (5.17)

Accordingly, the symmetric tensor product (4.1) contains three singlets under G0,

and the Cartan-Killing form of E8(8) decomposes into three G0-invariant tensors:

ηMN = η
(14,1)
MN + η

(1,52)
MN + η

(7,26)
MN . (5.18)

More precisely, each of the three terms on the r.h.s. of (4.1) contains exactly one

singlet under G0 [37]. Consequently, there is a linear combination

α1 η
(14,1)
MN + α2 η

(1,52)
MN + α3 η

(7,26)
MN ,

which lies entirely in the 3875. Subtracting a proper multiple of the E8(8) sin-

glet (5.18), we find that

ΘMN ≡ (α1 − α3) η(14,1)MN + (α2 − α3) η(1,52)MN , (5.19)

satisfies (4.5). This is the embedding tensor of G0 = G2(2) × F4(4) with a fixed ratio
of coupling constants between the two factors, which solves (4.5) and (4.13). The

results of the last section then prove the existence of a maximally supersymmetric

gauged theory with gauge group G2(2) × F4(4).
The same argument may be applied to other noncompact subgroups of E8(8). A

closer inspection of the above proof reveals that only two ingredients were needed,

namely (i) that the gauge group G0 consists of two simple factors and (ii) that

the E8(8) representations 3875 and 27000 each contain precisely one singlet in the

decomposition under G0. As it turns out, this requirement is also met by the noncom-

pact groups E7(7)×SL(2), E6(6)×SL(3), and all their real forms which are contained
in E8(8). The list of exceptional noncompact subgroups passing this test, together

with their maximal compact subgroups is displayed in table 2.

There are also real forms of these exceptional gauge groups — the compact forms

of Ed for d = 6, 7, 8, and the real forms E8(−24), E7(−25) and E6(−26) — which are not
contained in E8(8) and thus do not appear in this list. However, every real form

that may be embedded in E8(8) gives rise to a maximally supersymmetric gauged

supergravity. The “extremal” noncompact solution to (4.5) is given by the group

G0 = E8(8) itself, in which case ΘMN reduces to the Cartan-Killing form ηMN .

To complete the construction of the theories with gauge groups given in table 2,

it remains to compute the ratio of coupling constants between the two factors of G0
which came out to be fixed to a specific value in (5.19). To this end, let us consider

the general situation of a gauge group with two simple factors G0 = G
(1)×G(2), such

26



J
H
E
P
0
4
(
2
0
0
1
)
0
2
2

G0 = G
(1) ×G(2) maximal compact subgroup H0 = H(1) ×H(2)

G2(2) × F4(4) (SU(2)L × SU(2)R)× (SU(2)L × USp(6)R)
G2 × F4(−20) (G2)L × SO(9)R
E6(6) × SL(3) USp(8)L × SU(2)L
E6(2) × SU(2, 1) (SU(6)L × SU(2)R)× (SU(2)R ×U(1)L)
E6(−14) × SU(3) (SO(10)L ×U(1)R)× SU(3)R
E7(7) × SL(2) SU(8)L ×U(1)L
E7(−5) × SU(2) (SO(12)L × SU(2)R)× SU(2)R

E8(8) SO(16)L

Table 2: Exceptional noncompact gauge groups and their maximal compact subgroups.

The subscripts L and R refer to the AdS supergroups GL×GR associated to the maximally
supersymmetric groundstates of these theories, see section 6.

that its maximal compact subgroup likewise factors as H0 = H (1) × H(2). Denote

the embedding tensor of G0 by

gΘMN = g1 η
(1)
MN + g2 η

(2)
MN , (5.20)

where η(1),(2) are the embedding tensors of G(1),(2), respectively, and assume that

(5.20) satisfies (4.5). Equation (5.19) was a particular case satisfying these assump-

tions. Contracting (5.20) with ηMN yields

gθ dimE8(8) = g1 dimG
(1) + g2 dimG

(2) .

where the l.h.s. follows from (4.3). On the other hand, contracting (5.20) with ηIJ,KL

over the compact part of E8(8) gives

gθ dimSO(16) = g1 dimH
(1) + g2 dimH

(2) ,

where the l.h.s. here follows from (4.6) — and is a consequence of the fact that due

to (4.5) the only SO(16) singlet in ΘMN is given by the first term in (4.3).

From the last two equations one may extract the coupling constants g1, g2 of the

two factors of the gauge group. Their ratio is

g1
g2
= −15 dimG

(2) − 31 dimH(2)
15 dimG(1) − 31 dimH(1) . (5.21)

With the gauge groups and their compact subgroups given in table 2 we then imme-

diately obtain the ratios of coupling constants for all these groups. In particular, no

degeneration occurs where this ratio would vanish or diverge. In table 1 displayed in

the introduction, we have presented a list of all the noncompact admissible subgroups

G0 ⊂ E8(8) , together with their coupling constant ratios. Remarkably, the ratios

as determined by (5.21) come out to be independent of the particular real form for
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each of these exceptional noncompact groups. This suggests that the theories whose

gauge groups are different real forms of the same complexified group may be related

by analytic continuation, in a similar fashion as the SO(p, 8 − p) gaugings of the

D = 4 theory are related via SO(8,C) [35, 36, 39]. Here, the analytic continuation

would have to pass through the complex group E8(C).

This concludes our discussion of admissible gauge groups. We note that in ad-

dition to the groups identified in this section there should also exist non-semisimple

gaugings analogous to the theories constructed in [35, 36, 39, 40]. We leave their

exploration and complete classification for future study.

6. Stationary points with maximal supersymmetry

The point of vanishing scalar fields, i.e. V = I, plays a distinguished role: it is

a stationary point with maximal supersymmetry for all the theories we have con-

structed. Recall that the condition for stationarity was already spelled out in (4.12).

At V = I, the gauge group G0 is broken to its maximal compact subgroup H0. For

the compact gauge group (5.12), the tensor AIȦ2 vanishes at this point, since Θ has

no contribution in the noncompact directions, cf. (4.8) and (5.7). Hence, (4.12) is

satisfied; the compact gauged theory has a G0 invariant stationary point at V = I.

For the noncompact real forms (5.15), the decomposition (5.14) implies that there is

no H0-invariant tensor in the tensor product 16× 128; hence, AIȦ2 vanishes also in
these theories at V = I. The same argument works also for the exceptional noncom-
pact gauge groups from table 1. In summary, all the three-dimensional theories we

have constructed share the stationary point V = I.
If we denote by ν = dimG0 and κ = dimH0 the dimension of the gauge group and

its maximal compact subgroup, respectively, the field equations (3.32) imply that for

V = I the vector fields split into ν − κ massive self-dual vectors and a H0-CS theory
of κ vector fields which do not carry propagating degrees of freedom. In this way,

the erstwhile topological vector fields corresponding to the noncompact directions

in G0 acquire a mass term by a Brout-Englert-Higgs like effect as observed in [41].

Dropping the massive vector fields as well as the matter fermions, the theory then

reduces to a H0-CS theory, coupled to supergravity. Since the AdS3 (super-)gravity

itself allows the formulation as a CS theory of the AdS group SO(2, 2) [11, 25], the

resulting theory is a CS theory with connection on a superextension of H0×SO(2, 2).
We shall determine these supergroups in the following.

In order to analyze the residual supersymmetries at the stationary point V = I in
a little more detail, we consider the Killing spinor equations, derived from (2.5), (3.13)

in absence of the vector fields:

0
!
= ∂µε

I +
1

2
iγa
(
Aµ
a δIJ − 2g eµaAIJ1

)
εJ , (6.1)

0
!
= AIȦ2 εI . (6.2)
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Adapting the arguments of [6] to the present case, it may be shown that (6.1) in fact

implies (6.2). Namely, comparing (6.1) to (2.18) we find that every solution to (6.1)

corresponds to the product of an AdS3 Killing spinor and an eigenvector ε
I
0 of the

real symmetric matrix AIJ1 ; the eigenvalue αi of A
IJ
1 is related to the AdS radius by

2g |αi| = m. (6.3)

On the other hand, the Einstein field equations derived from (3.9) imply that

Rµν = 4W0 gµν , (6.4)

where W0 is the value of the potential (3.12) at the critical point. From (2.17) we

infer the relation m2 = 2W0. Given the eigenvector ε
I
0 of A

IJ
1 with eigenvalue αi, we

contract (3.25) with εI0 to obtain(
2 g2 α2i −W0

)
εI0 = g

2AIȦ2 A
JȦ
2 εJ0 . (6.5)

If αi satisfies (6.3), this equation indeed implies (6.2). As in higher dimensions, the

number of residual supersymmetries therefore corresponds to the number of eigen-

values αi of A
IJ
1 satisfying (6.3). Conversely, equation (6.5) shows that A

IȦ
2 = 0 is

a sufficient condition for a maximally supersymmetric ground state: all eigenvalues

of the tensor AIJ1 then satisfy (6.3), splitting into 16 = nL + nR with positive and

negative sign, respectively. Altogether, we have thus shown that all the theories with

noncompact gauge groups from (5.15) and table 1 possess a maximally supersym-

metric ground state at V = I. This is in marked contrast to the higher-dimensional
models, where several of the noncompact gaugings do not even admit any stationary

points [35, 36, 39].

Not unexpectedly, the background isometries of these groundstates are superex-

tensions of the three-dimensional AdS group SO(2, 2). Since SO(2, 2) = SU(1, 1)L ×
SU(1, 1)R is not simple, they are in general direct products of two simple supergroups

GL×GR. Accordingly, the sixteen supersymmetry generators split into N = (nL, nR),
such that the groups GL,R are nL,R superextensions of the SU(1, 1)L,R with bosonic

subgroups

GL,R ⊃ HL,R × SU(1, 1)L,R . (6.6)

A list of possible factors GL,R based on the classification [42, 43] is given in [19].

To determine the AdS supergroups GL × GR corresponding to the maximally

supersymmetric ground state of the theory with gauge group G0, one must identify

the groups HL,R among the simple factors of its maximally compact subgroup H0,

such that H0 = HL × HR. This basically follows from the decomposition of the

sixteen supercharges under H0. Note that HL is not necessarily entirely contained

in one of the two factors of the semisimple gauge group G0. Rather we find that in

the two factorizations

H (1) ×H(2) = H0 = HL ×HR , (6.7)

the subfactors are distributed in different ways among the two factors. This has been
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gauge group G0 N = (nL, nR) background supergroup GL ×GR
SO(8)× SO(8) (8, 8) OSp(8|2,R)×OSp(8|2,R)
SO(7, 1)× SO(7, 1) (8, 8) F (4)× F (4)
SO(6, 2)× SO(6, 2) (8, 8) SU(4|1, 1)× SU(4|1, 1)
SO(5, 3)× SO(5, 3) (8, 8) OSp(4∗|4)×OSp(4∗|4)
SO(4, 4)× SO(4, 4) (8, 8) [D1(2, 1;−1)× SU(2|2)]2
G2(2) × F4(4) (4, 12) D1(2, 1;−2/3)×OSp(4∗|6)
G2 × F4(−20) (7, 9) G(3)×OSp(9|2,R)
E6(6) × SL(3) (16, 0) OSp(4∗|8)× SU(1, 1)
E6(2) × SU(2, 1) (12, 4) SU(6|1, 1)×D1(2, 1;−1/2)
E6(−14) × SU(3) (10, 6) OSp(10|2,R)× SU(3|1, 1)
E7(7) × SL(2) (16, 0) SU(8|1, 1)× SU(1, 1)
E7(−5) × SU(2) (12, 4) OSp(12|2,R)×D1(2, 1;−1/3)
E8(8) (16, 0) OSp(16|2,R)× SU(1, 1)

Table 3: Background isometries of the maximally supersymmetric ground states.

made explicit in (5.16) and table 2, respectively, by designating the simple factors of

H0 with the corresponding sub- and superscripts. In fact, the only gauge groups for

which the two factorizations (6.7) coincide are the compact group (5.12), the group

G2×F4(−20) from table 2, and the gauge group E8(8) itself. For the noncompact gauge
groups E6(6) × SL(3), E7(7) × SL(2), and E8(8), we find H0 = HL, i.e. GR reduces to

its purely bosonic AdS part SU(1, 1)R. Another particular situation arises for the

noncompact gauge group SO(4, 4)×SO(4, 4), where the supergroups GL,R themselves
are not simple but direct products of two supergroups, respectively.

The complete list is given in table 3, where we have summarized the background

isometries of the maximally supersymmetric stationary point V = I for all the three-
dimensional gauged maximal supergravities constructed in this article.

Let us emphasize that this table presumably represents only the tip of the ice-

berg as we expect there to be a wealth of stationary points with partially broken

supersymmetry for “small” gauge groups G0 ⊂ E8(8). On the other hand, for “large”

gauge groups stationary points will be more scarce. As a special example, consider

the extremal theory with noncompact gauge group E8(8), for which the potential

becomes just a (cosmological) constant, and does not exhibit any stationary points

besides the trivial one. In this case V = I may always be achieved by gauge fixing

the local E8(8) symmetry. Even after this gauge fixing, by which the scalar fields have

been eliminated altogether, there still remains the “composite” local SO(16) invari-

ance rendering 120 vectors out of the 248 vector fields unphysical. Accordingly, the

theory in this gauge may be interpreted as an SO(16) Chern-Simons theory coupled

to 128 massive selfdual vector fields, each of which represents one physical degree of

freedom. In other words, with respect to the ungauged theory, the propagating de-
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grees of freedom have been shifted from the scalar fields to massive selfdual vectors.

This is in fact an extremal case of the mechanism required for gauging higher dimen-

sional supergravities in odd dimensions [44, 3, 4, 6] whereby massless k − 1 forms in
a 2k + 1 dimensional space-time upon gauging turn into massive selfdual k-forms.

As discussed above, truncating the massive vector fields together with the matter

fermions, the theory reduces to the OSp(16|2,R) theory of [11] and reproduces its
(16, 0) supersymmetric ground state.

It will be most interesting to study the boundary theories associated with the

gauged supergravities. The background isometries given in table 3 determine the su-

perconformal symmetries of the theories on the AdS3 boundary. The chiral algebras

are obtained by hamiltonian reduction of the current algebras based on the AdS3
supergroups GL and GR, respectively (see [45] for a discussion and a translation

table). For instance, the boundary theory of the superextended Chern-Simons theo-

ries [11] is described by a super-Liouville action with SO(n) extended superconformal

symmetry [46, 47]. The maximal gauged supergravities (3.9) then introduce addi-

tional scalar and massive vector degrees of freedom, respectively, which propagate in

the bulk.

7. Outlook: a higher dimensional ancestor?

As already pointed out in the introduction there appears to be no way to obtain

the gauged models constructed in this paper by means of a conventional Kaluza

Klein compactification, because the latter would give rise to a standard Yang-Mills-

type lagrangian with a kinetic term for the vector fields, instead of the CS term

that was required here. Moreover, D = 11 supergravity does not admit maximally

supersymmetric groundstates of the type AdS3 ×M8 (see e.g. [48]), and even if it

did, there simply are no 8-manifoldsM8 whose isometry groups would coincide with

the gauge groups G0 that we have found (since there are no 7-manifolds with these

isometries either, the arguments a fortiori also excludes type-IIB theory as a possible

ancestor). Nonetheless all these gauged models constitute continuous deformations

of the original N = 16 theory of [22], which itself is derivable by a torus reduction

of D = 11 supergravity. The situation is therefore quite different from the one in

dimensions D ≥ 4 where the gauged theories do emerge via sphere compactifications
of D = 11 supergravity.7 This raises the question whether there exists a higher-

dimensional ancestor theory that would give rise to these theories, and if so, what it

might be. While we have no answer to this question at the moment, we would like

here to offer some hints.

7For the AdS4 × S7 compactification this was rigorously shown in [49], while for the AdS7 × S4
a complete proof was given more recently [50]. By contrast, the full consistency of the AdS5 × S5
truncation of IIB supergravity remains an open problem despite much supporting evidence, see [51]

and references therein.
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Obviously, a crucial step in our construction was the introduction “by hand” of

up to 248 vector fields Bµ
M subject to the transformation rules

δBµ
M = −2VMIJ εIψIµ + iΓIAȦ VMA εIγµχȦ .

As mentioned before, for the 36 vector fields associated with the 36 commuting

nilpotent directions in the E8(8) Lie algebra, this formula can be derived directly

from eleven dimensions [32]. Owing to the on-shell equivalence of vectors and scalars,

vector fields can be added with impunity in three dimensions, but in extrapolating

this step to eleven dimensions we seem to run into an obstacle, because extra vector

fields would normally introduce new and unwanted propagating degrees of freedom.

Nevertheless, the evidence for a generalized vielbein in eleven dimensions presented

in [52, 53, 32], and the fact that a consistent gauging in three dimensions based

on this extrapolation does exist, prompt us to conjecture that all 248 vector fields

introduced here have an eleven-dimensional origin. In [32] it was observed that the

physical bosonic degrees of freedom can be assembled into a 248-bein, which is just

the lift of the E8(8) matrix V to eleven dimensions. Assuming that there are indeed
248 vector fields, all bosonic fields would thus naturally fit into a (3+248)-bein(

eµ
α Bµ

MVMA

0 VMA

)
,

which would also incorporate the three-form degrees of freedom and would replace

the original elfbein of D = 11 supergravity(
eµ
α Bµ

mem
a

0 em
a

)
,

The latter is just an element of the coset space GL(11,R)/ SO(1, 10) in a special

gauge where the tangent space symmetry is broken to SO(1, 2)×SO(8). However, an
analogous interpretation of the above (3+248)-bein remains to be found. Amongst

other things, it would require replacing the action of the global E8(8) on the 248-

bein VMA by some new type of general coordinate transformations, in the same way

as GL(11) is replaced by diffeomorphisms in the vielbein description of Einstein’s

theory [32]. The gauge groups found in the compactification to three dimensions

would then emerge as “isometry groups” in a suitable sense. We also note that

for the tangent space group we have the embedding SO(1, 2) × SO(16) ⊂ OSp(32),
but there is no simple group generalizing GL(11) that would contain GL(3)× E8(8)
and yield the right number of (bosonic) physical degrees of freedom upon division

by OSp(32) (see, however, [54] for an alternative ansatz based on the embedding

OSp(32) ⊂ OSp(64|1)).
The challenge is therefore to find a reformulation of D = 11 supergravity in

terms of the above (3+248)-bein and an action, which must still describe no more
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than 128 massless bosonic physical degrees of freedom, despite the presence of new

field components in eleven dimensions. The only way to achieve this appears to

be via a CS-like action in eleven dimensions that would encompass all degrees of

freedom, and thus unify the Einstein-Hilbert and three-form actions of the original

theory.8 In making these speculations we are encouraged by the fact that, at least

in three dimensions, the dreibein eµ
α, the gravitinos ψIµ and the vector fields are all

governed by CS-type actions.

A. E8(8) conventions

The E8(8) generators t
A are split into 120 compact ones XIJ ≡ −XJI and 128

noncompact ones Y A, with SO(16) vector indices I, J, . . . ∈ 16 , spinor indices
A,B, . . . ∈ 128, and the collective labels A,B, . . . = ([IJ ], A), . . .. The conjugate
SO(16) spinors are labeled by dotted indices Ȧ, Ḃ, . . . In this SO(16) basis the totally

antisymmetric E8(8) structure constants f
ABC possess the non-vanishing components

f IJ,KL,MN = −8 δ I[K δL]JMN , f IJ,A,B = −1
2
ΓIJAB . (A.1)

E8(8) indices are raised and lowered by means of the Cartan-Killing metric

ηAB =
1

60
Tr tAtB = − 1

60
fACDf

BCD , (A.2)

with components ηAB = δAB and ηIJ KL = −2δIJKL. When summing over antisym-
metrized index pairs [IJ ], an extra factor of 1/2 is always understood. Explicitly,

the commutators are

[XIJ , XKL] = 4 δ I[KXL]J ,

[XIJ , Y A] = −1
2
ΓIJABY

B ,

[Y A, Y B] =
1

4
ΓIJABX

IJ . (A.3)

The equivalence of the fundamental and the adjoint representations of E8(8) plays

an important role in our considerations; it is expressed by the relation

V−1tM V = VMA t
A ⇐⇒ VMA =

1

60
Tr (tM V tA V−1) . (A.4)

Further formulas concerning the E8(8) Lie algebra, which will be used in this paper

can be found in [34, 32].

Let us finally point out that in the main text we use collective labelsA,B, . . . and
M,N , . . . for theE8(8) matrix VMA defined in (A.4), to distinguish the transformation
of these indices under the left and right action of E8(8) and SO(16), respectively,

according to (2.1). Likewise, ΘMN is an E8(8) tensor whereas TA|B transforms under
the local SO(16), cf. (3.21).
8We are aware that the idea of reformulating D = 11 supergravity as a CS theory is not entirely

new. However, the present ansatz is evidently very different from previous attempts in this direction.
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