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Gravitational self-force and gauge transformations
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We explore how the gravitational self-force~or ‘‘radiation reaction’’ force!, acting on a pointlike test particle
in curved spacetime, is modified in a gauge transformation. We derive the general transformation law, describ-
ing the change in the self-force in terms of the infinitesimal displacement vector associated with the gauge
transformation. Based on this transformation law, we extend the regularization prescription by Minoet al. and
Quinn and Wald~originally formulated within the harmonic gauge! to an arbitrary gauge. Then we extend the
method of mode-sum regularization~which provides a practical means for calculating the regularized self-force
and was recently applied to the harmonic-gauge gravitational self-force! to an arbitrary gauge. We find that the
regularization parameters involved in this method are gauge-independent. We also explore the gauge transfor-
mation of the self-force from the harmonic gauge to the Regge-Wheeler gauge and to the radiation gauge,
focusing attention on the regularity of these gauge transformations. We conclude that the transformation of the
self-force to the Regge-Wheeler gauge in Schwarzschild spacetime is regular for radial orbits and irregular
otherwise, whereas the transformation to the radiation gauge is irregular for all orbits.
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I. INTRODUCTION

Recent works by Mino, Sasaki, and Tanaka@1# and by
Quinn and Wald@2# ~MSTQW! established a formal frame
work for calculating the local gravitational self-force actin
on a pointlike particle in curved spacetime. In these work
particle of small massm was considered, whose gravitation
field may be treated as a small perturbation to the~vacuum!
background metric. Such a finite-mass particle does not
low a geodesic of the background geometry, as its interac
with its own gravitational field gives rise to the exertion of
‘‘self-force.’’ In the above works, a general formal expre
sion was obtained for theO(m) self-force correction to the
geodesic equation of motion.

From the astrophysical point of view, the pointlike pa
ticle model and the self-force phenomenon may be ap
cable to binary systems with an extreme mass ratio. Of
ticular relevance are binary systems composed of a so
mass compact object orbiting a supermassive black hole~of
the kind now believed to reside in the cores of many gal
ies!. Such systems are expected to serve as main target
the proposed space-based gravitational wave detector L
~the Laser Interferometer Space Antenna!, specializing in the
low frequency range below 1 Hz@3#. Knowing the local
self-force would be necessary, in general, for describing
orbital evolution in such systems, and, eventually, for ch
acterizing the consequent waveform of the gravitational
diation emitted.

When considering a model of a pointlike particle, o
unavoidably encounters divergent quantities: the pertur
metric diverges at the location of the particle, and the ‘‘ba
self-force associated with the metric perturbation turns
indefinite. One then has to deal with the fundamental issu
regularization; namely, extracting the correct, physical se
force from the~indefinite! expression for the bare self-force
0556-2821/2001/64~12!/124003~13!/$20.00 64 1240
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The combined works by MSTQW present three differe
physically motivated methods of regularization, all yieldin
the same formal expression for the physical self-forceFself

a .
This expression can be written in the schematic form1

Fself
a 5Fbare

a 2F inst
a . ~1!

HereFbare
a is the ‘‘bare’’ force, derived by applying a certai

differential operator@see Eq.~21! below# to the full metric
perturbation produced by the particle, andF inst

a is the singular
piece to be removed. According to MSTQW analyses, t
singular piece is to be constructed from the local, ‘‘instan
neous’’ part of the metric perturbation in the harmonic gau
i.e., the part directly propagated along the light cone. T
finite differenceFbare

a 2F inst
a represents the effect of the ‘‘tail’

part of the particle’s gravitational perturbation—the pa
scattered off spacetime curvature before interacting b
with the particle.@The result by MSTQW is formulated in
terms of the retarded Green’s function. The bare force is t
expressed as an integral~of a certain combination of Green’
function derivatives! along the entire worldline of the par
ticle, while the instantaneous partF inst

a arises from integra-
tion along an infinitesimal, local piece of the worldline, th
contains the momentary particle’s location.#

The first direct implementation of MSTQW’s prescriptio
for an actual calculation of the self-force was carried o

1Strictly speaking, both quantities on the right-hand side of Eq.~1!
are indefinite as they stand. In practice, one actually defines t
two quantities as vector fields in the neighborhood of the parti
Then, the self-forceFself

a is obtained by taking the~well defined and
finite! limit of the difference Fbare

a 2F inst
a as the particle is ap-

proached. For simplicity, we shall not use here this more st
formulation.
©2001 The American Physical Society03-1
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recently by Pfenning and Poission@4#, who considered the
motion of a particle in a weakly curved region of spacetim
~Pfenning and Poission also calculated the electromagn
and scalar self-forces acting on a particle endowed with e
tric or scalar charges, respectively!. To allow calculation of
the gravitational self-force in strong field as well, Barack@5#
recently introduced a method of multipole mode decompo
tion, based on the formal result by MSTQW. This method
‘‘mode sum regularization’’ was previously developed@6#
and tested@7# for the toy model of the scalar self-force. W
comment that a different mode-sum approach to the grav
tional self-force was proposed by Lousto@8#.

The gravitational self-force—unlike its electromagnetic
scalar counterparts—is a gauge-dependent entity. This s
ment means that the value of the self-force is changed
general, when the metric perturbation to which it cor
sponds is being subject to a gauge transformation~i.e., an
infinitesimal coordinate transformation!. If fact, the self-
force can be nullified along any segment of the worldline
a suitable choice of the gauge. Thus, any expression for
self-force would be meaningless, unless one is provided w
the information about the gauge to which this force cor
sponds. In MSTQW’s analysis, the construction of the s
force is formulatedwithin the harmonic gauge, and the re-
sulting expression~1! therefore describes theharmonic
gauge self-force. Likewise, all implementations o
MSTQW’s analysis considered so far@4,5# have been con-
fined to the framework of the harmonic gauge, and ha
yielded the harmonic gauge self-force.

It is of great importance to understand the gauge dep
dence of the self-force and to figure out how to construct i
gauges other than the harmonic: From the theoretical poin
view, characterization of the self-force’s gauge dependenc
essential for a better understanding of the self-force phen
enon; from the practical point of view, the harmonic gauge
not the most convenient one for actual calculations, as in
gauge, perturbation theory has not been developed so f
the extent it has in other gauges: In the Schwarzschild c
most analyses of metric perturbations have been formul
so far within the Regge-Wheeler gauge@9,10# ~see, however,
the recent mode decomposition of Schwarzschild’s me
perturbations in the harmonic gauge@5#!. In the Kerr case, so
far the only practical approach for calculating the~mode-
decomposed! metric perturbations is Chrzanowski’s metho
@12#, which is based on the radiation gauge.

The main purpose of this paper is to provide a gene
prescription for calculating the gravitational self-force
various gauges. To this end we shall first construct the g
eral transformation law describing the behavior of the s
force under a gauge transformation. Based on this trans
mation law, we re-express MSTQW’s result~1! in an
arbitrary gauge. We then re-formulate our method of mo
sum regularization for a general gauge.

The transformation rule describing the gauge transform
tion of the self-force guarantees that the self-force will
well-defined if ~i! it was regular in the original gauge, an
~ii ! the gauge transformation is sufficiently regular~namely,
the displacement vectorjm is sufficiently regular at the par
ticle’s location!. A priori there is no guarantee that the tran
12400
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formation from the harmonic gauge to another desired ga
will satisfy this regularity criterion. One of the objectives o
this paper is to explore the regularity of the self-force in tw
commonly used gauges: the Regge-Wheeler gauge and
radiation gauge. We find that the gauge transformations fr
the harmonic to these two gauges do not satisfy the requ
regularity criterion. As a consequence, our general trans
mation law does not yield a definite expression for the s
force in these two gauges~the exception is the situation of
radial orbit in a Schwarzschild background, in which ca
the Regge-Wheeler self-force is well defined!. We note that
this irregularity of the gauge transformation has been noti
independently by Mino@11#.

This paper is arranged as follows. We start in Sec. II
exploring the way the gravitational self-force transforms u
der a general gauge transformation. In Sec. III, which
somewhat out of the main course of our discussion, we c
sider the gauge transformation of linear gravitational forc
in general. We find that this transformation law conform
with that of the gravitational self-force. The general se
force transformation law is then used in Sec. IV to genera
MSTQW’s expression for the regularized self-force from t
harmonic gauge to an arbitrary gauge. We also re-formu
our method of mode sum regularization for a general gau
A few examples are provided in Sec. V, where we consi
the transformation of the self-force from the harmonic gau
to the Regge-Wheeler and to the radiation gauges. We
that in the Schwarzschild background the Regge-Whe
self-force is well-defined for a radial orbit, but is ill-define
for non-radial orbits. The situation with the radiation gau
is even worse: It is ill-defined even for a static test particle
flat space, and hence presumably also in all types of orb
Schwarzschild or Kerr spacetimes. Finally in Sec. VI w
summarize our main results and conclusions. We also dis
the indefiniteness of the self-force in the Regge-Wheeler
radiation gauges, and suggest preliminary ways to overco
this difficulty.

Throughout this paper we use metric signatu
(2111) and geometrized unitsG5c51.

II. GAUGE TRANSFORMATION OF THE SELF-FORCE

Our first goal in this section is to clarify the origin of th
gauge dependence of the gravitational self-force. Once
origin is well understood, the derivation of transformatio
law for the self-force becomes rather straightforward.

In discussing the origin of the gauge dependence, we
it useful to take the following point of view towards th
gravitational self-force kinematics: A point-like particl
moves on a background metricg0 ~e.g., the Schwarzschild
geometry!, and we wish to describe the particle’s orbit. Th
particle, having a massm, deforms the geometry, which i
now described by the new metric,g5g01h, whereh de-
notes the linearized metric perturbation produced by the p
ticle. We also know that generally the particle will not follo
a geodesic ofg0, due to its finite massm. Since no external
force is assumed to be present, one might attempt the sim
point of view, according to which the particle moves on
‘‘geodesic of the perturbed metricg.’’ This naive formula-
3-2
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GRAVITATIONAL SELF-FORCE AND GAUGE . . . PHYSICAL REVIEW D 64 124003
tion, however, is unsatisfactory~if not totally meaningless!,
because the perturbed metricg is singular at the particle’s
location. We therefore must apply a different framework
analyzing the particle’s motion: Assume that on the p
turbed spacetime the particle follows a worldlinexm(l),
wherel is an arbitrary monotonous parameter~we do not
assume thatl is a proper time ing, because the latter is no
defined, due to the divergence ofh). We now project the
worldline xm(l) onto the background metricg0 on the basis
of ‘‘same coordinate values.’’@We presume here that a choic
of a coordinate system has been made in advance in ea
the two spacetimes. Furthermore, we assume that the co
nates in the two spacetimes are ‘‘the same’’ if the small p
turbation is ignored—which is equivalent to assuming thah
is small, i.e., O(m).# The projection defines a worldlin
xm(l) on the background metricg0, and we denote byt the
proper time along this worldline~with respect to the metric
g0). This construction now provides us with a natural de
nition of the self-force: It is simply given by the acceleratio
associated with the worldlinexm(t) in g0, through Newton’s
second law:

Fself
a [mS d2xa

dt2
1Gmn

a ~x!
dxm

dt

dxn

dt D . ~2!

In this expression, the connectionG ~just like the proper time
t) is taken with respect to the background metricg0.

The origin of the gauge dependence of the self-force
now obvious: Sinceg andg0 represent different geometrie
in principle there is no unique way to project a point~or a
worldline! from g to g0. In the above formulation—as we
as throughout this work—we adopt the rule of ‘‘same co
dinate values.’’ Suppose now that an infinitesimal gau
transformation is carried out in the perturbed geometryg,
associated with an infinitesimal displacement vectorjm:

xm→x8m5xm2jm ~3!

@this transformation changesh ~and henceg), but of course
the metricg0 of the background spacetime is unaffecte#.
The particle’s worldline in the perturbed spacetime n
takes a new coordinate value,x8m(l)5xm(l)2jm. Project-
ing now the worldline ong0, one obtains a new orbi
x8m(t8), wheret8 is the proper time~in g0) of the new orbit
x8m(l). It should be emphasized that the two project
worldlines,xm(t) andx8m(t8), represent twophysically dis-
tinct trajectories ing0.2 In particular, the self-force will now
take a new value,

2Recall, however, that in the perturbed spacetimeg the two world-
lines xm(l) and x8m(l) are physically equivalent—they represe
the same physical trajectory in two different gauges. This differe
in the relation betweenxm and x8m in the two spacetimes simply
reflects the non-uniqueness of the projection fromg to g0 ~which, in
our ‘‘same coordinate value’’ formulation, is tied to the arbitrarine
in choosing the gauge forh).
12400
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Fself8a 5mS d2x8a

dt82
1Gmn

a ~x8!
dx8m

dt8

dx8n

dt8
D , ~4!

where Gmn
a (x8) denotes the value of the connection in t

new particle’s locationx8a.
We wish to calculate the quantitydFself

a , which is the
change inFself

a induced by the gauge transformation, to ord
m2 @recalling thatFself

a itself is of orderm2, andjm is O(m)#.
To this end, we first transform the differentiation variable
Eq. ~4! from t8 to t:

S d2x8a

dt82
1Gmn

a ~x8!
dx8m

dt8

dx8n

dt8
D

5S dt

dt8
D 2Fd2x8a

dt2
1Gmn

a ~x8!
dx8m

dt

dx8n

dt G
1

d2t

dt82
u8a, ~5!

where u8a[dx8a/dt. Recalling that the term in square
brackets is alreadyO(m), we may omit the factor (dt/t8)2

511O(m), so at the required order we have

Fself8a 5mS d2x8a

dt2
1Gmn

a ~x8!
dx8m

dt

dx8n

dt D 1bu8a,

whereb[m(d2t/dt82). Now, the forceFself8a must be normal
to the worldline~i.e., Fself8a ua850) by its definition in Eq.~4!.
We can therefore calculate it by projecting our last result
the direction normal to the worldline. Noting that the ter
bu8a contributes nothing to this projection, we obtain

Fself8a 5m~dl
a1u8aul8 !S d2x8l

dt2
1Gmn

l ~x8!
dx8m

dt

dx8n

dt D .

RewritingFself
a in the same form but with all primes omitted

and subtracting it fromFself8a @evaluated atx8(x)#, we find at
orderm2

dFself
a 5m~dl

a1uaul!~q8l2ql!,

where

q8l[
d2x8l

dt2
1Gmn

l ~x8!
dx8m

dt

dx8n

dt

and ql is the same but with all primes omitted.@The term
proportional tou8aul82uaul does not contribute at the re
evant order, because it is itself proportional tojm, andql and
q8l are bothO(m).# All we now need is to calculateq8l

2ql to leading order injm @expandingGmn
l (x8) aboutxm to

leading order injm#. This is a standard calculation~it is often
done when constructing the Jacobi equation for geodesic
viation!, and one finds

e

3-3
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LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D64 124003
q8l2ql52~ j̈l1Rman
l umjaun!,

where an overdot denotes a covariant differentiation w
respect tot andRl

man is the Riemann tensor associated w
the background metric.3 Now, the termuaul in the above
projection operator yields vanishing contribution when a
plied to the term including the Riemann tensor, due to
antisymmetry of the latter. Therefore, the final result is

dFself
a 52m@~gal1uaul!j̈l1Ra

mlnumjlun#. ~6!

~Since the calculation is carried out here at orderm2 only, in
the last expression we may replaceg by g0.!

The important message that arises from our discussio
far, is that the gravitational self-force is a gauge-depend
notion. SpecifyingFself

a (t) by itself tells us almost nothing
about the physical self-force. In order for the information
the self-force to have physical meaning, one must acc
pany it by the information on the gauge in whichFself

a was
derived. Putting it in other words:The meaningful descrip
tion of the gravitational self-force must include both Fself

a and
the metric perturbation hab . ~Obviously, hab contains the
full information about the gauge.! This is closely related to a
more general feature of general-relativistic kinematics~in the
non-perturbative framework!: Specifying the coordinate
value of a worldlinexm(t) tells one almost nothing about th
physical nature of this trajectory, unless one is also given
metric gab associated with the coordinatesxm.

A remark should be made here concerning the regula
of the gravitational self-force in various gauges. The co
struction by MSTQW yields a regular, well-defined, se
force in the harmonic gauge. Therefore, in a given gaugeG,
the self-force will be well defined if and only ifdFself

a is well
defined. Obviously, if the gauge transformation from the h
monic gauge toG is defined through a perfectly regular ve
tor field jl, the force in theG gauge will be well defined. In
most commonly used gauges, however, the vector fieldjl

associated with the transformation from the harmonic ga
to theG-gauge may inherit some of the irregularity that t
harmonic gauge perturbation itself possesses at the parti
location ~to an extent that may depend on the gaugeG and
on the physical situation!. In Sec. V this situation will be
demonstrated for the RW gauge and for the radiation gau

A priori it is not completely obvious what degree of reg
larity must be imposed onjl in order for the self force to be
regarded as ‘‘regular.’’ Equation~6! suggests a natural crite
rion for regularity: One should demand thatjl will be well
defined~i.e. continuous! on the particle’s worldline, and, fur
thermore, that along the worldlinejl will be a C2 function
of t. Note, however, that there is some arbitrariness
choosing the regularity criterion. For example, one mig
impose a stronger regularity criterion, which requiresjl to
be aC2 function of xm ~such that the change in the conne
tion due to the gauge transformation will be well define!;

3We use here the conventions of Ref.@13# for the Riemann tensor
Notice the different conventions used by Minoet al. in @1#.
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but we do not see much justification for such a strong
mand. On the other hand, one may ease the above regu
criterion by extending the standard MSTQW regularizati
procedure and adding to it the element of averaging the s
force ~at a given moment! over all spatial directions. With
this extended procedure of regularization, one may relax
demand for continuity ofjl at the worldline, replacing it by
the weaker requirement that at the particle’s locationjl will
have a continuous limit along each spatial geodesic inters
ing the worldline, and that this directional limit will be inte
grable over the solid angle. We further discuss this possi
ity at the end of the paper.

For concreteness, throughout the rest of this paper
shall adopt the criterion which naturally follows from Eq
~6!—namely, thatjl be continuous on the particle’s world
line. The second half of this criterion—the smooth depe
dence ont—will automatically follow, provided that the
background metric~and hence also the particle’s geodesic! is
sufficiently smooth, which we assume here.4

III. GENERAL GRAVITATIONAL FORCES AND THEIR
GAUGE TRANSFORMATION

The above result~6! provides the full prescription for
gauge-transforming the gravitational self-force. It will be i
structive, however, to address this issue of gauge transfor
tion from yet another point of view, by introducing the no
tion of a ~linearized! gravitational force and studying how
this force transforms in a general gauge transformation.

Consider again a spacetime described by a metricg5g0
1h, whereg0 is a given background metric andh denotes a
linearized metric perturbation. We donot assume in this sec
tion that h is a perturbation produced by a point particl
rather,h is assumed to be a prescribed weak gravitatio
perturbation ~it may represent, for example, an incide
gravitational wave!. Suppose that a test particle with a ma
m is moving freely in the perturbed spacetime. Obvious
this particle will move along a geodesic ofg ~we neglect the
self-force throughout this section5!. Namely, we shall have
in a given coordinate systemxa,

d2xa

dt82
1Gmn8adxm

dt8

dxn

dt8
50, ~7!

where xa(t8) denotes the particle’s trajectory in the pe
turbed spacetime,t8 is an affine parameter~with respect to
g) along that trajectory, andGmn8a are the connection coeffi
cients associated with the metricg. However, we now wish
to take the point of view according to which the partic
traces a trajectory on the background metricg0. This trajec-

4We exclude here the situation in which the gauge condition
fining theG-gauge explicitly depends onxm or t, and this explicit
dependence artificially introduces non-smoothness tojl(t). In such
spurious situations we must explicitly demand thatjl(t) be C2.

5Throughout this section we carry out the calculation to first or
in the prescribed metric perturbationh, and to leading order in m
@e.g., orderm0 in Eq. ~7! below#, so the self-force is not included
3-4
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tory will deviate from a geodesic of the background met
g0, and we shall interpret this deviation as representing
external ‘‘gravitational force’’Fgrav

a , exerted on the particle
by the perturbationhab . This ~fictitious! gravitational force
is naturally defined as

Fgrav
a [mẍa5mS d2xa

dt2
1Gmn

a dxm

dt

dxn

dt D , ~8!

wheret is an affine parameter in the background metricg0,
an overdot denotes covariant differentiation~in g0) with re-
spect tot, andGab

m are the connection coefficients associa
with the metricg0. We wish to calculateFgrav

a to the first
order inh ~and to the leading order inm).

A remark should be made here concerning the rela
between the gravitational self-force and the fictitious exter
gravitational force considered here. Obviously, the two
tions are closely related, as both are defined through a m
ping of a worldline from the physical spacetimeg to a back-
ground metricg0. Both forces are proportional tom and to
the metric perturbationh ~though in the self-force case on
assumes thath is the metric perturbation produced by th
particle itself!. One may therefore be tempted to regard
self-force as a special case of the more general, linear
gravitational force defined here. This is not quite the ca
however. The gravitational force considered here is, after
a fictitious force; that is, the particle actually follows a ge
desic of the true physical metricg. This cannot be said abou
the orbit of a particle moving under the influence of its ow
gravitational self-force: Since the self perturbationh is sin-
gular at the particle’s location, the statement that the part
follows a geodesic ofg5g01h is physically meaningless.6

For this reason, we must view the gravitational self force
a genuine, non-fictitious, force~though a delicate one, a
expressed by its being gauge dependent!.

Proceeding with the calculation ofFgrav
a , we first trans-

form the differentiation variable in Eq.~7! from t8 to t
@mathematically this operation is the same one applied in
previous section, Eq.~5!, though here it has a somewh
different meaning#. We find

d2xa

dt 2
1Gmn8adxm

dt

dxn

dt
1S dt8

dt D 2 d2t

dt82

dxa

dt
50. ~9!

DenotingDGmn
a [Gmn8a2Gmn

a andua[dxa/dt, and substitut-
ing Eq. ~9! in Eq. ~8! ~keeping only terms linear inh), we
obtain

Fgrav
a 52mDGmn

a umun2bua. ~10!

6One may take the point of view that the orbit of a particle und
its gravitational self-force is a geodesic in a spacetime with a me
g01htail , wherehtail denotes the tail part of the metric perturbatio
This is, however, a fictitious geodesic, because the actual metr
g01h, not g01htail . ~Recall also that in generalhtail fails to be a
vacuum solution of the linearized Einstein equations.!
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We now get rid of the termbua by projectingFgrav
a on the

subspace normal toua, in the same way we treateddFself
a

above~recalling, again, that by definitionFgrav
a is normal to

ua). This yields

Fgrav
a 52m~dl

a1uaul!DGmn
l umun. ~11!

ExpressingDG in terms ofh, we finally find

Fgrav
a 52

1

2
m~gal1uaul!~hlm;n1hln;m2hmn;l!umun.

~12!

This expression~like the similar expressions below! is valid
to linear order in the perturbationh, and on its right-hand
side we may replacegal by g0

al . It may also be useful to
express Eq.~12! in terms of the trace-reversed metric pertu
bation h̄ab[hab2 1

2 gabh ~where h[gabhab). One easily
obtains

Fgrav
a 5mkabgdh̄bg;d , ~13!

wherekabgd is a tensor given by

kabgd5
1

2
gadubug2gabugud2

1

2
uaubugud1

1

4
uagbgud

1
1

4
gadgbg. ~14!

Next we investigate how this gravitational force is mod
fied by a general gauge transformation~3!. The metric per-
turbationh transforms according to

hab→hab8 5hab1dhab ,

where

dhab5ja;b1jb;a . ~15!

From Eq.~12!, the change inh will induce a corresponding
change in the gravitational forceFgrav

a , given by

dFgrav
a 52

1

2
m~gal1uaul!~dhlm;n1dhln;m2dhmn;l!

3umun. ~16!

Do the self-forceFself
a and the linearized gravitationa

force Fgrav
a transform in the same manner? Substituting E

~15! for dhab in Eq. ~16! and using the anti-commutatio
relationjm;ln2jm;nl5jrRr

mln , one obtains

dFgrav
a 52m~gal1uaul!~jl;mn1jrRr

mln!umun

52m@~gal1uaul!j̈l1Ra
mlnumjlun#. ~17!

Comparing this expression to Eq.~6!, we find that the two
forces admit the same transformation law:

dFgrav
a 5dFself

a . ~18!
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This result is not surprising, because the two types of for
share a common kinematic feature: They are both c
structed through a projection of a worldline from a physic
metricg to a background metricg0, and therefore they trans
form in the same manner.

IV. REGULARIZING THE GRAVITATIONAL SELF-FORCE
IN VARIOUS GAUGES

The method developed by MSTQW for regularizing t
gravitational self-force is formulated within the framewo
of the harmonic gauge. This means that in Eq.~1! above, the
two quantities on the right-hand side,Fbare

a andF inst
a are to be

evaluated in the harmonic gauge—and the outcome is
self-force in the harmonic gauge. We therefore rewrite this
equation explicitly as

Fself
(H)5Fbare

(H) 2F inst
(H) , ~19!

where the parenthetical index ‘‘H’’ denotes the harmon
gauge~for brevity we omit the tensorial indexa here and in
the equations below!.

Assume now that a gauge transformation is made, fr
the harmonic gauge to a new gauge which we denote s
matically by ‘‘G.’’ According to the discussion in Sec. II, th
self-force in the new gauge will be given by

Fself
(G) 5Fself

(H) 1dFself
(H→ G)5@dFself

(H→ G)1Fbare
(H) #2F inst

(H) ,

wheredFself
(H→ G) is the expression given in Eq.~6!, with jl

being the displacement vector that transforms from the h
monic gauge to the new gauge G. To evaluate the term
squared brackets, we first recall that the ‘‘bare force’’ is
lated to the trace-reversed metric perturbation through

Fbare
a 5mkabgdh̄bg;d ~20!

@see the second equality in Eq.~28! of Ref. @5##, which is
expressed in terms of the metric perturbation itself as

Fbare
a 52

1

2
m~gal1uaul!~hlm;n1hln;m2hmn;l!umun.

~21!

Noting further that Eqs.~16! and ~18! imply

dFself
a 52

1

2
m~gal1uaul!~dhlm;n1dhln;m2dhmn;l!umun,

~22!

we then obtain~usingh(H)1dh(H→G)5h(G))

Fbare
(H) 1dFself

(H→ G)5Fbare
(G) . ~23!

This result has a simple interpretation in terms of the not
of ‘‘gravitational force’’ discussed in the previous section:~i!
As was established there, the self-force and the gravitatio
force transform exactly in the same manner, and~ii ! the
‘‘bare force’’ is nothing but the gravitational force associat
12400
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with the full metric perturbationh ~produced by the particle!.
It then follows that the self-force and the bare force tra
form in the same manner.7

We conclude that in an arbitrary gauge G the regulariz
gravitational self-force is simply given by

Fself
(G)5Fbare

(G) 2F inst
(H) . ~24!

Namely, in an arbitrary gauge G, the singular piece to
subtracted from the bare force is always the instantane
piece expressedin the harmonic gauge, and not in the gauge
G, as one might naively expect.

Our last result is of special importance: The analysis
MSTQW tells us how to calculate the physical self-for
associated with the metric perturbation in the harmo
gauge. In particular, it tells us how to construct the ‘‘correc
instantaneous part of the bare force in this gauge. Our ab
discussion implies that even when calculating the self-fo
in a different gauge, the ‘‘correct’’ instantaneous part mu
still be calculated in the harmonic gauge.@The explicit con-
struction of the instantaneous part from the harmonic ga
Green’s function is described in Eq.~29! of Ref. @5##. This
harmonic-gauge-related instantaneous part is the one w
captures the ‘‘correct’’ divergent piece to be removed fro
the bare force in whatever gauge. Intuitively, this spec
significance of the harmonic gauge may be attributed to
inherently isotropic nature: The ‘‘correct’’ divergent piec
that should be removed from the bare force must be spat
isotropic~see, e.g., the analysis by Quinn and Wald@2#!, and
it is the harmonic gauge which admits this isotropic stru
ture; other gauge conditions may introduce an artificial d
tortion to the singular piece.

Mode-sum regularization in various gauges

In Ref. @5# we introduced a practical calculation schem
for the gravitational self-force, based on the regularizat
procedure by MSTQW, which employs a multipole mo
decomposition. This method of ‘‘mode sum regularizatio
has been formulated in Ref.@5# only within the harmonic
gauge. Let us now examine how the above discussion, c
cerning the construction of the regularized self-force in va
ous gauges, applies in the framework of the mode-s
scheme.

Within the mode sum scheme, the harmonic-gauge re
larized gravitational self-force is given by@5#

Fself
a(H)5(

l 50

`

~Fbare
a l (H)2AaL2Ba2Ca/L !2Da, ~25!

where the summation is over multipole modesl, and L[ l
11/2. In this expression,Fbare

a l (H) is the contribution to the

7It should be emphasized that the physical notion of ‘‘gravitatio
force’’ introduced in the previous section is not necessary for
derivation of Eq.~23!. Thus, starting from Eq.~6!, one can derive
Eq. ~22! directly as a mathematical identity@following the same
mathematical steps used above for constructing Eq.~17! from Eq.
~16!#, without any reference to the notion of ‘‘gravitational forces
3-6
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self-force fromhbg
l (H) , the l-mode of the metric perturbatio

in the harmonic gauge. This contribution is given by

Fbare
a l (H)5mkabgdh̄bg;d

l (H) , ~26!

whereh̄bg
l (H) is the trace-reversedhbg

l (H) andkabgd is the tensor
given in Eq.~14!. The vectorial quantitiesAa, Ba, Ca, and
Da appearing in Eq.~25! arel-independent. These quantitie
which we call ‘‘regularization parameters,’’ are construct
from thel-modes of the instantaneous partF inst

(H) , in a manner
described in Ref.@5#.

The prescription provided by Eq.~25! yields the ‘‘har-
monic gauge’’ self-force. It is now possible, however, to r
formulate this prescription in any other gauge ‘‘G,’’ using

Fself
a(G)5Fself

a(H)1dFself
a(H→ G) . ~27!

Rewriting Eq.~22! asdFself
a 5mkabgddh̄bg;d ~wheredh̄ de-

notes the trace-reverseddh), and decomposingdh̄ into
l-modes, we obtain

dFself
a(H→ G)5(

l 50

`

mkabgddh̄bg;d
l (H→ G) .

Substituting this and Eq.~25! into Eq. ~27!, we find

Fself
a(G)5(

l 50

`

@~Fbare
a l (H)1mkabgddh̄bg;d

l (H→ G)!

2AaL2Ba2Ca/L#2Da. ~28!

Using now Eq.~26!, we can re-express the term in parenth
ses as

mkabgdh̄bg;d
l (H) 1mkabgddh̄bg;d

l (H→ G)5mkabgdh̄bg;d
l (G) [Fbare

a l (G) ,

whereFbare
a l (G) denotesl-mode contribution to the ‘‘G-gauge

bare force,’’ namely, the contribution to the bare force fro
the model of the ~bare! metric perturbation in the G-gauge
through Eq.~20!. We thus obtain the simple expression f
the self-force in an arbitrary gauge ‘‘G,’’

Fself
a(G)5(

l 50

`

~Fbare
a l (G)2AaL2Ba2Ca/L !2Da. ~29!

We conclude that the regularization parametersAa, Ba,
Ca, andDa are independent of the gauge. This result ha
simple intuitive explanation: These parameters are de
mined by the mode decomposition of theinstantaneouspiece
of the metric perturbation, which—based on our abo
discussion—is always to be expressed in the harmo
gauge, regardless of the gauge chosen for calculating
self-force. Thus, the regularization parametersAa, Ba, Ca,
andDa are, in effect,gauge-independent.

It should be commented that the above discussion is v
as long asdFself

a(H→ G) ~and hence the self-force in the gau
‘‘G’’ ! admits a well defined finite value. As we demonstra
in the next section, in certain gauges the self-force turns
to be irregular or ill-defined. In such cases, the irregula
12400
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may enter Eq.~29! through the bare modesFbare
a l (G) and render

the sum overl non-convergent.

V. EXAMPLES

In this section we study the transformation of the se
force from the harmonic gauge to other, commonly us
gauges, in a few simple cases. In principle, this transform
tion is done by first solving Eq.~15! for the gauge displace
ment vectorjm, and then constructing the force differenc
dFself

a by using Eq.~6!. We shall primarily be concerned her
about the regularity of the self-force in the new gauge.
discussed in Sec. II, we shall regard the G-gauge self-fo
as regular if the vector fieldjm is continuous at the particle’s
location. If it is indeed continuous, then the self-force in t
new gauge is given in Eq.~6! ~the demand for aC2 depen-
dence ont is automatically satisfied, as discussed in Sec.!.
We begin by considering the transformation to the Reg
Wheeler~RW! gauge, for radial trajectories in the Schwarz
child spacetime. Then we examine the transformation to
RW gauge for a uniform circular orbit. Finally, we examin
the transformation to the~outgoing! radiation gauge, in a
simple flat-space example.

A. Regge-Wheeler gauge: Radial trajectories

We consider a particle of massm moving along a strictly
radial free-fall orbit on the background of a Schwarzsch
black hole with massM@m. ~Of course, the motion of the
particle will remain radial even under the effect of self-forc
by virtue of the symmetry of the problem.! In what follows
we use Schwarzschild coordinatest,r ,u,w and assume, with-
out loss of generality, that the radial trajectory lies along
polar axis, i.e., atu50.

Let hab
(H) and hab

(RW) denote the metric perturbation pro
duced by the above particle in the harmonic and RW gaug
respectively. The displacement vector fieldjm which trans-
forms hab

(H) to hab
(RW) satisfies the gauge transformation equ

tion

hab
(RW)5hab

(H)1ja;b1jb;a . ~30!

The symmetry of the physical setup motivates one to c
sider only axially symmetric even-parity metric perturbati
modes. Accordingly, we shall look for solutions to Eqs.~30!
which arew-independent and also havejw50.

For even-parity perturbation modes, the RW gauge con
tions take the simple algebraic form@9#

htu
(RW)5hru

(RW)5hang
(RW)50, ~31!

wherehang[(huu2sin22uhww)/2. Imposing these conditions
the gauge transformation equation~30! yields three coupled
differential equations for the three componentsj t , j r , and
ju :

j t,u1ju,t52htu
(H) , ~32a!

j r ,u1ju,r2~2/r !ju52hru
(H) , ~32b!
3-7
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sinu~sin21u ju! ,u52hang
(H) . ~32c!

Equation~32c! can be immediately integrated with respect
u ~with fixed t,r ), yielding

ju52sinuF E
0

u

sin21u8hang
(H)du81c1~r ,t !G , ~33!

wherec1 is an arbitrary function.~As we shall discuss be
low, hang

(H) vanishes sufficiently fast asu8→0, such that the
integral is well-defined at the lower limit.! Then, Eqs.~32a!
and ~32b! are immediately solvable, yielding

j t52E
0

u

~htu
(H)1ju,t!du81c2~r ,t !,

j r52E
0

u

@hru
(H)1ju,r2~2/r !ju#du81c3~r ,t !, ~34!

wherec2 andc3 are two other arbitrary functions.8

Now, in order to explore the behavior of the quant
dFself

a corresponding to the gauge transformation H→RW,
by means of Eq.~6!, one has to characterize the behavior
the vector fieldjm at the location of the particle. This re
quires one to first explore the behavior of the vario
H-gauge metric functions appearing in Eqs.~33! and~34! at
the particle’s location. This task is most easily accomplish
by considering the Hadamard form of the metric perturbat
in the neighborhood of the particle. For the trace-rever
metric perturbation in the harmonic gauge, this form w
given by Minoet al. @see Eq.~2.27! of Ref. @1#; alternatively,
see Eq.~45! of Ref. @2##:9

h̄ab
(H)54me21uaub1O~e0!, ~35!

where e is the spatial geodesic distance to the particl
worldline ~i.e., the proper length of the geodesic normal
the worldline which connects the latter to the evaluat
point!, and the terms included inO(e0) are assured to be a
least C1 functions of the coordinates ate50. The metric
perturbation itself is then given by

hab
(H)54me21~uaub1gab/2!1O~e0!. ~36!

Since the worldline is radial~namelyuu5uw50), it now
follows that the metric perturbation componentshtu

H , hru
(H) ,

andhang
(H) appearing in Eqs.~33! and ~34! all have vanishing

contributions from the singularO(e21) term, and are there
fore all regular~i.e., at leastC1) on the worldline. Conse-
quently, one can easily construct solutions forjm, which

8The arbitrary functionsc i represent a true freedom in the co
struction of the RW-gauge metric perturbations. This may be att
uted to the freedom of specifying the monopole and dipole mo
of the metric perturbation—see the discussion in Ref.@9#.

9To obtain Eq.~35! from Eq. ~2.27! of Ref. @1#, recall that at the

location of the particle we haveḡm
a5da

m andk51 ~using the no-
tation of @1#!.
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have regular, finite values at the particle’s location: Start
from Eq. ~33!, we first observe~e.g., by transforming to
Cartesian-like coordinates at the polar axis, and demand
axial symmetry as well asC1 asymptotic behavior atu50)
that hang

(H) falls off at u→0 faster thanu. As a consequence
the integral in Eq.~33!, too, falls off faster thanu. Thus,ju
is regular atu→0, and it vanishes there like}u. ~With the
choicec150, ju would vanish even faster thanu2.)

Consider next the two integrals in Eq.~34!. From the
above discussion it immediately follows that the two deriv
tives ju,t and ju,r vanish like}u ~at least!—like ju itself.
Sincehtu

H andhru
H are regular (C1) too, we find that the two

integrands in Eq.~34! are bounded atu50. ~In fact, by
transforming to Cartesian-like coordinates nearu50 one can
easily verify that htu

H and hru
H —and hence the two

integrands—vanish atu→0.! Consequently, the two inte
grals vanish atu→0. We find that along the particle’s world
line all components ofjm are regular, and satisfy

ju50, j t5c2~r ,t !, j r5c3~r ,t !,

wherec2(r ,t) and c3(r ,t) are freely specifiable functions
~In fact, this holds not only at the particle’s worldline, b
everywhere along the polar axis.! Furthermore, choosing
c25c350, we obtain a solution forjm which is not only
regular but is also vanishing along the particle’s worldlin
jm(t)50.

Since the above-constructed vectorjm is continuous at the
particle’s location, we obtain—through Eq.~6!—a regular
finite value for the desired quantitydFself

a . Thus,for strictly
radial trajectories in Schwarzschild spacetime, the gravi
tional self-force is regular in the RW gauge. Moreover, this
RW-gauge self-force can be made equal to the harmo
gauge self force, by exploiting the remaining freedom in t
RW gauge~manifested here by the three arbitrary functio
c123).

B. Regge-Wheeler gauge: Circular orbits

Let us now consider a particle which~in the lack of self-
force! moves on a circular geodesic atr 5r 0>6M around a
Schwarzschild black hole. Without loss of generality, w
shall assume an equatorial orbit~i.e.,u5p/2 anduu50) and
will consider the self-force at a point P located on the pa
cle’s orbit at t5w50. In this physical scenario, the metr
perturbation contains both even and odd parity modes.
RW gauge condition@9# then becomes a bit more compl
cated than the one specified in Eq.~31! for a purely even
perturbation~in general, the two algebraic conditionshtu

(RW)

5hru
(RW)50 are no longer valid, and are to be replaced

conditions involving derivatives of the metric perturbation!.
However, the two gauge conditions involving the angu
components of the metric perturbation maintain a simple
gebraic form, namely

huw
(RW)50, hang

(RW)50. ~37!

For our purpose, it will be sufficient to consider only the

-
s

3-8
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two conditions. When imposed on the gauge transforma
equation~30!, these conditions lead to a set of two coupl
equations forju andjw :

sinu~sin21uju! ,u2sin22ujw,w52hang
(H) . ~38a!

ju,w1sin2u~sin22ujw! ,u52huw
(H) , ~38b!

The source terms for these equations are evaluated, a
with the help of Eq.~36!: We find thathuw

(H) is regular at the
particle’s location, but the source for Eq.~38a! diverges there
as 2hang

(H)>ar0
2e21, wherea52mr0

22uw
252m(r 0 /M23)21

@15# and, as before,e denotes the spatial geodesic distance
the particle’s worldline. In what follows we analyze the b
havior of ju andjw at the immediate neighborhood of P,
leading order ine.

We first note that no derivatives with respect tor and t
appear in Eq.~38a! ~though the source term depends onr and
t throughe). Therefore, this equation can be solved for ea
r ,t separately. For our purpose—demonstrating the disco
nuity of the solution at P—it will be sufficient to consider th
solution at the two-dimensional plainr 5r 0 , t50, which is
simpler to analyze.

To bring Eqs.~38! to a convenient form, we introduce th
local Cartesian-like coordinates y[r 0 sinu sinw, z
[r0 cosu in the neighborhood of P. Note thatz5y50 at P,
and that~for r 5r 0 ,t50) at the leading order we havee
5@(12v2)21y21z2#1/2. Herev denotes the particle’s veloc
ity in the Lorentz frame of a static local observer,v
[(2gww /gtt)

1/2(dw/dt). One can easily obtain the explic
value ofv @15#:

v5~2gww/gtt!1/2~uw /ut!5~r 0 /M22!21/2,1.

Transforming in Eqs.~38! from (u,w) to (z,y) we obtain
two coupled equations forjz andjy , reading

~12z2/r 0
2!jz,z2~12y2/r 0

2!jy,y5a/e1•••, ~39a!

jz,y1jy,z22yz~r 0
22z2!21jy,y501•••,

~39b!

where the dots (•••) represent corrections to the source te
which are at leastC1 at P. As we are interested only in th
leading-order behavior of jm at P @where
(z/r 0)2,(y/r 0)2,(zy/r 0

2) all vanish#, we shall proceed by re
stricting attention to the leading-order form of Eqs.~39!:

jz,z2jy,y5a/e, ~40a!

jz,y1jy,z50. ~40b!

Equation~40b! allows us to express the vectorjm in terms of
a scalar potentialF, as10

10Defining EW [(Ey ,Ez)[(2jy ,jz), Eq. ~40b! reads¹3EW 50,

which allows one to defineEW 5¹F. ~Note, however, that since
there is a singularity aty5z50, F need not be single-valued—se
the discussion below.!
12400
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jz5F ,z , jy52F ,y . ~41!

With Eq. ~40a!, this potential is then found to satisfy Pois
son’s equation

F ,zz1F ,yy5a/e. ~42!

It is convenient to introduce polar coordinates in t
zy-plain, which we define throughz5r sinf, y5r cosf.
Transforming in Eq.~42! from z,y to r,f, and substituting
e5@(12v2)21y21z2#1/2, we obtain

r21~rF ,r! ,r1r22F ,ff5
a

r
~12v2!1/2~12v2 sin2f!21/2.

~43!

Next, we wish to expandF(r,f) into angular Fourier
modeseinf. Before doing this, however, there is a subtle
that must be discussed. The displacement vectorjm must be
a single-valued~SV! function of f. This means that both
F ,f and F ,r must be SV too. However, in principle th
generating potentialF need not be a SV function off.
Therefore, in the complete mode decomposition ofF one
may also include certain functions off which are not nec-
essarily SV. However, since thef-derivative of each such
multi-valued function must be SV, this function must belin-
ear in f ~such that the Fourier expansion ofF ,f will only
include SV Fourier modes!. Furthermore, since the
r-derivative must be SV too, this ‘‘linear mode’’ must b
independent ofr. The full decomposition thus takes the for

F~r,f!5cf1 (
n52`

`

einfFn~r!, ~44!

wherec is an arbitrary constant. Substituting this form in E
~43! ~recalling thatcf satisfies the homogeneous part of th
equation!, one obtains an ordinary equation for eachn-mode,
reading

r21~rFn,r! ,r2n2r22Fn5
a

r
f n , ~45!

where the coefficientsf n are given by the~elliptic! integrals

f n5
A12v2

2p E
0

2p e2 inf

A12v2 sin2f
df. ~46!

It can be easily verified thatf n vanishes for all oddn. For
evenn, however,f n is generally non-vanishing. In particula
for n50 the integrand in Eq.~46! is bounded from below by
unity, hencef 0.A12v2.0.

The general exact solution to Eq.~45! is easily con-
structed:

Fn5H b0r1a01b0 ln r for n50,

bnr1anr unu1bnr2unu for n5” 0,
~47!

wherean andbn are arbitrary constants, and
3-9
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bn5H a fn /~12n2! for even n,

0 for oddn.

We may now construct the modes ofjm by applying Eq.~41!
to each of the single modes. We then wish to figure out w
is the solution with the most regular behavior at the limitr
→0, which concerns us here. Clearly, any choice ofbn5” 0
will lead to a divergentFn and hence to a divergent vecto
jm. @Note that the norm of (jy ,jz) is the same as that of¹F,
and is hence bounded below byuF ,ru; and the contribution to
the latter from a nonvanishingbn would diverge like
}r2unu21.# Similarly, a nonvanishingc would yield a poten-
tial F whose~normalized! derivative in the tangential direc
tion, r21F ,f , diverges likecr21.11 The most regular solu
tion is thus one withbn50 for all n, as well asc50. This
solution takes the form

F~r,f!5a01rH~f!1O~r2!,

where

H~f!5~a1eif1a21e2 if!1 (
n52`

`

bneinf.

Returning fromF to jm, we find e.g., for the Cartesian
like componentjy ~ignoring higher-order contributions in
r):

jy52F ,y52r ,yH2rf ,yH ,f .

Substitutingr ,y5cosf andf ,y52r21 sinf, we find

jy52H cosf1H ,f sinf[jy~f!.

Clearly, in order forjy to be continuous atr→0 ~wheref is
indefinite!, it must be independent off. However, jy,f
5(H ,ff1H)sinf, and

H ,ff1H5 (
n52`

`

~12n2!bneinf5a (
n52`

`

f neinf.

This function of f does not vanish~identically! unless all
coefficients f n vanish; however, as was shown above,f 0
.0. We find thatjy(r→0) does depend onf ~the same can
be shown forjz). This means that the vectorjm is discon-
tinuousat P.12

11Divergent contributions from differentn-modes cannot cance
each other, because they have different dependence onf, as well as
different rates of divergence (r2unu21). Also, a divergence coming
from the linear mode cannot cancel a divergentn50 mode, even
though in both modesu¹Fu}r21, because the direction of¹F is
tangential for the linear mode and ‘‘radial’’ for then50 mode.

12The indefiniteness of the RW self-force could be intuitively u
derstood, by realizing that the RW gauge condition ‘‘distracts,’’
some amount, the presumed isotropic structure of the divergen
cal piece of the metric perturbation, by artificially signifying theu
direction.~This isotropic structure is best accounted for within t
harmonic gauge.!
12400
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As the gauge displacement vectorjm does not admit a
definite value at the particle’s location, Eq.~6! cannot be
used, as it stands, for constructing the self-force in the R
gauge. Following the discussion at the end of Sec. II,
arrive at the conclusion thatin the case of circular motion,
the ‘‘RW self-force’’ is ill defined~unless one further extend
the regularization procedure—e.g., by introducing an av
age over solid angle; see the discussion in Sec. II!.

We conclude this discussion with two remarks: Fir
though the discontinuity ofjm was explicitly demonstrated
here for circular orbits, this conclusion should also apply
generic non-radial, non-circular, orbits~for radial orbits,
however, it was demonstrated above thatjm is continuous!.

Second, the above construction shows that for a suita
choice of the free parameters~namelyc5bn50) the com-
ponent jy is boundedat P. The same holds forjz . This
implies thatju andjw are bounded~though discontinuous! at
the particle’s location. It still remains to be checked, ho
ever, whetherj t andj r are bounded or not.

C. Radiation gauge

Finally, we examine the transformation of the self-force
the so-called ‘‘radiation gauge.’’~We recall that, so far, the
mode decomposition of metric perturbations in Kerr spa
time has been formulated primarily within the radiatio
gauge@12#.! We shall consider here the simplest possib
case: a static particle in flat spacetime. As we shall sho
see, even in this trivial case, the gauge transformation fr
the harmonic to the radiation gauge is pathological, and
metric perturbation~and hence the self-force! is ill defined.

We shall specifically consider theoutgoing radiation
gauge~similar results are obtained when considering the
going radiation gauge!. We use standard flat-space spheric
coordinatest,r ,u,w, and assume that the static particle
located off the origin of the spherical coordinates, i.e.,
somer 5r 0.0. Also, without loss of generality, we locat
the particle at the polar axis,u50. The outgoing null vector
field takes the forml a5@1,1,0,0#. The metric perturbation in
the radiation gauge,hab

(R) , is defined by the requirement13

hab
(R)l b50. ~48!

Consider now thet-component of Eq.~48!, which reads

htt
(R)1htr

(R)50.

With the gauge transformation equationhab
(R)5hab

(H)1ja;b

1jb;a , this becomes

j t,r1j r ,t12j t,t52htt
(H)2htr

(H) . ~49!

o-

13In the case of a pure vacuum perturbation over a Kerr ba
ground, the additional conditionh(R)[gabhab

(R)50 can be imposed
in a consistent manner, as done by Chrzanowski in@12#. Here we
consider the perturbation in a region surrounding a point sou
and it is unclear to us whether the additional conditionh(R)50 will
be consistent with the gauge condition~48!. We shall therefore not
make any use of this extra condition here.
3-10
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Motivated by the staticity of the problem, we shall only co
sider t-independent solutions, soj r ,t and j t,t may be
dropped. Also, in the harmonic gauge we have

htt
(H)52m/e, htr

(H)50,

wheree denotes the spatial distance to the particle’s locat
~this may be easily obtained by transforming the well kno
Coulomb-like Cartesian solution to spherical coordinate!.
Equation~49! now becomes

j t,r522m/e. ~50!

At this point we introduce standard Cartesian coordina
t,x,y,z, such that the particle is located at the origin (x5y
5z50), and thez direction coincides with the radial direc
tion at the particle’s location~namely, x5r sinu cosw, y
5r sinu sinw, andz5r cosu2r0). At the leading order ine,
we may replace] r by the Cartesian derivative operator]z .
Equation~50! then becomes

j t,z>22m~z21r2!21/2, ~51!

where r2[x21y2. Equation~51! can now be easily inte
grated with respect toz ~with x,y held fixed!. We obtain

j t>22m logS z

r
1A11z2/r2D1R~x,y!, ~52!

whereR(x,y) is an arbitrary function. This is the most ge
eral (t-independent! solution forj t .

Consider next the asymptotic form ofj t as we go to the
limit x,y→0 with fixed z5” 0. One finds

j t~r→0!>H 12m ln~r/2z!1R~x,y!, z.0,

22m ln~r/2uzu!1R~x,y!, z,0.
~53!

By a suitable choice of the functionR(x,y) one may, at best
eliminate the divergence along one of the raysz,0 or z
.0 ~by choosingR.62m ln r, respectively!, but not along
both rays simultaneously. We thus arrive at the conclus
thatj t unavoidably diverges logarithmically~at least! on ap-
proaching the axisr50, along either thez,0 ray or thez
.0 ray ~or both!. Constructing now thetx and ty compo-
nents of the radiation-gauge metric perturbation, we fi
htx

(R)5j t,x}x/r2, and a similar expression forhty
(R) , as r

→0 ~at eitherz,0 or z.0). Namely, the metric perturba
tion inevitably diverges at least along half the axisr50.

It thus turns out that in the radiation gauge, the pertur
tion associated with a pointlike particle is represented b
string-like one-dimensional singularity. In particular, th
radiation-gauge metric perturbation cannot be well define
a complete neighborhood of the particle.~Compare with the
harmonic or RW gauges, where the singularity is confined
the particle’s location and the metric perturbation is w
defined everywhere in the particle’s neighborhood.! This
pathological behavior—manifested already in the elemen
case of a static particle in flat space—serves to demons
12400
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the pathological nature of the radiation gauge in the prese
of point sources. As the radiation gauge seems inapprop
for representing the metric perturbation in the particl
neighborhood, it becomes rather meaningless to conside
self-force acting on the particle in that gauge.

Finally we note that although the indefiniteness of t
radiation-reaction self-force was demonstrated here only
a static particle in flat space, the same indefiniteness sh
also occur generically for all types of orbits in Schwarzsch
or Kerr spacetimes.

VI. SUMMARY AND DISCUSSION

The main results of this manuscript are contained in E
~6!, ~24!, and ~29!. Equation~6! describes the gauge tran
formation of the gravitational self-force, given the gauge d
placement vectorjm . Equation ~24! describes, in a sche
matic manner, the extension of the MSTQW formulation f
the gravitational self-force to an arbitrary gauge ‘‘G’’: It im
plies that the ‘‘correct’’ singular piece to be removed fro
the bare force in the G-gauge@the one derived directly from
the G-gauge metric perturbation through Eq.~20!# is always
to be calculatedin the harmonic gauge, as described in the
original analysis by MSTQW. By applying these results
our mode-sum regularization method~which was previously
formulated only within the harmonic gauge@5#! we finally
obtained Eq.~29!, which describes a practical mode-su
prescription for construction of the gravitational self-force
any gauge ‘‘G’’ ~provided that the self-force has a regula
finite value in that gauge!. We stress again that, since th
gravitational self-force is a gauge-dependent notion, exp
sions like Eq.~24! or Eq. ~29! for the self-force will be
meaningful only when accompanied by the full informatio
about the gauge to which they correspond.~Alternatively,
one can specify the metric perturbationh(G) itself, which of
course contains the full information about the gauge.!

The implementation of Eq.~29! for calculating the
G-gauge self-force involves two distinct parts:~i! calculation
of the bare modes of the force in the G-gauge@through Eq.
~20!#; and ~ii ! derivation of the four vectorial regularizatio
parametersAa, Ba, Ca, andDa. Our discussion concerning
the gauge transformation of the self-force led us to concl
that the values of these regularization parameters do not
pend on the gauge in which one calculates the self fo
These parameters are always to be calculated in the harm
gauge~using the analytic technique described in Ref.@5#!.
This ‘‘gauge invariance’’ property of the regularization p
rameters is demonstrated by the recent analysis by Lo
@8,14#, who calculated~numerically! the values ofAa, Ba,
and Ca in the RW gauge, for a radial orbit on a Schwarz
child background. These numerical values appear to be
perfect agreement with the harmonic-gauge values der
analytically in Ref.@5# ~in the case studied so far, of th
self-force at a turning point of a radial geodesic!. Also, the
~zero! value obtained for the parameterDa in the harmonic
gauge@5# agrees with Lousto’s result forDa in the RW-
gauge~which was based on a proposed zeta-function re
larization procedure@8#!.

The prescription~29!, as well as Eq.~24!, is only appli-
3-11
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cable when the self-force admits a definite finite value in
G-gauge. Whether or not this is the case for a given ga
‘‘G,’’ can be decided with the help of Eq.~6!: The analysis
by MSTQW implies that the self-force will always have
regular finite value in the harmonic gauge~and it also tells us
how to derive this value!. Therefore, the G-gauge self-forc
would be well defined, in our approach, only if the transfo
mation from the harmonic gauge to the G-gauge wo
yield—through Eq.~6!—a regular finite value for the force
differencedFself

a . It is only in this case that we are able
use Eq.~29! for calculating the G-gauge self-force. Othe
wise ~namely, if dFself

a diverges or is indefinite!, Eq. ~29!
appears to be useless.

As an example, in Sec. V we explored the transformat
from the harmonic gauge to the Regge-Wheeler gauge.
found that the RW self-force is well defined as long
strictly radial trajectories are considered. For such trajec
ries, Eq.~29! then provides a useful prescription for compu
ing the RW self-force. However, this seems not to be the c
for more general orbits, as we demonstrated by consideri
circular orbit: Here, the transformation from the harmon
gauge yielded an indefinite value for the RW self-force. T
situation is even worse in the radiation gauge, wh
dFself

a(H→ R) is found to be not only discontinuous but als
unbounded, and presumably forall types of orbits.

How could one interpret a situation wheredFself
a diverges

~or is indefinite!? In some occasions, such a result may
attributed to a severe pathology of the gauge. This seem
be the case in the radiation gauge, as implied by the fact
in this gauge the metric perturbation diverges not only at
particle’s location, but also along an~ingoing or outgoing!
radial ray emerging from the particle~see Sec. V!. However,
the situation seems to be different in the RW gauge, in wh
the metric perturbation is well-defined in the neighborho
of the particle~though of course not at the particle itself!,
like in the harmonic gauge. In this case we have seen t
for nonradial orbits,dFself

a(H→ RW) ~and hence alsoFself
a(RW) it-

self! is ill defined. This originates from the fact that certa
components ofjm—e.g. ju or jw—admit a direction-
dependent limit~as demonstrated by the dependence of
jy on f; cf. Sec. V!.

This situation—a direction-dependent expression for
self-force in certain gauges—motivates one to conside
simple generalization of the standard MSTQW regularizat
procedure, by averaging over all spatial directions. Nam
one can evaluate the limit of the right-hand side of Eq.~24!
~or, similarly, the limit of the displacement vectorjm) along
fixed spatial null geodesics emanating from the particle,
then average over the solid angle~in the particle’s rest
frame!. This would clearly be a generalization of th
MSTQW procedure, because whenever the coincidence l
is well defined, the average over solid angle will be we
defined too, and will yield the same result. One still needs
investigate how this averaging over directions is to be imp
mented within the context of the mode-sum regularizatio

The above generalized regularization procedure will yi
a definite self-force in a wide class of gauges~though not in
all gauges; obviously one can construct a displacement
12400
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tor jm which does not even have a directional limit, in whic
case the generalized regularization procedure will fail
yield a definite self-force!. The analysis in Sec. V sugges
that for circular orbits the displacement vectorjm from the
harmonic to the RW gauge may have a well-defined dir
tional limit, and hence the RW self-force may be well d
fined within this generalized prescription. Recall, howev
that the above analysis does not completely guarantee
regularity of the~generalized! RW self-force, because so fa
we have only analyzed the tangential componentsjy andjz

~which yieldju andjw), but notj t andj r . Also, our analysis
was restricted to the surfacer 5r 0 , t50, i.e. to directional
limits through tangential directions.

There seems to be another procedure that would al
one to use the metric perturbations in e.g. the RW or rad
tion gauges for useful self-force calculations~without resort-
ing to the above generalized regularization procedure!. We
shall now briefly outline here a preliminary version of th
procedure.~We note that a similar approach has been p
posed by Mino@11#.! Suppose that the metric perturbatio
h(G) is known ~e.g., in the form of mode decomposition!,
where ‘‘G’’ refers to either the RW or radiation gauges. If w
knew how to converth(G) to the harmonic gauge, it would b
straightforward to construct the self-force from it, throug
Eqs. ~19! or ~25!. However, performing the transformatio
G→H requires one to solve a system of partial different
equations forjm, and unfortunately we do not know the ex
act solution of this system. Nevertheless, it appears poss
to construct an approximate, leading-order, solution of t
system, for both the RW and the radiation gauges. This
demonstrated in Sec. V~for both gauges! in a few simple
cases, and it appears likely that the leading-order solu
can be generalized to a generic orbit. Let us denote
leading-order solution byĵm. In principle one can then us
ĵm to transform the metric perturbations from the origin
gauge G to an ‘‘approximate harmonic’’ gauge, which w
denote Ĥ. Presumably, in the gauge Hˆ the self-force will be
well defined, since the metric perturbations in the harmo
and Ĥ gauges share the same leading-order asymptotic
havior. After decomposingĵm into l-modes, one can use th
mode-sum regularization method to calculate the Hˆ -gauge
self-force: Applying Eq.~23! for each of the singlel-modes,
with ‘‘H’’ and ‘‘G’’ replaced, correspondingly, by ‘‘G’’ and
‘‘Ĥ ,’’ we first get

Fbare
a l (Ĥ)5Fbare

a l (G)1dFself
a l (G→ Ĥ) ,

wheredFself
a l (G→ Ĥ) is to be obtained from Eq.~6! by replacing

jl by the l-mode of ĵm. Then, writing Eq. ~29! for the
Ĥ-gauge~i.e., with all ‘‘G’’ replaced by ‘‘Ĥ’’ ! and substitut-

ing the above expression forFbare
a l (Ĥ) , one obtains
3-12
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Fself
a(Ĥ)5(

l 50

`

@~Fbare
a l (G)1dFself

a l (G→ Ĥ)!2AaL2Ba2Ca/L#

2Da, ~54!

which provides a prescription for calculating the Hˆ -gauge
self-force through the modes of the bare force in the
gauge. We hope to further develop and implement t
method elsewhere.
-
.
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