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We explore how the gravitational self-foréer “radiation reaction” force, acting on a pointlike test particle
in curved spacetime, is modified in a gauge transformation. We derive the general transformation law, describ-
ing the change in the self-force in terms of the infinitesimal displacement vector associated with the gauge
transformation. Based on this transformation law, we extend the regularization prescription bgthainand
Quinn and Waldoriginally formulated within the harmonic gaug® an arbitrary gauge. Then we extend the
method of mode-sum regularizatiGwhich provides a practical means for calculating the regularized self-force
and was recently applied to the harmonic-gauge gravitational selfjfr@n arbitrary gauge. We find that the
regularization parameters involved in this method are gauge-independent. We also explore the gauge transfor-
mation of the self-force from the harmonic gauge to the Regge-Wheeler gauge and to the radiation gauge,
focusing attention on the regularity of these gauge transformations. We conclude that the transformation of the
self-force to the Regge-Wheeler gauge in Schwarzschild spacetime is regular for radial orbits and irregular
otherwise, whereas the transformation to the radiation gauge is irregular for all orbits.
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I. INTRODUCTION The combined works by MSTQW present three different
physically motivated methods of regularization, all yielding
Recent works by Mino, Sasaki, and Tandkd and by the same formal expression for the physical self-fdf¢g;.
Quinn and Wald 2] (MSTQW) established a formal frame- This expression can be written in the schematic form
work for calculating the local gravitational self-force acting
on a pointlike particle in curved spacetime. In these works, a self= Fbare™ Finst- @
particle of small masm was considered, whose gravitational
field may be treated as a small perturbation to@acuun)  HereF, . is the “bare” force, derived by applying a certain
background metric. Such a finite-mass particle does not foldifferential operatofsee Eq.(21) below] to the full metric
low a geodesic of the background geometry, as its interactioperturbation produced by the particle, &gl is the singular
with its own gravitational field gives rise to the exertion of a piece to be removed. According to MSTQW analyses, this
“self-force.” In the above works, a general formal expres- singular piece is to be constructed from the local, “instanta-
sion was obtained for th®(m) self-force correction to the neous” part of the metric perturbation in the harmonic gauge,
geodesic equation of motion. i.e., the part directly propagated along the light cone. The
From the astrophysical point of view, the pointlike par-finite differenceF . Firs: Fepresents the effect of the “tail”
ticle model and the self-force phenomenon may be applipart of the particle’s gravitational perturbation—the part
cable to binary systems with an extreme mass ratio. Of parscattered off spacetime curvature before interacting back
ticular relevance are binary systems composed of a solawith the particle.[The result by MSTQW is formulated in
mass compact object orbiting a supermassive black tedle terms of the retarded Green’s function. The bare force is then
the kind now believed to reside in the cores of many galaxexpressed as an integfalf a certain combination of Green’s
ies). Such systems are expected to serve as main targets ffunction derivatives along the entire worldline of the par-
the proposed space-based gravitational wave detector LISfgle, while the instantaneous péff., arises from integra-
(the Laser Interferometer Space Anteprspecializing in the  tion along an infinitesimal, local piece of the worldline, that
low frequency range below 1 HE3]. Knowing the local  contains the momentary particle’s locatipn.
self-force would be necessary, in general, for describing the The first direct implementation of MSTQW'’s prescription

orbital evolution in such systems, and, eventually, for charfor an actual calculation of the self-force was carried out
acterizing the consequent waveform of the gravitational ra-
diation emitted. e

When considering a model of a pointlike particle, one 1gyicty speaking, both quantities on the right-hand side of(Ex.
unavoidably encounters divergent quantities: the perturbegre indefinite as they stand. In practice, one actually defines these
metric diverges at the location of the particle, and the “bare”wwo guantities as vector fields in the neighborhood of the particle.
self-force associated with the metric perturbation turns oufrhen, the self-forc& 2, is obtained by taking thavell defined and
indefinite. One then has to deal with the fundamental issue dfnite) limit of the difference F{, . F{ as the particle is ap-
regularization namely, extracting the correct, physical self- proached. For simplicity, we shall not use here this more strict
force from the(indefinite) expression for the bare self-force. formulation.
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recently by Pfenning and Poissi¢4], who considered the formation from the harmonic gauge to another desired gauge
motion of a particle in a weakly curved region of spacetimewill satisfy this regularity criterion. One of the objectives of
(Pfenning and Poission also calculated the electromagnetitiis paper is to explore the regularity of the self-force in two
and scalar self-forces acting on a particle endowed with eleccommonly used gauges: the Regge-Wheeler gauge and the
tric or scalar charges, respectivelifo allow calculation of radiation gauge. We find that the gauge transformations from
the gravitational self-force in strong field as well, Barggk  the harmonic to these two gauges do not satisfy the required
recently introduced a method of multipole mode decomposif€gularity criterion. As a consequence, our general transfor-
tion, based on the formal result by MSTQW. This method ofmation law does not yield a definite expression for the self-
“mode sum regularization” was previously developgd]  force in these two gaugethe exception is the situation of a
and tested7] for the toy model of the scalar self-force. We radial orbit in a Schwarzschild background, in which case
comment that a different mode-sum approach to the gravitdth® Regge-Wheeler self-force is well define/e note that
tional self-force was proposed by Loug®). this irregularity of the gauge transformation has been noticed
The gravitational self-force—unlike its electromagnetic orindépendently by Ming11]. _
scalar counterparts—is a gauge-dependent entity. This state- T1iS paper is arranged as follows. We start in Sec. Il by
ment means that the value of the self-force is changed, if*Ploring the way the gravitational self-force transforms un-

general, when the metric perturbation to which it corre-der & general gauge transformation. In Sec. Ill, which is
sponds is being subject to a gauge transformatian, an somewhat out of the main course of our discussion, we con-

infinitesimal coordinate transformatipnlf fact, the self- Sider the gauge transformation of linear gravitational forces
force can be nullified along any segment of the worldline by'n general. We find t_hat. this transformation law conforms
a suitable choice of the gauge. Thus, any expression for th&ith that of the gravitational self-force. The general self-
self-force would be meaningless, unless one is provided witforce trar’lsformano_n law is then used in Sec. IV to generalize
the information about the gauge to which this force correMSTQW's expression for the regularized self-force from the
sponds. In MSTQW’s analysis, the construction of the self-harmonic gauge to an arbitrary gauge. We also re-formulate
force is formulatedwithin the harmonic gaugeand the re-  OUr method of mode sum.regullarlzanon for a general gauge.
sulting expression(1) therefore describes théarmonic A féw examples are provided in Sec. V, where we consider
gauge self-force. Likewise, all implementations of the transformation of the self-force from the harmonic gauge

MSTQW's analysis considered so fg4,5] have been con- !0 the_z Regge-Wheeler a_nd to the radiation gauges. We find
fined to the framework of the harmonic gauge, and havéhat in the Schwarzschild background the Regge-Wheeler
yielded the harmonic gauge self-force. self-force is weII-deflned fo_r a rgd|al _orb|t, but is |!I—def|ned

It is of great importance to understand the gauge deper{pr non-radial orp|t§. Thg situation with the 'radlatlon gauge
dence of the self-force and to figure out how to construct it in'S €Ven worse: Itis ill-defined even for a static test partlcle_ in
gauges other than the harmonic: From the theoretical point df2t SPace, and hence presumably also in all types of orbit in
view, characterization of the self-force’s gauge dependence i8chwarzschild or Kerr spacetimes. Finally in Sec. VI we

essential for a better understanding of the self-force phenonfUmmarize our main results and conclusions. We also discuss
enon; from the practical point of view, the harmonic gauge idhe indefiniteness of the self-force in the Regge-Wheeler and

not the most convenient one for actual calculations, as in thigadiation gauges, and suggest preliminary ways to overcome
gauge, perturbation theory has not been developed so far {8is difficulty. _ _ _

the extent it has in other gauges: In the Schwarzschild case, Throughout this paper we use metric signature
most analyses of metric perturbations have been formulate~ + + ) and geometrized unit6=c=1.

so far within the Regge-Wheeler gau@e10] (see, however,

the recent mgde decompogition of Schwarzschild’s metric || s AUGE TRANSFORMATION OF THE SELF-FORCE
perturbations in the harmonic gauds). In the Kerr case, so

far the only practical approach for calculating ttreode- Our first goal in this section is to clarify the origin of the
decomposedmetric perturbations is Chrzanowski's method gauge dependence of the gravitational self-force. Once this
[12], which is based on the radiation gauge. origin is well understood, the derivation of transformation

The main purpose of this paper is to provide a generalaw for the self-force becomes rather straightforward.
prescription for calculating the gravitational self-force in  In discussing the origin of the gauge dependence, we find
various gauges. To this end we shall first construct the gerit useful to take the following point of view towards the
eral transformation law describing the behavior of the self-gravitational self-force kinematics: A point-like particle
force under a gauge transformation. Based on this transfomoves on a background metrig, (e.g., the Schwarzschild
mation law, we re-express MSTQW'’s resull) in an  geometry, and we wish to describe the particle’s orbit. The
arbitrary gauge. We then re-formulate our method of modgoarticle, having a mass, deforms the geometry, which is
sum regularization for a general gauge. now described by the new metrig=gy+h, whereh de-

The transformation rule describing the gauge transformanotes the linearized metric perturbation produced by the par-
tion of the self-force guarantees that the self-force will beticle. We also know that generally the particle will not follow
well-defined if (i) it was regular in the original gauge, and a geodesic 0§y, due to its finite mass. Since no external
(if) the gauge transformation is sufficiently requiaamely, force is assumed to be present, one might attempt the simple
the displacement vecta* is sufficiently regular at the par- point of view, according to which the particle moves on a
ticle’s locatior). A priori there is no guarantee that the trans- “geodesic of the perturbed metrig.” This naive formula-
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tion, however, is unsatisfactoryf not totally meaningless d2x’ @ dx’# dx’
because the perturbed metgdcis singular at the particle’s c=m —,2+FZV(X’) - =~ 4
location. We therefore must apply a different framework for dr dr’ dr

analyzing the particle’s motion: Assume that on the per- o
turbed spacetime the particle follows a worldlixé(x), ~ WhereI'; (x") denotes the value of the connection in the
where\ is an arbitrary monotonous parametere do not New particle’s locationx’ .

assume thak is a proper time irg, because the latter is not ~ We wish to calculate the quantityF¢., which is the
defined, due to the divergence bj. We now project the change irF g, induced by the gauge transformation, to order
worldline x*(\) onto the background metrig, on the basis m? [recalling thatF %, itself is of orderm?, and&* is O(m)].

of “same coordinate values[We presume here that a choice To this end, we first transform the differentiation variable in
of a coordinate system has been made in advance in each &f. (4) from 7’ to 7:

the two spacetimes. Furthermore, we assume that the coordi-

nates in the two spacetimes are “the same” if the small per- d2x’ @ dx'# dx'”
turbation is ignored—which is equivalent to assuming that P, +I7,(x") 4 dr
is small, i.e.,O(m).] The projection defines a worldline T T

x#(\) on the background metrigy, and we denote by the [ 42y ra T At Y
. X A . dr |7 d°x dx'# dx
proper time along this worldlinéwith respect to the metric =|— 5 +I5,(x")
0o). This construction now provides us with a natural defi- dr dr dr dr
nition of the self-force: It is simply given by the acceleration 5
associated with the worldline“(7) in go, through Newton’s d°z u'e (5)
second law: dr2

where u'“=dx’“/dr. Recalling that the term in squared

2y o v
Fo=m d_XHw (X)di d_x ) (2)  brackets is alread®(m), we may omit the factordr/7')?
d-#  #"dr dr =1+0(m), so at the required order we have
In this expression, the connectibn(just like the proper time ra_ d?x’* T (x0) dx'# dx'” +pure
7) is taken with respect to the background megic self d2 wy dr dr '

The origin of the gauge dependence of the self-force is

now obvious: Sincg andg, represent different geometries, whereg=m(d?s/d'2). Now, the forcer (3 must be normal

in principle there is no unique way to project a poidt &  tg the worldline(i.e., F.&u’ = 0) by its definition in Eq(4).
worldline) from g to go. In the above formulation—as well \yg can therefore calculate it by projecting our last result on
as throughout this work—we adopt the rule of “same coor-the girection normal to the worldline. Noting that the term

dinate valugs."_ Suppqse now that an infinitesimal gaugegy’« contributes nothing to this projection, we obtain
transformation is carried out in the perturbed geomefry

associated with an infinitesimal displacement vegtar

ra @ ray ! dZX,)\ A ’ dx’'# dx"”
se=M( oy +u’%uy) 02 +1,,(x") i dr |-

a

Rewriting F¢¢ in the same form but with all primes omitted,
[this transformation changés(and henceg), but of course  and subtracting it fronf . [evaluated ak’(x)], we find at
the metricg, of the background spacetime is unaffedted orderm?
The particle’s worldline in the perturbed spacetime now
takes a new coordinate value,“(\)=x*(\)— &*. Project- SFL=m(88+uuy)(q’*—qg"),
ing now the worldline ong,, one obtains a new orbit
x"#(7"), wherer’ is the proper timein g,) of the new orbit  where
x"®(N\). It should be emphasized that the two projected
worldlines,x*(7) andx'#(7"), represent twghysically dis- d2x/™ dx'® dx'?
tinct trajectories ing,.? In particular, the self-force will now q* 5+, () dr dr
take a new value, dr

and g is the same but with all primes omittefThe term
proportional tou’ “u; —u“u, does not contribute at the rel-
lines x*(\) andx'#(\) are physically equivalent—they represent e\’/;’\;mt order, because it is itself prOport'o_naEtb andq” a'?fl

the same physical trajectory in two different gauges. This differencél’ ~ are bothO(m).] All we now n_eed)\ls to calculate

in the relation between* andx'* in the two spacetimes simply —d" to leading order ir¢* [expandingl', ,(x') aboutx* to
reflects the non-uniqueness of the projection figto g, (which, in  leading order iré*]. This is a standard calculatidit is often

our “same coordinate value” formulation, is tied to the arbitrarinessdone when constructing the Jacobi equation for geodesic de-
in choosing the gauge fdr). viation), and one finds

2Recall, however, that in the perturbed spacetintiee two world-
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g =gt =—(8+R., urgu?) but we do not see much justification for such a strong de-
v ' mand. On the other hand, one may ease the above regularity

where an overdot denotes a covariant differentiation withCriterion by extend?ng th(_a standard MSTQW regularization
respect tor andR" ,,, is the Riemann tensor associated with procedure ar_1d adding to it the element' of averaging th? self-
the background mﬂggri%.Now the termu“u, in the above fo_rce (at a given momentover all s_pat_lal directions. With
projection operator yields vanishing contribution when ap-thls extended prchdure Pf regulanzaﬂpn, one may rglax the
plied to the term including the Riemann tensor, due to thedemand for continuity of” at the worldline, replacing it by

antisymmetry of the latter. Therefore, the final result is the weaker requirement that at the part!cles Iocaﬁ_br_vwll
have a continuous limit along each spatial geodesic intersect-

ing the worldline, and that this directional limit will be inte-
grable over the solid angle. We further discuss this possibil-
ity at the end of the paper.
(Since the calculation is carried out here at Om|'ér0n|y, in For concreteness, throughout the rest of this paper we
the last expression we may replag®y go.) shall adopt the criterion which naturally follows from Eq.

The important message that arises from our discussion s@)—namely, thate* be continuous on the particle’s world-
far, is that the gravitational self-force is a gauge-dependenine. The second half of this criterion—the smooth depen-
notion. SpecifyingF¢,(7) by itself tells us almost nothing dence onr—will automatically follow, provided that the
about the physical self-force. In order for the information onbackground metri¢and hence also the particle’s geodgssc
the self-force to have physical meaning, one must accomsufficiently smooth, which we assume hére.
pany it by the information on the gauge in whi€ti,; was
derived. Putting it in other wordsthe meaningful descrip- IIl. GENERAL GRAVITATIONAL FORCES AND THEIR
tion of the gravitational self-force must include botfj.Fand GAUGE TRANSFORMATION
the metric perturbation J;. (Obviously, h,z contains the ) o
full information about the gaugeThis is closely relatedtoa ~ The above result6) provides the full prescription for
more general feature of general-relativistic kinemaiogshe ~ 9auge-transforming the gravitational self-force. It will be in-
non-perturbative framewoyk Specifying the coordinate Structive, however, to address th|s issue of gauge transforma-
value of a worldlinex“(7) tells one almost nothing about the tion from yet another point of view, by introducing the no-
physical nature of this trajectory, unless one is also given théion of a (linearized gravitational force and studying how
metric g,,; associated with the coordinates. this force transforms in a general gauge transformation.

A remark should be made here concerning the regularity Consider again a spacetime described by a metrigy
of the gravitational self-force in various gauges. The con-th, whereg, is a given background metric afiddenotes a
struction by MSTQW yields a regular, well-defined, self- linearized metric perturbation. We dmt assume in this sec-

force in the harmonic gauge. Therefore, in a given gaBge tion thath is a perturbation produced by a point particle;

the self-force will be well defined if and only BF%is well ~ rather,h is assumed to be a prescribed weak gravitational

defined. Obviously, if the gauge transformation from the harPerturbation (it may represent, for example, an incident
monic gauge td5 is defined through a perfectly regular vec- gravitational wave Suppose that a test particle with a mass
tor field £, the force in theG gauge will be well defined. In ™ IS moving freely in the perturbed spacetime. Obviously,
most commonly used gauges, however, the vector #&ld this particle will move aliong a geodesm oflwe neglect the
associated with the transformation from the harmonic gaugg€!f-force throughout this sectign Namely, we shall have,
to the G-gauge may inherit some of the irregularity that the!n & given coordinate systemt',
harmonic gauge perturbation itself possesses at the particle’s )

location (to an extent that may depend on the ga@®eand d°x® ,adﬁ ﬁ
on the physical situation In Sec. V this situation will be dr'2  “'ds dr
demonstrated for the RW gauge and for the radiation gauge.

A priori it is not completely obvious what degree of regu- where x“(7') denotes the particle’s trajectory in the per-
larity must be imposed o&" in order for the self force to be tyrped spacetimez’ is an affine parametdwith respect to
regarded as “regular.” Equatiof®) suggests a natural crite- g) along that trajectory, anil,% are the connection coeffi-
rion for regularity: One should demand thglt will be well  Gjents associated with the metgc However, we now wish
defined(i.e. continuouson the particle’s worldline, and, fur- g take the point of view according to which the particle

thermore, that along the worldliné\.will be a C? function  traces a trajectory on the background metyic This trajec-
of 7. Note, however, that there is some arbitrariness in

choosing the regularity criterion. For example, one might

IMpose a stronger regularity criterion, which requiggsto “We exclude here the situation in which the gauge condition de-

be aC* function ofx* (such that the change in the connec- fining the G-gauge explicitly depends ox* or 7, and this explicit

tion due to the gauge transformation will be well defined gependence artificially introduces non-smoothnesd ¢a). In such

spurious situations we must explicitly demand ti5¢r) be C?.
SThroughout this section we carry out the calculation to first order

3We use here the conventions of Rf3] for the Riemann tensor. in the prescribed metric perturbatitn and to leading order in m

Notice the different conventions used by Mirbal. in [1]. [e.g., ordem® in Eq. (7) below], so the self-force is not included.

SF&= —m(g*™ +uuM)§, + R, U EM "] (6)

=0, @)
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tory will deviate from a geodesic of the background metricWe now get rid of the ternBu® by projectingFg,,, on the

go, and we shall interpret this deviation as representing aBubspace normal ta“, in the same way we treatedF <,
external “gravitational forceFg.,,, exerted on the particle above(recalling, again, that by definitioR¢,,, is normal to

by the perturbatiorh, ;. This (fictitious) gravitational force u®). This yields o
is naturally defined as
Foav=—M(8y +uuy) AT, utu”. (12)
2y« o v
Fora— mx*=m d™x +szdid_x , (8) ExpressingAT in terms ofh, we finally find
d2 dr dr

a _ _ a\ ap\ _ My V
wherer is an affine parameter in the background metyic Fora= = 5 M@+ U (0t My = R uu”

an overdot denotes covariant differentiatidm go) with re- (12

spect tor, andl“f:ﬁ are the connection coefficients associated hi orflike the simil . belo lid
with the metricg,. We wish to calculateé=g,, to the first :[I' |”snexpr)rersdsm;rﬁirl] ?ht € S;T'rgrtfxﬁreiﬂonﬁ ite (r)iwshtvﬁlnd
order inh (and to the leading order im). o linear orde € perturbation, and on 1is right-ha

A remark should be made here concerning the relatior?Ide we may re.placg“ by ggh' It may also be u;eful to
between the gravitational self-force and the fictitious externaf*Press Ed(12) in terms of the trace-reversed metric pertur-
gravitational force considered here. Obviously, the two nobation h.s=h.s—39.5h (Whereh=g*’h,z). One easily
tions are closely related, as both are defined through a magbtains
ping of a worldline from the physical spacetirggo a back- —
ground metricg,. Both forces are proportional tm and to Fgra= MK 7%hg s, (13
the metric perturbatiom (though in the self-force case one
assumes thal is the metric perturbation produced by the
particle itselj. One may therefore be tempted to regard the 1 1
self-force as a special case of the more general, linearizedk«£v9=_g*%yfyr—g*furu’- ~u*uPuru’+ ~u*gfu’
gravitational force defined here. This is not quite the case, 2 2 4
however. The gravitational force considered here is, after all,

a fictitious force; that is, the particle actually follows a geo- + —g*°gh”. (14)
desic of the true physical metrg This cannot be said about 4
the orbit of a particle moving under the influence of its own
gravitational self-force: Since the self perturbatioms sin-
gular at the particle’s location, the statement that the particl
follows a geodesic ofj=g,+h is physically meaningless.

wherek*#?? is a tensor given by

Next we investigate how this gravitational force is modi-
fied by a general gauge transformati@®). The metric per-
furbationh transforms according to

For this reason, we must view the gravitational self force as h .—h'.=h .+dh
a genuine, non-fictitious, forc&hough a delicate one, as of 7 ap Ve T T e
expressed by its being gauge depengent where
Proceeding with the calculation &fg,,, we first trans-
form the differentiation variable in Eq(7) from 7' to MNyp=Enptépa- (15

[mathematically this operation is the same one applied in the ) - )
previous section, Eq(5), though here it has a somewhat From Eq.(12), the change irh will induce a corresponding

different meaning We find change in the gravitational fordej,,, given by
d?x* dx* dx* (d7'\? d?r dx* 5F”‘—l “*uut)(sh sh sh
T ol Yl B . ST grav™ ~ 5 MO F U (Ot Oy = M)
dr2 “rdr dr dr) d;2 dr '

Xutu”, (16)

DenotingAl'] =T",7—T', andu“=dx“/dr, and substitut-
ing Eq. (9) in Eq. (8) (keeping only terms linear ih), we

[e3

Do the self-forceFg,; and the linearized gravitational
force Fg,, transform in the same manner? Substituting Eq.

obtain . . ) 4
(15) for 6h,z in Eq. (16) and using the anti-commutation
« @ ” w relationé ., ,— &,..=&,R? .\, , ONe obtains
grav=—MATLS, uku”— pu. (10 Euny™ Euim = ERn
5Fgrav: - m(ga)\ + uau}\)(gh;uv+ ngp;L)\V)u'uuV
50ne may take the point of view that the orbit of a particle under =—m[(g*+uuM) §+ R, U Y] (1)

its gravitational self-force is a geodesic in a spacetime with a metric

Jo+ e, Whereh,y; denotes the tail part of the metric perturbation. Comparing this expression to E(f), we find that the two
This is, however, a fictitious geodesic, because the actual metric #rces admit the same transformation law:

got+h, notgy+hy . (Recall also that in generdl,; fails to be a

vacuum solution of the linearized Einstein equatibns. 5Fgrav: OF gel- (18
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This result is not surprising, because the two types of forcewvith the full metric perturbatiom (produced by the particle
share a common kinematic feature: They are both conk then follows that the self-force and the bare force trans-
structed through a projection of a worldline from a physicalform in the same mannér.
metricg to a background metrig,, and therefore they trans- We conclude that in an arbitrary gauge G the regularized
form in the same manner. gravitational self-force is simply given by

FO) -G _gH)

self ™ ' bare inst

IV. REGULARIZING THE GRAVITATIONAL SELF-FORCE (24)

IN VARIOUS GAUGES Namely, in an arbitrary gauge G, the singular piece to be

The method developed by MSTQW for regularizing thesubtracted from the bare force is always the instantaneous
gravitational self-force is formulated within the framework Piece expressei the harmonic gaugeand not in the gauge
of the harmonic gauge. This means that in Elg.above, the G, as one might naively expect. _
two quantities on the right-hand side; .andF ¢, are to be Our last result is of special importance: The analysis by
evaluated in the harmonic gauge—and the outcome is thMISTQW tells us how to calculate the physical self-force

self-forcein the harmonic gaugeWe therefore rewrite this associated with the metric perturbation in the harmonic
equation explicitly as gauge. In particular, it tells us how to construct the “correct”

instantaneous part of the bare force in this gauge. Our above
discussion implies that even when calculating the self-force
in a different gauge, the “correct” instantaneous part must
where the parenthetical index “H” denotes the harmonicstill be calculated in the harmonic gaug&he explicit con-
gauge(for brevity we omit the tensorial index here and in ~ Struction of the instantaneous part from the harmonic gauge
the equations below Green’s function is described in E€R9) of Ref. [5]]. This '
Assume now that a gauge transformation is made, fronfi@rmonic-gauge-related instantaneous part is the one which
the harmonic gauge to a new gauge which we denote sch&éaptures the “correct” divergent piece to be removed from
matically by “G.” According to the discussion in Sec. II, the the bare force in whatever gauge. Intuitively, this special

F=FH —F)

elf — are inst»

19

self-force in the new gauge will be given by

FO=F&+oFr O=[oF @+ FH]—F

self 7 ' self self inst

where 5F " © is the expression given in E¢6), with &*

significance of the harmonic gauge may be attributed to its
inherently isotropic nature: The “correct” divergent piece
that should be removed from the bare force must be spatially
isotropic(see, e.g., the analysis by Quinn and Wal{), and

it is the harmonic gauge which admits this isotropic struc-

being the displacement vector that transforms from the hafUre; other gauge conditions may introduce an artificial dis-
monic gauge to the new gauge G. To evaluate the term ifPrtion to the singular piece.
squared brackets, we first recall that the “bare force” is re-

lated to the trace-reversed metric perturbation through

o= m ka'By(SFﬁ,y; S5 (20)

bare

[see the second equality in E@8) of Ref. [5]], which is
expressed in terms of the metric perturbation itself as

1
Foare= — Em(gm"’_ u“u*)(hw;ﬁ h)\V;M_ h,uv;x)u'uuy-
(21

Noting further that Eqs(16) and (18) imply

1
6Fg€'|f: - Em(ga)\+ uau}\)( 5h)\p,;v+ 5h)\v;p,_ 5hp,v;)\)u'uuvl
(22)

we then obtair(usingh) + sh(H=C)=h(©)

H H— G G
Fé ) + 5Fgelf )= Fé)ar)e'

are

(23

Mode-sum regularization in various gauges

In Ref. [5] we introduced a practical calculation scheme
for the gravitational self-force, based on the regularization
procedure by MSTQW, which employs a multipole mode
decomposition. This method of “mode sum regularization”
has been formulated in Ref5] only within the harmonic
gauge. Let us now examine how the above discussion, con-
cerning the construction of the regularized self-force in vari-
ous gauges, applies in the framework of the mode-sum
scheme.

Within the mode sum scheme, the harmonic-gauge regu-
larized gravitational self-force is given %]

Fai'= 2 (Fiye ~A°L-B*~C/L)-D*, (29

where the summation is over multipole modesnd L=l

+1/2. In this expressionE{? is the contribution to the

"It should be emphasized that the physical notion of “gravitational

This result has a simple interpretation in terms of the notiorforce” introduced in the previous section is not necessary for the

of “gravitational force” discussed in the previous secti¢n:

derivation of Eq.(23). Thus, starting from Eq(6), one can derive

As was established there, the self-force and the gravitationaq. (22) directly as a mathematical identifyollowing the same

force transform exactly in the same manner, did the

mathematical steps used above for constructing(Eg. from Eg.

“bare force” is nothing but the gravitational force associated(16)], without any reference to the notion of “gravitational forces.”
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self-force fromhi{*?, the I-mode of the metric perturbation may enter Eq(29) through the bare modé(S) and render

in the harmonic gauge. This contribution is given by the sum ovel non-convergent.
I(H) _ SAT(H)
Foae =mk*#7°hi{h (26) V. EXAMPLES
whereﬁrﬁ(;') is the trace—reversddﬁ(;') andk®#79 is the tensor In this section we study the transformation of the self-

given in Eq.(14). The vectorial quantitieA®, B, C*, and force from the harmonic gauge to other, commonly used
D¢ appearing in Eq(25) arel-independent. These quantities, gauges, in a few simple cases. In principle, this transforma-
which we call “regularization parameters,” are constructedtion is done by first solving Eq(15) for the gauge displace-
from thel-modes of the instantaneous pBft!), in a manner ment vector¢”, and then constructing the force difference
described in Ref[5]. SF & by using Eq.(6). We shall primarily be concerned here
The prescription provided by Ed25) yields the “har- ~ about the regularity of the self-force in the new gauge. As
monic gauge” self-force. It is now possible, however, to re-discussed in Sec. Il, we shall regard the G-gauge self-force
formulate this prescription in any other gauge “G,” using  as regular if the vector fiel§* is continuous at the particle’s
location. If it is indeed continuous, then the self-force in the
FaO =fFalth 1 spalH=0) (27 new gauge is given in Eq6) (the demand for &£2 depen-
_ _ dence onr is automatically satisfied, as discussed in Sec. I
Rewriting Eq.(22) as 6F &= mk*#7°sh,.,. s (where sh de-  We begin by considering the transformation to the Regge-
notes the trace-reversedh), and decomposingsh into ~ Wheeler(RW) gauge, for radial trajectories in the Schwarzs-
I-modes, we obtain child spacetime. Then we examine the transformation to the
RW gauge for a uniform circular orbit. Finally, we examine
the transformation to théoutgoing radiation gauge, in a

oo

a(H— G G T(H— G .
SF Sl ):|=20 mk*#72shiff 5 ©). simple flat-space example.
Substituting this and Eq25) into Eq. (27), we find A. Regge-Wheeler gauge: Radial trajectories

% We consider a particle of mass moving along a strictly

Fgéﬁ?):E [(F§;$§)+mk“ﬁ755ﬂ§$.§ Gy radial free-fall orbit on the background of a Schwarzschild
I=0 ’ black hole with masM>m. (Of course, the motion of the

particle will remain radial even under the effect of self-force,

—ATL-BI-CHL]-DY (28 by virtue of the symmetry of the problejin what follows
Using now Eq.(26), we can re-express the term in parenthe-We use Schwarzschild coordinates, #,¢ and assume, with-
ses as out loss of generality, that the radial trajectory lies along the
polar axis, i.e., aBh=0.
mk A7+ mkeBYOshi{H S O =mkeBYoh|(O) =Fpl(S) Let h{) and h{}}") denote the metric perturbation pro-

duced by the above particle in the harmonic and RW gauges,
where F21(©) denotesl-mode contribution to the “G-gauge respectively. The displacement vector figit which trans-
bare force,” namely, the contribution to the bare force fromforms hffg to h&'}w) satisfies the gauge transformation equa-
the model of the (bare metric perturbation in the G-gauge, tion
through Eq.(20). We thus obtain the simple expression for
the self-force in an arbitrary gauge “G,” h=hGD+ & pt g (30

«(G) ” #I(G) The symmetry of the physical setup motivates one to con-
Fself :I_EO (Fpare’ —A“L—=B*=C%/L)=D*. (29  sider only axially symmetric even-parity metric perturbation
N modes. Accordingly, we shall look for solutions to E¢30)

We conclude that the regularization parametéfs B, ~ Which aree-independent and also hagg=0. _
C<, andD* are independent of the gauge. This result has a FOr €ven-parity perturbation modes, the RW gauge condi-
simple intuitive explanation: These parameters are detefions take the simple algebraic forf@]
mined by the mode decomposition of tinstantaneougpiece HRW)_ p (RW) _ | (Rw)_ (31)
of the metric perturbation, which—based on our above to re ang ’
discussion—is always to be expressed in the harmonic

. . 72 . g
gauge, regardless of the gauge chosen for calculating tH&N€r€Nang=(Ngy—sin “¢h,,)/2. Imposing these conditions,
self-force. Thus, the regularization parametafs B¢, C¢, the gauge transformation equati80) yields three coupled

andD® are, in effectgauge-independent differential equations for the three componets ¢,, and

It should be commented that the above discussion is valid
as long as_éFgéEH G) (and hence the self-force in the gauge £ £y = —hH (329
“G” ) admits a well defined finite value. As we demonstrate Lo~ SOt to o
in the next section, in certain gauges the self-force turns out h(H)

to be irregular or ill-defined. In such cases, the irregularity ot o (2N E=—hry, (32b
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sing(sin 6 &,) 4= _hg%_ (320  have regular, finite values at the particle’s location: Starting
from Eg. (33), we first observe(e.g., by transforming to
Equation(32¢ can be immediately integrated with respect to Cartesian-like coordinates at the polar axis, and demanding
0 (with fixed t,r), yielding axial symmetry as well a€! asymptotic behavior a#=0)
, that h{)) falls off at 6—0 faster tharg. As a consequence,
P NI () ) the integral in Eq(393), too, falls off faster thard. Thus, &,
Jo SN0 hangd9" + 4o (1)), (33 is regular atd—0, and it vanishes there like 4. (With the
choicey; =0, &, would vanish even faster thaif.)
where s, is an arbitrary function(As we shall discuss be- Consider next the two integrals in E¢34). From the
low, hg':é vanishes sufficiently fast a8’ —0, such that the above discussion it immediately follows that the two deriva-
integral is well-defined at the lower limjitThen, Eqs(328  tives &,, and &, , vanish likex 6 (at least—like &, itself.

and(32b) are immediately solvable, yielding Sinceh{, andh™, are regular C*) too, we find that the two
) integrands in Eq(34) are bounded a¥=0. (In fact, by

£=— f (hggm_ £,0d0" + (1 1), tran_sformm_g to Carteaan—llke ccH)ordlnates néar0 one can

0 easily verify that h;, and h/j,—and hence the two

integrands—vanish a—0.) Consequently, the two inte-

_ LA , grals vanish at— 0. We find that along the patrticle’s world-
§=— fo (W) + &4 —(20)£,]d0" +ya(r,t), (39) line all components of* are regular, and satisfy
where zpzland 3 are two other arbitrary functior‘?s. _ £,=0, &E=u(r.t), &=ys(r,t),

Now, in order to explore the behavior of the quantity
OF & corresponding to the gauge transformatior-RW,
by means of Eq(6), one has to characterize the behavior of
the vector fieldé* at the location of the particle. This re-
quires one to first explore the behavior of the various
H-gauge metric functions appearing in E€33) and (34) at
the particle’s location. This task is most easily accomplishe
by considering the Hadamard form of the metric perturbation
in the neighborhood of the particle. For the trace-reverse
metric perturbation in the harmonic gauge, this form was?)
given by Minoet al.[see Eq(2.27) of Ref.[1]; alternatively,
see Eq.(45) of Ref. [2]]:°

where ¢,(r,t) and 5(r,t) are freely specifiable functions.
(In fact, this holds not only at the particle’s worldline, but
everywhere along the polar axisFurthermore, choosing
Y= 3=0, we obtain a solution fo&* which is not only
egular but is also vanishing along the particle’s worldline:
Cg"(T)ZO.

Since the above-constructed vecfdris continuous at the
article’s location, we obtain—through E¢6)—a regular
inite value for the desired quanti§F ;. Thus,for strictly
radial trajectories in Schwarzschild spacetime, the gravita-
tional self-force is regular in the RW gaugkloreover, this
RW-gauge self-force can be made equal to the harmonic-
gauge self force, by exploiting the remaining freedom in the
where € is the spatial geodesic distance to the particle'sRW gauge(manifested here by the three arbitrary functions

worldline (i.e., the proper length of the geodesic normal to¥1-3)-

the worldline which connects the latter to the evaluation

point), and the terms included i®(€°) are assured to be at B. Regge-Wheeler gauge: Circular orbits
least C! functions of the coordinates at=0. The metric
perturbation itself is then given by

hi=4ame tu,ug+0(€), (35)

Let us now consider a particle whi¢m the lack of self-
force) moves on a circular geodesicratr,=6M around a
hg’ﬁ)=4me‘1(uauﬁ+ga[3/2)+O(eo). (36) Schwarzschild black ho_le. W_|_thout_loss of gggerallty, we
shall assume an equatorial orbie., §=7/2 andu”=0) and
Since the worldline is radighamelyu,=u,=0), it now will consider the self-force at a point P located on the parti-
follows that the metric perturbation componehig, h(? ~ cle’s orbit att=¢=0. In this physical scenario, the metric
andh appearng n Eq339) ana 30 all ave vanishing  FeTeomor o hol =i ond o prty s T
contributions from the singula®(e 1) term, and are there- gaug N P
fore all regular(i.e., at leastC') on the worldline. Conse- cated thqn the one specified in H§1) fqr a purgly e\\/,\%n
quently, one can easily construct solutions ff, which perturbation(in general, the two algebraic cond|t|0h$§
=h”PM=0 are no longer valid, and are to be replaced by
conditions involving derivatives of the metric perturbajion
8The arbitrary functionsy; represent a true freedom in the con- However, the two gaUQ,e Cond't'on_s '”VO',V'”Q the 'angular
struction of the RW-gauge metric perturbations. This may be attrib€omponents of the metric perturbation maintain a simple al-
uted to the freedom of specifying the monopole and dipole mode§€braic form, namely
of the metric perturbation—see the discussion in Ref.

(RW) _ (Rw) _
%To obtain Eq.(35 from Eq.(2.27 of Ref.[1], recall that at the h0¢> =0, hang =0. (37)
location of the particle we havg”,= &% and k=1 (using the no-
tation of [1]). For our purpose, it will be sufficient to consider only these
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two conditions. When imposed on the gauge transformation
equation(30), these conditions lead to a set of two coupled

equations forg, and &, :

sing(sin 10¢,) ,—sin 20&, ,=—h{).

(383

—h( (38b)

&g o tsinPO(sin20¢,) 4= —hy),

PHYSICAL REVIEW D 64 124003

gz:q),zv gy:_q),y- (41)

With Eq. (409, this potential is then found to satisfy Pois-
son’s equation
D, +P=ale. (42

It is convenient to introduce polar coordinates in the

The source terms for these equations are evaluated, agairy-plain, which we define through=p sing, y=pcose.

with the help of Eq.(36): We find thath((,';) is regular at the
particle’s location, but the source for E§8a diverges there

as —h{f)=arfe *, wherea=2mr, ?u2=2m(ro,/M—3)"*

[15] and, as befores denotes the spatial geodesic distance to
the particle’s worldline. In what follows we analyze the be-
havior of £, and ¢, at the immediate neighborhood of P, to

leading order ine.
We first note that no derivatives with respectrt@ndt
appear in Eq(38a (though the source term dependsrand

Transforming in Eq(42) from z,y to p,¢, and substituting
e=[(1—v?) y?+7?]*2 we obtain
a . _
p*l(pq>,p),p+p*2q>,¢¢=;(1—v2)1’2(1—v2sm2¢) vz,
(43)

Next, we wish to expandb(p,¢) into angular Fourier
modese'"?. Before doing this, however, there is a subtlety

t throughe). Therefore, this equation can be solved for eactthat must be discussed. The displacement vegtamust be
r,t separately. For our purpose—demonstrating the discont single-valuedSV) function of ¢. This means that both
nuity of the solution at P—it will be sufficient to consider the ® 4, and ® , must be SV too. However, in principle the

solution at the two-dimensional plain=r,, t=0, which is
simpler to analyze.

To bring Eqs.(38) to a convenient form, we introduce the
local Cartesian-like coordinates y=rgsinfsing, z
=rycosé in the neighborhood of P. Note thaty=0 at P,
and that(for r=ry,t=0) at the leading order we hawe
=[(1-v?) 1y?+2z%]"2 Herev denotes the particle’s veloc-
ity in the Lorentz frame of a static local observar,
=(—0,,/9u) 4 de/dt). One can easily obtain the explicit
value ofv [15]:

v=(—g??/1g") 4 u,/u)=(ro/M-2)"12<1.

Transforming in Egs(38) from (6,¢) to (z,y) we obtain
two coupled equations faf, andé,, reading

(1-2%r§) &, ,— (1-y?rd)é, y=ale+ -+, (399

Syt ey 2y2(ré— 22)_1§yyy= 0+---,
(39b

where the dots (- -) represent corrections to the source term

generating potentiafP need not be a SV function of¢.
Therefore, in the complete mode decompositiondofone
may also include certain functions @f which are not nec-
essarily SV. However, since thé-derivative of each such
multi-valued function must be SV, this function mustlbe
earin ¢ (such that the Fourier expansion &f , will only
include SV Fourier modegs Furthermore, since the
p-derivative must be SV too, this “linear mode” must be
independent op. The full decomposition thus takes the form

o0

<I><p,¢>=c¢+n2 envd,(p),

(44)

wherec is an arbitrary constant. Substituting this form in Eq.
(43) (recalling thatc ¢ satisfies the homogeneous part of this
equation, one obtains an ordinary equation for eaemode,
reading

-1 2 -2 _a
p " (pPp,) ,—N%p <1>n—;fn, (45)

which are at leas€! at P. As we are interested only in the where the coefficients, are given by theelliptic) integrals

leading-order  behavior of & at P [where
(2/ro)?,(y/ro)? (zy/r) all vanish, we shall proceed by re-
stricting attention to the leading-order form of E¢39):

(409
(40b)

§r2— gy,y: ale,

gz,y"' gy,z: 0.

Equation(40b) allows us to express the vectdt in terms of
a scalar potentiab, as®

Defining E=(E, ,E,)=(—§&,,£,), Eq. (40 readsVxE=0,
which allows one to definE=V®. (Note, however, that since
there is a singularity at=z=0, ® need not be single-valued—see
the discussion beloy.

IS e e
fo=—% fo — ¢d¢. (46)

It can be easily verified that, vanishes for all oddh. For
evenn, howeverf, is generally non-vanishing. In particular,
for n=0 the integrand in Eq46) is bounded from below by
unity, hencef y>\1—0v2>0.

The general exact solution to Eg45) is easily con-
structed:

for n=0,

n+o0,

bop+apt+Bolnp

= 4
bnp+anp‘n‘+ﬁnp7‘n| for @7

n

wherea,, and 3,, are arbitrary constants, and
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af,/(1—n?) foreven n, As the gauge displacement vectgt does not admit a
"o for oddn definite value at the particle’s location, E() cannot be
' used, as it stands, for constructing the self-force in the RW

We may now construct the modesgf by applying Eq(41) gauge. Following the_ discgssion at the er_ld of Sec. _II, we
to each of the single modes. We then wish to figure out wha@'1Ve at the conclusion that the case of circular motion,

is the solution with the most regular behavior at the limit 1€ ‘RW self-force” is ill definedunless one further extends
.0, which concerns us here. Clearly, any choicegf0 the regularlz_atlon procedure—(_a.g., by m@roducmg an aver-
will lead to a divergentb,, and hence to a divergent vector 29 over solid angle; see the discussion in Sec. I

¢*. [Note that the norm of4, ,£,) is the same as that &, We conclgde this .discuision With-t\-NO remarks: First,
and is hence bounded below by ,|; and the contribution to though the discontinuity of* was explicitly demonstrated

the latter from a nonvanishing3,, would diverge like here fpr circular prbits, thi; conclusior_1 should .also apply to

o p~I"=1] Similarly, a nonvanishing would yield a poten-  9€N€ric n_on-radlal, non-circular, orbltéior_ radla_l orbits,

tial & whose(normalized derivative in the tangential direc- however, it was demonstrated a_bove thatis continuous .

tion, p~ 1 4, diverges likecp L1 The most regular solu- S_econd, the above construction shows that for a suitable

tion is thus one with3,=0 for all n, as well asc=0. This  choice of the free parametefsamelyc=5,=0) the com-

solution takes the form ponent¢, is boundedat P. The same holds fof,. This
implies thaté, and¢,, are boundedthough discontinuoysat

D(p,d)=ag+pH(P)+0(p?), the particle’s location. It still remains to be checked, how-

ever, whetheg, and ¢, are bounded or not.

where

C. Radiation gauge

oo

H(¢p)=(a1€?+a_e %)+ > b,e"?. Finally, we examine the transformation of the self-force to
n=-e the so-called “radiation gauge.(We recall that, so far, the
mode decomposition of metric perturbations in Kerr space-
time has been formulated primarily within the radiation
gauge[12].) We shall consider here the simplest possible

Returning from® to &*, we find e.g., for the Cartesian-
like componenté, (ignoring higher-order contributions in

P): case: a static particle in flat spacetime. As we shall shortly

E=—® ,=—p H—pd H,. see, even in this trivial case, the gauge transformation from

y Y Y 2l the harmonic to the radiation gauge is pathological, and the
Substitutingp , = cos¢ and ¢ ,= —p~Lsing, we find metric perturbatiorfand hence the self-forgés ill defined.
We shall specifically consider theutgoing radiation

é&y=—Hcos¢p+H ;sing=¢,(¢). gauge(similar results are obtained when considering the in-

_ _ . going radiation gauge We use standard flat-space spherical
Clearly, in order for¢, to be continuous gi—0 (where¢ is  coordinatest,r,6,», and assume that the static particle is
indefinitg), it must be independent of. However, &, ,  |ocated off the origin of the spherical coordinates, i.e., at

=(H 44t H)sing, and somer =r,>0. Also, without loss of generality, we locate
- " the particle at the polar axig=0. The outgoing null vector
H. 1H= 1—n2)p.einé— f aing field takes_ the fornh“z[l_,l,o,q_. The metric pert_urbatlon in
pb nzz_w (1=n%)bye anzz_m n® the radiation gaugehffﬁ), is defined by the requiremént
This function of ¢ does not vanishidentically) unless all h%lﬁ:o. (48)

coefficientsf,, vanish; however, as was shown abovsg, _ _

>0. We find that,(p—0) does depend o (the same can Consider now the-component of Eq(48), which reads
be shown foré,). This means that the vectdr is discon- R, n(R)

tinuousat P* hi”+hy”=0.

With the gauge transformation equatid))=h')+£,.,

Upivergent contributions from different-modes cannot cancel +Epa this becomes

each other, because they have different dependengg as well as
different rates of divergencm('”"l). Also, a divergence coming
from the linear mode cannot cancel a divergert0 mode, even
though in both modefV®|x=p~1, because the direction &fd is
tangential for the linear mode and “radial” for the=0 mode. BIn the case of a pure vacuum perturbation over a Kerr back-

2The indefiniteness of the RW self-force could be intuitively un- ground, the additional conditioh(R)Eg“Bhﬂfgzo can be imposed
derstood, by realizing that the RW gauge condition “distracts,” toin a consistent manner, as done by Chrzanowskill]. Here we
some amount, the presumed isotropic structure of the divergent Icsonsider the perturbation in a region surrounding a point source,
cal piece of the metric perturbation, by artificially signifying the  and it is unclear to us whether the additional conditi¥® =0 will
direction. (This isotropic structure is best accounted for within the be consistent with the gauge conditigB). We shall therefore not
harmonic gauge. make any use of this extra condition here.

Ert &t 26—~ hEtH)_ hg:-') . (49
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Motivated by the staticity of the problem, we shall only con- the pathological nature of the radiation gauge in the presence
sider t-independent solutions, s& ; and &, may be of point sources. As the radiation gauge seems inappropriate

dropped. Also, in the harmonic gauge we have for representing the metric perturbation in the particle’s
y y neighborhood, it becomes rather meaningless to consider the
h{"=2mre, h{=o0, self-force acting on the particle in that gauge.

o ) ) Finally we note that although the indefiniteness of the
wheree denotes the spatial distance to the particle’s locationradiation-reaction self-force was demonstrated here only for
(this may be easily obtained by transforming the well knowng static particle in flat space, the same indefiniteness should

Coulomb-like Cartesian solution to spherical coordingtes also occur generically for all types of orbits in Schwarzschild
Equation(49) now becomes or Kerr spacetimes.

& r=—2mle. (50
VI. SUMMARY AND DISCUSSION

At this point we introduce standard Cartesian coordinates _ _ ) _ _
t,x,y,z, such that the particle is located at the origio—(y The main results of this manuscript are contained in Egs.
=2=0), and thez direction coincides with the radial direc- () (24), and (29). Equation(6) describes the gauge trans-
tion at the particle’s locatior(namely, x=r sindcose, y formation of the gravitational self-force, given the gauge dis-
=r sinfsing, andz=r cosé—r,). At the leading order ire, ~ Placement vecto, . Equation(24) describes, in a sche-
we may replacey, by the Cartesian derivative operatoy. matic manner, the extension of the MSTQW formulation for
Equation(50) therr1 becomes the gravitational self-force to an arbitrary gauge “G”: It im-

plies that the “correct” singular piece to be removed from
the bare force in the G-gaudithe one derived directly from
&,=—2m(z°+p?) 17, (51)  the G-gauge metric perturbation through E20)] is always
5 2. o ) o to be calculatedn the harmonic gaugeas described in the
where p“=x“+y*. Equation(51) can now be easily inte- iginal analysis by MSTQW. By applying these results to
grated with respect ta (with x,y held fixed. We obtain our mode-sum regularization methédhich was previously
formulated only within the harmonic gaudg]) we finally
obtained Eq.(29), which describes a practical mode-sum
+R(X,Y), (52) prescription for const_ruction of the gravitational self-force in
any gauge “G” (provided that the self-force has a regular,
) ] ) o finite value in that gauge We stress again that, since the
whereR(x,y) is an arbitrary function. This is the most gen- gravitational self-force is a gauge-dependent notion, expres-

&=—2mlog

z
—+1+7%p?
p

eral (t-independentsolution for¢; . sions like Eq.(24) or Eq. (29 for the self-force will be
~ Consider next the asymptotic form éf as we go to the  meaningful only when accompanied by the full information
limit x,y—0 with fixedz#0. One finds about the gauge to which they correspofditernatively,

one can specify the metric perturbatibf itself, which of
+2min(p/2z) +R(xy), >0, (53) course contains the full information about the gauge.
—2min(p/2|z]) +R(x,y), z<O. The implementation of Eq.29) for calculating the
G-gauge self-force involves two distinct parts:calculation
By a suitable choice of the functidR(x,y) one may, at best, of the bare modes of the force in the G-galigeough Eq.
eliminate the divergence along one of the raysO or z  (20)]; and(ii) derivation of the four vectorial regularization
>0 (by choosingR=*2mIn p, respectively, but not along  parameter&\®, B*, C%, andD®. Our discussion concerning
both rays simultaneously. We thus arrive at the conclusionhe gauge transformation of the self-force led us to conclude
that ¢, unavoidably diverges logarithmicallat least on ap-  that the values of these regularization parameters do not de-
proaching the axip=0, along either the<0 ray or thez  pend on the gauge in which one calculates the self force:
>0 ray (or both. Constructing now théx andty compo-  These parameters are always to be calculated in the harmonic
nents of the radiation-gauge metric perturbation, we findgauge(using the analytic technique described in Réf]).
h{P=¢&x>x/p? and a similar expression fan(?, asp  This “gauge invariance” property of the regularization pa-
—0 (at eitherz<0 or z>0). Namely, the metric perturba- rameters is demonstrated by the recent analysis by Lousto
tion inevitably diverges at least along half the apis 0. [8,14], who calculatednumerically the values ofA*, B¢,

It thus turns out that in the radiation gauge, the perturbaand C* in the RW gauge, for a radial orbit on a Schwarzs-
tion associated with a pointlike particle is represented by ahild background. These numerical values appear to be in
string-like one-dimensional singularity. In particular, the perfect agreement with the harmonic-gauge values derived
radiation-gauge metric perturbation cannot be well defined imnalytically in Ref.[5] (in the case studied so far, of the
a complete neighborhood of the particif€ompare with the self-force at a turning point of a radial geodegsiglso, the
harmonic or RW gauges, where the singularity is confined tdzerg value obtained for the paramet®r* in the harmonic
the particle’s location and the metric perturbation is wellgauge[5] agrees with Lousto’s result fob“ in the RW-
defined everywhere in the particle’s neighborhgot@ihis  gauge(which was based on a proposed zeta-function regu-
pathological behavior—manifested already in the elementariarization procedur¢8]).
case of a static particle in flat space—serves to demonstrate The prescription29), as well as Eq(24), is only appli-

§t(P—’0)E[
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cable when the self-force admits a definite finite value in thetor £ which does not even have a directional limit, in which
G-gauge. Whether or not this is the case for a given gaugease the generalized regularization procedure will fail to
“G,” can be decided with the help of E(q6): The analysis vyield a definite self-force The analysis in Sec. V suggests
by MSTQW implies that the self-force will always have a that for circular orbits the displacement vectgt from the
regular finite value in the harmonic gau@ed it also tells us  harmonic to the RW gauge may have a well-defined direc-
how to derive this value Therefore, the G-gauge self-force tional limit, and hence the RW self-force may be well de-
would be well defined, in our approach, only if the transfor-fined within this generalized prescription. Recall, however,
mation from the harmonic gauge to the G-gauge wouldhat the above analysis does not completely guarantee this
yield—through Eq.(6)—a regular finite value for the force regularity of the(generalizeg RW self-force, because so far
difference 6F ¢ It is only in this case that we are able to we have only analyzed the tangential componeptand ¢,

use Eq.(29) for calculating the G-gauge self-force. Other- (which yield £ and£¢), but not¢; andé, . Also, our analysis
wise (namely, if SF¢, diverges or is indefinite Eq. (29)  was restricted to the surface=r,, t=0, i.e. to directional
appears to be useless. limits through tangential directions.

As an example, in Sec. V we explored the transformation There seems to be another procedure that would allow
from the harmonic gauge to the Regge-Wheeler gauge. Wene to use the metric perturbations in e.g. the RW or radia-
found that the RW self-force is well defined as long astion gauges for useful self-force calculatioisithout resort-
strictly radial trajectories are considered. For such trajectoing to the above generalized regularization procedufée
ries, Eq.(29) then provides a useful prescription for comput- shall now briefly outline here a preliminary version of this
ing the RW self-force. However, this seems not to be the casprocedure.(We note that a similar approach has been pro-
for more general orbits, as we demonstrated by consideringposed by Mino[11].) Suppose that the metric perturbation
circular orbit: Here, the transformation from the harmonich(® is known (e.g., in the form of mode decompositjon
gauge yielded an indefinite value for the RW self-force. Thewhere “G” refers to either the RW or radiation gauges. If we
situation is even worse in the radiation gauge, whereknew how to converh(® to the harmonic gauge, it would be
SF&H=R) is found to be not only discontinuous but also straightforward to construct the self-force from it, through

self
unbounded, and presumably falt types of orbits. Egs. (19) or (25). However, performing the transformation

How could one interpret a situation whef€ ¢ diverges ~ G—H requires one to solve a system of partial differential
(or is indefinitg? In some occasions, such a result may beequations foré*, and unfortunately we do not know the ex-
attributed to a severe pathology of the gauge. This seems tgct solution of this system. Nevertheless, it appears possible
be the case in the radiation gauge, as implied by the fact tha construct an approximate, leading-order, solution of this
in this gauge the metric perturbation diverges not only at theystem, for both the RW and the radiation gauges. This was
particle’s location, but also along dimgoing or outgoiny  demonstrated in Sec. for both gaugesin a few simple
radial ray emerging from the particlsee Sec. Y. However,  cases, and it appears likely that the leading-order solution
:Ee S|tuta'_uon Set’ergstm be dlffe"r%ntf_ln tge_ R}[’r\]/ gaugem;n Vr‘]’h'c(;tan be generalized to a generic orbit. Let us denote this

e metric perturbation is well-defined in the neighborhoo : . - -
of the partizle(though of course not at the partigle itelf [eadlng-order solution by™. In principle one can then use

like in the harmonic gauge. In this case we have seen thaﬁﬂ to transform the metric perturbations from the original

for nonradial orbits,(SF;’él'f*" RW) (and hence alsﬁgéﬁw) it- gauge G to an “approximate harmonic” gauge, which we

self) is ill defined. This originates from the fact that certain denote H Presumably, in the gauge tHe self-force will be
components ofé“—e.g. £ or &—admit a direction- Well defined, since the metric perturbations in the harmonic
dependent limittas demonstrated by the dependence of e.gand Hgauges share the same leading-order asymptotic be-

&y on ¢; cf. Sec. V. havior. After decomposing” into I-modes, one can use the

This situation—a direction-dependent expression for th‘?node-sum regularization method to calculate fh@&dge

self-force in certain gauges—motivates one to consider 2elf-force: Applying Eq(23) for each of the singlé-modes,
simple generalization of the standard MSTQW regularizatioquth “H” and “G” replaced, correspondingly, by “G” and
procedure, by averaging over all spatial directions. Namely, ' '

one can evaluate the limit of the right-hand side of Exf) H."we first get

(or, similarly, the limit of the displacement vectét) along

fixed spatial null geodesics emanating from the particle, and

then average over the solid ang(® the particle’s rest . .
frame. This would clearly be a generalization of the Fu = pal®) 4 spa(G=H)
MSTQW procedure, because whenever the coincidence limit

is well defined, the average over solid angle will be well-

defined too, and will yield the same result. One still needs to

investigate how this averaging over directions is to be impley,ere sE (G~ H) is to be obtained from Ed6) by replacing

mented within the context of the mode-sum regularization. , self - .
The above generalized regularization procedure will yieldéf by th? I-mo_de of §M Then, Wmm?A :Eq.(29) for t_he
a definite self-force in a wide class of gaugé®ugh notin  H-gauge(i.e., with all “G” replaced by “H") and substitut-

all gauges; obviously one can construct a displacement vedag the above expression fﬁr‘g‘éﬁs) , One obtains
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Fz‘éﬁ)=|§0 [(FEsd+ sF&(C M) — AL —B—CY/L]
—D*% (54)

which provides a prescription for calculating thegduge
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