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1. Introduction

The supersymmetric Yang-Mills (SYM) theories have rich physical content and their
quantitative analysis is in general as difficult as in the usual, nonsupersymmetric, gauge
theories. However they often contain, unlike the purely bosonic YM theories, specific
sectors, which can be analysed exactly and where the supersymmetry leads to a nilpotent
(topological) symmetry [1]. The dimensionally reduced versions of the SYM theory even
allow various massive deformations conserving this symmetry.

In refs. [2] and [3] this symmetry (in the zero dimensional reductions of SYM) was
applied for the calculation of the (bulk part of the) Witten index for ensembles of N 0-
branes in 4, 6 and 10 dimensions, justifying the conjectures related to the existence of
bound states of zero-branes [4]. In [5] the method was applied to study certain correlators
of BPS states or, in other words, of perturbations of the original reduced SYM theories,
which preserve part of the supersymmetry. In the case of the zero dimensional reduction
of N = 1 SYM theory, the large N limit was studied exactly using the method of [6] or by
the corresponding integrability properties allowing to write an explicit (KP) differential
equation for the partition function. One of the unexpected results was that, in the large
N limit, the physical quantities exhibit an essential singularity at λ = 0, where λ is the
coupling of the massive perturbation. The large N limit of the dimensionally reduced SYM
theories is also interesting because it may reveal part of the structure of the nonreduced
theories, due to the Eguchi-Kawai mechanism.

In this paper we study the one dimensional reduction of the N = 1 SU(N) pure Yang-
Mills theory. Unlike the well known and widely used 1d reduction to the usual physical
time [6], [7], or [8], we will retain the ”time” along the light cone direction compactified
on a circle of radius β. Only this reduction allows the direct use of Witten’s localization
principle [1]1. In order to get rid of the zero modes of the bosonic fields we will deform
the theory by a massive perturbation corresponding to the O(2) twisting of the boundary
conditions on the time circle with respect to a subgroup of the euclidean symmetry O(4).
The SYM theory reduced in this way appears to be identical to the compactified hermitian
matrix oscillator with SU(N)-twisted boundary conditions. The twisting angles are related
to a global mode of the (time-like) gauge field. This model can be further reduced to that
of a unitary (already time-independent) twist matrix. We find that the model is integrable
in the sense that its partition function is a tau-function of Toda hierarchy, i.e. it obeys a
chain of nonlinear Toda equations.

The model can be solved exactly and rather explicitly in the large N limit. The
solution of the corresponding saddle point equation and its physical consequences in the
limit of vanishing perturbation represent the main result of this paper. The solution is
parametrized in terms of elliptic functions. The analysis of the solution as a function of
the two parameters βǫ and λ, where β is the compactification length, ǫ is the strength of
the massive perturbation, and λ is the twist coupling reveals the following phenomena:
1. In the double limit ǫ→ 0, λ→ 0 the free energy is universal (under certain deformations)
function of the ratio ǫ/λ.
2. In the limit of vanishing massive perturbation (ǫ → 0), the observables exhibit an
essential singularity ∼ exp

(

− const
ǫ

)

.

1 Our argument follows essentially the construction proposed in [9,10], which allows to lift by

one the dimension of the spacetime without loosing the supersymmetry. Technically speaking, our

procedure of dimensional reduction replaces the Euclidean spacetime by a point and at the same

time introduces the “time” dimension τ . The latter might be interpreted as a lightlike dimension

of the original spacetime, but we do not know to what extent this interpretation is justified.
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3. The analytical continuation of the model at the point ǫβ = iπ (inverted oscillator)
shows the scaling of the c = 1 compactified noncritical string theory. This value of the
compactification length ǫβ corresponds to the Kosterlitz-Thouless critical point (see ap-
pendix C).

The paper is organized as follows. In section 2 we describe the reduction of the
partition function of the one-dimensionally reduced N = 1 SYM4 theory to that of the
reduced twisted matrix oscillator, by the use of the supersymmetry and the localization
theorem. We then reduce the configuration space of the model to the set of the eigenvalues
of the unitary twist matrix. In section 3 we find that the partition function of our model is a
τ function of the Toda integrable hierarchy and write the differential equations satisfied by
the partition grand canonical function. In section 4 we give an exact solution of the saddle
point equation for the large N limit of the model in terms of elliptic parametrization; the
calculations are presented in Appendix A. In section 5 we study the limit of small massive
perturbation. We find an universal expression for the free energy in presence of a source
for the Wilson loops, in the scaling limit ǫ → 0 and λ → 0. We analyse the properties
of the solution, especially in the small compactification radius limit and near the curve of
the Gross-Witten type transitions. Section 6 is devoted to conclusions. In Appendix C
we give the solution of the analytic continuation of our model to imaginary time ǫβ = iπ,
which is the Kosterlitz-Thouless point for the corresponding c = 1 noncritical string.

2. Definition of the model and its reduction to one-dimensional matrix quan-
tum mechanics

In this section we will show that the dimensionally reduced N = 1 super Yang-
Mills theory with gauge group SU(N) can be mapped to one-dimensional matrix quantum
mechanics. The dimensional reduction consists in replacing the 4-dimensional (Euclidean)
space-time by a single lightlike ”time”.

Let us first give the generalization of the argument of [5] to the case of one dimension.
We start with the the N = 1 SU(N) SYM4 containing 4 bosonic matrix fields Aµ (µ =
0, 1, 2, 3), and 4 real fermionic fields Ψα (α = 1, . . . , 4). After performing a Wick rotation
x0 = −ix4, the action of the Euclidean theory can be written as

S =

∫

d4xTr

(

−1

4
F 2
µν +

1

2
ΨT (∇4 + ~γ · ~∇)Ψ

)

, (2.1)

where ∇µ = i∂µ +Aµ is the covariant derivative and the gamma-matrices are represented
as direct products of Pauli matrices: γi = σi × σi (i = 1, 2, 3). The gauge group SU(N)
acts to all fields in the adjoint representation. let us assume that all fields depend only on
the time-like coordinate

τ = x3 − ix4, (2.2)

which parametrizes a circle with radius β. The resulting model is a matrix quantum
mechanics containing four bosonic and four fermionic matrix variables.

We will evaluate the functional integral for this one-dimensional matrix model by
mapping it to a cohomological field theory, which will allow to apply Witten’s localization
argument [11]. Let us redefine the fields as







A1

A2

A3 + iA4

A3 − iA4






=







X1

X2

φ
φ̄






, Ψ =







ψ1

ψ2

η
χ






(2.3)
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Then the action (2.1) can be written as a BRST exact form. The BRST transformation Q
acts on the complex of fields Φ = {Xa, φ, φ̄, H;ψa, η, χ} (where H = i[X1, X2] is considered
as an auxilliary field ) as

QXa = ψa, Qψa = [i∂τ + φ,Xα] (a = 1, 2)

Qφ̄ = η, Qη = [i∂τ + φ, φ̄]

Qχ = H, QH = [i∂τ + φ, χ]

Qφ = 0.

(2.4)

Namely, the action

S =

∫ β

0

dτTr
(

iH[X1, X2] +
1
2H

2 + [Xa, i∂τ + φ][Xa, φ̄] + 1
2 [i∂τ + φ, φ̄]2

+
1

2
χǫab[Xaψb] + [Xa, η]ψa − [φ̄, Xa][i∂τ + φ,Xa] +

1

2
χ[i∂τ + φ, χ] + [ψa, φ̄]ψa

)

can be written as

S = Q

∫ β

0

dτTrV(Φ)

V(Φ) = 1
2
η[i∂τ + φ, φ̄] + χ(H − i[X1, X2]) +

2
∑

a=1

ψa[Xa, φ̄].

(2.5)

The squareQ2 of this transformation represents the ”time” gauge transformation generated
by φ, ∇τ = [i∂τ +φ, ]. Hence Q is nilpotent on the gauge-invariant quantities. The ghost
number of the fields is −2 for φ̄, −1 for η and χ, 0 for Xa and H, +1 for ψa, and +2 for φ.

The functional integral with respect to the BRST complex of fields Φ

ZN (β, g) =

∫ DΦ

Vol(G)
e−

1
g
S[Φ] (2.6)

(where the integration measure is normalized by the volume of the gauge group G) can be
therefore evaluated using the Witten’s localization argument [11]. Namely, the integral is
saturated by the BRST critical points QΦ = 0. More strictly, we have to integrate over
a continuous critical manifold, because of the zero modes of φ, χ, φ̄. The zero modes are
elliminated by adding, following [11], a Q-exact term to the action (2.5) by changing the
action to S + δS, with

δS = tQ

∫ β

0

dτTrχφ̄. (2.7)

We can also discard from the very beginning, the term 1
2η[i∂τ + φ, φ̄]. As before, H can

be integrated out by setting H = tφ̄ + [X1, X2] in (2.5). The advantage of introducing
the perturbation (2.7) is that for t 6= 0, the fields φ̄, χ, and η can be integrated out.
However, the perturbed integral does not coinside in general with the original one because
of the new fixed points ”flowing in from the infinity ” when one perturbes to t 6= 0
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[11]. The correct statement is that there exists a class of BRST-invariant operators whose
(nonnormalized) expectation values coincide in the original and the perturbed theory. The
first such operator is

ω =

∫ β

0

dτTr(−[i∂τ + φ,X1]X2 + ψ1ψ2) = Q

∫ β

0

dτǫabTr(ψaXb). (2.8)

The second is any SU(N)-invariant function f(Ω) of the holonomy factor around the circle

Ω = T̂ exp

(

i

∫ β

0

dτφ(τ)

)

. (2.9)

The functional integral for the expectation value

〈eωf(Ω)〉 =

∫ DΦ

Vol(G)
e−

1
g
(S+δS)+ωf(Ω) (2.10)

does not depend on the coupling t. Indeed, taking the derivative in t and integrating by
parts, we find zero, since the integrand vanishes at infinity due to the factor eω. Therefore
we can take the limit t → ∞, after which the integral (2.10) gets localized near the zeros
of H, φ̄, χ, η. (In particular, the partition function does not depend on the gauge coupling
g.) Now we can calculate the partition function (2.6) understood as the average of the
identity operator. Since ω has ghost number +2, due to the ghost number conservation

ZN (β, g) ≡ 〈1〉 = 〈eω〉. (2.11)

The above argument has been applied recently by F. Sugino [12] in order to calculate the
partition function of the four-dimensional N = 1 SYM reduced to a two-dimensional torus,
with periodic boundary conditions for all fields. Our case is slightly more subtle, because
of the zero modes of the fields Xa. These zero modes will be elliminated, as in [3] and
later in [5], namely by deforming the BRST operator in the definition of the action (2.5).
Let us first notice that after the redefinition of the fields the theory is still invariant under
the O(2) rotations in the directions orthogonal to the light cone:

X1 + iX2 → eiǫ (X1 + iX2) , ψ1 + iψ2 → eiǫ (ψ1 + iψ2) .

This allows to construct another BRST operator, which squares to a linear combination
of a gauge transformation and an O(2) rotation. The twisted BRST charge Qǫ acts as

QǫXα = ψα, Qǫψα = [i∂τ + φ,Xα] + iǫεαβXβ ,

Qǫφ̄ = η, Qǫη = [i∂τ + φ, φ̄]

Qǫχ = H, QǫH = [i∂τ + φ, χ]

Qǫφ = 0.

(2.12)

The modification of the supercharge is equivalent to changing the action (2.5) and the
operator (2.8) as

S → S + 2iǫ

∫

dτTr(φ̄[X1, X2])

ω → ω − ǫ

2

∫ β

0

dτTr(X2
1 +X2

2 ).

(2.13)
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In the limit t→ ∞ the integral gets localized near the zeros of H, φ̄, χ, η, leaving the place
to the action

S =

∫

dτTr
(

−i[i∂τ + φ,X1]X2 − 1
2
ǫ(X2

1 +X2
2 ) + ψ1ψ2

)

, (2.14)

and the ψ’s can then be integrated out. Finally, the integration over X2 gives the partition
function of the matrix oscillator (with the coordinate X1 ≡ X) in presence of the one-
dimensional gauge field φ(τ)

ZN (β, g, ǫ) =

∫ Dφ(τ)DX(τ)

VolG exp

(

−1

2
Tr

∫ β

0

dτ

(

1

ǫ
[i∂τ + φ,X ]2 + ǫX2

)

)

, (2.15)

with periodic boundary conditionsX(β) = X(0), φ(β) = φ(0). It is clear that the integral
depends on β and ǫ only through the product ǫβ. We will absorb ǫ in β,

ǫβ → β, (2.16)

remembering that the perturbation is lifted in the limit β → 0.
The functional integral over the field φ can be written, after fixing a gauge ∂τφ = 0, as

an integral over the unitary matrix2 representing holonomy factor defined by (2.9), namely
Ω = eiβφ normalized by the volume of U(N). The holonomy factor enters the functional
integral over X as the twisted boundary condition:

X(β) = Ω+X(0)Ω. (2.17)

The integral over X can be performed exactly, and the integral over the unitary matrix Ω
reduces to an integral over its eigenvalues eiθ1 , ..., eiθN (which are defined up to a permu-
tation, hence a combinatorial factor 1/N !). The partition function is therefore given by
the N -fold integral3

ZN (β) =
1

N !

∮ N
∏

k=1

dθk
2π

∏

i6=j sin[ 12 (θi − θj)]
∏

i,j sin[ 1
2
(θi − θj + iβ)]

(2.18)

where θi = βφi.
The expectation value we are calculating is a deformation of the Witten index

ZN (β) = Tr(−)F e−βHeiβǫJ , (2.19)

2 It is assumed that the integration contour for the eigenvalues of φ is chosen along the real

axis. In this case φ̄ should be taken anti-hermitian, see the the discussion in [11].
3 This happens to be exactly the partition function of the one-dimensional gas studied by

Michel Gaudin in 1966 [13]; it was extensively used in [14] to study the compactified 1+1 dimen-

sional string theory via matrix quantum mechanics; in relation to the actual SYM theory this

formula was communicated to us by N. Nekrasov.
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where the (−)F -factor is included in order to impose the periodic boundary conditions on
the fermionic fields, and the trace is twisted by an O(2) rotation eiβǫJ in the (12) plane.
The twisting of the BRST charge Q→ Qǫ does not change locally the functional integral,
but it does change the boundary conditions for the fields.

Now we are at the most subtle point of the reduction procedure, which deserves to
be discussed in more detail. Considering the fields φ and φ̄ as two independent fields
imply that the integration over them is understood as contour integration. The twisting
separates the poles and zeroes of the integrand and allows to evaluate the integral by the
residue theorem, in complete similarity with the calculation of [3] for the zero dimensional
model. Since the integrand does not depend on the variable

θ̄ =
θ1 + ...+ θN

N
,

the contour integral with respect to this variable would give zero. In fact, the integration
with respect to this variable should be excluded because this is one of the normalizable
zero modes of the original fields and the measure DΦ should contain a product of delta
functions of the bosonic and fermionic zero modes. In particular, the normalized zero mode
of φ is

φ(0) =
1√
Nβ

∫ β

0

dτTrφ(τ) =
√

Nβ θ̄.

For a more detailed discussion see [15]. Therefore the measure in (2.18) contains a delta
function δ(φ(0)) ∼ δ(θ1 + ...+ θN ), which suppresses the contour integration with respect
to θ̄. The integral over θ’s is normalized by the volume of the residual global gauge group.
The introduction of the delta function should respect this normalization. Thus we have to
insert

2πδ(θ̄) = 2πNδ(θ1 + ...+ θN ).

Now we can integrate, after representing the integrand as a determinant using the Cauchy
identity, by using the residues theorem. The integral is equal to the sum of the identical
contributions of the (N − 1)! cyclic permutations in the expansion of the determinant

ZN (β) = (−)N−1 (N − 1)!

N !

∮

dθ1
2π

...
dθN
2π

2πNδ(θ1 + . . . θN )
N
∏

k=1

1

sin[ 12 (θi − θi−1 + iβ)]

=

∫ dθ1
2π

dθN

2π
δ(N θ1+θN

2
)

sinh 1
2 [θ1 − θN − i(N − 1)β] sinh 1

2 [θ1 − θN + iβ]

=
1

2N sinhN β
2

.

(2.20)
In the limit β → ∞ our partition vanishes, which is not unexpected, since the Witten
index of the D = 4 theory is zero. In the limit β → 0 we recover the result for the
completely reduced theory ∼ 1/N2, in agreement with [3]. A more careful analysis allows
to reproduce also the numerical coefficient, in accordance with the conjecture made in [16].
In the limit β → 0, the Ω-integral is saturated by the integration in the vicinity of the
N central elements of SU(N) which are parametrized by the element of the su(N) Lie
algebra [17]. After performing carefully the limit, one finds (see e.g. [15])

ZN (β) → (g/β)
1
2
(N2−1)

β FN
Z(0)
N

(

g

β

)

6



where Z(0)
N (g) is the partition function of the completely reduced theory, and one repro-

duces the result of [3]:

Z(0)
N (g) = FN g−

1
2
(N2−1) 1

N2
. (2.21)

(The numerical factor FN depends on the way the integration measure is normalized. In
the normalization used in [3] this factor is equal to one, but this is not the most natural
choice from the point of view of applications to the D-brane physics.) In the particular
case of the SU(2) theory the results was obtaind by the direct calculation of the integrals
[18].

Let us note that our partition function only formally coincides with that of the twisted
matrix oscillator and, at least for finite N , there is an ambiguity related to the prescription
for the contour integration. Witten’s localization procedure leads to an integral over the
Lie algebra and logically the integration with respect to θ’s should be taken along the whole
real axis. With this definition, only (N − 1)! terms in the expansion of the determinant
will contribute to it. On the other hand, had we integrate in interval [0, 2π], this would
correspond to contour integration with respect to the eigenvalues of the Lie group element
{tk = eiθk}Nk=1, where the contours circle the origin. In this case we would get contributions
from all N ! terms in the expansion of the Cauchy determinant. The result would be given,
instead of (2.20), by (see, for example, ref. [14])

Z̃N (β) =
e−N

2β/2

(1 − e−β)(1 − e−2β)...(1 − e−Nβ)
. (2.22)

Unlike (2.20), the β → 0 limit of this formula does not match the result of [3].
Which of the two formulas (2.20) or (2.22) is correct? Clearly the difference between

them is due to a different treatment of the boundary conditions for the field φ in the formula
(2.15). result considered then at hermitean oscillators). A happy resolution of this paradox
would be that from the point of view of the application of Witten’s localisation principle
both formulas seem to be possible but the result depends on the boundary conditions and
the contours of integration for the field φ(t) in the original action (2.5). However we feel
that the question is rather subtle and more study is needed to clarify it. For example we
cannot be sure that the supersymmetry of the original model isn’t violated in one of two
cases. On the other hand, the local BRST symmetry used for the calculations is certainly
intact.

Now let us consider a slightly more ambitious problem, namely to calculate the gen-
erating functional of a set of BRST invariant operators made out of the gauge field φ.
As mentioned before, such operators can be constructed as traces of the holonomy Ω in
different representations, or, equivalently, as polynomials of the moments Tr(Ω)k. We will
add to the action the simplest possible source term

λTr(Ω+ + Ω). (2.23)

Repeating the arguments, which led to (2.18), we find for the generating functional the
following integral representation

ZN (β, λ) =
1

N !

∮ N
∏

k=1

dθk
2π

eNλ cos θk

∏

i6=j

sin[ 12 (θi − θj)]

sin[ 1
2
(θi − θj + iβ)]

(2.24)

where θi = βφi. If one follows the recipe of [3], the integration should be considered as
a contour integration along the real axis, where the N integration variables are subjected

7



to the constraint θ1 + ... + θN = 0. Then the result should be analytic as a function
of β, which can therefore be given complex values. It is plausible that in the large N
limit, which we are interested in, if the perturbation is sufficiently strong, the choice of the
contours should be not important. The equivalence between the reduces SYM theory and
the twisted matrix oscillator should takes place only in this limit.

It would be very interesting to understand what is the meaning, in terms of the original
supersymmetric theory (2.1), of the deformation that leads to the partition function (2.23).

The reduction from 4 to 1 dimension of the original theory turns three of the compo-
nents of the gauge field into Higgs fields (X1, X2 and φ̄). This makes the direct calculation
of the partition function (which is related to the bulk part of the Witten index) more
delicate, because of the absence of mass gap. By introducing the deformations (2.7), (2.8)
and (2.13) we add an additional Higgs potential, thus breaking part of the supersymmetry.
The effect of the source term, which we added to obtain the partition function (2.23), de-
pends substantially on the way we have perturbed the theory. Indeed, it has positive ghost
charge, and its effect would be zero, if the perturbation (2.13) of ghost charge −2 were not
there to compensate it. This is also true in the completely reduced theory, discussed in
ref. [5].

3. The partition function as a tau-function of the Toda hierarchy

Here we will show that our partition function with a source term λTr(Ω+ + Ω) is a
tau-function of discrete Toda chain. Let us rewrite the partition function of the model
eq.(2.24) in the following form:

ZN (β, t) =
1

N !

∮ N
∏

j=1

dzj
2π

eU(zj) ∆2(z)
∏

k,m(eβ/2zm − e−β/2zk)
(3.1)

where zk = eiθk , U(z) =
∑

n6=0 tnz
n, and ∆(z) is the Van-der-Monde determinant of z’s.

In our case t1 = t−1 = Nλ and tn = 0 for n 6= ±1, but most of the following conclusions
are true for a general U(z).

Let us now introduce the grand canonical partition function with the ”charge” l:

τ̃l[t, µ] =

∞
∑

N=1

eµNe−lNβZN (β, t) (3.2)

Due to the Cauchy identity the last equation can be rewritten in terms of a functional
Fredholm determinant:

τ̃l[t, µ] =

∞
∑

N=1

eµN
e−lNβ

N !

∮ N
∏

j=1

dzj
2π

eU(zj ) det
k,m

1

eβ/2zm − e−β/2zk

= Det(1 + eµ−βlK̂),

(3.3)

where the operator K̂ is defined as

(K̂f)(z) =

∮

dz

2π

e
1
2
[U(z)+U(z′)]

eβ/2z − e−β/2z′
f(z′).
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It is convenient to modify slightly the definition of the tau-function:

τl[T, µ] = τ̃l[t, µ] exp(−
∑

n>0

ntnt−n), (3.4)

where we introduced new couplings Tn by:

U(z) =
∑

n6=0

znTn(e
−nβ/2 − enβ/2) (3.5)

so that the old couplings are expressed through the new ones as:

tn = Tn(e
−nβ/2 − enβ/2). (3.6)

We also note that
τl[T, µ] = τ0[T, µ− βl] ≡ τ [T, µ− βl]. (3.7)

Using, for example, the general construction of the paper [19] for our particular tau-
function we conclude that it is a particular case of the tau-function of Toda hierarchy. It
satisfies the Toda chain equations. Namely let us introduce a new function

eΦl =
τl−1

τl
=
τ [T, µ− β(l − 1)]

τ [T, µ− βl]
(3.8)

and the notations
ix± =

√
2T±1 = ±(eβ/2 − e−β/2)−1t±1.

The first equation of the Toda hierarchy can be written as

∂

∂x+

∂

∂x−
Φl +

1

2

(

eΦl−Φl+1 − eΦl−1−Φl
)

= 0 (3.9)

Due to the symmetry θ → −θ of the measure our tau-function depends only on the
variable x =

√
x+x−. The corresponding reduced equation is:

Φ′′
l +

1

x
Φ′
l +

1

2

(

eΦl−Φl+1 − eΦl−1−Φl
)

= 0, (3.10)

where the derivatives are taken with respect to x.
For the function ψl = Φl − Φl+1 = log

τl−1τl+1

τ2
l

the Toda equation reads:

ψ′′
l +

1

x
ψ′
l +

1

2

(

2eψl − eψl−1 − eψl+1
)

= 0 (3.11)

The tau-function, as well as Φl(0) and ψl(0), can be determined for x = 0 using the
methods of [14] (for x = 0 the tau-function is the grand canonical partition function of the
matrix oscillator in the singlet representation of the U(N) group, which is the same as the

9



partition function of N fermionic oscillators) and it can serve as a boundary condition for
the Toda chain equation. For example, one finds from (2.22)

eψl(0) =
1 + e−β(µ−l−3/2)

1 + e−β(µ−l−1/2)
. (3.12)

Let us also note that ψl(x) is analytic in x2 at the origin, which gives the second initial
condition ∂xψl|x=0 = 0.

Using these equations and the boundary conditions we expand the partition function
(2.24) in powers of λ2. In the first order:

1

2N2

∂2

∂λ2
logZ =

1 − e−Nβ

1 − e−β
(3.13)

This is the simplest correlation function 〈trΩ+trΩ〉 of the holonomy wilson loop in
our original model.

The large N limit of the initial partition function (2.24) or (3.1) can be studied in
terms of a special scaling limit of these Toda equations (since µ ∼ N in the legendre trans-
form from canonical to microcanonical partition function), similar to the KP-hierarchy
approach of a simpler zero-dimensional model of paper [5]. We leave this study to a future
publication.

4. Saddle point equations in the large N limit

In this section we will investigate the large N limit, which is the most interesting from
the point of view of applications. Since the potential λ cos θ is symmetric, we assume that
the saddle-point spectral density

ρ(θ) =
1

N

N
∑

i=1

δ(θ − θi)

is supported by the symmetric interval [−a, a] with 0 < a ≤ π. The function ρ(θ) is
determined by the saddle point equation

2λ sin θ =

∫ a

−a

−dθ′ρ(θ′)
(

2 cot
θ − θ′

2
− cot

θ − θ′ + iβ

2
− cot

θ − θ′ − iβ

2

)

(4.1)

where we temporarily rescaled βǫ→ β. This equation is equivalent to a functional equation
for the resolvent

W (θ) =
1

2

∫ a

−a

dθ′ρ(θ′) cot
θ − θ′

2
, (4.2)

namely
λ sin θ = W (θ + i0) +W (θ − i0) −W (θ + iβ) −W (θ − iβ) (4.3)

where −a < θ < a, supplied with the normalization condition for the density

∮

C

dz

2πi
W (z) = 1 (4.4)

10



where the contour of integration C circles interval [−a, a].
It is easier to solve this equation for the function

ζ(z) = −2 cos z + 4
sinh β

2

λ

W (z + iβ/2) −W (z − iβ/2)

i

= −2 cos z − 4 sinh2 β
2

λ

∫ a

−a

dθρ(θ)

cos(z − θ) − cosh β
2

(4.5)

which satisfies the simpler equation

ζ(θ + i
β

2
) = ζ(θ − i

β

2
) (θ ∈ [−a, a]). (4.6)

The solution can be formulated in terms of standard elliptic functions (see Appendix
A for the derivation). We give it in the form which is convenient for the limit of small β
(or, equivalently, finite β and ǫ→ 0). The function ζ(z) will be given in a parametric form

ζ = ζ(v), z = z(v)

where the parameter v belongs to the rectangle −π
2
< Rev < π

2
, −π

2
τ < Imv < π

2
τ . The

elliptic modulus q and the nome k2

q = e−πK/K
′

= eiπτ

k =

∞
∏

n=1

(

1 − q2n−1

1 + q2n−1

)4 (4.7)

are given below as functions of β and λ.
The solution (in parametric form) is:

ζ(v) =
ζ4f

2(v) − ζ3f
2(v

∞
)

f2(v) − f2(v
∞

)
, (4.8)

where f(v) is a standard elliptic function

f(v) =
2K ′

π
dn

(

2K ′

π
v, k′

)

= 1 + 4

∞
∑

n=1

qn

1 + q2n
cos(2nv), (4.9)

and

z(v) = i
β

π
v + i ln

ϑ1(v + v
∞

)

ϑ1(v − v
∞

)

= i
β

π
v + i ln

sin(v + v
∞

)

sin(v − v
∞

)
+ 4i

∞
∑

n=1

q2n

1 − q2n
sin 2nv

∞
sin 2nv

n
.

(4.10)

The modulus τ is proportional to the ratio of v
∞

and β

τ = 4i
v
∞

β
, q = e−

4π
β
v
∞ , (4.11)

11



and is determined by

2π

λ
sinh(β/2) =

γ

2
E(k) − ζ4ζ5 + ζ1ζ3

2γ
K(k). (4.12)

The parameters ζ1, ..., ζ5 of the solution are expressed as functions of λ and v
∞

as follows:

ζ4 − ζ3 = −2e
β

π
v
∞

f ′(v
∞

)

f(v
∞

)

θ1(2v∞
)

θ′1(0)
,

ζ4 + ζ3 = −e
β

π
v
∞

θ′1(0)

(

f ′′(v
∞

)

f ′(v
∞

)
− f ′(v

∞
)

f(v
∞

)
+ 2θ′1(2v∞

) +
β

π
θ1(2v∞

)

)
(4.13)

ζ1 =
ζ3α

2 − ζ4k
2

α2 − k2
, ζ5 =

ζ4 − ζ3α
2

1 − α2
, (4.14)

α =
f(v

∞
)

1 + 2
∑∞
n=1 q

n2 , γ =
(ζ4 − ζ3)α

√

(1 − α2)(α2 − k2)
(4.15)

Finally, it is useful to know the value ζ2 of the function ζ(z) at the branch point z = iβ2 +a

ζ4 − ζ2
γ

=
β

2π
+

β

v
∞

∞
∑

n=1

qn

1 − q2n
sin 2nv

∞
. (4.16)

5. Scaling limit

5.1. The resolvent in the scaling limit

Let us recall that the parameter β is the product of the physical time and the twisting
parameter ǫ. Therefore the twisting is removed in the limit β → 0. If β → 0 with λ fixed,
we reproduce the zero-dimensional case considered in [5]. In this section we will consider
a nontrivial limit where both λ and β go to zero so that the ratio λ/β remains finite. In
this limit, all observables depend only on the ratio λ/β, and this is why we call it “the
scaling limit”. Note that in the thermodynamical limit N → ∞, the two limits λ→ 0 and
ǫ→ 0 will not commute.

In the scaling limit we have Imτ >> 1, K ≈ ln 4
k′

, K ′ = π
2
(1 + k′2

4
) and, neglecting

the exponentially small terms, we get

ζ =
ζ4 + ζ3

2
− ζ43

16q

1

sin(v + v
∞

) sin(v − v
∞

)

z = i
β

π
v + i ln

sin(v + v
∞

)

sin(v − v
∞

)
.

(5.1)

where (ζik ≡ ζi − ζk)

ζ43 = 16qe
β

π
v
∞ sin2 2v

∞

ζ4 + ζ3
2

= −e β

π
v
∞ (2 cos 2v

∞
+
β

π
sin 2v

∞
).

(5.2)
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When the regularization is removed, i.e. in the limit β → 0, a sensible limit is obtained
when λ tends to zero linearly with β. The scaling coupling constant β/λ is obtained from
(4.12) after substituting E = 1, K = 2π

β v∞
:

2π
β

λ
= 2 sin 2v

∞
− 4v

∞
cos 2v

∞
. (5.3)

5.2. The free energy in the scaling limit

The derivative of the free energy

F (λ, β) = lim
1

N2
lnZN (λ, β)

is proportional to the first moment of the spectral density

F ′
λ(λ, β) =

∫ a

−a

dθρ(θ) cosθ, (5.4)

which can be evaluated by looking at expansion of ζ(z = π + iy), at y → ∞,

ζ(z) = ey +

∞
∑

k=1

ζ(k) e−(2k+1)y.

We have

F ′
λ(λ, β) =

λ

8 sinh2 β
2

[ζ(1) − 1]. (5.5)

The coefficient ζ(1) is evaluated in the scaling limit β → 0 in Appendix A. This allows us
to write an explicit expression for the free energy in the limit β → 0:

F ′
λ(λ/β) =

λ

4πβ
(4v

∞
− sin 4v

∞
), π

β

λ
= sin 2v

∞
− 2v

∞
cos 2v

∞
. (5.6)

This expression for the free energy is universal in a certain sense: if one deforms the
potential (2.23) to a more general one:

λTr

∞
∑

n=−∞

tnΩ
n, (5.7)

then the scaling limit of the free energy will have the same form (5.6), where λ will be

substituted by some function of the couplings λ̃(g1, g2, · · ·). The universal form of the free
energy can only change if we tune the couplings gn to some multicritical point.

The corrections to the eq. (5.6) are of two kinds: power-like corrections and exponen-
tially small terms of the type

q = e−4πv
∞
/β.

In the limit λ→ ∞ we have q = exp−
(

24π4

λβ2

)1/3

. These terms are of course invisible com-

pared with the power-like corrections but they imply the existence of essential singularity
in the β → 0.

If we return to the original notations in terms of β,ǫ and λ we conclude from (5.6) that
F (λ, β, ǫ) = ǫλf(λ/(βǫ)). Hence the principal ∼ N2 correction to the free energy tends to
zero in the limit ǫ → 0 (when we recover the original unperturbed reduced SYM theory).
On the other hand, as we will see below from (5.6), there is no regular expansion in powers
of ǫ in the weak coupling phase which signifies that there is an essential singularity at the
origin of this coupling and, correspondingly, in the moduli space of our theory.
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5.3. The Gross-Witten phase transition and the strong coupling phase

The matrix integral we are considering has qualitatively the same phase structure as
the U(∞) gauge theory on a two-dimensional sphere. The weak coupling phase considered
above, describes the range of couplings λ > λc where

λc =
1 − e−β

ǫ
(5.8)

is determined by from the condition a = π, i.e. that the two endpoints of the cut meet on
the unit circle. (Eq. (5.8) follows from (5.3) with v

∞
= π/2; the length of the cut as a

function of λ is given in Appendix A.) The singularity near this critical point is as usual
of third order.

The strong coupling solution is obtained by expanding the spectral density and the
kernel in a Fourier series

ρ(θ) =
1

2π

∞
∑

n=0

ck cos(kθ).

cot
θ + i0

2
+ cot

θ − i0

2
− cot

θ + iβ

2
− cot

θ − iβ

2
= 4

∞
∑

k=1

[1 − e−kβ ] sin(kθ)

∫ π

−π

− dθ′ρ(θ′) cot
θ − θ′

2
=

∞
∑

k=1

ck sin(kθ)

It is therefore clear that only the c0 term of the expansion of the spectral density has
to be retained. One finds

ρ(θ) =
1

2π

(

1 +
λ

1 − e−β
cos θ

)

for 0 < λ < λc = 1 − e−β . (5.9)

For the free energy we find then:

F ′
λ =

∫ π

−π

dθρ(θ) cosθ =
1

2

λ

1 − e−β
for 0 < λ < λc (5.10)

In the scaling limit ǫ → 0 we obtain: F ′
λ = 1

2
λ
β for λ < β. At the critical point λc = β

we have F ′
λ|λ=β = 1

2 and F ′′
λ |λ=β = 1

2β . A simple calculation using eq. (5.6) gives in the

weak coupling phase λ > λc the same values of first two derivatives of the free energy at
the critical point. This means that we have, as usually, the 3-rd order Gross-Witten phase
transition. Note that in the limit β → ∞ our model reduces indeed to the one-plaquette
model originally studied by Gross and Witten [20].

5.4. Reduction to the zero-dimensional theory: β << λ

In this limit the theory appears to be the zero-dimensional reduction of CN = 1 SYM
studied in [5]. The integral (2.24) reduces (after the rescaling θ → βθ) to a simpler integral:

ZN (β, λ) =
2πN

N !

β

2π

N

eNλ
∫ N
∏

k=1

dθk
2π

e−
1
2
Nλβ2θ2k

∏

i6=j

(θi − θj)

(θi − θj + i)
(5.11)
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This model was studied in [6] and later in [5].
We find from (5.6) the following expansions in half-length of the cut a = 2v

∞
:

F ′
λ = 1 − a2

10
+

a4

4200
+ O(a6) (5.12)

β

λ
=
a3

3π
(1 − a2

10
) + O(a7) (5.13)

This gives the following asymptotics for the free energy:

F (β, λ) = λ

[

1 − 3

10

(

3πβ

λ

)2/3

− 27

1400

(

3πβ

λ

)4/3

+O

(

β2

λ2

)

]

(5.14)

The first term of this expansion matches the asymptotics of big λ obtained in [5] for the
integral (5.11) in the large N limit. The next terms are not supposed to match with
[5] since we already used the scaling limit expression of the free energy with the finite
compactification radius β.

6. Conclusions

Let us outline the main results of the paper:
1. We consider a topological sector of the one-dimensionally reduced N = 1 SYM4 theory
on the light-cone time circle with a a special massive perturbation. Using Wittens non-
abelian localisation principle [11], we represented the partition function with periodic b.c.
in terms of a solvable matrix quantum mechanics (twisted matrix oscillator).
2. We find the integrability properties of this model relating it to the Toda hierarchy. The
generating functional as a function of its parameters satisfies the Toda chain equation.
3. In the large N limit we find the exact solution of the model: the generating functional is
parametrized in terms of elliptic functions. We find the Gross-Witten type phase transition
and identify its location. The strong coupling solution is also found.
4. An interesting model corresponds to the analytical continuation β → iβ (inverted
matrix oscillator) being known to have the properties of the c = 1 non-critical strings.
5. In the scaling limit of vanishing perturbation we find a simple universal (with respect
to certain deformations of parameters of the generating functional) expression for the free
energy and Wilson loop correlators along the light-cone circle. Its strong compactification
limit restores similar results for the completely reduced N = 1 SYM4 considered in [5].

Some remaining problems:
1. We need further understanding of the space time symmetries of the model and of the
correlators corresponding to our generating functional.
2. The representations similar to the eq.(2.24) for the SYM4 can be found also for the
SYM6 and SYM10 reduced to the light-cone time circle: we just have to take the cor-
responding eigenvalue integrals for the partition functions in the paper [5]and substitute
there the rational functions by trigonometric ones. Unfortunately, we cannot apply the
powerful methods used here to those models: we don’t know any relation of them to the
integrable hierarchies and we cannot solve exactly the large N saddle point equation. On
the other hand, it seems to be possible to investigate this saddle point equation in the
scaling limit similar to tha used in the present paper.

Another interesting question is whether two prescriptions for the contour integration
with respect to the eigenvalues of φ coincide for the infinite N in some part of the phase
space of parameters ǫβ and λ. It is clear that they give different answers in the strong
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coupling phase λ < λc(β) (since they are already different for λ = 0). As for the weak
coupling phase λ > λc(β) of our large N solution (which is not even analytical at λ = 0), it
is possible that the saddle point approximation does not distinguish between two different
prescriptions of integration over φ(t) (contour integration over the Cartan subalgebra, on
the one hand, and integration over θ’s in the finite interval [0, 2π], on the other hand).
This hypothesis is to be verified. A weaker version of it could be the coincidence of two
prescriptions in the scaling limit (eq. (5.6)).
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Appendix A. Solution of the saddle point equations

A.1. The function z = z(ζ) as an elliptic integral

It follows from the integral representation of ζ(z) that it is real when z ∈ IR, iIR, iIR±π,
satisfies

ζ(z) = ζ(z + 2π) = ζ(−z) = ζ(z̄) (A.1)

and by (4.6) is also real along the interval [ i2β−a, i2β+a]. Therefore this function defines

a map of the half strip 0 < Rez < π, Imz > 0 with a cut [ i
2
β, i

2
β + a], to the upper half

plane Imζ > 0 (Fig. 1). The inverse map z = z(ζ) is given by the Schwarz-Christoffel
formula (see, e.g. [21]):

z = i

∫ ζ

ζ4

dt (t− ζ2)

Y (t)
(A.2)

where
Y (t) =

√

(t− ζ1)(t− ζ3)(t− ζ4)(t− ζ5) . (A.3)

By construction, the map (A.2) acts on the special points ζ1 < ζ2 < ζ3 < ζ4 < ζ5 and ∞
as is shown in the two first coloumns of Table 1.

The values of ζ at the special points of the map are determined as functions of β and
λ by the assymptotics of ζ(z) at infinity. The expansion of the function (4.5) at z → ∞
contains only odd powers of eiz. If we approach infinity as z = π + iy, y → ∞, the
asymptotics of ζ(z) is

ζ+(y) ≡ ζ(π + iy) = ey +
∞
∑

n=0

ζ(2n+1)e−(2n+1)y (A.4)

where

ζ(1) =

(

1 +
8 sinh2 β

2

λ

∫ a

−a

dθρ(θ) cos θ

)

, (A.5)

etc.
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A.2. Elliptic parametrization of the solution

The map (A.2) and the condition (4.4) can be expressed explicitly in terms of standard
elliptic integrals (see [22], 256.02 ) with parameters

k =

√

ζ54ζ31
ζ53ζ41

, k′ =
√

1 − k2 =

√

ζ43ζ51
ζ53ζ41

(A.6)

γ =
√

ζ53ζ41, α2 =
ζ54
ζ53

, ν = arcsin

√

ζ41
ζ51

(A.7)

where the notation ζij = ζi − ζj is used. Namely

z(ζ) =
2ζ43
γ

(

Π(ϕ, α2, k) +
ζ32
ζ43

F (ϕ, k)

)

ϕ = arcsin
1

α

√

ζ − ζ4
ζ − ζ3

,

(A.8)

and
2π

λ
sinh(β/2) =

γ

2
E(k) − ζ4ζ5 + ζ1ζ3

2γ
K(k). (A.9)

It is convenient to introduce as a parameter the elliptic amplitude u related to the angle
ϕ as snu = sinϕ

u = i

√
ζ53ζ41
2

∫ ζ

ζ4

dt

Y (t)
= F (ϕ, k), snu = sinϕ =

1

α

√

ζ − ζ4
ζ − ζ3

. (A.10)

Then the function

ζ(u) =
ζ4 − ζ3α

2sn2u

1 − α2sn2u
(A.11)

maps the upper ζ-half-plane is mapped to the rectangle 0 ≤ Reu ≤ K, 0 ≤ Imu ≤ K ′ with
K and K ′ being the complete elliptic integrals associated with the moduli k and k′. The
special points ζ = ζ1, . . . , ζ5 and ∞ correspond to the points u1, . . . , u5 and u∞ along the
boundary of the rectangle as is shown in Table 1. Note that

1

α
= sn(u∞).

ζ z u v

−∞ +i∞ u∞ + i0 v∞ + 0

ζ1
i
2β K + iK ′ π

2

ζ2
i
2
β + a u2 v2

ζ3
i
2β iK ′ π

2 (1 + τ)

ζ4 0 0 π
2
τ

ζ5 π K 0

+∞ π + i∞ u∞ + i0 v∞ − 0
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Table 1. The values of z, ζ, u and v at the special points of the map.

The function z(u) defined by the integral (A.2) reads, in the parametrization (A.10),

z(u) =
2ζ43√
ζ53ζ41

(
∫ u

0

du

1 − α2sn2u
+
ζ32
ζ43

u

)

. (A.12)

We will express the integral in (A.12) in terms of Jacobian elliptic functions. Since the
point u∞ is between u5 and u1), it has the form

u∞ = K + iξ, 0 < ξ < K ′. (A.13)

We find, using eq. 433.01 of [22],

z(u) = i ln
H1(u+ iξ)

H1(u− iξ)
+
u

K

[

2ζ42√
ζ53ζ41

K − πΛ0(ν, k)

]

(A.14)

where H1(u) is a standard Jacobian elliptic function and

Λ0(ν, k) =
2

π
[(E −K)F (ν, k′) +KE(ν, k′)]

= i
H ′

1(iξ)

H1(iξ)
,

(

ν = arcsin

√

ζ41
ζ51

= arcsin

√
α2 − k2

k′

)

is known as the Heuman’s Lambda function. The condition z(iK ′) = z(K+iK ′) is satisfied
only if the coefficient in front of the linear term in u is zero, hence the condition

2ζ42√
ζ53ζ41

K = πΛ0(ν, k) (A.15)

From H1(u+ iK ′) = e
−iπu

K H1(u− iK ′) we find

z(iK ′) = i
π

K
ξ

which allows to determine ξ:

ξ =
K

2π
β. (A.16)

The final expression for z(u) is therefore

z(u) = i ln
H1(u+ i K2πβ)

H1(u− i K2πβ)
. (A.17)

A.3. The dual modulus

We are going to write our solution in a form, which will allow to perform painlessly
the scaling limit β → 0. In this limit a43 ≈ −iβ dζdz → 0 and, according to (A.6), k′ ≈
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4e−K → 0. Therefore it is more convenient to expand the solution in the dual modular
parameter

q = e−πK/K
′

= eiπτ (A.18)

and use the variable v

v =
π

2
τ − i

π/2

K ′
u

as a parameter. The elliptic nome is expressed as a function of q as

k =
∞
∏

n=1

(

1 − q2n−1

1 + q2n−1

)4

(A.19)

The parameters corresponding to the special points of the map are given by the last
coulumn of Table 1. The parameter of infinity is equal, by (A.13) and (A.16), to

v
∞

=
K

4K ′
β = − iτ

4
β (0 < v

∞
<
π

2
). (A.20)

The domains of the four variables z, ζ, u and v are depicted in Fig. 1.
We will write the solution as a function of the parameters v

∞
= v

∞
(λ) and β. It will

be written as a series in the expansion parameter q

q = e−
4π
β
v
∞ = eiπτ , τ = 4i

v
∞

β
. (A.21)

The expansion of the function ζ(u) is obtained by plugging in eq. (A.11) the representation
of sn in terms of the dual modulus

1

snu
= dn

(

2K ′

π
v, k′

)

=
π

2K ′
f(q) (A.22)

f(q) =

[

1 + 4

∞
∑

n=1

qn

1 + q2n
cos(2nv)

]

. (A.23)

The function z(v) reads, in terms of the standard elliptic functions associated with the
dual modulus,

z(v) = − 4

πτ
v
∞
v + i ln

ϑ1(v + v
∞

)

ϑ1(v − v
∞

)

= i
β

π
v + i ln

sin(v + v
∞

)

sin(v − v
∞

)
+ 4i

∞
∑

n=1

q2n

1 − q2n
sin 2nv

∞
sin 2nv

n
.

(A.24)

Finally, (A.15) expands as

4v
∞

β

ζ42√
ζ53ζ41

=
2

π
v
∞

+
ϑ′4(v∞

)

ϑ4(v∞
)

=
2

π
v
∞

+ 4

∞
∑

n=1

qn

1 − q2n
sin 2nv

∞
. (A.25)
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In order to fix completely the solution, let us consider the vicinity of the point v
∞

and
compare the explicit dependence ζ = ζ(z) with the asymptotics (A.4)at z → π+ i∞. The
half-line

z = π + iy (y > 0)

is parametrized by the interval 0 < v < v
∞

. In the left vicinity of the point v
∞

v = v
∞

− ǫ (ǫ > 0)

the functions z = π + iy and ζ have the form

ey =
A

ǫ
+B + Cǫ, ζ =

P

ǫ
+Q+Rǫ

with

P = −ζ43
f(v

∞
)

2f ′(v
∞

)
, Q = −P

(

2
ζ4
ζ43

f ′(v
∞

)

f(v
∞

)
− 1

2

f ′(v
∞

)

f(v
∞

)
− 1

2

f ′′(v
∞

)

f ′(v
∞

)

)

,

A = e
β

π
v
∞

θ1(2v∞
)

θ′1(0)
, B = −A

(

β

π
+
θ′1(2v∞

)

θ1(2v∞
)

)

.

The leading asymptotics (A.4) of ζ(z) is achieved if A = P and B = Q, which yields
(4.13).

¿From (A.25) we get

ζ42 =
√

ζ53ζ41
β

2π

(

1 + 2πq
sin 2v

∞

v
∞

)

(A.26)

(Note that the relation 2ζ2 = ζ1 + ζ3 + ζ4 + ζ5 is satisfied.)
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Fig.1: The domains of the variables z, ζ, u, v.

A.4. The limit of large τ (small β)

In this limit, which corresponds to the scaling limit discussed in Section 4, the v-
rectangle can be replaced by an infinite half-strip and elliptic functions degenerate to
trigonometric functions. After substituting E = 1, K = 2π

β v∞
in the normalization condi-

tion (A.9), we get in this limit

4π

λ
sinh

β

2
e−

β

π
v
∞ = 2 sin 2v

∞
− 4v

∞
[cos 2v

∞
− β

2π
sin 2v

∞
]. (A.27)

The parameters of the solution are obtained from

P =
ζ43
16q

1

sin 2v
∞

, Q = ζ4 + P cot 2v
∞
, R = P

(

2

3
+ cot2 2v

∞

)
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A = e
β

π
v
∞ sin 2v

∞
, B = −A

(

cot 2v
∞

+
β

π

)

, C = A

(

−1

3
+
β

π
cot 2v

∞
+

β2

2π2

)

.

From A = P we get

ζ43 = 16qe
β

π
v
∞ sin2 2v

∞
(A.28)

and B = Q implies

ζ3 + ζ4
2

= −e β

π
v
∞ (2 cos 2v

∞
+
β

π
sin 2v

∞
) = −

(

e
β

π
v
∞ sin 2v

∞

)′

v
∞

. (A.29)

It is useful to note that

ζ53 + ζ54
ζ41 + ζζ1

= cot2 v
∞
,

ζ42 + ζ32
ζ41 + ζ31

=
β

2π
cot v

∞
,

ζ43
ζ41 + ζ31

= 16q cos2 v
∞
.

Finally, the coefficient ζ(1) is obtained as

ζ(1) = A(R− C)

=1 + 2β2

(

4v
∞

− sin 4v
∞

4πβǫ
+

4v2
∞

− sin2 2v
∞

− 2v
∞

sin 4v
∞

8π2
+ O(β)

)

.
(A.30)

A.5. The length of the cut

The branch point of the Riemann surface of ζ(z) is at z2 = z(v2), where ζ(v2) = ζ2.
Taking the limit of (A.26),

ζ42 =
β

π
sin 2v

∞
e

β

π
v
∞ (A.31)

we rewrite the solution (5.1) in the form

z = i
β

π
v + i ln

cot v + cot v
∞

cot v − cot v
∞

cot2 v =
(ζ4 − ζ) cot v

∞
+ 2π

β ζ42

(ζ4 − ζ) tan v
∞

− 2π
β ζ42

.

(A.32)

Putting v = v2 in (A.32), we get

a = −β
π
δ2 + i ln

tanh δ2 − i cot v
∞

tanh δ2 + i cot v
∞

,

tanh2 δ2 =
1 − β

2π cot v
∞

1 + β
2π tan v

∞

and finally

cos(a+
β

π
δ2) = cos 2v

∞
− β

2π
sin 2v

∞
≈ cos 2v

∞
,
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which allows us to evaluate a

a ≈ 2v
∞

− β

π
δ2, δ2 ≈ ln

(

4π

β
sin 2v

∞

)

. (A.33)

Appendix B. Direct scaling analysis of the equations on parameters of the large
N solution

Six conditions on the length of the cut, a, and the 5 parameters of the map z 7→ ζ(z)
(which we denote here by a1, . . . , an instead of ζ1, . . . , ζn) are

(1) a =

∫ a3

a2

dt
t− a2

|Y (t)|

(2) 0 =

∫ a3

a1

dt
t− a2

|Y (t)|

(

resp. π =

∫ a5

a4

dt
t− a2

|Y (t)|

)

(3) 1
2β =

∫ a4

a3

dt
t− a2

|Y (t)|
(4) a1 + a3 + a4 + a5 = 2a2

(5) lna5 =

∫ ∞

a5

dt

(

t− a2

Y (t)
− 1

t

)

(a5 > 0),

(6)
4π

λ
sinh(β/2) =

∫ a5

a4

dζ
ζ(ζ − a2)

|Y (ζ)|

(B.1)

with Y (t) as in (A3) (where the ai were denoted by ζi). While the first three conditions
are implied by the geometry of the map ζ, conditions (4) and (5) follow when comparing
the (from (4.5)) known asymptotics of ζ, e.g. for z = π + iy (y → ∞; cp. (A4)), to the
one implied by the integral representation (A2) which says that

y = ln ζ+ +

(
∫ ∞

a5

dt

(

t− a2

Y (t)
− 1

t

)

− lna5

)

− 1

ζ+

(

1

2
(a1 + a3 + a4 + a5) − a2

)

−
∞
∑

n=2

bn
ζn+

(B.2)

with b2 = 1
16

(a2
1 + a2

3 + a2
4 + a2

5 −
∏

2 6=i6=j 6=2 aiaj) already determining
∫ +a

−a
dθ ρ(θ) cos(θ).

With

aij = ai−aj , γ =
√
a53a41, ν = arcsin

√

a41

a51
k =

√
a54a31

γ
, k′ =

√

1 − k2 =

√
a43a51

γ
,

(B.3)
the conditions (2), (3), (5) and (6) read

(2) K(k) =
a43

a42
Π

(

a31

a41
, k

)

=
a51

a52
Π

(

−a31

a53
, k

)

= −a42

a32
Π

(

a54

a53
, k

)

+
πγ

2a32

(B.4)
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(3)
1

2
β =

2a31

γ
Π

(

a43

a41
, k′
)

− 2a21

γ
K(k′)

= −2a54

γ
Π

(

a43

a53
, k′
)

+
2a52

γ
K(k′)

(B.5)

(5)
2a54

γ
Π

(

ν,
a43

a53
, k′

)

− 2a52

γ
F (ν, k′) = ln

(

a53 + a41

4

)

(B.6)

(6)
2π

λ
sinh(β/2) =

γ

2
E(k) − a4a5 + a1a3

2γ
K(k). (B.7)

The scaling limit can be obtained by direct analysis of the equations (B.1) in the limit
β → 0, a→ a0 > 0. Letting

a43 = u, a32 = v, a53 = w,

ũ =
u

a31
, ṽ =

v

a31
, w̃ =

w

a31
,

one has

(3) β = 2

∫ 1

0

ds
ṽ + ũs

√

s(1 − s)(w̃ − ũs)(1 + ũs)
(B.8)

=
2v

wa31

∫ 1

0

ds
1 + u

v s
√

s(1 − s)(1 − u
ws)(1 + u

a31
s)

(1) a = ṽ

∫ 1

0

ds
1 − s

√

s(s+ ũ
ṽ
)(w̃ + ṽs)(1 − ṽs)

(B.9)

=
v

wa31

∫ 1

0

ds
1 − s

√

s(s+ u
v )(1 + v

ws)(1 − v
a31
s)

(2)

π =
v√
wa31

∫ 1

u/w

ds
1 + w

v s
√

s(1 − s)(s− u/w)(1 + sw̃)

≈ 2ṽ√
w̃
K(r) +

√
w

∫ 1

0

ds
√

(1 − s)(1 + sw̃)

(B.10)

where r2 = (1 + ũ)−1(1 − u
w

) ≈ 1 − ũ( w̃+1
w̃

).
In order to have β → 0 and a finite, we must have u, v → 0,

ǫ̃ ≡ 2ṽ√
w̃

→ 0. (B.11)

If one wants to keep, according to (B.9), a finite in this limit, u/v must go to zero such
that

−ǫ̃ ln
u

v
= 2a0 (B.12)
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finite, i.e. u→ 0 exponentially faster than ṽ/
√
w̃ (and the ≈ sign in (B10) and thereafter,

means that such terms are dropped).
One also finds that u

w → 0 (even if w → 0) as if not, the r.h.s. of (B.10) would go to
zero. So β → 0, a→ a0 > 0 implies

u, v → 0,
u

v
→ 0,

u

w
→ 0 (B.13)

together with (B.11), (B.12), and
β ≈ ǫ̃π. (B.14)

In order to extract more quantitative information from (B.10) consider the equivalent
condition (B.4),

(ũ+ ṽ)K(k) = ũΠ

(

1

1 + ũ
, k

)

(B.15)

where

k2 =
(

1 − u

w

)

(

1

1 + ũ

)

<
1

1 + ũ
. (B.16)

As ũ → 0, k′2 = 1 − k2 ≈ u
w − ũ → 0 and we can use some standard expansions for the

third elliptic integral appearing in (B.15), e.g. ( 412.01 of [BF])

Π

(

1

1 + ũ
, k

)

= K(k) +
π

2

1√
1 + ũ

1 − Λ0(θ, k)
√

ũ
1+ũ

1
1+ũ

ũ
w̃

(B.17)

where

sin θ =

√

√

√

√

ũ
1+ũ

u
w + ũ

1+ũ

≈
√

w̃

w̃ + 1
(B.18)

and the first terms in the expansion of Heumann’s Lambda function Λ0(θ, k) (904.00 of
[BF]) are

Λ0(θ, k) =
2

π

(

Eθ − 1

4
(2K − E)k′2(θ − sin θ cos θ) + ...

)

≈ 2

π
arcsin

√

w̃

w̃ + 1
. (B.19)

Inserting (B.18) into (B.15) and using

K(k) ≈ −1

2
ln k′2 + ln 4 for k′ → 0

one finds:

ṽ

(

−1

2
ln

(

u

w
+

ũ

1 + ũ

)

+ ln 4

)

≈ π

2

√
w̃

(

1 − 2

π
arcsin

√

w̃

1 + w̃

)

,

and, using (B.14)
u

w
+

ũ

1 + ũ
≈ 16e

− 2π2

β
(1− 2

π
arcsin

√

w̃
w̃+1

)
(B.20)
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ũ ≈ 16w̃

1 + w̃
e
− 2π2

β

(

1− 2
π

arcsin
√

w̃
w̃+1

)

. (B.21)

Apart from converting ln ũ terms into w̃, β dependencies, all other ũ-dependencies are
dropped, due to this exponential decay (B.21). Eq. (B.1.5) can then be stated explicitly
as an expression for a31 in terms of β and w̃ as follows:

lna5 ≈
∫ ∞

0

ds

(

1
√

(s+ a31 + w)s
− 1

s+ a3 + w

)

+
v

w

∫ ∞

1

ds

s
√

(s− 1)(β + 1
w̃ )

= lim
Λ→∞

(

ln
(

2
√

s2 + sa51 + 2s+ a51

) ∣

∣

∣

Λ

0
+ ln

a5

Λ

)

+
v

w

√
w̃

(

arcsin

(

1 − w̃

1 + w̃

)

+
π

2

)

= ln 4 + ln
a5

a51
+

β

2π

(

arcsin

(

1 − w̃

1 + w̃

)

+
π

2

)

(B.22)
Hence

a31 ≈ 4

1 + w̃
e

β

4 [1+ 2
π

arcsin( 1−w̃
1+w̃ )]. (B.23)

The last equation needed to calculate the ai as functions of β → 0 and λ is (B.7), resp.

4π sinh(β/2)

λ
=
√

w(a31 + u)E(k) +
2va3√
wa31

K(k) (B.24)

as γ2 = w(a31 + u) and (due to (B.1.4))

a4a5 + a1a3 = −2va3. (B.25)

(B.24) can be simplified substantially even without neglecting ũ-terms, by noting that
(B.15), (B.17) imply

1

π

2v√
wa31

K(k) =
√

1 + ũ [1 − Λ0(θ, k)]. (B.26)

With
a3

2
=
a31

4
(1 − 2ṽ − w̃ − ũ), ṽ =

β

2π

√
w̃ (B.27)

one therefore gets

2 sinh(β/2)

λ
=
a31

4

√
1 + ũ

(

2

π

√
w̃E + (1 − 2ṽ − w̃ − ũ)(1 − Λ0)

)

≈a31

4

(

2

π

√
w̃ +

(

1 − β

π

√
w̃ − w̃

)

(

1 − 2

π
arcsin

√

w̃

w̃ + 1

)) (B.28)

which is an (implicit) equation for w̃ as a function of β and λ, when inserting (B.23). For
w̃ → 0 it reads

1 − e−β

λ
≈ 1 − β

π

√
w̃ − 2w̃. (B.29)
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The length of the cut is given by (cp. (B.1.1),(B9))

a→ a0 = π

(

1 − 2

π
arcsin

√

w̃

w̃ + 1

)

(B.30)

The second of the final scaling eqs. (5.6) follows from (B.28) and (B.30) if we neglect
all terms proportional to β or exponentially small terms and use a = 2v∞.

Finally note that the second line of (B.10), via K(r) ≈ 1
2

ln 16w̃
ũ(w̃+1)

implies (B.21)

(shortcutting the argument (B.15–21)), when using

√
w̃

∫ 1

0

ds
√

(1 − s)(1 + sw̃)
=
π

2
− arcsin

1 − w̃

1 + w̃

and
1

2
+

1

π
arcsin

1 − w̃

1 + w̃
=

2

π
arcsin

1√
1 + w̃

= 1 − 2

π
arcsin

√

w̃

w̃ + 1
.

Appendix C. Inverted oscillator: the point β = iπ

An interesting analytical continuation of our model corresponds to the imaginary
values of the generator of Oǫ(2) symmetry of the original supersymmetric model. If we
renormalise ǫ to one it is equivalent to the change β → iβ in (2.24). The corresponding
saddle point equation reads:

2λ sinu =

∫ a

−a

−du′ρ(u′)
(

2 cot
u− u′

2
− cot

u− u′ + β

2
− cot

u− u′ − β

2

)

(C.1)

According to the arguments and results of the paper [14] the inverted twisted matrix
oscillator describes the compactified c = 1 string, or, in other words, the compactified
bosonic field coupled to the 2d quantum gravity. So at least the critical regime of c = 1
string with the typical inverse logarithmic dependence of the physical quantities on the
cosmological coupling should show up at some point. Let us demonstrate it in the case
which we can solve explicitly, namely for β = iπ. The equation (C.1) in this case looks as:

λ

2
sinu =

∫ a

−a

− du′
ρ(u′)

sin(u− u′)
. (C.2)

The spectral density is

ρ(u) =
λ

2π

√

sin2 a− sin2 u.

The normalization condition gives

1 =

∫ a

−a

duρ(u) =
λ

2π

∫ a

−a

du
√

sin2 a− sin2 u =
2λ

π
[E(sina) − cos2 a K(sina)].
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or
E(k) − k′2K(k) =

π

λ
, k = sin a. (C.3)

Consider the limit when the eigenvalues occupy almost the whole interval [−π, π] allowed
by the periodicity: a ∼ π, k2 ≃ 1. In terms of k′ we have the following assymptotics:

E ≃ 1 +
1

2
k′2 log(4/k′) (C.4)

K ≃ log(4/k′) (C.5)

By the use of (C.4)and (C.5)we obtain from (C.3):

k′2 ≃ 2

π

(λ− λc)

| log(λ− λc)|
(C.6)

for λ→ λc = π.
For the simplest physical quantity: the derivative of the free energy we obtain:

F ′
λ =

∫ a

−a

duρ(u) cosu =
λk2

2
(C.7)

from where we obtain the scaling asymptotics typical for the c = 1 noncritical string
discovered in [23]:

F (λ) ≃ π2

4
− 1

4

(λ− λc)
2

| log(λ− λc)|
(C.8)

The considered case β = iπ of the c = 1 matrix model corresponds to the Kosterlitz-
Thouless phase transition point. It would be interesting to study the vicinity of this point
by generalizing our solution to all imaginary β.
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