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N = 2 extended space-time supersymmetry in nine dimensions implies that the BPS states corresponding 
to momentum and winding of either of the type-II superstrings compactified on S’ transform as inequivalent 
supermultiplets. This fact can be checked using world-sheet techniques, and provides the physical basis for the 
connection between IIA superstring theory compactified on a circle of radius R and IIB theory compactified on 
a circle of radius l/R. Aspects of the duality between M-theory compactified on T2 and IIB theory compactified 
on S’ follow from the structure of N = 2, D = 9 supergravity. The coupling of N = 2, D = 9 supergravity to the 

BPS states is also discussed. 

In compactifications of the bosonic string the- 
ory on a circle of radius R, target space dual- 
ity relates the theory obtained at radius R (we 
use string units) to the theory compactified at 
radius l/R [l]. Both the spectrum and the in- 
teractions exhibit a symmetry under R 4 l/R 
combined with an interchange of momentum and 
winding states and a change of sign of the left- 

moving oscillators. This symmetry relates large 
and small distances, so that R can be restricted 
to the interval [l, m) and the theory appears to 

have a smallest length set by the string scale. At 
R = 00 the theory decompactifies while at the 
self-dual point R = 1 the winding and momentum 

states acquire equal masses and gauge symmetry 
enhancement takes place. The heterotic string 
possesses the same kind of duality symmetry [2]. 
In the case of the type-II string theories, the situ- 
ation is different. Duality is not a symmetry, but 
it is expected to interpolate in a continuous man- 
ner between two distinct ten dimensional Lorentz 
invariant asymptotic theories, viz. the IIA and 
IIB superstring theories [3,4]. 

In this contribution, we report on recent work 
[5] done in collaboration with B. de Wit and 
D. Liist. In that paper, a clear physical picture of 
IIA/B duality was obtained from a consideration 
of N = 2, D = 9 space-time supersymmetry. The 
key observation is that, in a compactification of 
either of the type II theories on a generic space- 
time with one compactified coordinate of finite 

radius, the winding and momentum states carry 

different space-time quantum numbers: in fact, 
they constitute inequivalent N = 2, D = 9 super- 
multiplets at any given compactification radius. 

It follows that there are no two radii at which 
the corresponding theories are identical, because 
their respective spectra are inequivalent; thus the 
different theories are parametrized by the radius 

R in the interval (0, co). Duality means that two 
theories that are unrelated in the uncompactified 
space-time can be viewed as different limits in this 

‘moduli space’ of compactified theories. There 
is no symmetry enhancement when the masses 
of momentum and winding states become equal. 
Also, no conclusion can be drawn as to the ex- 
istence of a minimal length from IIA/B duality 
alone. In the following, we summarize the results 

of [5] which lead to the above picture of IIA/B 
duality, and comment on further implications of 
N = 2, D = 9 space-time supersymmetry and su- 
pergravity in the context of M theory/IIB string 
duality [6]. 

Consider the D = 9 supersymmetry algebra in 
an N = 2 Majorana basis, 

{Q: >&PI = (Pr”)crs + Zij h”),p . (1) 

We can decompose the central charge as 

Zii =M[b@+a(coseas +sinOOl)ij], (2) 

where M is the rest mass of the representa- 
tion and ~1,02, ~73 denote the usual Pauli ma- 
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trices. The component proportional to b de- 

fines an SO(2) invariant central charge, while 

the two components proportional to a rotate into 
each other under the action of the automorphism 

group SO(2). 
The possible values for Zij can be obtained 

from a straightforward reduction of the ten- 
dimensional supersymmetry algebra. In the con- 
ventions of [5], the ten-dimensional supersymme- 
try algebra {Q, Q} = --iP~l?~ is converted into 

the nine-dimensional algebra {Q, Q} = -iP,y@ - 
PS T’ll. Hence the sign of the Pg term depends on 
the chirality of the supercharge. The matrix Zij 
is proportional to (~s)~j for IIA theory, where one 
has supercharges of opposite chirality, and pro- 
portional to bij for IIB theory, where the charges 
have equal chirality. 

To exhibit the BPS multiplets in nine dimen- 
sions we diagonalize the matrix (2) by an appro- 
priate SO(2) transformation so that 0 = 0. In 
the rest frame the anticommutator (1) decom- 
poses into four eight-dimensional unit matrices, 
according to the decomposition 8, + 8, + 8, + 8, 
of the thirty-two supercharges, with coefficients 
equal to M times (l+a+b), (l-a-b), (1-a+b) 
and (1 + a - b), respectively. Unitarity requires 
that all of these combinations be non-negative, 
i.e. 1 f a f b 1 0. We have BPS multiplets when- 
ever one of these coefficients vanishes. We distin- 
guish three basic cases (i. e. the smallest multi- 
plets) according to their decomposition with re- 
spect to the rest-frame spin rotation group SO(8): 

.a = fl and b = 0 lead to the 28- 

dimensional multiplet (8, + 8,) x (8, + 8,). 
Note that this multiplet contains fermions 
of mixed chirality. Another characteristic 
feature is the presence of a 56, spin repre- 
sentation. This is the multiplet that com- 
prises the Kaluza-Klein states of IIA super- 

gravity compactified on S’, which are the 
momentum states of the compactified IIA 
string. Therefore this particular multiplet 
will be called the KKA multiplet. 

.a = 0 and b = fl lead to the 28- 
dimensional multiplet (8, + 8,) x (8, + 
8,) (together with the conjugate multiplet). 
Here the fermions have definite chirality 

In 

(their partners in the conjugate supermulti- 

plet carry opposite chirality). Observe also 

the absence of 56, states. This supermulti- 
plet comprises the momentum states of the 
IIB theory and therefore it will be called the 

KKB multiplet. 

fa f b = fl lead to multiplets comprising 

212 states. In string theory, these are mixed 
states containing both winding and momen- 
tum and which have a nonzero oscillator 

number in order to satisfy the mass-shell 
condition. Hence they carry masses of the 
order of the string scale. The smallest mul- 

tiplet associated with the lowest spins de- 
composes as (8,+8,) x (8,+8,) x (8,+8,). 
Again there is a conjugate multiplet when 

changing the signs of a and b. 

the literature one often finds the statement 
the IIA and the IIB theories become indis- 

tinguishable when viewed in a nine-dimensional 

context, because the SO(7) decompositions of the 
HA and IIB massless multiplets coincide. Al- 
though this is true, it is essential to understand 

that the Kaluza-Klein momentum states for the 
two theories remain different in nine dimensions: 

for massive states in nine dimensions, the rest- 
frame SO(8) rotation group coincides with the 
SO(8) helicity group for massless states in ten 
dimensions. 

It is furthermore important that the KKA and 

KKB multiplets differ not only in their spin de- 

composition, but also carry inequivalent charges: 
a KKA supermultiplet carries a nonzero SO(2) 
doublet charge while a KKB supermultiplet car- 
ries the SO(2) invariant charge. These charges are 
mutually exclusive for these multiplets (but not 
for the ‘intermediate’ multiplets with 212 states). 
This inequivalence is crucial for duality between 
the two type-II superstring theories. Indeed, ob- 
taining the other asymptotic theory in the de- 
compactification limit relies on the fact that the 
winding and momentum modes of a given type-II 

theory at a given compactification radius consti- 
tute inequivalent representations and correspond 
to different kinds of string states. 

To see this, consider the two Majorana super- 
charges in type-II string theory, which can be rep- 
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resented as contour integrals over world-sheet op- 

erators: 

Q: =f$ Va(z), Q; = f g I’-&). (3) 

In the canonical q = -l/2 ghost picture the two 
covariant left- and right-moving fermion vertex 
operators Va(z) and Va(Z) are given by [7] (omit- 
ting normal-ordering symbols) 

%(-i/z) (2) = S,(z) exp(- $+)) , 

1/,(-l/2)@) = &W exd-$#@)), (4) 

where 44~) (4(3) is one of the left- (right)- 

moving bosonized superconformal ghosts and 

Z&(z), SO(_?) are the spin field vertex opera- 

tors in the 16 or 16 chiral spinor representa- 
tions of SO(9,l). Note that (4) is valid for 

both IIA and IIB string theory, as we refrain 
from using dotted and undotted indices to indi- 
cate the chirality (it is understood that a pro- 

jection onto the corresponding chiral subspaces 
has been made). The ten world-sheet fermions 

$@(z) can be bosonized in terms of five scalars 

4 as exp(& . q?), with the SO(1,9) vector weights 

XV = (0,. . . ,fl,O,. . .) (thus Xz = 1). The spin 
field operators Se(z) can be similarly expressed 

as exp(& .J(*)) , or exp(& . q?(z)), where & and 

x’, denote the two SO(9,l) chiral spinor weights 
(&;3,~~,*~,*~,&~), with an even (odd) num- 

ber of minus signs for the positive (negative) chi- 
rality (and Xz = X,2 = $). 

The supersymmetry algebra can be computed 
from the operator products between the vertex 
operators (4) and their counterparts in the equiv- 
alent q = +1/2 ghost picture [5]. Taking con- 
tour integrals and converting to nine-dimensional 
gamma indices, this yields the following super- 

symmetry algebra for the HA/B superstrings in 
nine space-time dimensions 

{Ql,Q’} = -iPpyp -pr,F.“, 

{Q2, &“} = -iPp yp - pR J?’ , 

{Q1,@l = 0, (5) 

where Pp denotes the nine-dimensional momen- 
tum and 

PL = 
f 

$ iaX; = ; -nR, 

denote the right- and left-moving zero-mode mo- 
menta in the compactified direction (with m and 

n the momentum and winding numbers). 
Comparing with the super-symmetry alge- 

bra (l), the central charges are seen to be linear 
combinations of the internal left- and right mo- 
menta pa and pn. In the IIA and the IIB theory 
the central charge matrix Zij takes one of the two 
alternative forms (up to an overall sign), 

.@ = 3 (PL + pi) dij + ~(PL - pR) (# IIB (7) 

and 

zij = $@L - PR) #j + ;(PL + pR) (# IIA (8) 

This proves that the momentum and winding 

BPS states constitute inequivalent supermulti- 
plets. The IIA momentum states and the IIB 

winding states are in the KKA representation, 
while the IIA winding states and the IIB mo- 
mentum states are in the KKB representation. 
This ensures that the two decompactification lim- 
its R + 0 and R + 00 lead to different theories. 
Moreover, it proves that type-II string compact- 

ifications on circles of different radii must be in- 
equivalent. Also, it is clear that no symmetry en- 

hancement will take place when the momentum 
and the winding states have coinciding masses, as 

these states are always distinctly different. This 
is in accord with the fact that no gauge symme- 
try enhancement is possible in the conformal field 
theory. 

The emergence of different representations for 
the momentum and winding states can also be un- 
derstood in terms of the corresponding covariant 
physical vertex operators for the Kaluza-Klein 
and winding states in nine dimensions. Consider 
the Ramond-Ramond operators 

exp (G+.&(~) + ~PL-$(z)) 

xG(P)S&) ew(-$#G)) 

xexp(ip,X~(~)+iPRX~(~)) 

X&P)SP@> exp(--+~(3), (9) 

where the 16-component spinors ‘LLL(P) and ‘LLR(p) 
denote the chiral SO(1,9) spinor polarizations of 
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the left- and right-moving states (so that we have 
implemented a GSO projection [8]) and the pP are 
the values taken by the nine-dimensional momen- 
tum operators Pp. Applying the physical state 
conditions which follow from requiring that the 
operators (9) commute with the left- and right- 
moving BRST operators reduces the number of 
physical spinor polarizations from 16 to 8, so that 
the vertex operators (9) describe 8 x 8 = 64 states 
for given momentum. When combined with the 
Neveu-Schwarz sector these states comprise full 
BPS supermultiplets. 

In obtaining the SO(8) representations in ac- 
cord with our earlier analysis, it is important 
to realize that the chirality of the polarization 
spinors is opposite to that of the correspond- 
ing S,. Switching the relative chirality, e.g. by 
changing the chirality of S,(Z), and correspond- 
ingly of UL, can be compensated for by assigning 
an opposite momentum pt to that state, leaving 
pn unchanged. This corresponds to interchang- 
ing the winding and the momentum numbers m 
and n in (6), together with the interchange of R 
with l/R. So the states and the corresponding 
supermultiplets remain the same; what changes 
is only the notion of a momentum and a winding 
state. The mass-shell condition then tells us that 
PL = fpR, and depending on this sign, we get ei- 
ther the same or different SO(8) representations 
from the physical state condition. Thus winding 
and momentum states indeed constitute inequiv- 
alent supermultiplets. In the decompactification 
limits R -+ 0 and R + co, one is left with in- 
equivalent supermultiplets as the mass of one su- 
permultiplet vanishes and that of its inequivalent 
counterpart is pushed to infinity. 

The result that the momentum and winding 
states are in different supermultiplets can be in- 
dependently derived from N = 2 supergravity in 
D = 9 dimensions (together with some basic in- 
put from string theory). This theory is discussed 
in [9]; here we exhibit the coupling of the nine- 
dimensional gauge fields to the BPS states dis- 
cussed above. Recall that the scalar sector is gov- 
erned by an SL(2, R)/SO(2) non-linear o-model, 
which therefore exhibits an invariance under a 
nonlinearly realized SL( 2, a). In addition there 
is an invariance under SO( l,l), which can be sys- 

tematically understood from combining ordinary 
dimensional analysis with scale transformations 
on the compactified coordinate [lo]. From the 
IIB supergravity perspective, the SL(2, R) orig- 
inates from the SL(2,w)/SO(2) coset structure 
and the SL(2,Ihg) symmetry which are already 
present in ten dimensions [ll]. Prom the per- 
spective of eleven-dimensional supergravity [12], 
on the other hand, these are just the ‘hidden’ 
symmetries obtained by reducing the theory from 
eleven to nine dimensions on the torus T2. In 
this reduction, the diffeomorphism symmetry in 
the compactified dimensions is ‘frozen’ to a rigid 
GL(2,R) = SL(2,R) x SO(1, 1) symmetry. Simi- 
larly, the full Lorentz symmetry in eleven dimen- 
sions is reduced to SO(1,8) x SO(2) C SO(1, lo), 
where SO(2) is converted into the R-symmetry 
corresponding to the automorphism group of the 
nine-dimensional N = 2 superalgebra (1). We 
denote the bosonic fields of eleven-dimensional 
supergravity by G&a and A,,,. The bosonic 
fields of IIA supergravity are denoted by GMN, 
CM, CMN, CMNP and 4, and those of IIB super- 
gravity by GMN, A$N, 4” and AMNPQ. Here 
the index (;Y is associated with SL(2,R). The 
fields of N = 2 nine-dimensional supergravity 
are the metric g,,“, three scalars (T and d”, three 
abelian gauge fields Bp and A;, two antisymmet- 
ric tensors A$ and a three-rank antisymmetric 
gauge field ApLyp. We use the Einstein frame, so 
that the metric is invariant under SO(l,l). The 
scalar fields @ characterize the coset representa- 
tive of SL(2,w)/SO(2). They satisfy a constraint 
ti”$, = 1 and are subject to local SO(2) trans- 
formations, so that they correspond to one com- 
plex field. The scalar exp(a) will be defined as 
Gss, the IIB metric in the compactified dimen- 
sion. The determinant of the eleven-dimensional 
metric in the two compactified directions is then 
equal to exp(-;a). 

Now consider the three abelian vector gauge 
fields in the nine-dimensional theory, which de- 
compose into a singlet and a doublet under 
SL(2,w). Note that their origin is rather differ- 
ent when viewed from the IIA and from the IIB 
side. The singlet field is the graviphoton from 
the IIB side, so it must couple to the IIB momen- 
tum states. The doublet fields originate from the 
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IIB doublet of tensor fields, so they couple to the 
IIB winding states. It thus follows that the IIB 

momentum states constitute KKB states (by defi- 
nition) whereas the IIB winding states constitute 

KKA multiplets. The second KKA charge can 
only be understood beyond string perturbation 
theory; the degeneracy in the winding states is 
due to winding of fundamental and D-strings [13]. 
The pattern is the same, but complementary on 
the IIA side. Here the momentum states carry 

the doublet charges, so they constitute (again by 
definition) KKA multiplets. Accordingly, the two 
graviphotons originating from eleven dimensions 

transform as an SL(2,R) doublet. The degener- 
acy in the momentum states can thus be under- 

stood from eleven-dimensional supergravity, as 
the doublet charges find their origin in the T2 on 

which the theory is compactified. The winding 
states couple to the singlet field, which originates 

from the HA tensor field. Hence the HA winding 
states constitute KKB multiplets. Alternatively 
these states can be understood as eleven dimen- 
sional supermembranes [14] wrapped around the 
M-theory torus [6], as these constitute the same 
supermultiplets. 

To see this last point, consider the supersym- 
metry algebra in eleven dimensions with a mem- 
brane charge, 

{Q,Q} = -iP&'k++dZtifirti', (10) 

where we have eleven-dimensional momenta Pa, 
two-brane charges Zafi and 32-component spinor 
charges. The ZGA can describe the winding of a 
fundamental supermembrane over some compact 

space [15]. Upon reducing the algebra (10) to 
nine dimensions and assuming that ZtiA takes 
only values in the two internal dimensions labeled 
by fi = 9,10, we obtain for the central-charge 
matrix Zij, 

zij = z, 1. @ - (Pga3 - P~@#j. (11) 

Thus the BPS states associated with a membrane 
wrapped around T2 in eleven dimensions consti- 
tute KKB multiplets. Observe that this is crucial 
for the duality between M-theory and IIB theory 
noted in [S]. 

From the result (ll), we can also deduce the 

general BPS mass formula, 

M=JP92+P&+lZml. (12) 

For a super-membrane wrapped around a torus 
with modular parameter r E ri +irz and area A, 
the BPS mass formula follows directly from (12) 
and reads (in eleven-dimensional Planck units) 

(13) 

where T,,, denotes the supermembrane tension, 
q1,2 label the momentum modes on the torus 
and p is the number of times the membrane is 
wrapped (including orientation) over the torus. 

This formula agrees with the one previously de- 
rived in [16] on the basis of a semi-classical ap- 

proximation. 
The above considerations suggest the construc- 

tion of a nine-dimensional field theory consisting 
of N = 2 supergravity coupled to an infinite tower 

of BPS supermultiplets with a two-dimensional 

charge lattice (ql,q2) for the KKA states and a 
one-dimensional lattice of charges p for the KKB 

states. This theory encompasses both eleven- 

dimensional supergravity (compactified on T2) 
and IIB supergravity (compactified on S’). The 
usual T-duality is trivial for this theory. It is not 

associated with any symmetry and only amounts 
to certain field redefinitions. The theory is free 
from inconsistencies in each of these sectors sep- 
arately and it is an interesting question whether 
such a ‘dichotomic’ field theory could be (classi- 

cally) consistent to all orders. In low orders of 
perturbation theory, its short-distance behaviour 
should be relatively mild as it can be viewed as a 

combination of known supergravity theories, Of 
course, this is not truly an effective field theory 
as the masses of the various states will never be 
light simultaneously with respect to the string 

scale. The theory is manifestly invariant under 
under SL(2, z). The latter is the integer-valued 
subgroup of SL(2,R) that leaves the charge lat- 
tice of the KKA states invariant. There is a for- 
mulation in which the SL(2,R) is linearly real- 
ized, also in the presence of the BPS states. In 
that case the massive fields transform only under 
the local (composite) SO(2) and not directly un- 
der SL(2,w). However, the KKA fields have a 
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minimal coupling with respect to qn A:, which, 
in order to remain invariant under the integer- 
valued subgroup, requires the charges to trans- 
form covariantly under this subgroup. The KKB 

fields have a minimal coupling to p B,, which is 

SL(2, IQ invariant. 
It should be clear that the theory will ex- 

hibit ten- or eleven-dimensional Lorentz invari- 
ance only in certain limits. For the KKA states 
with charges qa, and KKB states with charge p, 

respectively, the BPS mass formula in the nine- 
dimensional Einstein frame is given by 

M = mKKA (h @I f mKKB id, (14) 

where mKKA and mKKB denote two different mass 

scales, whose product is inversely proportional 

to a’. Here we made use of the fact that the 
mass should be SL(2, Z) invariant in the Einstein 
frame. 

The formula (14) can now be interpreted in two 
different ways. From the perspective of HA string 
theory, one of the qa is the HA Kaluza-Klein mo- 
mentum number, while the other is the DO charge; 
as is well known, the mass of the DO branes is 
inversely proportional to the IIA string coupling 
constant [13]. Then p is the HA winding number. 

Conversely, from the IIB perspective, q1 and q2 

are the winding numbers of the elementary string 
and of the solitonic Dl string (which corresponds 
to a DO brane in the HA description). Now the 
SL(2, z) is a strong-weak coupling duality, as it 
interchanges the elementary strings with the Dl 
strings. The modular parameter associated with 
the fields $* is the IIB dilaton which contains 
the IIB string coupling constant. From this per- 
spective the integral charge lattice follows from a 
Dirac-type quantization condition. The integer p 
is just the IIB Kaluza-Klein momentum number. 

Although (14) does not include the contri- 
butions from the ‘intermediate’ BPS multiplets 

which carry both the doublet charges qu and the 
singlet charge p, the analysis can be straightfor- 
wardly generalised to accommodate them. An 

interesting question is whether such supermulti- 
plets play a role in certain threshold calculations 
in toroidally compactified M-theory to which only 
BPS multiplets are expected to contribute (see 
e. g. [17,18] for reviews). We hope to return to 

this issue elsewhere. 
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