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Abstract. In the canonical quantization of gravity in terms of the Ashtekar variables one uses
paths in the 3-space to construct the quantum states. Usually, one restricts oneself to families of
paths admitting only a finite number of isolated intersections. This assumption implies a limitation
on the diffeomorphisms invariance of the introduced structures. In this work, using the previous
results of Baez and Sawin, we extend the existing results to a theory admitting all the possible
piecewise-smooth finite paths and loops. In particular, we (a) characterize the spectrum of the
Ashtekar—Isham configuration space, (b) introduce spin-web states, a generalization of the spin-
network states, (c) extend the diffeomorphism averaging to the spin-web states and derive a large
class of diffeomorphism-invariant states and finally (d) extend the 3-geometry operators and the
Hamiltonian operator.

PACS number: 0460D

1. Introduction

In the context of the canonical quantization of diffeomorphism-invariant theories of
connections for a compact gauge group, in particular, quantum gravity in four spacetime
dimensions, the quantum configuration space is coordinatized by certain elementary operators
which could be called generalized Wilson functions. These functions are labelled in general
by a set of paths in the manifold in question. It turns out that the precise nature of these paths
has a deep impact on the structure on the resulting quantum theory. All the considerations in
quantum gravity to date concern the case where the paths defining a given Wilson function can
intersect only finitely many times. To ensure this, piecewise analyticity was often assumed.
Therefore, in the following we loosely denote that case by ‘the analytic category’. In ‘the
smooth category’, however, the known results are sparse.

In this paper we extend the pioneering work by Baez and Sawin on this issue. Specifically,
this paperis organized as follows. In section 2 we state the problem with the extension of results
from the analytic to the smooth category and recall the results due to Baez and Sawin. Then
we prove a master theorem which extends the results due to these authors and which is the key
to sections 3-5. In section 3 we apply the master theorem to show how the results concerning
the Ashtekar—Isham algebra can be immediately extended. In section 4 and 5 we define the
notion of a spin web in analogy to the spin-nets of the analytic category in order to apply
the master theorem to the extension of results by Ashtekar, Marolf, ddcamd the authors
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concerning diffeomorphism-invariant states of connections and associated diffeomorphism-
invariant operators. Finally, in section 6 we apply the machinery of the previous sections to
the operators that have proved to be elementary building blocks for the quantization of the
gravitational field.

2. The algebra of cylindrical functions on the space of connections

This section is divided into three parts. In the first part we recall the basic notions of cylindrical
functions on the space of distributional connections and inductive limit structures, and review
the results that one obtains if one labels cylindrical functions by piecewise analytic, finitely
generated graphs. In the second part we review the construction, due to Baez and Sawin, of a
new label set, called ‘webs’, which are appropriate for the case where the loops defining the
Wilson functions are only piecewise smooth and may intersect each other an infinite number
of times. Finally, in the third part we prove the master theorem on which the rest of this paper
is based.

2.1. Preliminaries

In the loop quantization of gravity as initiated by Ashtekar [1] and Jacobson, Rovelli and
Smolin [2] and Gambinet al (see, e.g., [3] and references therein) through embedding general
relativity into a Yang—Mills theory phase space and making use of Wilson loop variables
as well as in a general framework for quantization of a diffeomorphism-invariant theory of
connections with local degrees of freedom [4] one uses the algebra of cylindrical functions
defined by the parallel transport maps as the main device [4-30]. The algebra, let us call it
Cyl, is a sub-algebra of the algebra of functions defined on a spaGecohnections4d. The
connections are defined on a bundle over a manifald=or simplicity we assume here that

the bundle is trivialt and we fix a global gauge (section). We are assuming isatompact

and semi-simple. A complex-valued functidn .4 — C is called cylindrical, if there are
piecewise-smooth paths, ..., p,t in £ and a functionp € C°(G") such that

D(A) =¢p(U,,(A), ..., U, (A) (2.1)

whereU,(A) € G represents the parallel transport along the patith respect to the
connectionA. To control the algebra it is useful to decompose Cyl into a union

Cyl = UyenCyl,, (2.2)

of sub-algebras that are easier to handii¢ i a labelling set and will be specified below).
This decomposition is particularly convenient if it defines a so-called ‘inductive limit’, that is,
if for every w1, wo € W, there exista’ € W such that

Cyl, . Cyl,, C Cyl,. (2.3)

One might take fowV the set of all the finite families of piecewise-smooth pathZiand
associate to each finite family of pathsthe sub-algebra Cyl C Cyl given by all the paths
obtained from the elements ofand their inverses by using the path product. That does define
an inductive limit decomposition, however, given a general family of pathge do not know

wy’

T Most of the results concerning the gauge-invariant cylindrical functions can be easily generalized to a non-trivial
bundle case [6, 7, 9].

T By a piecewise-smooth path we mean here a piecewise-smoottprj@pr;] — T continues on the whole
interval of [, 71] such that its (one-sided) derivative never vanishes except for the constant path; here we are actually
interested in equivalence classes of paths where two paths are equivalent iff they differ by an orientation-preserving
piecewise-smooth diffeomorphismy[#1] + [so, s1].
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much about the corresponding GylAn example of a sub-algebra Gylwe do know much
about is the sub-algebra corresponding to a family of patlgich is an embedded grapht.
Then, Cy), can be identified with the algebra of functiofi$(G") wheren equals the number
of edges inw, via the map

A5A >  (Ug(A),....U,(A) €A, CG" (2.4)

wheree; are the edges af and.A,, is the image of that map. Such a map is defined for any
family of paths, but in the case of a graph the map (2.4ni®, therefore

Ay = G". (2.5)

If one fixes an analytic structure d and defines CyJ, C Cyl to be the sub-algebra given
by the piecewise-analytic paths, then the analytic graphs are enough to decompgsetoy!
the following inductive limit sum:

U,Cyl, = Cyl,, (2.6)

where the sum ranges over the set of piecewise-analytic grapBs ifihat is true due to
the following fact. Given two analytic graphs y’ there is an analytic grapp” such that
y" >y, y’, where the inequality relation is defined as follows. Two familiesv’ of paths,
are in the relation

w<w (2.7)

if every path element ab can be obtained from the elementsgfand their inverses by using
the path productt. Therefore, because of the composition rule of the parallel transports

Upop = UpUp (2.8)
we have

Cyl,,.Cyl,, C Cyl,. (2.9)
The above decomposition was key to the following issues:

e The development of integral calculus on Gyl[6, 9].

e The characterization of the Gel'fand spectrum of the correspondinglgebra wherG
is compact [5, 6, 8, 10].

e Measure theory on the spectrum [6, 8, 10].

e The introduction of differential calculus on the spectrum useful for introducing and
studying the operators of quantum gravity [7].

e The introduction of spin-networks as the orthonormal basis with respect to the natural
integral in Cy},,, [15, 16].

Our goal now is to see to what extent the above applications can be generalized to the case of
smooth paths.

T Agraphis dinitefamily of one-dimensional, oriented sub-manifoldsb$uch that every two can share only one or

two points of the boundary. Given a graph, its elements are called edges. By an edge, we shall also mean an oriented
1-sub-manifold with boundary.

T Given two (unparametrized) paths and p, such that the end point @f; is a starting point opy, the path product

p2 o p1is a path obtained by connecting the engp@fwith the beginning point op,.
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2.2. The Baez—-Sawin framework

The virtue of piecewise-analytic graphs is that their edges cannot intersect or overlap in an
infinite number of distinct, isolated points or segments. This is the key to the definition of the
algebra Cyl,, as an inductive limit since the union of two piecewise-analytic graphs (after a
finite number of subdivisions) again defines a piecewise-analytic graph. This is no longer true
when two graphs are just piecewise smooth, an example being given by the graph that consists
of the union of two smooth curves which intersect in a Cantor set [31] or the intersection of
the graph of the function [d] > x — el sin(1/x) with the x-axis. The graphs are not
both contained in the same graph. Thus, for the full algebra Cyl the graphs are not enough to
provide an appropriate decomposition.

Recently, Baez and Sawin [17] introduced a suitable generalization of an embedded graph
which they called aveh

For the purpose of this paper, it is enough to know the following properties of the webs
due to Baez and Sawin:

(a) aweb is a finite family of piecewise-smooth pathghich do not self-intersect;
(b) for every wehw = {ey, ..., e,} the image of the map (2.4) is a Lie subgroupf,
(c) for every finite familyw of smooth paths there exists a websuch thatw < w’.

Thus, in contrast to the piecewise-analytic graphs which are labelled by their edges (i.e.
paths which intersect at most at their endpoints) a Baez—Sawin web is labelled by the paths
e1, ..., e, which may overlap or intersect each other possibly an infinite number of times.
Abusing the notation, we shall nevertheless denote the labels of a web by edges again to
distinguish them from an arbitrary path. Henceforth, we denot@étthe set of all the webs
in X. We should also note that Baez—Sawinsis preserved by the diffeomorphisms Bf
The highly non-trivial result proved in [17] is thay indeedexists

Due to property (c),

Cyl = UwEVVCwa7 (210)

and(Cyl,),ew is a projective family. Point (b) gives us certain control on CyDur first
result will tell us more about Cyl

We end this section with the Baez—Sawin definition of a web (for more details see [17]).
A webis the (set) union of a finite number of families of edges, so-caliedels First, to
give the reader an intuitive picture, we explain how a graph gives rise to a web. Given a graph
y subdivide each of its edgesinto two edges oriented in such a way that they end in the
subdivision point. Denote the resulting graphiby A vertex ofw is either a vertex of or
one of the subdivision points. Letbe a vertex ofw which is also a vertex of. The set of
edges ofw leavingv forms a tassel based afind the subdivided graph is a web (a special
case of a web).

In general, edges of a tassel are allowed to intersect at points different from their end
points and can overlap. Given a famifyof edges, a poing € R(T)T is aregular pointof T
if there is a neighbourhodd of ¢ such that the intersectiaR(7") N i is an embedding of an
open interval. A segment of that embedded interval we will cadigular segment(In other
words, if a curvee € T intersecty; then it intersectg exactly once, and any othet € T
either overlapg atq or does not intersegtat all.) Given a regular point of T its typeis the
set of the elements df which overlap at;.

Tt TherangeR(T) of a family of curvesT is the union of the ranges of each elemenfof



Diffeomorphism-invariant theories of connections 2303

General definition of a web. A a family of edges is #asselif it has the following properties.

(a) All the edges of” begin at the same point; we call it tbase poinbf 7.
(b) The edges;, I = 1,...,k, of T can be parametrized in such a way that
ef(t)y=e;(s) = t=nzs. (2.12)
(c) Two edges of that intersect at a point different from the base pegirtersect in every
neighbourhood op.
(d) Any type which occurs at some poigte R(T) occurs in every neighbourhood of the
base poinp.

2.3. Holonomic independence of the curves in a Baez—Sawin web

Pathsps, ..., p, areholonomically independerit for every (g1,...,g,) € G" there is a
smooth connectiod € A such that
(Up,(A), ..., Up (A) =(g1,...,8n) € G". (2.12)

As we already indicated in section 2, the edges of any gyaate holonomically independent,
hence the corresponding Gydan be identified with the whole 6°(G™). However, the results
of [17] only show that for am-element wehw the set CyJ, can be identified witiC%(G,,)
wherea priori G,, can be any Lie subgroup @i that may even vary withy.

Our master result is that it continues to hold that = G” for the case tha is semi-
simple.
Theorem 2.1 (Master theorem).Let {p, ..., p,} be a finite family of paths which satisfies
the properties (a) and (b) above. Then the paths are holonomically independent.

Proof. Forn = 1 the assertion is obvious. Fer= 2 we need to note that sineg # ¢, there

is a pointx € R(ep) such that a neighbourhood of x does not interseet and a similar point

y € R(ep) and a neighbourhodd,. The neighbourhoods may be chosen not to intersect each
other. Therefore, given ar(g1, g2) € G2 one can easily construct a single connectiosuch
thatU,, (A) = g, andU,,(A) = g».

Suppose now that the theorem is true for evernyK k and consider the case when
n =k + 1> 3. Denote bya,, the Lie sub-algebra of the Lie algebra@f corresponding to
the subgroupd,, = G,, C G" obtained as the image of the map

As - (U, (A),...,U, (A) € G". (2.13)
It suffices to prove that,, coincides with the whole Lie algebra 6f*. Since, according to
our assumption, the theorem holds for= w \ {¢;} for any edge;, it is enough to show that
for everya € g in the Lie algebra oG then-tuple(q, O, ..., 0) is in a,, Sincea,, is a vector
space (owing to Baez and Sawin).

SinceG is semi-simple, for any € g there areb, b’ € g such thatp, b'] = a. By an
induction assumption, we can freely speaifgf the entries; of an elementb, . . ., b,+1) of
the Lie algebrau,,, however, the last entry may depend on the othentries. Let us choose
freelyby = b, b3 =--- =bypry =0andby; =0, b, = by = --- = b, = 0. Then there exist
certainb, b’ € g which may depend on the already specifie@ndd, respectively, such that

(b,b,0,...,0),(,0,0,0,...,0) € a,. (2.14)
Becausea,, is closed with respect to the commutator (again owing to Baez and Sawin), we
have

[(b,b,0,...,0),(»,0,0,0,...,00] = (a,0,...,0) € ay, (2.15)
which completes the proof. |
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3. Immediate implications of the master theorem

In this section we list the immediate consequences of theorem 2.1 concerning the issue of
(Mandelstam) group identities which are an important building block in the construction of
the Ashtekar—Isham algebra [5], the spectrum of that algebra and a natural uniform measure
thereon.

3.1. Group identities

The issue is the following.
Suppose thédt complex-valued functiong, . . . , ¢ defined orG” satisfy a group identity

P(p1,....¢) =0 v(g1,...,8n) € G", (3.1)

whereP is a complex-valued function @& complex variables which is characteristic for the
groupG. Examples of such identities are the famous Mandelstam identities which for the
groupG = SU(2) are given by

tr(g)tr(g") =tr(gg) +tr(g(g)™™. (3.2)
Now take any:-tuple of pathgs, ..., p, in £ and consider the following cylindrical functions
defined onA:

®;(A) = ¢ (Up,(A), ..., U, (A)), AeA, i=1... k. (3.3)

Obviously these cylindrical functions then satisfy the identity
P(®q,...,9,) =0 VA e A (3.4)

Thus, we see that every group identity gives risenieidentity on the algebra Cyl.

The question that arises is whetleeryidentity that holds on the algebra Cyl (or one of
its sub-algebras) results from a group identity.

Owing to the master theorem, the answer turns out to be affirmative (one could not prove
this result without knowing theorem 2.1).

Indeed, consider any system of cylindrical functiabs . .., ®; € Cyl satisfying some
identity

P(®q,...,P;) =0. (3.5)
Any of the cylindrical functions is defined by (2.1) with respect to some finite set of paths in
3. There exists a wely = {p,, ..., p,} whose range contains all the paths used to define
the functions®y, ..., ®;. Thus®; = p*¢; for some functionsp; defined on the image

A, = G, = py(A) of (2.13). Consequently, the functiogs satisfy the corresponding
identity (3.1) on all ofG,,. However, according to theorem 2.1 we h&¥g = G” wheren is
the number of the edges of. Thus the identity on cylindrical functions came from a group
identity. Notice that, in particular, the path identities on cylindrical functions

Up(A) Ug(A) = Upog(A), Upopr = 1g (3.6)
for any two pathg, g and the Mandelstam identities, which ¥ (2) take the form
TrUgep + Tr Ugop1 = Tr U, Tr Ug, (3.7)

decline from a group identity.
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A related question is ‘when are two pathsindg holonomically equivalent?’ That is, for
which pathsp andg does the identity

U,(A) = U,(A) (3.8)
hold onA (i.e. for all A € A)?
Let pathsp andg be holonomically equivalent. Choose aweb= {p,, ..., p,} such that
{p,q} < w. Decomposg, g into the path products of the elementsuofind their inverses:
k(1 K(N)
p= ei((l)) ©rro ei((N)

(1) (M) (3.9)

1T=¢jw° ¢
Suppose that, in this decomposition, all the sequences of thezf@mﬁl have been cancelled.
The properties of the parallel transport, the holonomic equivalence of the paths gives an
identity

@ (N) 1(1) (M)
g;((l) "'gzl‘((m =8 " 8jm) (3.10)
true forevery(gi, ..., g,) € Gy.

However, precisely because theorem 2.1 hdlfls = G” which enables us, at least when
G is non-Abelian and compact, to conclude that modulo the cancellation ofgggj‘r%,

N=M, i(r)=j(r), k(r) =1(). (3.11)

That isfor a non-Abelian compact Lie group, patpsandg are holonomically equivalent iff

p = g modulo cancellation of the segments of the formece™2o- - .. (Here we are relying

on a related fact from the theory of compact non-Abelian groups [18].) Notice that we could
not conclude this iz, was a proper sub-Lie group 6f".

3.2. Spectrum of the Ashtekar—Isham algebra

The main motivation for raising the question about the precise image of the map (2.4) was the
wish to give a characterization of the Ashtekar—Isham quantum configuration space which in
the analytical category turned out to be rather straightforward. Recall, that@tsssompact,

we define in the algebra of cylindrical functions Cyl a norm

[P := sup|P(A)|. (3.12)
AeA

The completion of Cyl with respect to that norm i<4 algebra. Its Gel'fand spectrum

has been promoted by Ashtekar and Isham to the role of the quantum configuration space
for a connection theory. According to the results of [6-8, 10] an elementftthe spectrum

of Cyl can be identified naturally with a family of points,,)..c,» Which satisfies a certain
consistency condition. Namely, given two webs< w’, the projectiony,,: A — A, and
puw:A— A, defined in (2.4) determine uniquely a projection

Pww : Aw = Ay, such that pyu o pyw = puw. (3.13)
The consistency condition satisfied ©¥,,)..c)v is that for every pair of webs < w’,
pww’Aw/ = Auw (314)

More precisely, there is a one-to-one correspondence between the set of solutions of the
consistency condition and the spectrum. To solve the consistency conditions one considers a
mapU (A) which assigns to every paghan element of5,

pr U(A), €G, (3.15)
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such that

U(A)pog = U(A),U(A),, and UA),+= U, (3.16)
Indeed, a mag/ (A) defines a family(A,,),c)v by

Ay = (U(A)p, ..., UA),) € G"= A, (3.17)

wherew = {p1, ..., p,}T. Itis not hard to see that the result solves the consistency conditions
and that every solution can be obtained in that way.

The algebra Cyl contains a sub-algebra@ylG) of gauge-invariant cylindrical functions.
Also the results of [6-8, 10] apply, with the graphs replaced by webs. In particular, the spectrum
A/G is

AJG =A/G, (3.18)

whereg is the group ofall the maps from into G, the Gel'fand completion of the gauge
group acting inA4.

3.3. A natural measure

A measureguq on the spectrurd is defined by any family of measured,,, 11, ).y sSuch that
given a cylindrical functionb in the form (2.1), the integral

/(l)duw =: /;duodi' (3.19)
A

is independent of the choice of the web By the same arguments as those used in [6], if

G is compact and we choose for egef) the probability Haar measure, the resulting family

of measures does satisfy the consistency condition and defines a natural, diffeomorphism-
invariant measure od. The resulting integral restricted to the sub-algebra of gauge-invariant
elements of Cyl coincides with the natural measure defined in [7, 8]. This result was derived
previously by Baez and Sawin and our theorem 2.1 mainly simplifies the argument.

4. Spin-webs and diffeomorphism averaging

With the natural measure, the space of the cylindrical functions is naturally completed to
become the Hilbert space

H = L?(A, duo). (4.1)

The aim of this section is to find a generalization of the spin-network states [15, 20] constructed
from graphs. The spin-networks gave an orthogonal decomposition of the Hilbert completion
ofthe subspace @1 given by the piecewise-analytic paths and were used to define the averaging
with respect to all the diffeomorphisms af

t Itis here where we need theorem 2.1. Wiénwaries, the pointsi,, fill all of G”. Due toG" = A, everyU
defines a point ind,, .
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4.1. Spin-webs

Given a webw we associate a Hilbert subspakg, the Hilbert completion of Cy|. That
subspace is isometric with?*(G”). That identification provides an orthogonal decomposition
given byL?(G) = &, V; whereV; are subspaces labelled by the irreducible representations of
G. Inthis way, to eachabelled wel(w, j), thatis, a pair consisting of a wefand a labelling

j of the edges ofv by irreducible representations, we associate a finite-dimensional subspace
Vw,j C H,, called aspin-web space The spin-web subspacés,; of H,, corresponding to

all possible labellingg spant,,, are finite dimensional and for different labellings they are
orthogonal.

If j(p) = 0foran edge of alabelled weljw, j), then we can consider another labelled
spin-web(w’, j) given by removing the edge from w and maintaining the labelling of the
remaining edges. Obviously, the corresponding spin-web spaces are equal. In the case of
graphs, that degeneracy can be removed by admitting only non-trivial representations for the
labelling of its edges and vertices. However, in the case of the proper webs, that is not enough
and still there are spin-web spaces associated to different R@b$ # R(w) such thatV,,;
fails to be orthogonal t¥,, ;. Since thatis animportant difficulty in diffeomorphism averaging

of the spin-webs, we illustrate it by the following example.

&

Figure 1. The edge; is the horizontal line, whereas the edgeonsists of infinitely many bumps
up the horizontal line connected with the horizontal segments (only four bunepsoé visible in
the figure. The edgeg ande), are obtained by replacing the full segmethty the broken segment

N

Example. The first web isv = {e1, e2}. This is just one tassel of a base pointThe second

web consists of the deformed edges. lvis= {e], ¢;} (see figure 1). For the labellings of
w and w’, respectively, we takg(er) = j(e2) = j'(e}) = j'(ey) = % Our claim is that

the corresponding spin-web spacés ; and V,, ; are not orthogonal. To see this, consider
a webw obtained fromw and w’ by subdividing their edges, such that the segmeratsd

s’ become path products of entire edgesiofsee figure 2). The spin-web sp&akg ; is no
longer a spin-web space with respect to the welt admits the non-vanishing projection on
the spin-web space given by the labellihgf @ which takes the valu@ on the segments of
ands’, and otherwise. The same is true for the spin-wéh ;.

T With an edgep of a webw and an irreducible representatigiip) one associates the linear spdp ;(,) of the

functions f (A) = D(/'W)%(U(A)), WhereD(”%(U) denotes ar{M, N) entry of the matrix corresponding to an
elementU € G inthe jth representation and with respect to some fixed basis in the fundamental representation space.

Then,V,, ; = ®,V,, (). With p running through the edges of.
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Figure 2. The webw consists of three tassels. The first tassel is based at theypaimd consists
of the segments connectipgwith the pointsyg andgg. The second tassel is based at the ppint
It consists of the segments connectipigwith the pointsys, gy, g5, g5. The third tassel is the set
of the segments connecting the poigtwith the pointsys, g2, ¢5. ;.

The lesson the above example teaches us is that a smooth deformation of a seigment
(w, j) such that it no longer overlaps the remaining parivadoes not necessarily result in a
labelled spin-welyw’, ;") such thatV,, ; andV,, ; are orthogonal to each other. This would
not be true if we were working in the analytical category and with spin-networks [15, 16]. We

could also see how two different webs define a refined, bigger one.
Our goal now is to show that there exist certain ‘non-degenerate’ spacesvith the

property that they are orthogonal to every other sgage: whenever the ranges of the webs

do not coincide, whethdiw’, j’) is also non-degenerate or not.

Definition 4.1. Consider awelw and alabellingj of its edges with irreducible and non-trivial
representations. Consider a regular poin{see section 2.2) af and let the type of be such

that the edgesy,, ..., e;, € w are overlapping atc. We will say thatr is a non-degenerate

point whenever the trivial representation does not emerge in the decomposition of the tensor
product of the representationge, ), ..., j(e;). Given alabelled webw, j), if every regular

point is non-degenerate, then we will say tlat ;) is non-degenerate.
We then have the following result.

Theorem 4.1. Supposé/,, ; is the spin-web space assigned to a non-degenerate labelled web
(w, j) and the spin-web spadé, ; assigned taw’, j') is not orthogonal toV,, ;; assume
also thatj’(¢’) # Ofor everye’ € w’; then:

(a) The labelled spin-welw’, j') is also non-degenerate;
(b) The ranges of the spin-webs coincide,

R(w) = R(w");
(c) There is a wehw” > w, w’ which can be obtained from each of the websw’ by
subdividing its edges.

(4.2)

Proof of theorem 4.1. The key fact is the existence of a wels such that

w’ > w,w.

One has to remember (see the example of section 4.1), however, that for proper webs, that is
for webs which are not just graphs, given the spin-web spaceand the bigger web”, the

(4.3)
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spaceV, ; is not in general one of the spacés ;- with some labelling/”. All that we know
is that in general

Vew,j» Vur,jr C @ jr Vi jr, (4.4)
where j” is some finite set of labellings. Since the spin-web spagesandV,, ; are not
orthogonal to each other, there is a labelljifgof the webw” such that both the projections

Vj = Var jgs and Vwjo = Vur ju (4.5)
are not trivial. An easy observation is the following.

Lemma 4.1. Let(w, j) and(w’, j') be as in the hypothesis above; there is a wgl> w, w’
which can be obtained by sub-dividing the edges’of

Proof of lemma 4.1.Letw” be aweb such that” > w, w’. Letw, wa C w” be webs which
consist of the segments of the edgespfind, respectivelyy’. Thus we can write,

" " " "
wy={eq,....e,ay,...,a,},
" a i 4
wy ={e},...,e,b],....b}, (4.6)
" i 4 4 1/ 1
w' ={ey,...,e,ay,...,b,,cq,...},

that is the websv; andw, share the edgeg, the edges:; denote those of the edgeswf

which are not contained iw,, whereas’; denote the edges af, not contained invi. The

first observation is, that the web obtained from the third web above by removing the extra
edgesy, that is,

wy =1{ef,....,el,ay,.... b} 4.7)

> ¥m
also satisfiesy; > w, w'. Itis constructed from segments of the edges @ndw’. Consider
now the labellingj; of (4.5). Since the first projection is not trivial and due to the non-
degeneracy ofw, j) we have

Jo€D, jgah) #0, and Jo)) =0. (4.8)
On the other hand, because the second projection is also non-trivial, we have

Joa)) =0. (4.9)
Therefore, the extra element$ of the webw; do not exist, and we finally have

w1 ={ey,..., e},

” ’ ” ‘ AN/ ” (410)

wy =wy ={ey,..., e, by,...,b,}.

This completes lemma 4.1. |

From now on, let
w' =wy > w,w (4.11)

be the web given by lemma 4.1. Eventually, we will show that if spin-web spégesand
V., j are not orthogonal to each other, then the non-degenera@y,gf) implies the non-
degeneracy ofw’, j'). Together with lemma 4.1 that will complete the proof. However, before
that we need two intermediate lemmas.

Consider two webs < w”. An edgee € w is the path product of the elementswf,

e=¢lo---0€f, (4.12)
wheree;] € w” is the one that contains the base pointofWe will see below that given a
labelling j of the webw, in the decomposition of the corresponding spin-web spacginto

the spaced,, ;» the labelling;” of the beginning segmeut coincides with the labelling
of the corresponding edge for every edge € w.
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Lemma 4.2. Let(w, j) be a labelled web and” > w; consider an edge € w; lete] € w”
be the segment efcontaining its base point; then

Vi,j CT®jrjrep=jie)Vuwr,jr- (4.13)

Proof of lemma 4.2. The spin-web spacg, ; is spanned by the cylindrical functions of the
form

®eew DV (U,). (4.14)

Each such function is expressed by the parallel transports along the elemeritshodbugh
the decomposition

(o) m(e) o o
DY (Ue) = DV D W) - DY) WUe))i] (4.15)

wherej(ey) = --- = j(e},) = j(e), sinceD is a representation arid,; - - - U,; = U (e).

Notice that any of the factorp(f(fi/”zl((e"))(Ue;) appears only once in the whole product
(4.15). To see this, we note that different edgesinde, may share the same segmefit
However, by the definition of a web ([17], see also section 2.2), a segment of an edgd
w connected to the base point of a tassebinannot be contained in a different edgeof the
same web. O

Lemma 4.3. Supposéw, j) is a non-degenerate labelled web apd, ;) is another labelled
web such that the associated spin-web spagesandV,, ; are not orthogonal; thetw’, j')
is also non-degenerate.

Proof of lemma 4.3.Consider a regular point of the webw’. Denote by, ..., ¢, the edges

of w’ which overlap at’. What we have to show is that the tensor product of the corresponding
representationg’(e}), . .., j'(e;) does not contain the trivial representation. Use the wéb

of lemma 4.1 again and consider the labelljijgof (4.5). Let the sub-web®,, w, C w” be
defined as in (4.10). One of the edgesudfis the segment of the edgé which contains its
base point of the corresponding tassel. Denote #’byNotice, that according to lemma 4.2

Jo(e") = j'(e) #0. (4.16)

Comparison with (4.8) shows that is one of the edges;, saye;, of the sub-web obtained

by subdividing the edges af’. The same argument applies to each of the edges overlapping
atx’. Denote the corresponding segmentghy. .., e/ € wy C w”. Since they are segments

of edges, of a single tassel and each of them contains the base point, there is a regular point
x” of w” such the edges], ..., ¢/ overlap atx” andx” is not intersected by any other of

the edges ofv”. However, the tensor product of the representajip@;), . .., jj (e/) does

not give the trivial one, because the labg¢lge;) come from the decomposition of the non-
degenerate labelled web, ;) into the spin web spacég, ;» and the projection ont®,, ;»

is non-trivial. This concludes the proof of lemma 4.3 and the proof of theorem 4.1. O

What we have learnt from this section is that despite the difficulties shown in the example
of section 4.1 there is a class of spin-webs which have the property that a space deformation
of a given spin-work results, generically, in an orthogonal spin-web space.
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4.2. Averaging over the diffeomorphism group

In [4] the spin-networks of the analytic category can be employed to construct solutions to
the diffeomorphism constraintt. The construction consists of averaging the state over the
diffeomorphisms of=. With the Baez—Sawin results [17] the averaging was easily extended
to averaging of a spin-network state with respect to the smooth diffeomorphisms [20, 24]. Our
goal now is to extend that construction to a spin-web state.

We need first some notation.

Given a labelled welw, ;) the gauge group acts In, ; at the end points, y of an edge
p through its action on the parallel transport along the edges,

U, g(») U,g(x) (4.17)

where theG-valued functiong: * — G defines an element of the group of the gauge
transformations. The end points of the edges of a web will be called vertices in the following.

One can further decompose edgh ; into the irreducible representatidf, ;; ., of that
action, assigning to each vertexof the webw an irreducible representatidgrand an extra
labelc, because several equivalent but mutually orthogonal representations can appear more
then once (see [4, 15, 16] for the details about the gauge-invariant spin-networks and [21-23]).
The quadrupléw, j, [, ¢) will also be called dabelledweb.

As in [4] an important notion will be the group of trivial action diffeomorphisms of a web
whose vertices are labelled by irreducible representations. We define it as follows. Given a
webwy fix a labellingly of its vertices by the irreducible representations. The groufobAlp)
is the subgroup of those diffeomorphismsXfwhich act trivially in the spacé’,,, ; ., for
every labelled weldwo, j, lo, ¢) with the fixed webwg and the labellindy, and with arbitrary
labellingsj, c. In fact, the group depends quite weakly ign If the representatiofy(v) is
non-trivial for every vertexy, then the group Thwo, /o) consists of those diffeomorphisms
which preserve every edge (including its orientationywgf However, there are some more
diffeomorphisms acting ‘trivially’ from the above point of view. Consider a 2-valent vertex
vo Of the webwg which is the intersection point of two edges e¢; € w such that, modulo
a change of orientation, one edge is a smooth extension of the other. Sugpgses the
trivial representation. Then, every element of the associated 3$f3age ;,, as a function on
A, depends on the connectidrthrough the parallel transpdit,,..,-:. Therefore, in this case,
every diffeomorphism preserving the oriented non-parametrized eurve, ~* is an element
of TA (wo, lp).

The group of smooth diffeomorphisms Bfacts naturally in the space of the cylindrical
functions Cyl. Given a diffeomorphispmandW¥ € Cyl denote the result of the action py.
Consider a labelled wefw, j, I, ¢), and¥ € V,, ;; .. We attempt to define an averaged state
(¥]av by the following action on a cylindrical functiofi € Cyl:

1
(WI(f) = = > (@vlf), (4.18)
Kk(w, j, 1) [¢]€Diff (2)/TA(w,)
wherex (w, j,1) is a constant. The following two conditions should be satisfied by the
averaging:

(a) finiteness, givel the result should be finite for a large classfo€ Cyl;

(b) consistency, since the spin-web spaces are not orthogonal to each other, we have to ensure
that given two different labelled welis, j) and(w’, j') and a stat& € V,, ; NV, ;- our
definition of the averaging gives the same result regardless of which of the above webs
we use.

t That s, the diffeomorphism-invariant state which are elements of the spacéeh@ytbpological dual of Cyl.
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Supposef is contained in the subspa®g ; associated with some labelled web', ;")
and thatj’(e’) # O for everye’ € w’. Now, owing to theorem 4.1, the only non-zero terms
in (4.18) come from the diffeomorphisms such that botl® (w)) = R(w) and the websv
andw’ = ¢(w) satisfy property (c) of theorem 4.1. Define thenmmetry grousG(w, /) of a
labelled web(w, j, 1, ¢) to be

SG(w, 1) = {[¢] € Diff (Z)/TA(w, D|p(R(w)) = R(w) and w':= ¢(w) satisfies
(c) of theorem 4.1 (4.19)

What we need to assume is that @G!/) is finite. A general cylindrical function can
always be written as an infinite sum,

f=Y apfp, fir € Var g, (4.20)
-

with respect to the labellings of the edges of a single wely. To see that also for a general
cylindrical functionf the sum (4.18) is finite as long as the symmetry grou&@) is finite,
consider §] in the sum (4.18) such that

(pW]f) #0. (4.21)

The projection ofp W ontoV,, ; is not trivial only for a finite number of the labellings. (To
see that, taka’ > w, to represeny.)

Turn now to the consistency condition (b). It will constrain the freedom of the constants
k(w, j,1). Consider a labelled wetwo, jo, lo, co) and a state

lwo, Jjos Lo, co, Mo) € Vg, jo.lo.co (4.22)
which satisfies an identity
Cl0|w0, jOa lOa Co, MO) = allwlv jla llv C1, Ml) +..-+ ar|wrs jrs lrs Cr, Mr) (423)
Without loss of generality, we assume that the identity cannot be obtained as a sum of two
non-trivial identities. That is we may assume that j, [, ¢, M) on the left-hand side is not
orthogonal to any of the terms on the right-hand side. Therefore, thewigin relation (c) of
theorem 4.1 with each of the webs, . .., w, on the right-hand side. Moreover/jfv,) # 0

for any of the vertices, of any of the webs above, then the poigtis a vertex of every one
of the webs in the identity, and

ll(vs) == lr(vs)- (424)

We may also write the identity in such a way that the labelled welgs jo), .. ., (w,, j.) are
all different.
To ensure that the averaging is consistent with the identity we observe the following.

Lemma 4.4. Suppose a labelled spin-wéb, j, [, ¢) is non-degenerate. Ifw’, j/, I, ¢') is
another labelled spin-web such that the corresponding spin-web spacgs andV,, j

are not orthogonal to each other, then the corresponding groups of the trivially acting
diffeomorphisms coincide,

TAw, 1) = TAW', ). (4.25)

Proof of lemma 4.4. We again take advantage of theorem 4.1. wétbe the web given by
theorem 4.1 which satisfies (c) of that theorem. Consider the following labélliog the
vertices ofw” with the irreducible representations. For a ventedf w” set

. [(v), if vis a vertex ofw,
"(v) = (4.26)

0, otherwise.



Diffeomorphism-invariant theories of connections 2313

Recall that every vertex of w” which is not a vertex ofv is obtained by subdividing an edge
of w. It is easy to check that the corresponding groups of trivially acting diffeomorphisms
coincide,

TA(w, ) =TAW",1"). (4.27)
However, it is also true for TAw',l’) and TA(w”,!”), which completes the proof of
lemma 4.4. a

Equation (4.18) for the averaging depends on the grouquTA) of a given labelled web
(w, j, I, ¢) and on the unspecified constarttv, j, /). For every term in the identit{4.23) the
group of the trivially acting diffeomorphisms is the same, and equalssgfp). Therefore,
to ensure consistency, we have to take the conskdnts;, /) depending only on Téw, [),

k(w, j, 1) = f(TA(w,1)). (4.28)
A quite natural choice is for example
k(w, j, 1) =SGw, D], (4.29)

where|SG(w, 1)| is the number of elements of the symmetry group of a labelled web.

Letus summarize our results: denote by,Gyl.,and Cyle4the subspaces of Cyl spanned
by the spin-web subspaces corresponding to, respectively, non-degenerate and degenerate
labelled spin-webs. Next, let Gyl geqfin@Nd CYhondegint0€ SPanned by the spin-web spaces
corresponding to non-degenerate labelled webs of, respectively, finite and infinite symmetry
groups.

Theorem 4.2. The Hilbert spacé of all the square-integrable functions can be orthogonally
decomposed in the following way:

H= Cylnondeg69 Cyldeg = Cylnondegfin69 Cylnondeginf69 Cyldegi (4-30)
where the overline denotes the Hilbert closure; the diffeomorphism averaging given by (4.18)
and (4.28) defines a linear map

Cylnondegfin5 v (Y] elyl (4.31)
with Cyl’ the topological dual to the spadgy!.

The proof follows from the above arguments, theorem 4.1 and lemma 4.3.

Some remarks are in order about the subspaceg Gyjirand Cyl,.o which are excluded
from the domain of the averaging map.

The first subspace is given by non-degenerate spin-webs with infinite symmetry groups.
An example of such a spin-web was given in [20]. The spin-web considered there is degenerate
in terms of the present paper, but it is not hard to modify it to a non-degenerate spin-web of the
infinite symmetry group. The idea behind the construction of such an example is that a part of
a web can be non-trivially mapped into itself by a diffeomorphism which preserves the rest of
the web. If similar parts emerge infinitely many times (in every neighbourhood of a base of a
tassel) then we have infinitely many diffeomorphisms, which are symmetries of the web.

The second group of states is given by degenerate labelled (nelys. An example
of such a web is shown in figure 1. In all the examples of degenerate labelled webs we are
aware of, an associated cylindrical function can be decomposed into a converging infinite sum
of cylindrical functions, each being associated with a web obtained from the original one by
removing a (degenerate) segment (see section 5.3).

From the point of view of a diffeomorphism-invariant theory of connections, the averaged
states are solutions of the diffeomorphism constraint. The action of the Hamiltonian constraint
operator of the gravitational field can be extended to those states. We return to that issue in
section 6.
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5. Diffeomorphism-invariant operators

In the analytic category [4], the Hilbert space of cylindrical functions is orthogonally
decomposed into subspaces labelled by graphs in such a way that every diffeomorphism-
invariant operator preserves the subspaces. The aim of this subsection is to show that in the
smooth case, certain subspaces are also necessarily preserved by diffeomorphism-invariant
operators. However, the result that we derive below is not as strong as in the analytic category.

5.1. Ranges of diffeomorphism-invariant operators

Given awehw denote byH .,y the Hilbert spaces obtained by using all the cylindrical functions
which are associated with the webs whose ranges are contained in the range of

HR(w) = Z Hw/. (51)
w'|R(w)CR(w)
Theorem 5.1. Suppos& is a diffeomorphism-invariant operator defined in a domai©)
in the Hilbert space{ = L?(A, duo); then,

(a) for every wehw, the Hilbert subspacei g, associated with its range is preserved by the
operatorQ;
(b) in particular, when a web is a graph, then the space

@V, (5.2)

j running over all the labellings of the edgeswfby the irreducible (possibly trivial)
representations, is preserved by the operafor

(c) suppose that, for every labelled web’, j'), it is true that, V,, ; C D(O7); let
VeV, ; NDO) andN €V, ; where(w, j) are labelled webs; then,

(OVIN)#0 = R@w)=R(w), (5.3)

provided the labellingg, j’ do not assign the trivial representation to any of the edges of
the websw and, respectivelyy’; in particular, if the webw is a graph, then the operator
preserves the space

J running through all the labellings of the edgeswfby irreducible and non-trivial
representations.

Proof. Consider a welw and a stat& € Hg(,) N D(O). For the proof of (a), it is enough to
show that for every labelled welw’, ;') such thatw” > w containing an edge’ € w’ such
that the rangeR (¢’) is not contained iR (w)

JE@)#£0 = OV LV,. (5.5)

(Notice, that the subspacés, ; span a dense subspace in the wholé{ofeven when we
restrict ourselves, to’ > a givenw because we allowy’ to contain trivial representations.)
Lete; € w’ be an edge such that the ranRé) is not contained iR (w). In ¢g, there is a
regular pointx; of the webw’ which is not contained iR (w). According to the definition
of a tassel, the edgg contains a sequence of the regular poinf952 , such that each of the
points has the same type g and the sequence converges to the beginning poigf, ¢the
base point of the corresponding tassel. For each of the pdititke an open neighbourhood
Uy > x; diffeomorphic to a ball, such that the intersecti®tw’) N U is an embedded open
interval, says,. Consider a diffeomorphism e Diff such that:
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(a) ¢ preserves each of thig and acts trivially outside afi;L4;

(b) ¢(x;) # x;, for every point of the sequence;

(c) ¢ deforms each segmesijtin the same way, modulo diffeomorphisms; that is, for every
pair of the segmentsg ands;, the pair(s;, ¢(s;)) is diffeomorphic to(s;, ¢(s))).

Letey, ..., e, be the edges of’ which overlap the edge), atxo. Hence, they overlap
it at each of the pointsy, ..., x, .... It follows from (a)—(c) above, that the family of edges
obtained fromw’ and its deformation, namely

w” = w Ugepw) = {ple), (), ..., ple,) Uw', (5.6)

is also a web.
Now, given a labelling’ of w’, we can trivially extend it to a labelling’ of w” by setting
J"(pleg)) = -+ = j"(p(e,)) = 0. (5.7)

On the other hand, the diffeomorphigntarries;’ into another labelling (') of the webw”
given byp(j)e(e") := j'(¢') for every edge ofv’. Obviously we then have

J') #0 = () #j" (5.8)

Therefore, ifj* satisfies (5.8) then for evety € V,, -, the functionsA and ¢(N) are
orthogonal to each other. However, the diffeomorphism acts triviallfyomherefore, from
the diffeomorphism invariance @, the projection ofOW on N is ¢ invariant,

(OW|pN) = (p OV |N) = (Op ' WIN) = (OWIN). (5.9)

Moreover, it is easy to iterate the above construction to obtain an infinite family of
diffeomorphisms each of which satisfies the conditions (a)—(c) above and such that for every
pair of this set of diffeomorphisms,

@' # ¢ itfollows that(¢'Ny |9 Ny ) = 0. (5.10)

If ¢ varies through all possible diffeomorphisms like this, the set of the resulting gtatbésis
an infinite number of mutually orthogonal elements. Since a densely defined operator cannot
have an infinite number of non-vanishing matrix elements of the same value it follows that

(O¥|pN,yy jn) = 0. (5.11)

This is sufficient to complete the proof of part (a) of the statement.

If wis agraph, theR(w’) C R(w) implies thatw’ is also a graph. Let’ be a vertex of
w’ which is not a vertex of the graph. Therefore, it is contained in the interior of an edge
e € w. For every labellingw’, j', 7, ¢') of the graphw’ such that’(v’) # 0, and for every
spin-web state\" € V., j -, We prove that

(OW|N) =0, (5.12)

in the same way as before. We construct an infinite class of the states diffeomorphanid
orthogonal to each other. The diffeomorphisms we use move the véréong the edge but
preserve the edges of the webhence they also preserve the functibnThis completes the
proof of part (b). Point (c) follows easily from (a) and (b) and their applications to the adjoint
operator®’. This completes the proof of theorem 5.1. O
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5.2. Strongly degenerate labelled webs

Inthe previous section we have split the Hilbert space into the orthogonal sum of degenerate and
non-degenerate spin-web states and the last sector has again been decomposed orthogonally
with respect to possible symmetry groups of the labelled spin-webs. The diffeomorphism
averaging is well defined only in one of those sectors, namely in the subspagg Gyl
spanned by all the spin-web states of non-degenerate labelled webs which have at most finite
symmetry groups. For this reason it is natural to ask whether a diffeomorphism-invariant
operator is necessarily consistent with that decomposition and whether it preserves the domain
of the diffeomorphism averaging.

It is easy to see that, owing to theorem 5.1 (c), a symmetric diffeomorphism-invariant
operator preserves the finiteness of the symmetry groups. Regarding the non-degeneracy,
we will show below that the image of a non-degenerate spin-web state under the action of a
diffeomorphism-invariant operator is orthogonal to what we will define as ‘strongly degenerate’
states. We will also indicate a large class of webs for which the degeneracy is equivalent to the
‘strong degeneracy’, and we will conjecture that the equivalence holds for all the spin-webs.

Given an edge let

b H—H (5.13)

be the projection onto the subspace given by the cylindrical functions independent of the
holonomy along. Explicitly, the projection can be defined as follows. Given a cylindrical
functionw € Cyl take a wehw > {e} such thatl € H,,. Letes,..., e € w be all those
elements ofw which are segments ef We will use the orthogonal projection,

Pew: Huw = B jery==j(e)=0Vw.j» (5.14)
to define
PeV = Dew'V. (5.15)
A labelled web(w, j) is strongly degeneraté there is an infinite sequence of disjoint
regular segments, ..., s, ..., such that for every € v,, ;
fim (= fy) - (L= po)¥ =0, (5.16)

in the Hilbert space topology.
Indeed, the strong degeneracy implies the weak degeneracy. A labelletbwgpis
either degenerate or non-degenerate. If it is non-degenerate, then for every regular segment

ps(Vuj) =0, (5.17)
and the left-hand side of (5.16) & itself for every¥ € V,, ;.

Theorem 5.2. Suppos& is a diffeomorphism-invariant operator i such that the domain
D(O") contains all the spin-web subspacgs ;.. Then, for every non-degenerate spin-web
state¥ and every strongly degenerate labelled spin-web state

(O¥|N) =0. (5.18)
Proof. It follows from the non-degeneracy ¥f and from theorem 4.1 that any diffeomorphism
¢ which deforms only the segmentand acts trivially inR(w) \ R(s1) satisfies

(@V|0"p,N) = (W|OT s, N), (pW|W) = 0. (5.19)
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So, there exists an infinite family of states¥, such that

(@6 V10T N) = (91, WO py, N, (5.20)

(¢k1“p|§0kz\y) =0. (521)
It follows that

(O¥|p,,N) = 0. (5.22)
This shows that

(OY|N) = (OY|(1 — ps)N). (5.23)
Next, using the same argument for the sequemges., s, . .., we prove that for arbitrary

(OYIN) = (OV|(1 = ps) - -+ (L = psN). (5.24)
Taking the limitk — 0 and using the strong degeneracydf completes the proof of
theorem 5.2. a

Our conjecture is:
Conjecture. Every degenerate state is strongly degenerate.

So if the conjecture is true, then every symmetric, diffeomorphism-invariant operator
preserves the subspakigondeginin Which the diffeomorphism averaging has been well defined.
We will advocate the conjecture in the next subsection.

5.3. Alarge class of strongly degenerate spin-webs

There is a large class of webs, for which the degeneracy of a labelling does imply strong
degeneracy. In this subsection we consider webs for which the following is true. For every
tassell’ = {ey, ..., e,} Of a given webw and for a parametrization of the edgesrofjiven

by point (b) of the definition of a tassel (say, the parametrization is defined af) f@r every

0 <t < 1lthereis O< ¢ <t < 1 such that the segmentg,, ..., e, Of all the edges

e1, ..., e are holonomically independent. (The above property is satisfied for the web in the
example given in section 4.1. In fact, we do not know of any counter example, i.e. any web
that would fail to satisfy this property.)

Now, consider a degenerate labelliqcg, j) of a webw and a statel € V,, ;. We will
calculate explicitly the action of the projection operatpfor appropriately selected segments.
Lets be a regular segment, such that the tensor proguct ® - - - ® pj ., contains the trivial
representation in the decomposition into the irreducible representations, ayherg ¢, are
the edges ofv that overlaps. The degeneracy guarantees the existence of such a segment.
Then, owing to the properties of a tassel, there is a segsg@ithe same type aswhich is
close enough to the base point of the tassel for the following to be true: if we write each of the
edges overlapping atas

ey =ej+0s50e€y_, I=1,...,k, (525)

then the segments., .. ., ¢;+ are holonomically independent (the beginning segments
are holonomically independent for any choicesddy the very construction of a tassel). We
will show, that

A= poWl = c(ler), ..., jlee)WI. (5.26)

The main point of this result is that the coefficienlepends only on the labels assigned by
the labelling; to the edges. Of course the coefficient is less then one, because the operator is
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a projection and the trivial representation does appear in the decomposition above. The new
function(1 — p,)W¥ can be written as

A=pIw=>", (5.27)

where each, is again a spin-web state associated to a labelled(wgbj, ) which contains
a segment; of the same properties as the segmgnhamely

(a) s1 is overlapped by edgese’, ..., e;;
(b) the segments,; overlappings; are labelled in the same way as the edges

Jn(er) = jlep), I1=1...k (5.28)

(c) the new segments,, .. ., ¢;, are holonomically independent (whefe= e}, osioe}_).
Therefore, we can use the result again to conclude that

1A= ps)(X = pe) ¥l = c(jen). ... jle)? [Vl (5.29)

Finally, repeating the construction we find an infinite sequence of segsaests. . ., sy, .. .,
such that

(L= psy) -+ (L= pe)Wl = c(jer), ..., jle)M W] (5.30)

The sequence converges to 0Ms—> oo, henceW is indeed strongly degenerate.
Let us now show that equation (5.26) is true. The functlooan be written as

W= LAl...AkD(j(“))gi(Uel) .. .p(j(ek))/;:(Uek)RBl---bk’ (5.31)
whereLyg,..a,, R B € Cyl,, do not involve any of the holonomids,, ..., U,,. Then, the

action of the projection operatgr, on W is

N i A i Ax
Pl = LAl_“AkD(j (ﬁ))ci(Ug“) L D(J(ek))C: (Uek+)CC1 Ck

. A (5.32)
CDl-nDkD('I (ﬂ))?ll(UgL) . D(./(ekf))f;:(Uek)RBL..Bk'
The comparison of the norms gives the following result;
155 WII? = G Cideycy - - 8cucepyn oy 8 P - - 8P PE W 2. (5.33)

From the orthogonality op, ¥ and(1 — p,)¥ we conclude (5.26).

It is easy to see that as mentioned the web of the example in section 4.1 belongs to the
class of webs considered in this section. Indeed, each of the two edges contains a segment
which is not overlapped by the other edge. Interestingly, even if we use the range of the web
to introduce more edges such that each regular segment is overlapped by more than one edge,
in all the examples we considered we found only webs belonging to the same class. Itis likely
that for a semi-simple group this class contains all the webs.

What we have learnt from this section is that as in the case of the analytic category
considered in [4], the algebra of the observables strongly commuting with the diffeomorphisms
is reducible to the sectors labelled by the ranges of the webs. In the case whenwaisvaeb
graph, the corresponding sectofHs,.
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6. The gravitational field operators

For the quantization of gravity there are two kinds of operators that play a key role. The firstkind
consists of the so-called geometrical operators [23, 25, 27, 29] corresponding, respectively, to
lengths, areas and volumes of curves, areas and volumes. The second kind consists of constraint
operators [4, 28], most importantly the Hamiltonian constraint. These have been defined in
the analytical category so far. We will now extend them to the smooth category.

6.1. The 3-geometry operators

The regularizations of the operators representing geometric functionals can be easily modified
to the case of smooth curves. A problem one encounters then is that when a functional
depending orE is given by an integral over a surface or a regiorkithe resulting operator
often is not well defined in any dense domain. This means that a given surface or region is just
infinite in certain states of the system.

To begin with, consider a functional associated with an oriented 2-susfésee [23, 25]
for details)

Eg = / %Ei”eabc dx? A dx?, (6.1)
S
and the corresponding quantum operator
iy L 18 b
E{ = /s Emeabc dx® A dx”. (6.2)

Let ® € Cyl, wherew is a web. ‘Generically’, every edgeof w has only a finite number of
isolated intersections with and only those contribute to its action dn Generally, however,
that number is infinite. Every point of e which is not contained i§ defines a segmentof
e whose interior does not interseSitwhereas its ends lie a$ior coincide with the ends ef
However, for each edgethe number of such segments is at most countable. Split each such
segment into two pieces, oriented in such a way that they are outgoing from the surface and
denote the resulting segmentsy, ..., Sk, .- -

Repeating the derivation of the first reference of [23] we see that for a cylindrical function
& compatible withw, the only contribution comes from those end points of the segments
s..; Which are contained if§, according to the formula

Eg@ = %ZKS(S‘?J)J;('.IJ“(D’ (63)

Se,1

Figure 3.
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wherexs(s..;) is £1 if the segment intersecssand goes up/down (the above notation excludes
segments which overlapand contribute zero). The operatdg‘g_m_l were already defined in
[23] where it is understood that we replace graphs by webs.

In the general case, for infinitely many intersections,

|EL®| = occ. (6.4)

Therefore, the domain of the operator is defined by the generic webs which intersect the surface
S finitely many times. Using the same notation, for the arefi wk obtain

areal = %E% Z\/(ZKs(S)J;“,S)(ZKs(S/)J;M,S,)\IJ, (6.5)

Xe,1

wherex, ; runs through all the intersection points of the segmentsvith S ands ands’ run
through all the segments ; which intersect the same ;. However, again, the operator may
take infinity. For instance, on a Wilson loop function

W(A) = Tr Uy, (A) (6.6)

given by a non-self intersecting loapwhich defines infinitely many, transversally intersecting
the surfaces segments, ; defined above, we have

areab = cod. (6.7)

In the case of the volume of a regighin X, the ‘external’ regularization of Rovelli and
Smolin [25] does not appear to be easily applicable to the smooth curves case. On the other
hand, the regularization of the second reference of [23] proposed for the volume operator can
be extended to that case. Then, the contribution is given by all the points of intersection of
three edges aof such that the directions tangent to the edges are linearly independent and the
intersection point is contained R. The number of such generic intersection points is at most
countablet. The action of the resulting volume operator on a cylindrical function compatible
with the webw reads
VR\I] =Ko Z |év|qj where évq/ = 4_186ijk Z (s, S/, S”)Jll)l,s‘luj,s"]f,s”ly (68)

s,s',8"

wherev runs through all the intersection points between the edgaesarfd each of, s’, s”
runs through all the segments intersecting at and are outgoingurtime numbek (s, s/, s”)
equalst1, 0 depending on the orientation of the vectors tangent i s” atv.

Similar statements apply to the length operdtar) [27] for any piecewise-smooth curve
¢, since it uses the volume operator as a basic building block.

In summary, for all three operators considered above, the infinity arises as a sum of a
countable number of finite terms. We can interpret this infinity as follows: let us first exclude
most of the points giving rise to the infinity from the curvethe surfaceS or the regionr,
respectively. Then we will obtain a finite length, area or volume. Then, the process of gluing
back the removed points one after the other can be interpreted as extending the curve, surface
or region to (spatial) infinity.

T Indeed, for any given triple of edges p’, p” the generic intersection points are isolated from each other, so their
set is countable; the number of triples is finite, determined by the number of edges of the web.
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6.2. Hamiltonian constraint

In section 4.2 we have defined new solutions of the diffeomorphism constraint. They were,
however, so far not shown to be in the domain of the dual of the loop Hamiltonian constraint,
as was defined in [28]. We observe below, that in fact the action of thei(@l) of the
Hamiltonian constraint can be naturally defined on them and that it is free of the infinities
emerging in the case of the above 3-geometry operators.

One can easily repeat the regularization of [28] of the Hamiltonian constraint, with
appropriate modifications, to the case of a web with an infinite number of intersection points
among its defining curves. Recall, that in the Hilbert sgda the cylindrical functions, one
first defines a regulator-dependent Hamiltonian operdigmhereA denotes the regulator. Its
domain is no longer dense in the smooth category, in contrast to what happens in the analytical
category. The reason for this is the same as in the case of the volume operator. Explicitly, the
regulated Hamiltonian operator acts on a spin-web $fgté the following way:

H(N)AIT) =Y N@hawT) (6.9)

whereN is a lapse functiony runs through all the intersection points of the edges in a web
and for eachy the operatoii,, is well defined for all the spin-web states. The number
of intersection points is in general infinite, hence the total operator (6.9) is not well defined
on such states. (The operavbg(u) involves the volume operator in such a way that, as in
the volume operator case, only the triples of generically intersecting segments contribute.)
Remarkably, however, the dual operaf?(ﬁ)/A is well defined for any dual spin-web state,
thatisifw e V,, ; and¥; € V,,, ;, for labelled webgw, j) and(ws, j1), then(lI/|H/(17)AlI/1)
is finite.

Finally, the regulator-free dual Hamiltonian opera’rﬁl‘(N) is well defined on the
diffeomorphism-averaged dual-spin web staiés provided that we restrict ourselves to the
space Cylyqeqin@N Which the diffeomorphism averaging has been defined in section 4.2. More

specifically, whenever € Cyl,,,qeqtinthen for any lapse function the function@l|H'(N) is
a well defined linear functional on the entire space, Gyl
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