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Abstract. In the canonical quantization of gravity in terms of the Ashtekar variables one uses
paths in the 3-space to construct the quantum states. Usually, one restricts oneself to families of
paths admitting only a finite number of isolated intersections. This assumption implies a limitation
on the diffeomorphisms invariance of the introduced structures. In this work, using the previous
results of Baez and Sawin, we extend the existing results to a theory admitting all the possible
piecewise-smooth finite paths and loops. In particular, we (a) characterize the spectrum of the
Ashtekar–Isham configuration space, (b) introduce spin-web states, a generalization of the spin-
network states, (c) extend the diffeomorphism averaging to the spin-web states and derive a large
class of diffeomorphism-invariant states and finally (d) extend the 3-geometry operators and the
Hamiltonian operator.

PACS number: 0460D

1. Introduction

In the context of the canonical quantization of diffeomorphism-invariant theories of
connections for a compact gauge group, in particular, quantum gravity in four spacetime
dimensions, the quantum configuration space is coordinatized by certain elementary operators
which could be called generalized Wilson functions. These functions are labelled in general
by a set of paths in the manifold in question. It turns out that the precise nature of these paths
has a deep impact on the structure on the resulting quantum theory. All the considerations in
quantum gravity to date concern the case where the paths defining a given Wilson function can
intersect only finitely many times. To ensure this, piecewise analyticity was often assumed.
Therefore, in the following we loosely denote that case by ‘the analytic category’. In ‘the
smooth category’, however, the known results are sparse.

In this paper we extend the pioneering work by Baez and Sawin on this issue. Specifically,
this paper is organized as follows. In section 2 we state the problem with the extension of results
from the analytic to the smooth category and recall the results due to Baez and Sawin. Then
we prove a master theorem which extends the results due to these authors and which is the key
to sections 3–5. In section 3 we apply the master theorem to show how the results concerning
the Ashtekar–Isham algebra can be immediately extended. In section 4 and 5 we define the
notion of a spin web in analogy to the spin-nets of the analytic category in order to apply
the master theorem to the extension of results by Ashtekar, Marolf, Mourão and the authors
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concerning diffeomorphism-invariant states of connections and associated diffeomorphism-
invariant operators. Finally, in section 6 we apply the machinery of the previous sections to
the operators that have proved to be elementary building blocks for the quantization of the
gravitational field.

2. The algebra of cylindrical functions on the space of connections

This section is divided into three parts. In the first part we recall the basic notions of cylindrical
functions on the space of distributional connections and inductive limit structures, and review
the results that one obtains if one labels cylindrical functions by piecewise analytic, finitely
generated graphs. In the second part we review the construction, due to Baez and Sawin, of a
new label set, called ‘webs’, which are appropriate for the case where the loops defining the
Wilson functions are only piecewise smooth and may intersect each other an infinite number
of times. Finally, in the third part we prove the master theorem on which the rest of this paper
is based.

2.1. Preliminaries

In the loop quantization of gravity as initiated by Ashtekar [1] and Jacobson, Rovelli and
Smolin [2] and Gambiniet al (see, e.g., [3] and references therein) through embedding general
relativity into a Yang–Mills theory phase space and making use of Wilson loop variables
as well as in a general framework for quantization of a diffeomorphism-invariant theory of
connections with local degrees of freedom [4] one uses the algebra of cylindrical functions
defined by the parallel transport maps as the main device [4–30]. The algebra, let us call it
Cyl, is a sub-algebra of the algebra of functions defined on a space ofG connectionsA. The
connections are defined on a bundle over a manifold6. For simplicity we assume here that
the bundle is trivial† and we fix a global gauge (section). We are assuming thatG is compact
and semi-simple. A complex-valued function8:A → C is called cylindrical, if there are
piecewise-smooth pathsp1, . . . , pn‡ in6 and a functionφ ∈ C0(Gn) such that

8(A) = φ(Up1(A), . . . , Upn(A)) (2.1)

whereUp(A) ∈ G represents the parallel transport along the pathp with respect to the
connectionA. To control the algebra it is useful to decompose Cyl into a union

Cyl = ∪w∈WCylw (2.2)

of sub-algebras that are easier to handle (W is a labelling set and will be specified below).
This decomposition is particularly convenient if it defines a so-called ‘inductive limit’, that is,
if for everyw1, w2 ∈W, there existsw′ ∈W such that

Cylw1
,Cylw2

⊂ Cylw′ . (2.3)

One might take forW the set of all the finite families of piecewise-smooth paths in6 and
associate to each finite family of pathsw the sub-algebra Cylw ⊂ Cyl given by all the paths
obtained from the elements ofw and their inverses by using the path product. That does define
an inductive limit decomposition, however, given a general family of pathsw, we do not know

† Most of the results concerning the gauge-invariant cylindrical functions can be easily generalized to a non-trivial
bundle case [6, 7, 9].
‡ By a piecewise-smooth path we mean here a piecewise-smooth mapp: [t0, t1] → 6 continues on the whole
interval of [t0, t1] such that its (one-sided) derivative never vanishes except for the constant path; here we are actually
interested in equivalence classes of paths where two paths are equivalent iff they differ by an orientation-preserving
piecewise-smooth diffeomorphism [t0, t1] 7→ [s0, s1].
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much about the corresponding Cylw. An example of a sub-algebra Cylw we do know much
about is the sub-algebra corresponding to a family of pathsw which is an embedded graph†.
Then, Cylw can be identified with the algebra of functionsC0(Gn) wheren equals the number
of edges inw, via the map

A 3 A 7→ (Ue1(A), . . . , Uen(A)) ∈ Aw ⊂ Gn. (2.4)

whereei are the edges ofw andAw is the image of that map. Such a map is defined for any
family of paths, but in the case of a graph the map (2.4) isonto, therefore

Aw = Gn. (2.5)

If one fixes an analytic structure on6 and defines Cyl(ω) ⊂ Cyl to be the sub-algebra given
by the piecewise-analytic paths, then the analytic graphs are enough to decompose Cyl(ω) into
the following inductive limit sum:

∪γCylγ = Cyl(ω), (2.6)

where the sum ranges over the set of piecewise-analytic graphs in6. That is true due to
the following fact. Given two analytic graphsγ, γ ′ there is an analytic graphγ ′′ such that
γ ′′ > γ, γ ′, where the inequality relation is defined as follows. Two familiesw,w′ of paths,
are in the relation

w 6 w′ (2.7)

if every path element ofw can be obtained from the elements ofw′ and their inverses by using
the path product‡. Therefore, because of the composition rule of the parallel transports

Up◦p′ = UpUp′ (2.8)

we have

Cylγ1
,Cylγ2

⊂ Cylγ ′ . (2.9)

The above decomposition was key to the following issues:

• The development of integral calculus on Cyl(ω) [6, 9].
• The characterization of the Gel’fand spectrum of the correspondingC∗ algebra whenG

is compact [5, 6, 8, 10].
• Measure theory on the spectrum [6, 8, 10].
• The introduction of differential calculus on the spectrum useful for introducing and

studying the operators of quantum gravity [7].
• The introduction of spin-networks as the orthonormal basis with respect to the natural

integral in Cyl(ω) [15, 16].

Our goal now is to see to what extent the above applications can be generalized to the case of
smooth paths.

† A graph is afinitefamily of one-dimensional, oriented sub-manifolds of6 such that every two can share only one or
two points of the boundary. Given a graph, its elements are called edges. By an edge, we shall also mean an oriented
1-sub-manifold with boundary.
‡ Given two (unparametrized) pathsp1 andp2 such that the end point ofp1 is a starting point ofp2, the path product
p2 ◦ p1 is a path obtained by connecting the end ofp1 with the beginning point ofp2.
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2.2. The Baez–Sawin framework

The virtue of piecewise-analytic graphs is that their edges cannot intersect or overlap in an
infinite number of distinct, isolated points or segments. This is the key to the definition of the
algebra Cyl(ω) as an inductive limit since the union of two piecewise-analytic graphs (after a
finite number of subdivisions) again defines a piecewise-analytic graph. This is no longer true
when two graphs are just piecewise smooth, an example being given by the graph that consists
of the union of two smooth curves which intersect in a Cantor set [31] or the intersection of
the graph of the function [0, 1] 3 x → e−1/x2

sin(1/x) with thex-axis. The graphs are not
both contained in the same graph. Thus, for the full algebra Cyl the graphs are not enough to
provide an appropriate decomposition.

Recently, Baez and Sawin [17] introduced a suitable generalization of an embedded graph
which they called aweb.

For the purpose of this paper, it is enough to know the following properties of the webs
due to Baez and Sawin:

(a) a web is a finite family of piecewise-smooth pathse which do not self-intersect;
(b) for every webw = {e1, . . . , en} the image of the map (2.4) is a Lie subgroup ofGn;
(c) for every finite familyw of smooth paths there exists a webw′ such thatw 6 w′.

Thus, in contrast to the piecewise-analytic graphs which are labelled by their edges (i.e.
paths which intersect at most at their endpoints) a Baez–Sawin web is labelled by the paths
e1, . . . , en which may overlap or intersect each other possibly an infinite number of times.
Abusing the notation, we shall nevertheless denote the labels of a web by edges again to
distinguish them from an arbitrary path. Henceforth, we denote byW the set of all the webs
in 6. We should also note that Baez–Sawin’sW is preserved by the diffeomorphisms of6.
The highly non-trivial result proved in [17] is thatW indeedexists.

Due to property (c),

Cyl = ∪w∈WCylw, (2.10)

and(Cylw)w∈W is a projective family. Point (b) gives us certain control on Cylw. Our first
result will tell us more about Cylw.

We end this section with the Baez–Sawin definition of a web (for more details see [17]).
A web is the (set) union of a finite number of families of edges, so-calledtassels. First, to
give the reader an intuitive picture, we explain how a graph gives rise to a web. Given a graph
γ subdivide each of its edgese into two edges oriented in such a way that they end in the
subdivision point. Denote the resulting graph byw. A vertex ofw is either a vertex ofγ or
one of the subdivision points. Letv be a vertex ofw which is also a vertex ofγ . The set of
edges ofw leavingv forms a tassel based atv and the subdivided graphw is a web (a special
case of a web).

In general, edges of a tassel are allowed to intersect at points different from their end
points and can overlap. Given a familyT of edges, a pointq ∈ R(T )† is aregular pointof T
if there is a neighbourhoodU of q such that the intersectionR(T ) ∩ U is an embedding of an
open interval. A segment of that embedded interval we will call aregular segment. (In other
words, if a curvee ∈ T intersectsq then it intersectsq exactly once, and any othere′ ∈ T
either overlapse atq or does not intersectq at all.) Given a regular pointq of T its typeis the
set of the elements ofT which overlap atq.

† TherangeR(T ) of a family of curvesT is the union of the ranges of each element ofT .
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General definition of a web.A a family of edges is atasselif it has the following properties.

(a) All the edges ofT begin at the same point; we call it thebase pointof T .
(b) The edgeseI , I = 1, . . . , k, of T can be parametrized in such a way that

eI (t) = eJ (s) ⇒ t = s. (2.11)

(c) Two edges ofT that intersect at a point different from the base pointp intersect in every
neighbourhood ofp.

(d) Any type which occurs at some pointq ∈ R(T ) occurs in every neighbourhood of the
base pointp.

2.3. Holonomic independence of the curves in a Baez–Sawin web

Pathsp1, . . . , pn are holonomically independentif for every (g1, . . . , gn) ∈ Gn there is a
smooth connectionA ∈ A such that

(Up1(A), . . . , Upn(A)) = (g1, . . . , gn) ∈ Gn. (2.12)

As we already indicated in section 2, the edges of any graphγ are holonomically independent,
hence the corresponding Cylγ can be identified with the whole ofC0(Gn). However, the results
of [17] only show that for ann-element webw the set Cylw can be identified withC0(Gw)

wherea priori Gw can be any Lie subgroup ofGn that may even vary withw.
Our master result is that it continues to hold thatGw = Gn for the case thatG is semi-

simple.

Theorem 2.1 (Master theorem).Let {p1, . . . , pn} be a finite family of paths which satisfies
the properties (a) and (b) above. Then the paths are holonomically independent.

Proof. Forn = 1 the assertion is obvious. Forn = 2 we need to note that sincee1 6= e2, there
is a pointx ∈ R(e1) such that a neighbourhoodU1 of x does not intersecte2 and a similar point
y ∈ R(e2) and a neighbourhoodU2. The neighbourhoods may be chosen not to intersect each
other. Therefore, given any(g1, g2) ∈ G2 one can easily construct a single connectionA such
thatUe1(A) = g1 andUe2(A) = g2.

Suppose now that the theorem is true for everyn 6 k and consider the case when
n = k + 1> 3. Denote byaw the Lie sub-algebra of the Lie algebra ofGn corresponding to
the subgroupAw = Gw ⊂ Gn obtained as the image of the map

A 3 7→ (Ue1(A), . . . , Uen(A)) ∈ Gn. (2.13)

It suffices to prove thataw coincides with the whole Lie algebra ofGn. Since, according to
our assumption, the theorem holds forw′ = w \ {ei} for any edgeei , it is enough to show that
for everya ∈ g in the Lie algebra ofG then-tuple(a, 0, . . . ,0) is in aw sinceaw is a vector
space (owing to Baez and Sawin).

SinceG is semi-simple, for anya ∈ g there areb, b′ ∈ g such that [b, b′] = a. By an
induction assumption, we can freely specifyn of the entriesbi of an element(b1, . . . , bn+1) of
the Lie algebraaw, however, the last entry may depend on the othern entries. Let us choose
freelyb1 = b, b3 = · · · = bn+1 = 0 andb′1 = b′, b′2 = b4 = · · · = b′n+1 = 0. Then there exist
certainb̃, b̃′ ∈ g which may depend on the already specifiedbi andb′i , respectively, such that

(b, b̃, 0, . . . ,0), (b′, 0, b̃′, 0, . . . ,0) ∈ aw. (2.14)

Becauseaw is closed with respect to the commutator (again owing to Baez and Sawin), we
have

[(b, b̃, 0, . . . ,0), (b′, 0, b̃′, 0, . . . ,0)] = (a, 0, . . . ,0) ∈ aw, (2.15)

which completes the proof. �
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3. Immediate implications of the master theorem

In this section we list the immediate consequences of theorem 2.1 concerning the issue of
(Mandelstam) group identities which are an important building block in the construction of
the Ashtekar–Isham algebra [5], the spectrum of that algebra and a natural uniform measure
thereon.

3.1. Group identities

The issue is the following.
Suppose thatk complex-valued functionsφ1, . . . , φk defined onGn satisfy a group identity

P(φ1, . . . , φk) = 0 ∀(g1, . . . , gn) ∈ Gn, (3.1)

whereP is a complex-valued function ofk complex variables which is characteristic for the
groupG. Examples of such identities are the famous Mandelstam identities which for the
groupG = SU(2) are given by

tr(g) tr(g′) = tr(gg′) + tr(g(g′)−1). (3.2)

Now take anyn-tuple of pathsp1, . . . , pn in6 and consider the following cylindrical functions
defined onA:

8i(A) = φi(Up1(A), . . . , Upn(A)), A ∈ A, i = 1, . . . , k. (3.3)

Obviously these cylindrical functions then satisfy the identity

P(81, . . . , 8k) = 0 ∀A ∈ A. (3.4)

Thus, we see that every group identity gives rise tooneidentity on the algebra Cyl.
The question that arises is whethereveryidentity that holds on the algebra Cyl (or one of

its sub-algebras) results from a group identity.
Owing to the master theorem, the answer turns out to be affirmative (one could not prove

this result without knowing theorem 2.1).
Indeed, consider any system of cylindrical functions81, . . . , 8k ∈ Cyl satisfying some

identity

P(81, . . . , 8k) = 0. (3.5)

Any of the cylindrical functions is defined by (2.1) with respect to some finite set of paths in
6. There exists a webw = {p1, . . . , pn} whose range contains all the paths used to define
the functions81, . . . , 8k. Thus8i = p∗wφi for some functionsφi defined on the image
Aw = Gw = pw(A) of (2.13). Consequently, the functionsφi satisfy the corresponding
identity (3.1) on all ofGw. However, according to theorem 2.1 we haveGw = Gn wheren is
the number of the edges ofw. Thus the identity on cylindrical functions came from a group
identity. Notice that, in particular, the path identities on cylindrical functions

Up(A)Uq(A) = Up◦q(A), Up◦p−1 = 1G (3.6)

for any two pathsp, q and the Mandelstam identities, which forSU(2) take the form

TrUα◦β + TrUα◦β−1 = TrUα TrUβ, (3.7)

decline from a group identity.
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A related question is ‘when are two pathsp andq holonomically equivalent?’ That is, for
which pathsp andq does the identity

Up(A) = Uq(A) (3.8)

hold onA (i.e. for allA ∈ A)?

Let pathsp andq be holonomically equivalent. Choose a webw = {p1, . . . , pn} such that
{p, q} 6 w. Decomposep, q into the path products of the elements ofw and their inverses:

p = eκ(1)i(1) ◦ · · · ◦ eκ(N)i(N)

q = el(1)j (1) ◦ · · · ◦ el(M)j (M).
(3.9)

Suppose that, in this decomposition, all the sequences of the formeI ◦e−1
I have been cancelled.

The properties of the parallel transport, the holonomic equivalence of the paths gives an
identity

g
κ(1)
i(1) · · · gκ(N)i(N) = gl(1)j (1) · · · gl(M)j (M) (3.10)

true forevery(g1, . . . , gn) ∈ Gw.
However, precisely because theorem 2.1 holds,Gw = Gn which enables us, at least when

G is non-Abelian and compact, to conclude that modulo the cancellation of pairsgig
−1
i ,

N = M, i(r) = j (r), κ(r) = l(r). (3.11)

That isfor a non-Abelian compact Lie group, pathsp andq are holonomically equivalent iff
p = q modulo cancellation of the segments of the form· · · ◦ e ◦ e−1 ◦ · · ·. (Here we are relying
on a related fact from the theory of compact non-Abelian groups [18].) Notice that we could
not conclude this ifGw was a proper sub-Lie group ofGn.

3.2. Spectrum of the Ashtekar–Isham algebra

The main motivation for raising the question about the precise image of the map (2.4) was the
wish to give a characterization of the Ashtekar–Isham quantum configuration space which in
the analytical category turned out to be rather straightforward. Recall, that whenG is compact,
we define in the algebra of cylindrical functions Cyl a norm

‖8‖ := sup
A∈A
|8(A)|. (3.12)

The completion of Cyl with respect to that norm is aC∗ algebra. Its Gel’fand spectrumA
has been promoted by Ashtekar and Isham to the role of the quantum configuration space
for a connection theory. According to the results of [6–8, 10] an elementĀ of the spectrum
of Cyl can be identified naturally with a family of points(Āw)w∈W which satisfies a certain
consistency condition. Namely, given two websw 6 w′, the projectionspw:A → Aw and
pw′ :A→ Aw′ defined in (2.4) determine uniquely a projection

pww′ :Aw′ → Aw, such that pww′ ◦ pw′ = pw. (3.13)

The consistency condition satisfied by(Āw)w∈W is that for every pair of websw 6 w′,
pww′Āw′ = Āw. (3.14)

More precisely, there is a one-to-one correspondence between the set of solutions of the
consistency condition and the spectrum. To solve the consistency conditions one considers a
mapU(Ā) which assigns to every pathp an element ofG,

p 7→ U(Ā)p ∈ G, (3.15)
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such that

U(Ā)p◦q = U(Ā)pU(Ā)q, and U(Ā)p−1 = (U(Ā)p)−1. (3.16)

Indeed, a mapU(Ā) defines a family(Āw)w∈W by

Āw := (U(Ā)p1, . . . , U(Ā)pn) ∈ Gn = Aw (3.17)

wherew = {p1, . . . , pn}†. It is not hard to see that the result solves the consistency conditions
and that every solution can be obtained in that way.

The algebra Cyl contains a sub-algebra Cyl(A/G) of gauge-invariant cylindrical functions.
Also the results of [6–8, 10] apply, with the graphs replaced by webs. In particular, the spectrum
A/G is

A/G = A/G, (3.18)

whereG is the group ofall the maps from6 into G, the Gel’fand completion of the gauge
group acting inA.

3.3. A natural measure

A measureµ0 on the spectrumA is defined by any family of measures(Aw, µw)w∈W such that
given a cylindrical function8 in the form (2.1), the integral∫

φ dµw =:
∫
A

dµ08 (3.19)

is independent of the choice of the webw. By the same arguments as those used in [6], if
G is compact and we choose for eachµw the probability Haar measure, the resulting family
of measures does satisfy the consistency condition and defines a natural, diffeomorphism-
invariant measure onA. The resulting integral restricted to the sub-algebra of gauge-invariant
elements of Cyl coincides with the natural measure defined in [7, 8]. This result was derived
previously by Baez and Sawin and our theorem 2.1 mainly simplifies the argument.

4. Spin-webs and diffeomorphism averaging

With the natural measure, the space of the cylindrical functions is naturally completed to
become the Hilbert space

H := L2(A, dµ0). (4.1)

The aim of this section is to find a generalization of the spin-network states [15, 20] constructed
from graphs. The spin-networks gave an orthogonal decomposition of the Hilbert completion
of the subspace ofHgiven by the piecewise-analytic paths and were used to define the averaging
with respect to all the diffeomorphisms of6.

† It is here where we need theorem 2.1. WhenU varies, the points̄Aw fill all of Gn. Due toGn = Aw , everyU
defines a point inAw .



Diffeomorphism-invariant theories of connections 2307

4.1. Spin-webs

Given a webw we associate a Hilbert subspaceHw, the Hilbert completion of Cylw. That
subspace is isometric withL2(Gn). That identification provides an orthogonal decomposition
given byL2(G) = ⊕jVj whereVj are subspaces labelled by the irreducible representations of
G. In this way, to eachlabelled web(w, j), that is, a pair consisting of a webw and a labelling
j of the edges ofw by irreducible representations, we associate a finite-dimensional subspace
Vw,j ⊂ Hw called aspin-web space†. The spin-web subspacesHwj of Hw corresponding to
all possible labellingsj spanHw, are finite dimensional and for different labellings they are
orthogonal.

If j (p) = 0 for an edgep of a labelled web(w, j), then we can consider another labelled
spin-web(w′, j ′) given by removing the edgep fromw and maintaining the labelling of the
remaining edges. Obviously, the corresponding spin-web spaces are equal. In the case of
graphs, that degeneracy can be removed by admitting only non-trivial representations for the
labelling of its edges and vertices. However, in the case of the proper webs, that is not enough
and still there are spin-web spaces associated to different websR(w′) 6= R(w) such thatVwj
fails to be orthogonal toVw′j ′ . Since that is an important difficulty in diffeomorphism averaging
of the spin-webs, we illustrate it by the following example.

Figure 1. The edgee1 is the horizontal line, whereas the edgee2 consists of infinitely many bumps
up the horizontal line connected with the horizontal segments (only four bumps ofe2 are visible in
the figure. The edgese′1 ande′2 are obtained by replacing the full segments by the broken segment
s ′

Example. The first web isw = {e1, e2}. This is just one tassel of a base pointp. The second
web consists of the deformed edges. It isw = {e′1, e′2} (see figure 1). For the labellings of
w andw′, respectively, we takej (e1) = j (e2) = j ′(e′1) = j ′(e′2) = 1

2 . Our claim is that
the corresponding spin-web spacesVw,j andVw′,j ′ are not orthogonal. To see this, consider
a webw̃ obtained fromw andw′ by subdividing their edges, such that the segmentss and
s ′ become path products of entire edges ofw̃ (see figure 2). The spin-web spaceVw,j is no
longer a spin-web space with respect to the webw̃. It admits the non-vanishing projection on
the spin-web space given by the labellingj̃ of w̃ which takes the value0 on the segments ofs
ands ′, and 1

2 otherwise. The same is true for the spin-webVw′,j ′ .

† With an edgep of a webw and an irreducible representationj (p) one associates the linear spanVp,j (p) of the

functionsf (A) = D(j (p))MN (U(A)), whereD(j)MN (U) denotes an(M,N) entry of the matrix corresponding to an
elementU ∈ G in thej th representation and with respect to some fixed basis in the fundamental representation space.
Then,Vw,j = ⊕pVp,j (p), with p running through the edges ofw.
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Figure 2. The webw̃ consists of three tassels. The first tassel is based at the pointp and consists
of the segments connectingp with the pointsq ′5 andq ′6. The second tassel is based at the pointp′1.
It consists of the segments connectingp′1 with the pointsq ′3, q

′
4, q
′
5, q
′
6. The third tassel is the set

of the segments connecting the pointp′2 with the pointsq1, q2, q
′
3, q
′
4.

The lesson the above example teaches us is that a smooth deformation of a segments in
(w, j) such that it no longer overlaps the remaining part ofw does not necessarily result in a
labelled spin-web(w′, j ′) such thatVw′,j ′ andVw,j are orthogonal to each other. This would
not be true if we were working in the analytical category and with spin-networks [15, 16]. We
could also see how two different webs define a refined, bigger one.

Our goal now is to show that there exist certain ‘non-degenerate’ spacesVw,j with the
property that they are orthogonal to every other spaceVw′,j ′ whenever the ranges of the webs
do not coincide, whether(w′, j ′) is also non-degenerate or not.

Definition 4.1. Consider a webw and a labellingj of its edges with irreducible and non-trivial
representations. Consider a regular pointx (see section 2.2) ofw and let the type ofx be such
that the edgeseI1, . . . , eIk ∈ w are overlapping atx. We will say thatx is a non-degenerate
point whenever the trivial representation does not emerge in the decomposition of the tensor
product of the representationsj (eI1), . . . , j (eIk ). Given a labelled web(w, j), if every regular
point is non-degenerate, then we will say that(w, j) is non-degenerate.

We then have the following result.

Theorem 4.1.SupposeVw,j is the spin-web space assigned to a non-degenerate labelled web
(w, j) and the spin-web spaceVw′,j ′ assigned to(w′, j ′) is not orthogonal toVw,j ; assume
also thatj ′(e′) 6= 0 for everye′ ∈ w′; then:

(a) The labelled spin-web(w′, j ′) is also non-degenerate;
(b) The ranges of the spin-webs coincide,

R(w) = R(w′); (4.2)

(c) There is a webw′′ > w,w′ which can be obtained from each of the websw,w′ by
subdividing its edges.

Proof of theorem 4.1.The key fact is the existence of a webw′′ such that

w′′ > w,w′. (4.3)

One has to remember (see the example of section 4.1), however, that for proper webs, that is
for webs which are not just graphs, given the spin-web spaceVw,j and the bigger webw′′, the
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spaceVw,j is not in general one of the spacesVw′′,j ′′ with some labellingj ′′. All that we know
is that in general

Vw,j , Vw′,j ′ ⊂ ⊕j ′′Vw′′,j ′′ , (4.4)

wherej ′′ is some finite set of labellings. Since the spin-web spacesVw,j andVw′,j ′ are not
orthogonal to each other, there is a labellingj ′′0 of the webw′′ such that both the projections

Vw,j → Vw′′,j ′′0 , and Vw′,j ′ → Vw′′,j ′′0 (4.5)

are not trivial. An easy observation is the following.

Lemma 4.1. Let(w, j) and(w′, j ′) be as in the hypothesis above; there is a webw′′0 > w,w′
which can be obtained by sub-dividing the edges ofw′.

Proof of lemma 4.1.Letw′′ be a web such thatw′′ > w,w′. Letw1, w2 ⊂ w′′ be webs which
consist of the segments of the edges ofw, and, respectively,w′. Thus we can write,

w1 = {e′′1, . . . , e′′k , a′′1, . . . , a′′n},
w2 = {e′′1, . . . , e′′k , b′′1, . . . , b′′m}, (4.6)

w′′ = {e′′1, . . . , e′′k , a′′1, . . . , b′′m, c′′1, . . .},
that is the websw1 andw2 share the edgese′′I , the edgesa′′I denote those of the edges ofw1

which are not contained inw2, whereasb′′J denote the edges ofw2 not contained inw1. The
first observation is, that the web obtained from the third web above by removing the extra
edgescI , that is,

w′′0 := {e′′1, . . . , e′′k , a′′1, . . . , b′′m} (4.7)

also satisfiesw′′0 > w,w′. It is constructed from segments of the edges ofw andw′. Consider
now the labellingj ′′0 of (4.5). Since the first projection is not trivial and due to the non-
degeneracy of(w, j) we have

j ′′0 (e
′′
I ), j

′′
0 (a
′′
J ) 6= 0, and j ′′0 (b

′′
I ) = 0. (4.8)

On the other hand, because the second projection is also non-trivial, we have

j ′′0 (a
′′
J ) = 0. (4.9)

Therefore, the extra elementsa′′I of the webw1 do not exist, and we finally have

w1 = {e′′1, . . . , e′′k },
w′′0 = w2 = {e′′1, . . . , e′′k , b′′1, . . . , b′′m}.

(4.10)

This completes lemma 4.1. �
From now on, let

w′′ = w′′0 > w,w′ (4.11)

be the web given by lemma 4.1. Eventually, we will show that if spin-web spacesVw,j and
Vw′,j ′ are not orthogonal to each other, then the non-degeneracy of(w, j) implies the non-
degeneracy of(w′, j ′). Together with lemma 4.1 that will complete the proof. However, before
that we need two intermediate lemmas.

Consider two websw 6 w′′. An edgee ∈ w is the path product of the elements ofw′′,

e = e′′k ◦ · · · ◦ e′′1, (4.12)

wheree′′1 ∈ w′′ is the one that contains the base point ofe. We will see below that given a
labellingj of the webw, in the decomposition of the corresponding spin-web spaceVw,j into
the spacesVw′′,j ′′ the labellingj ′′ of the beginning segmente′′1 coincides with the labellingj
of the corresponding edgee, for every edgee ∈ w.
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Lemma 4.2. Let (w, j) be a labelled web andw′′ > w; consider an edgee ∈ w; let e′′1 ∈ w′′
be the segment ofe containing its base point; then

Vw,j ⊂ ⊕j ′′: j ′′(e′′1)=j (e)Vw′′,j ′′ . (4.13)

Proof of lemma 4.2.The spin-web spaceVw,j is spanned by the cylindrical functions of the
form

⊗e∈wD(j (e))m(e)n(e) (Ue). (4.14)

Each such function is expressed by the parallel transports along the elements ofw′′ through
the decomposition

D(j (e))m(e)n(e) (U(e)) = (D(j (e
′′
k ))(Ue′′k ) · · ·D(j (e

′′
1)))(Ue′′1))

m(e)

n(e) (4.15)

wherej (e′′1) = · · · = j (e′′k′′) = j (e), sinceD is a representation andUe′′k · · ·Ue′′1 = U(e).
Notice that any of the factorsD(j (e′′1))m(e)n(e) (Ue′′1) appears only once in the whole product

(4.15). To see this, we note that different edgese1 ande2 may share the same segmente′′I .
However, by the definition of a webw ([17], see also section 2.2), a segment of an edgee1 of
w connected to the base point of a tassel inw cannot be contained in a different edgee2 of the
same web. �

Lemma 4.3. Suppose(w, j) is a non-degenerate labelled web and(w′, j ′) is another labelled
web such that the associated spin-web spacesVw,j andVw′,j ′ are not orthogonal; then(w′, j ′)
is also non-degenerate.

Proof of lemma 4.3.Consider a regular pointx ′ of the webw′. Denote bye′1, . . . , e
′
k the edges

ofw′ which overlap atx ′. What we have to show is that the tensor product of the corresponding
representationsj ′(e′1), . . . , j

′(e′l ) does not contain the trivial representation. Use the webw′′

of lemma 4.1 again and consider the labellingj ′′0 of (4.5). Let the sub-websw1, w2 ⊂ w′′ be
defined as in (4.10). One of the edges ofw′′ is the segment of the edgee′1 which contains its
base point of the corresponding tassel. Denote it bye′′. Notice, that according to lemma 4.2

j ′′0 (e
′′) = j ′(e′1) 6= 0. (4.16)

Comparison with (4.8) shows thate′′ is one of the edgese′′I , saye′′1, of the sub-web obtained
by subdividing the edges ofw′. The same argument applies to each of the edges overlapping
atx ′. Denote the corresponding segments bye′′1, . . . , e

′′
l ∈ w1 ⊂ w′′. Since they are segments

of edgese′I of a single tassel and each of them contains the base point, there is a regular point
x ′′ of w′′ such the edgese′′1, . . . , e

′′
l overlap atx ′′ andx ′′ is not intersected by any other of

the edges ofw′′. However, the tensor product of the representationj ′′0 (e
′′
1), . . . , j

′′
0 (e
′′
l ) does

not give the trivial one, because the labelsj ′′(eI ) come from the decomposition of the non-
degenerate labelled web(w, j) into the spin web spacesVw′′,j ′′ and the projection ontoVw′′,j ′′0
is non-trivial. This concludes the proof of lemma 4.3 and the proof of theorem 4.1. �

What we have learnt from this section is that despite the difficulties shown in the example
of section 4.1 there is a class of spin-webs which have the property that a space deformation
of a given spin-work results, generically, in an orthogonal spin-web space.
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4.2. Averaging over the diffeomorphism group

In [4] the spin-networks of the analytic category can be employed to construct solutions to
the diffeomorphism constraint†. The construction consists of averaging the state over the
diffeomorphisms of6. With the Baez–Sawin results [17] the averaging was easily extended
to averaging of a spin-network state with respect to the smooth diffeomorphisms [20, 24]. Our
goal now is to extend that construction to a spin-web state.

We need first some notation.
Given a labelled web(w, j) the gauge group acts inVw,j at the end pointsx, y of an edge

p through its action on the parallel transport along the edges,

Ue 7→ g(y)−1Upg(x) (4.17)

where theG-valued functiong:6 → G defines an element of the group of the gauge
transformations. The end points of the edges of a web will be called vertices in the following.

One can further decompose eachVw,j into the irreducible representationVw,j,l,c, of that
action, assigning to each vertexv of the webw an irreducible representationl and an extra
labelc, because several equivalent but mutually orthogonal representations can appear more
then once (see [4, 15, 16] for the details about the gauge-invariant spin-networks and [21–23]).
The quadruple(w, j, l, c) will also be called alabelledweb.

As in [4] an important notion will be the group of trivial action diffeomorphisms of a web
whose vertices are labelled by irreducible representations. We define it as follows. Given a
webw0 fix a labellingl0 of its vertices by the irreducible representations. The group TA(w0, l0)

is the subgroup of those diffeomorphisms of6 which act trivially in the spaceVw0,j,c,l0 for
every labelled web(w0, j, l0, c) with the fixed webw0 and the labellingl0, and with arbitrary
labellingsj, c. In fact, the group depends quite weakly onl0. If the representationl0(v) is
non-trivial for every vertexv, then the group TA(w0, l0) consists of those diffeomorphisms
which preserve every edge (including its orientation) ofw0. However, there are some more
diffeomorphisms acting ‘trivially’ from the above point of view. Consider a 2-valent vertex
v0 of the webw0 which is the intersection point of two edgese1, e2 ∈ w such that, modulo
a change of orientation, one edge is a smooth extension of the other. Supposel0(v0) is the
trivial representation. Then, every element of the associated spaceVw0,j,c,l0, as a function on
A, depends on the connectionA through the parallel transportUe2◦e1

−1. Therefore, in this case,
every diffeomorphism preserving the oriented non-parametrized curvee2 ◦ e1

−1 is an element
of TA(w0, l0).

The group of smooth diffeomorphisms of6 acts naturally in the space of the cylindrical
functions Cyl. Given a diffeomorphismϕ and9 ∈ Cyl denote the result of the action byϕ9.
Consider a labelled web(w, j, l, c), and9 ∈ Vw,j,l,c. We attempt to define an averaged state
〈9|av by the following action on a cylindrical functionf ∈ Cyl:

〈9|(f ) := 1

κ(w, j, l)

∑
[ϕ]∈Diff (6)/TA(w,l)

(ϕ9|f ), (4.18)

whereκ(w, j, l) is a constant. The following two conditions should be satisfied by the
averaging:

(a) finiteness, given9 the result should be finite for a large class off ∈ Cyl;
(b) consistency, since the spin-web spaces are not orthogonal to each other, we have to ensure

that given two different labelled webs(w, j) and(w′, j ′) and a state9 ∈ Vw,j ∩Vw′,j ′ our
definition of the averaging gives the same result regardless of which of the above webs
we use.

† That is, the diffeomorphism-invariant state which are elements of the space Cyl′, the topological dual of Cyl.
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Supposef is contained in the subspaceVw′,j ′ associated with some labelled web(w′, j ′)
and thatj ′(e′) 6= 0 for everye′ ∈ w′. Now, owing to theorem 4.1, the only non-zero terms
in (4.18) come from the diffeomorphisms such that bothϕ(R(w)) = R(w) and the websw
andw′ = ϕ(w) satisfy property (c) of theorem 4.1. Define thesymmetry groupSG(w, l) of a
labelled web(w, j, l, c) to be

SG(w, l) = {[ϕ] ∈ Diff (6)/TA(w, l)|ϕ(R(w)) = R(w) and w′ := ϕ(w) satisfies

(c) of theorem 4.1}. (4.19)

What we need to assume is that SG(w, l) is finite. A general cylindrical function can
always be written as an infinite sum,

f =
∑
j ′
aj ′fj ′ , fj ′ ∈ Vw′,j ′ , (4.20)

with respect to the labellingsj ′ of the edges of a single webw′. To see that also for a general
cylindrical functionf the sum (4.18) is finite as long as the symmetry group SG(w, l) is finite,
consider [ϕ] in the sum (4.18) such that

(ϕ9|f ) 6= 0. (4.21)

The projection ofϕ9 ontoVw′,j ′ is not trivial only for a finite number of the labellingsj ′. (To
see that, takew′ > w, to representf .)

Turn now to the consistency condition (b). It will constrain the freedom of the constants
κ(w, j, l). Consider a labelled web(w0, j0, l0, c0) and a state

|w0, j0, l0, c0,M0〉 ∈ Vw0,j0,l0,c0 (4.22)

which satisfies an identity

a0|w0, j0, l0, c0,M0〉 = a1|w1, j1, l1, c1,M1〉 + · · · + ar |wr, jr , lr , cr ,Mr〉. (4.23)

Without loss of generality, we assume that the identity cannot be obtained as a sum of two
non-trivial identities. That is we may assume that|w, j, l, c,M〉 on the left-hand side is not
orthogonal to any of the terms on the right-hand side. Therefore, the webw is in relation (c) of
theorem 4.1 with each of the websw1, . . . , wr on the right-hand side. Moreover, ifls(vs) 6= 0
for any of the verticesvs of any of the webs above, then the pointvs is a vertex of every one
of the webs in the identity, and

l1(vs) = · · · = lr (vs). (4.24)

We may also write the identity in such a way that the labelled webs(w0, j0), . . . , (wr, jr) are
all different.

To ensure that the averaging is consistent with the identity we observe the following.

Lemma 4.4. Suppose a labelled spin-web(w, j, l, c) is non-degenerate. If(w′, j ′, l′, c′) is
another labelled spin-web such that the corresponding spin-web spacesVw,j,l,c andVw′,j ′,l′,c′
are not orthogonal to each other, then the corresponding groups of the trivially acting
diffeomorphisms coincide,

TA(w, l) = TA(w′, l′). (4.25)

Proof of lemma 4.4. We again take advantage of theorem 4.1. Letw′′ be the web given by
theorem 4.1 which satisfies (c) of that theorem. Consider the following labellingl′′ of the
vertices ofw′′ with the irreducible representations. For a vertexv of w′′ set

l′′(v) =
{
l(v), if v is a vertex ofw,

0, otherwise.
(4.26)
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Recall that every vertexv of w′′ which is not a vertex ofw is obtained by subdividing an edge
of w. It is easy to check that the corresponding groups of trivially acting diffeomorphisms
coincide,

TA(w, l) = TA(w′′, l′′). (4.27)

However, it is also true for TA(w′, l′) and TA(w′′, l′′), which completes the proof of
lemma 4.4. �

Equation (4.18) for the averaging depends on the group TA(w, l) of a given labelled web
(w, j, l, c) and on the unspecified constantκ(w, j, l). For every term in the identity(4.23) the
group of the trivially acting diffeomorphisms is the same, and equals TA(w0, l0). Therefore,
to ensure consistency, we have to take the constantsκ(w, j, l) depending only on TA(w, l),

κ(w, j, l) = f (TA(w, l)). (4.28)

A quite natural choice is for example

κ(w, j, l) = |SG(w, l)|, (4.29)

where|SG(w, l)| is the number of elements of the symmetry group of a labelled web.
Let us summarize our results: denote by Cylnondegand Cyldegthe subspaces of Cyl spanned

by the spin-web subspaces corresponding to, respectively, non-degenerate and degenerate
labelled spin-webs. Next, let Cylnondegfinand Cylnondeginf be spanned by the spin-web spaces
corresponding to non-degenerate labelled webs of, respectively, finite and infinite symmetry
groups.

Theorem 4.2.The Hilbert spaceH of all the square-integrable functions can be orthogonally
decomposed in the following way:

H = Cylnondeg⊕ Cyldeg= Cylnondegfin⊕ Cylnondeginf⊕ Cyldeg, (4.30)

where the overline denotes the Hilbert closure; the diffeomorphism averaging given by (4.18)
and (4.28) defines a linear map

Cylnondegfin3 9 7→ 〈9| ∈ Cyl′, (4.31)

with Cyl′ the topological dual to the spaceCyl.

The proof follows from the above arguments, theorem 4.1 and lemma 4.3.
Some remarks are in order about the subspaces Cylnondeginfand Cyldegwhich are excluded

from the domain of the averaging map.
The first subspace is given by non-degenerate spin-webs with infinite symmetry groups.

An example of such a spin-web was given in [20]. The spin-web considered there is degenerate
in terms of the present paper, but it is not hard to modify it to a non-degenerate spin-web of the
infinite symmetry group. The idea behind the construction of such an example is that a part of
a web can be non-trivially mapped into itself by a diffeomorphism which preserves the rest of
the web. If similar parts emerge infinitely many times (in every neighbourhood of a base of a
tassel) then we have infinitely many diffeomorphisms, which are symmetries of the web.

The second group of states is given by degenerate labelled webs(w, j). An example
of such a web is shown in figure 1. In all the examples of degenerate labelled webs we are
aware of, an associated cylindrical function can be decomposed into a converging infinite sum
of cylindrical functions, each being associated with a web obtained from the original one by
removing a (degenerate) segment (see section 5.3).

From the point of view of a diffeomorphism-invariant theory of connections, the averaged
states are solutions of the diffeomorphism constraint. The action of the Hamiltonian constraint
operator of the gravitational field can be extended to those states. We return to that issue in
section 6.
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5. Diffeomorphism-invariant operators

In the analytic category [4], the Hilbert space of cylindrical functions is orthogonally
decomposed into subspaces labelled by graphs in such a way that every diffeomorphism-
invariant operator preserves the subspaces. The aim of this subsection is to show that in the
smooth case, certain subspaces are also necessarily preserved by diffeomorphism-invariant
operators. However, the result that we derive below is not as strong as in the analytic category.

5.1. Ranges of diffeomorphism-invariant operators

Given a webw denote byHR(w) the Hilbert spaces obtained by using all the cylindrical functions
which are associated with the webs whose ranges are contained in the range ofw,

HR(w) :=
∑

w′|R(w′)⊂R(w)
Hw′ . (5.1)

Theorem 5.1.SupposeO is a diffeomorphism-invariant operator defined in a domainD(O)
in the Hilbert spaceH = L2(A, dµ0); then,

(a) for every webw, the Hilbert subspaceHR(w) associated with its range is preserved by the
operatorO;

(b) in particular, when a web is a graph, then the space

⊕jVw,j , (5.2)

j running over all the labellings of the edges ofw by the irreducible (possibly trivial)
representations, is preserved by the operatorO;

(c) suppose that, for every labelled web(w′, j ′), it is true that, Vw′,j ′ ⊂ D(O†); let
9 ∈ Vw,j ∩ D(O) andN ∈ Vw′,j ′ where(w, j) are labelled webs; then,

(O9|N ) 6= 0 ⇒ R(w′) = R(w), (5.3)

provided the labellingsj, j ′ do not assign the trivial representation to any of the edges of
the websw and, respectively,w′; in particular, if the webw is a graph, then the operator
preserves the space

⊕jVw,j , (5.4)

j running through all the labellings of the edges ofw by irreducible and non-trivial
representations.

Proof. Consider a webw and a state9 ∈ HR(w) ∩D(O). For the proof of (a), it is enough to
show that for every labelled web(w′, j ′) such thatw′ > w containing an edgee′ ∈ w′ such
that the rangeR(e′) is not contained inR(w)

j ′(e′) 6= 0 ⇒ O9 ⊥ Vw′,j ′ . (5.5)

(Notice, that the subspacesVw′,j ′ span a dense subspace in the whole ofH, even when we
restrict ourselves, tow′ > a givenw because we allowj ′ to contain trivial representations.)
Let e′0 ∈ w′ be an edge such that the rangeR(e′0) is not contained inR(w). In e′0, there is a
regular pointx ′0 of the webw′ which is not contained inR(w). According to the definition
of a tassel, the edgee′0 contains a sequence of the regular points(x ′k)

∞
k=0 such that each of the

points has the same type asx ′0, and the sequence converges to the beginning point ofe′0, the
base point of the corresponding tassel. For each of the pointsx ′k take an open neighbourhood
Uk 3 x ′k diffeomorphic to a ball, such that the intersectionR(w′) ∩ Uk is an embedded open
interval, says ′k. Consider a diffeomorphismϕ ∈ Diff such that:
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(a) ϕ preserves each of theUk and acts trivially outside of∪kUk;
(b) ϕ(x ′k) 6= x ′k, for every point of the sequence;
(c) ϕ deforms each segments ′k in the same way, modulo diffeomorphisms; that is, for every

pair of the segmentss ′k ands ′l , the pair(s ′k, ϕ(s
′
k)) is diffeomorphic to(s ′l , ϕ(s

′
l )).

Let e′1, . . . , e
′
m be the edges ofw′ which overlap the edgee′0 at x0. Hence, they overlap

it at each of the pointsx1, . . . , xk, . . . . It follows from (a)–(c) above, that the family of edges
obtained fromw′ and its deformation, namely

w′′ := w′ ∪ ϕ(w′) = {ϕ(e′0), ϕ(e′1), . . . , ϕ(e′m)} ∪ w′, (5.6)

is also a web.
Now, given a labellingj ′ ofw′, we can trivially extend it to a labellingj ′′ ofw′′ by setting

j ′′(ϕ(e′0)) = · · · = j ′′(ϕ(e′m)) = 0. (5.7)

On the other hand, the diffeomorphismϕ carriesj ′ into another labellingϕ(j ′) of the webw′′

given byϕ(j ′)ϕ(e′) := j ′(e′) for every edge ofw′. Obviously we then have

j ′(e′0) 6= 0 ⇒ ϕ(j ′) 6= j ′′. (5.8)

Therefore, ifj ′ satisfies (5.8) then for everyN ∈ Vw′,j ′ , the functionsN and ϕ(N ) are
orthogonal to each other. However, the diffeomorphism acts trivially on9. Therefore, from
the diffeomorphism invariance ofO, the projection ofO9 onN is ϕ invariant,

(O9|ϕN ) = (ϕ−1O9|N ) = (Oϕ−19|N ) = (O9|N ). (5.9)

Moreover, it is easy to iterate the above construction to obtain an infinite family of
diffeomorphisms each of which satisfies the conditions (a)–(c) above and such that for every
pair of this set of diffeomorphisms,

ϕ′ 6= ϕ it follows that(ϕ′Nw′′,p′′ |ϕNw′′,p′′) = 0. (5.10)

If ϕ varies through all possible diffeomorphisms like this, the set of the resulting statesϕN has
an infinite number of mutually orthogonal elements. Since a densely defined operator cannot
have an infinite number of non-vanishing matrix elements of the same value it follows that

(O9|ϕNw′′,j ′′) = 0. (5.11)

This is sufficient to complete the proof of part (a) of the statement.
If w is a graph, thenR(w′) ⊂ R(w) implies thatw′ is also a graph. Letv′ be a vertex of

w′ which is not a vertex of the graphw. Therefore, it is contained in the interior of an edge
e ∈ w. For every labelling(w′, j ′, l′, c′) of the graphw′ such thatl′(v′) 6= 0, and for every
spin-web stateN ∈ Vw′,j ′,l′,c′ , we prove that

(O9|N ) = 0, (5.12)

in the same way as before. We construct an infinite class of the states diffeomorphic toN and
orthogonal to each other. The diffeomorphisms we use move the vertexv′ along the edgee but
preserve the edges of the webw, hence they also preserve the function9. This completes the
proof of part (b). Point (c) follows easily from (a) and (b) and their applications to the adjoint
operatorO†. This completes the proof of theorem 5.1. �
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5.2. Strongly degenerate labelled webs

In the previous section we have split the Hilbert space into the orthogonal sum of degenerate and
non-degenerate spin-web states and the last sector has again been decomposed orthogonally
with respect to possible symmetry groups of the labelled spin-webs. The diffeomorphism
averaging is well defined only in one of those sectors, namely in the subspace Cylnondegfin
spanned by all the spin-web states of non-degenerate labelled webs which have at most finite
symmetry groups. For this reason it is natural to ask whether a diffeomorphism-invariant
operator is necessarily consistent with that decomposition and whether it preserves the domain
of the diffeomorphism averaging.

It is easy to see that, owing to theorem 5.1 (c), a symmetric diffeomorphism-invariant
operator preserves the finiteness of the symmetry groups. Regarding the non-degeneracy,
we will show below that the image of a non-degenerate spin-web state under the action of a
diffeomorphism-invariant operator is orthogonal to what we will define as ‘strongly degenerate’
states. We will also indicate a large class of webs for which the degeneracy is equivalent to the
‘strong degeneracy’, and we will conjecture that the equivalence holds for all the spin-webs.

Given an edgee let

p̂e: H→ H (5.13)

be the projection onto the subspace given by the cylindrical functions independent of the
holonomy alonge. Explicitly, the projection can be defined as follows. Given a cylindrical
function9 ∈ Cyl take a webw > {e} such that9 ∈ Hw. Let e1, . . . , ek ∈ w be all those
elements ofw which are segments ofe. We will use the orthogonal projection,

p̂e,w: Hw →⊕j : j (e1)=···=j (ek)=0Vw,j , (5.14)

to define

p̂e9 = p̂e,w9. (5.15)

A labelled web(w, j) is strongly degenerateif there is an infinite sequence of disjoint
regular segmentss1, . . . , sl, . . . , such that for every9 ∈ Vw,j

lim
l→∞

(1− p̂s1) · · · (1− p̂sl )9 = 0, (5.16)

in the Hilbert space topology.
Indeed, the strong degeneracy implies the weak degeneracy. A labelled web(w, j) is

either degenerate or non-degenerate. If it is non-degenerate, then for every regular segments

p̂s(Vw,j ) = 0, (5.17)

and the left-hand side of (5.16) is9 itself for every9 ∈ Vw,j .
Theorem 5.2.SupposeO is a diffeomorphism-invariant operator inH such that the domain
D(O†) contains all the spin-web subspacesVw′,j ′ . Then, for every non-degenerate spin-web
state9 and every strongly degenerate labelled spin-web stateN ,

(O9|N ) = 0. (5.18)

Proof. It follows from the non-degeneracy of9 and from theorem 4.1 that any diffeomorphism
ϕ which deforms only the segments1 and acts trivially inR(w) \ R(s1) satisfies

(ϕ9|O†p̂s1N ) = (9|O†p̂s1N ), (ϕ9|9) = 0. (5.19)
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So, there exists an infinite family of statesϕk9, such that

(ϕk19|O†p̂s1N ) = (ϕk29|O†p̂s1N ), (5.20)

(ϕk19|ϕk29) = 0. (5.21)

It follows that

(O9|p̂s1N ) = 0. (5.22)

This shows that

(O9|N ) = (O9|(1− p̂s1)N ). (5.23)

Next, using the same argument for the sequencess2, . . . , sk, . . . , we prove that for arbitraryk

(O9|N ) = (O9|(1− p̂sk ) · · · (1− p̂s1)N ). (5.24)

Taking the limit k → 0 and using the strong degeneracy ofN completes the proof of
theorem 5.2. �

Our conjecture is:

Conjecture. Every degenerate state is strongly degenerate.

So if the conjecture is true, then every symmetric, diffeomorphism-invariant operator
preserves the subspaceHnondegfinin which the diffeomorphism averaging has been well defined.

We will advocate the conjecture in the next subsection.

5.3. A large class of strongly degenerate spin-webs

There is a large class of webs, for which the degeneracy of a labelling does imply strong
degeneracy. In this subsection we consider webs for which the following is true. For every
tasselT = {e1, . . . , em} of a given webw and for a parametrization of the edges ofT given
by point (b) of the definition of a tassel (say, the parametrization is defined on [0, 1]) for every
0 < t < 1 there is 0< t ′ < t < 1 such that the segmentse1t t ′ , . . . , emtt ′ of all the edges
e1, . . . , ek are holonomically independent. (The above property is satisfied for the web in the
example given in section 4.1. In fact, we do not know of any counter example, i.e. any web
that would fail to satisfy this property.)

Now, consider a degenerate labelling(w, j) of a webw and a state9 ∈ Vw,j . We will
calculate explicitly the action of the projection operatorp̂s for appropriately selected segments.
Let s be a regular segment, such that the tensor productρj(e1)⊗· · ·⊗ρj(ek) contains the trivial
representation in the decomposition into the irreducible representations, wheree1, . . . , ek are
the edges ofw that overlaps. The degeneracy guarantees the existence of such a segment.
Then, owing to the properties of a tassel, there is a segments0 of the same type ass which is
close enough to the base point of the tassel for the following to be true: if we write each of the
edges overlapping ats as

eI = eI+ ◦ s ◦ eI−, I = 1, . . . , k, (5.25)

then the segmentse1+, . . . , ek+ are holonomically independent (the beginning segmentseI−
are holonomically independent for any choice ofs by the very construction of a tassel). We
will show, that

‖(1− p̂s)9‖ = c(j (e1), . . . , j (ek))‖9‖. (5.26)

The main point of this result is that the coefficientc depends only on the labels assigned by
the labellingj to the edges. Of course the coefficient is less then one, because the operator is
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a projection and the trivial representation does appear in the decomposition above. The new
function(1− p̂s)9 can be written as

(1− p̂s)9 =
∑
n

9n, (5.27)

where each9n is again a spin-web state associated to a labelled web(wn, jn) which contains
a segments1 of the same properties as the segments0, namely

(a) s1 is overlapped byk edges,e′1, . . . , e
′
k;

(b) the segmentse′I overlappings1 are labelled in the same way as the edgeseI ,

jn(e
′
I ) = j (eI ), I = 1, . . . , k; (5.28)

(c) the new segmentse′1+, . . . , e
′
k+ are holonomically independent (wheree′I = e′I+ ◦ s1◦e′I−).

Therefore, we can use the result again to conclude that

‖(1− p̂s1)(1− p̂s0)9‖ = c(j (e1), . . . , j (ek))
2‖9‖. (5.29)

Finally, repeating the construction we find an infinite sequence of segmentss0, s1, . . . , sN , . . . ,

such that

‖(1− p̂sN ) · · · (1− p̂s0)9‖ = c(j (e1), . . . , j (ek))
N+1‖9‖. (5.30)

The sequence converges to 0 asN →∞, hence9 is indeed strongly degenerate.
Let us now show that equation (5.26) is true. The function9 can be written as

9 = LA1···AkD(j (e1))
A1

B1
(Ue1) · · ·D(j (ek))

Ak

Bk
(Uek )R

B1···bk , (5.31)

whereLA1···Ak , R
B1···Bk ∈ Cylw do not involve any of the holonomiesUe1, . . . , Uek . Then, the

action of the projection operator̂ps on9 is

p̂s9 = LA1···AkD(j (e1))
A1

C1
(Ue1+) · · ·D(j (ek))

Ak

Ck
(Uek+)c

C1···Ck

cD1···DkD(j (e1))
D1

B1
(Ue1−) · · ·D(j (ek−))

Dk

Bk
(Uek )R

B1···Bk .
(5.32)

The comparison of the norms gives the following result:

‖p̂s9‖2 = cC1···CkcC ′1···C ′k δC1C
′
1
· · · δCkC ′k cD1···DkcD′1···D′k δ

D1D
′
1 · · · δDkD′k‖9‖2. (5.33)

From the orthogonality of̂ps9 and(1− p̂s)9 we conclude (5.26).
It is easy to see that as mentioned the web of the example in section 4.1 belongs to the

class of webs considered in this section. Indeed, each of the two edges contains a segment
which is not overlapped by the other edge. Interestingly, even if we use the range of the web
to introduce more edges such that each regular segment is overlapped by more than one edge,
in all the examples we considered we found only webs belonging to the same class. It is likely
that for a semi-simple group this class contains all the webs.

What we have learnt from this section is that as in the case of the analytic category
considered in [4], the algebra of the observables strongly commuting with the diffeomorphisms
is reducible to the sectors labelled by the ranges of the webs. In the case when a webw is a
graph, the corresponding sector isHw.
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6. The gravitational field operators

For the quantization of gravity there are two kinds of operators that play a key role. The first kind
consists of the so-called geometrical operators [23, 25, 27, 29] corresponding, respectively, to
lengths, areas and volumes of curves, areas and volumes. The second kind consists of constraint
operators [4, 28], most importantly the Hamiltonian constraint. These have been defined in
the analytical category so far. We will now extend them to the smooth category.

6.1. The 3-geometry operators

The regularizations of the operators representing geometric functionals can be easily modified
to the case of smooth curves. A problem one encounters then is that when a functional
depending onE is given by an integral over a surface or a region in6 the resulting operator
often is not well defined in any dense domain. This means that a given surface or region is just
infinite in certain states of the system.

To begin with, consider a functional associated with an oriented 2-surfaceS (see [23, 25]
for details)

EiS =
∫
S

1
2E

iaεabc dxa ∧ dxb, (6.1)

and the corresponding quantum operator

ÊiS =
∫
S

1
2

iδ

δAia
εabc dxa ∧ dxb. (6.2)

Let8 ∈ Cylw wherew is a web. ‘Generically’, every edgep of w has only a finite number of
isolated intersections withS and only those contribute to its action on8. Generally, however,
that number is infinite. Every pointx of e which is not contained inS defines a segments of
e whose interior does not intersectS, whereas its ends lie onS or coincide with the ends ofe.
However, for each edgee the number of such segments is at most countable. Split each such
segment into two pieces, oriented in such a way that they are outgoing from the surface and
denote the resulting segments byse,1, . . . , se,k, . . . .

Repeating the derivation of the first reference of [23] we see that for a cylindrical function
8 compatible withw, the only contribution comes from those end pointsxe,I of the segments
se,I which are contained inS, according to the formula

ÊiS8 = 1
2

∑
se,I

κS(se,I )J
i
xe,I ,se,I

8, (6.3)

Figure 3.



2320 J Lewandowski and T Thiemann

whereκS(se,I ) is±1 if the segment intersectsS and goes up/down (the above notation excludes
segments which overlapS and contribute zero). The operatorsJ ixe,I ,se,I were already defined in
[23] where it is understood that we replace graphs by webs.

In the general case, for infinitely many intersections,

‖ÊiS8‖ = ∞. (6.4)

Therefore, the domain of the operator is defined by the generic webs which intersect the surface
S finitely many times. Using the same notation, for the area ofS we obtain

ârea9 = 1
2`

2
P

∑
xe,I

√(∑
s

κS(s)J ixe,I ,s
)(∑

s ′
κS(s ′)J ixe,I ,s ′

)
9, (6.5)

wherexe,I runs through all the intersection points of the segmentsse,I with S ands ands ′ run
through all the segmentsse′,I ′ which intersect the samexe,I . However, again, the operator may
take infinity. For instance, on a Wilson loop function

9(A) = TrUα(A) (6.6)

given by a non-self intersecting loopα which defines infinitely many, transversally intersecting
the surfaceS segmentsse,I defined above, we have

ârea8 = ∞8. (6.7)

In the case of the volume of a regionR in 6, the ‘external’ regularization of Rovelli and
Smolin [25] does not appear to be easily applicable to the smooth curves case. On the other
hand, the regularization of the second reference of [23] proposed for the volume operator can
be extended to that case. Then, the contribution is given by all the points of intersection of
three edges ofw such that the directions tangent to the edges are linearly independent and the
intersection point is contained inR. The number of such generic intersection points is at most
countable†. The action of the resulting volume operator on a cylindrical function compatible
with the webw reads

V̂R9 = κo
∑
v

√
|q̂v|9 where q̂v9 = 1

48εijk
∑
s,s ′,s ′′

ε(s, s ′, s ′′)J iv,sJ
j

v,s ′J
k
v,s ′′9 (6.8)

wherev runs through all the intersection points between the edges ofw and each ofs, s ′, s ′′

runs through all the segments intersecting at and are outgoing fromv; the numberε(s, s ′, s ′′)
equals±1, 0 depending on the orientation of the vectors tangent tos, s ′, s ′′ atv.

Similar statements apply to the length operatorL̂(c) [27] for any piecewise-smooth curve
c, since it uses the volume operator as a basic building block.

In summary, for all three operators considered above, the infinity arises as a sum of a
countable number of finite terms. We can interpret this infinity as follows: let us first exclude
most of the points giving rise to the infinity from the curvec, the surfaceS or the regionR,
respectively. Then we will obtain a finite length, area or volume. Then, the process of gluing
back the removed points one after the other can be interpreted as extending the curve, surface
or region to (spatial) infinity.

† Indeed, for any given triple of edgesp, p′, p′′ the generic intersection points are isolated from each other, so their
set is countable; the number of triples is finite, determined by the number of edges of the web.
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6.2. Hamiltonian constraint

In section 4.2 we have defined new solutions of the diffeomorphism constraint. They were,
however, so far not shown to be in the domain of the dual of the loop Hamiltonian constraint,
as was defined in [28]. We observe below, that in fact the action of the dualĤ ′(N) of the
Hamiltonian constraint can be naturally defined on them and that it is free of the infinities
emerging in the case of the above 3-geometry operators.

One can easily repeat the regularization of [28] of the Hamiltonian constraint, with
appropriate modifications, to the case of a web with an infinite number of intersection points
among its defining curves. Recall, that in the Hilbert spaceH of the cylindrical functions, one
first defines a regulator-dependent Hamiltonian operatorH1, where1denotes the regulator. Its
domain is no longer dense in the smooth category, in contrast to what happens in the analytical
category. The reason for this is the same as in the case of the volume operator. Explicitly, the
regulated Hamiltonian operator acts on a spin-web state|0〉 in the following way:

Ĥ (N)1|0〉 =
∑
v

N(v)ĥ1(v)|0〉 (6.9)

whereN is a lapse function,v runs through all the intersection points of the edges in a web
and for eachv the operator̂h1(v) is well defined for all the spin-web states. The number
of intersection points is in general infinite, hence the total operator (6.9) is not well defined
on such states. (The operatorĥ1(v) involves the volume operator in such a way that, as in
the volume operator case, only the triples of generically intersecting segments contribute.)

Remarkably, however, the dual operator̂H(N)
′
1 is well defined for any dual spin-web state,

that is if9 ∈ Vw,j and91 ∈ Vw1,j1 for labelled webs(w, j) and(w1, j1), then(9|Ĥ (N)191)

is finite.
Finally, the regulator-free dual Hamiltonian operatorĤ ′(N) is well defined on the

diffeomorphism-averaged dual-spin web states〈0|, provided that we restrict ourselves to the
space Cylnondegfinon which the diffeomorphism averaging has been defined in section 4.2. More

specifically, whenever0 ∈ Cylnondegfinthen for any lapse function the functional〈0|Ĥ ′(N) is
a well defined linear functional on the entire space Cylnondegfin.
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