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Finite Yang-Mills integrals
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Abstract

We use Monte Carlo methods to directly evaluate D-dimensional SU(N) Yang-Mills partition functions reduced to zero
Euclidean dimensions, with and without supersymmetry. In the non-supersymmetric case. we find that the integrals exist for
D=3 Nzd4and D=4, N>3 and, lastly, D>5. N> 2. We conclude that the D=3 and D = 4 integrals exist in the
large N limit, and therefore lead to a well-defined, new type of Eguchi-Kawai reduced gauge theory. For the supersymmet-
ric case, we check, up to SU(5), recently proposed exact formulas for the D =4 and D = 6 D-instanton integrals, including
the explicit form of the normalization factor needed to interpret the integrals as the bulk contribution to the Witten index.
© 1998 Published by Elsevier Science B.V. All rights reserved.

In a recent study [1], we developed Monte Carlo methods in order to deal with dimensionally reduced
Yang-Mills theories. We directly work with the gauge potentials, in contradistinction to more conventional
numerical studies of lattice gauge theories. Our initial interest was in establishing reliable methods for the
numerical calculation of the bulk contribution to the Witten index in supersymmetric field theories. Some
further results in this direction are presented below. The methods are actually even more efficient if applied to
the non-supersymmetric case, and allow us to settle the question of existence of Yang-Mills theory dimension-
ally reduced to zero dimensions in a surprising way.

Let us first consider maximally reduced D-dimensional SU(N) Euclidean Yang-Mills theory. The formal
functional integral for the partition function then becomes an ordinary integral:
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Since there are directions in the integration space which are not suppressed, these integrals were generally
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believed to be ill-defined. Indeed, it is very easy to show that e.g. for D =2 the integral diverges for all N.
Nevertheless, in [1] we obtained an astonishing result: For gauge group SU(2) the exact result reads
% D <4
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Therefore, the reduced bosonic theory is not necessarily divergent. It is natural to ask how Eq. (2) generalizes if
N > 3. The methods used to derive Eq. (2) are specific to SU(2), and no analytic result is known for higher

gauge groups with N >3, except for D =2, as mentioned. However, we can modify the methods of [1] to
decide the question of existence by Monte Carlo evaluation. Our results suggest the following intriguing answer:

D=3 N=x=4
Zpy<x for {D=4 N=3
D=5 Nz2
Zp y =% otherwise (3)

In particular, this suggests that a well defined large N limit exists in dimensions D = 3 and, most interestingly,
D = 4. It opens the exciting possibility that appropriate large N correlation functions computed for the model
(1) can be related to large N Yang-Mills field theory through the Eguchi-Kawai mechanism [2]. For example,
one could consider Wilson loop operators such as
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in the limit N — . In fact, our model Eq. (1) is a new type of continuum (as opposed to lattice) Eguchi-Kawai
model. Reduced models are frequently plagued by the need to introduce quenching, but our models are already
in the weak coupling phase, so this does not appear to be a problem. However, these important questions are
beyond the scope of the present analysis.

Let us explain how to obtain convincing evidence for the result Eq. (3). In [1] we computed ratios of
integrals for different dimensions D. Such a strategy is rendered necessary by the strong fluctuations of the
integrand in Eq. (1). One key point in our procedure [1] consists in compactifying the integrals: after
introducing polar coordinates (x,...,x,) =(£,.R) (d= D(N? — 1) being the total dimension of the integral),
we exactly perform the R-integration. In the present (bosonic) case of eq(1), Z}, , can be written as
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where .7(£2,,1) is the action of the partition sum Eq. (1), restricted to the unit sphere S*~'. To obtain the
absolute value of Z, ., we now consider a series of interpolating functions z5 (2, with 1 =, <a, <
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.. <oy <a,=0 (notice that z,, , >0). These interpolating functions allow us to connect pa(L2,) 1o a
constant in much the same way as we can (sometimes) compute the free energy of a statistical physics system
by simulating at various temperatures from % down to the temperature of interest. The term with a, = 0 plays
the role of the exactly solvable high-temperature limit, since we can integrate the constant function piv=1
analytically on the d-sphere. We now write
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Each of the terms [] in eq(7) is computed in a separate Monte Carlo run, in which points are sampled according
to 7w(£2) ~ z*, using the Metropolis algorithm. The fluctuations of the operator to be evaluated, z" -1~ %/, are
much damped it «,_, ~ a;. In practice, we have used /= 10, corresponding to the number of work stations
available to us. Judiciously chosen values of «;, closely spaced as we approach 1, allow us to compute any
finite bosonic integral with ease. As a simple check, we have computed Zy_>p_s (cf. Eq. (2)) to within 1%
precision in about 30 minutes of individual CPU time on 10 machines.

The finiteness of the integrals was also checked with the extremely powerful qualitative Monte Carlo
method described in [1]. In that method, we solely monitor the autocorrelation function of the Metropolis
random walk. The cases analytically known to diverge were easily identified (D =2 for all N, D =234 for
N =2). Of these cases, the N =2,D =4 random walk appears less divergent, which agrees with the analytic
result that the divergence is marginal {the N =2,D = 4 + ¢ integral exists). A similar behavior is observed for
N=3,D =3, which we believe to be marginally divergent as well.

Using the techniques just described, we are able to present Table 1.

The computation becomes simpler both with D (it is completely trivial for D > 5) and N. We are thus
confident about the statements expressed for large N and arrive at the prediction (3). This is the central
observation of the present paper.

Turning now to the supersymmetric case, the integrals reduced to zero dimensions read
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The only possible dimensions are D = 3.4,6,10 corresponding to .# = 2,4.8,16 real supersymmetries, respec-
tively. Integrating out the fermions, we find an integral that differs from Eq. (1) only by a modified measure:
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The integrand is weighted by a very special homogeneous polynomial 22, , of degree k= (D —2XN*—1)
24 (N*=1) in the variables X,i" See e.g. [1] for further details. In a very recent calculation, Moore et.al.

Table |

Direct evaluation of bosonic Yang-Mills integrals

N D=2 D=3 D=4

2 x % =

3 ES x 19-10 °
4 % 69-1077 2910 *
5 E3 9.9-1077 2.0-107 1
6 % 48-107'* 4.1-107%
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[3], heavily using cohomological field theory techniques (and therefore supersymmetry), evaluated, for
D = 46,10 analytically a class of related integrals which are initially defined in Minkowski space and are Wick
rotated in the course of the evaluation. These cohomologically deformed integrals are argued, after an
appropriate prescription for the Wick rotation is found, to take the same values as the integrals (9). They find
the integrals to be of the form
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Let us point out that the D = 10 result had previously been conjectured by Green and Gutperle [4]. For SU(3),
we had also performed a careful numerical check of the form of Eq. {10} in [1]. F, is a group-theoretic factor
not worked out explicitly in [3]. In fact, it is unclear to us how to derive the explicit form of F from their
epproach. In [1] it was found ro be
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It is important to stress again our finding that the Euclidean supersymmetric partition sums (8), (9) are not
some forma}l mathematical entities, but perfectly converging ordinary multipte integrats, just as their bosomnic
CONMErpans. 1115 VEIY 1eMINNE 10 Specoide Nere UNce ToTe Nzt approphsdie corre)anon foncions compuied jor
N — 2 could be related to correlators of the full susy gauge field theories.

For completeness, let us sketch the derivation of (11), in particular since its precise relationship with the
non-explicit normalization of [3] remains obscure. In [5] is was argued how the D-dimensional Euclidean
matrix model emerges from the functional integral for the supersymmetric gauge quantum mechanics of D — |
matrices when computing tne ‘butk part of the Witen index

limg ,  Tr(—1)"e 5% (12)

One needs to integrate over the group SU(N) in order to project onto gauge invariant states. This integration
becomes, in the limit 8 — 0, an integration over the hermitean generators of the group

1 M-l ax
oU-— [1 13
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where %, is precisely the constant relating the bulk part of the index to the Euclidean matrix model. It is easily
found if we investigate how the normalized Haar measure 27U and the flat measure IT5_7'dX;} act on class
functions. The latter depend only on the eigenvalues z, = e'* of the unimodular unitary matrices U. One easily
checks (e.g. by verifying orthonormality of group characters) that group integration on class functions f(U) is
performed as

1 N
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where 8, is the 27-periodic 8-function and A(z;) =TT, (2, — z,). On the other hand, the flat measure for the
hermitean matrices X, becomes

NIN=1)
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where the factors are easily checked by computing a Gaussian integral normalized to one (the A, are the
eigenvalues of X,)). Then, replacing (since 8 — 0, see [5])

=14+iX+... (16)

comparing (14) and (15) and multiplying by an extra factor of N, due to the fact that the unitary matrices
localize on N values because of invariance under the center of the group, we can read off from Eq. (13) the
result Eq. (11) for .&,.

In order to test the group factor (11) as well as the form (10) of the D = 4 bulk part of the Witten index, we
have applied the methods of direct Monte Carlo evaluation explained above to the D =4 and N <5 integrals.
As conjectured in [1], we find that the integrand is always positive if D = 4. This means that we can use the
method of direct evaluation described earlier. The results are presented in Table 2.

We have also checked that the D =6 integrals equal the D =4 integrals to good precision by the ratio
method of [1].

Finally, let us mention the open problem of the evaluation of the supersymmetric D = 3 integral. In [1], we
conjectured

Zy =0 (17)

This result is trivial for N even, but non-trivial for odd N. We suspect that the supersymmetric D = 3 integrals
are absolutely convergent (except for SU(2), and possibly SU(3)), just like their non-supersymmetric counter-
parts, cf. Eq. (3), and that their well-defined value is given by Eq. (17) [6]. Another interesting conjecture was
presented in [3], where it was suggested that a modified D=3 integral j;)iif\,, where the action is
complemented by a Chern-Simons term, leads to

-, I
=2

Zpan=Fy _/F (18)

Actually, for the solvable case of SU(2), it can be shown that Eq. (18) is nor true, since one easily finds
:fi,”:_"’,hz = . However, our bosonic result (3) suggests that the susy integrals modified by Chern-Simons exist
for at least N >4, and therefore it is feasible to test the conjecture Eq. (18) for generic gauge groups by our
approach [6].

Table 2

Direct evaluation of the D =4 D-instanton integral

N Egs. (10), (11) Maonte Carlo Error

2 1.25 1.25 < 0.01
3 322 322 < 0.01
4 7.42 7.6 +0.2
5 10.04 10.2 +0.2
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