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Nonspherical perturbations of critical collapse and cosmic censorship
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Choptuik has demonstrated that naked singularities can arise in gravitational collapse from smooth, asymp-
totically flat initial data, and that such data have codimension one in spherical symmetry. Here we show, for
perfect fluid matter with an equation of staie- p/3, by perturbing around spherical symmetry, that such data
have in fact codimension one in the full phase space, at least in a neighborhood of spherically symmetric data.
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|. COSMIC CENSORSHIP AND CRITICAL COLLAPSE following manner. If it is present with, say, positive ampli-
tude, the final outcome will be a black hole. If it is present

Spacetime singularities are a ubiquitous feature of generatith negative amplitude, the final outcome will be dispersion
relativity. In astrophysical situations, singularities only ariseof the scalar waves to infinity, without a black hole. If its
inside black holes. While no informatioftight signa) can ~ amplitude is precisely zero, in the limit of infinitely good
leave the black hole region of spacetime, the singularity itfine-tuning of the paramete, the solution settles down to
self cannot emit any light signal at all: It is spacelike, that is,the critical solution and never leaves it.
it can be thought of as a local end to time. Nevertheless, the The crucial point for cosmic censorship is that the critical
field equations of general relativity also admit solutions withsolution has a naked curvature singularity. Any smooth, as-
timelike singularities. Such a singularity may be looselyymptotically flat initial data in which the growing mode is
thought of as a point in space, just like a particle, and innot present, approach the critical solution and its naked sin-
many solutions, light signals could travel from such a singu-gularity. These data form a set of codimension dire
larity to infinity. The spacetime to the future of the singular- spherical symmetjybecause only the amplitude of the one
ity is then no longer uniquely determined by initial data in growing mode needs to be fine-tuned to zero. The spacetimes
the past. It is therefore an interesting question to ask howarising from data on the black hole threshold do not contain
generic or natural such spacetimes, or the initial data fron® “zero mass black hole,” but contain a region of the uni-
which they evolve, are. A “cosmic censorship conjecture” versal critical solution surrounding the naked singularity,
has been formulated by various authors, stating roughly thawhich is smoothly matched to an asymptotically flat region
naked singularities do not arise from asymptotically flat datdhat depends on the initial data. Near the singularity, the
for reasonable mattéf]. The only counterexamples existing deviation of the actual collapse spacetime from the universal
until recently could be written off as either not asymptoti- critical solution decays as @onintegey power of geodesic
cally flat, involving matter model&usb that form singulari-  distance to the singularity. For a recent review of critical
ties even in the absence of gravity, or requiring high symmecollapse, se¢3].
try (spherical shells Until recently, however, it could still
be conjectured that no smooth, asymptotically flat data for a
reasonable matter model would evolve into a naked singular-
ity. That was disproved by the spacetimes constructed nu- An obvious question is if critical collapse is tied to spheri-
merically by Choptui 2], which we review now. cal symmetry. Abrahams and Evapy fine-tuned the col-

Consider a smooth one-parameter family of sphericalljapse of axisymmetric gravitational waves, and found evi-
symmetric, asymptotically flat, smooth initial data for a self-dence for black hole mass scaling, universality, and a self-
gravitating scalar field. The only condition on the family is similar critical solution. This shows that critical phenomena
that it contains both data sets which form a black Hsey, can occur for axisymmetric, highly non-spherical initial data.
for large parametep), and data sets which do nftay, for  In a complementary approach, we take here a known critical
smallp). Choptuik showed that by fine-tuning the valuepof solution in spherical symmetry, and perturb it non-
to a critical valuep, , one can obtain arbitrarily small black spherically. We find that the only growing mode is the pre-
holes. Forp=p, the black hole mass scales approximatelyviously known spherical one.
asMgy=C(p—p,)7?, with y=0.37 a universal constant. A This result is weaker than that of Abrahams and Evans in
solution evolving from fine-tuned initial data approaches onebeing only perturbative. But a linearized result establishes a
and the same solution, independently of what the initial dataesult in an open neighborhood, up to linearization stability.
looked like. The better the fine-tuning, the longer the solu-In spherical symmetry the basin of attraction of the critical
tion follows this “critical solution.” The critical solution is  solution was empirically found to be the entire black hole
an attractor of codimension one, because it has precisely oribreshold, even far from the critical solutip]. This makes
growing perturbation mode. Its basin of attraction is thenonlinear instabilities seem extremely unlikely, and suggests
black hole threshold, because the eventual fate of the soluhat the open set may be in fact quite large. Generally it is
tion depends on the amplitude of the growing mode in theemarkable how much in critical collapse can be understood

Il. BEYOND SPHERICAL SYMMETRY
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quantitatively through linear perturbation calculations: notandu,=(u,,0) is the fluid 4-velocity. The calculation of the
only the critical exponenty, but also universality with re- background solution as a non-linear boundary value problem
spect to initial data and matter models, and critical exponent&/as carried out along the lines [B-7]. For the density we
for the black hole electric charge and angular momentum. make the ansatp=e27;(x), and for the radial velocity,
Our result is stronger than that of Abrahams and Evans igAr , =y (x). Under this ansatz the Einstein and matter equa-
not being limited to axisymmetry. Choptuik’s spherically tions go over into a system of coupled ordinary differential
symmetric results showed that a genericity condition on ini-equationdODES. These have a regular singular poisonic
tial data is necessary in formulating cosmic censorship. Hergoint), where the surface=const becomes an ingoing mat-
we have demonstrated for the first time that this condition iger characteristic. The solution we want is the one uniquely
sharp: The set of “non-generic” initial data that form a na- gpecified by regularity at the origik=0 and at the sonic
ked singularity can locally have codimension one in the full yoint, We define the constastso that the sonic point is at

phase space. x=1, and solve the ODEs as a boundary value problem be-
tweenx=0 andx=1, solving fors as a nonlinear eigen-
Ill. THE BACKGROUND SOLUTION value.

We write the general spherically symmetric spacetime as
a manifoldM =M?x S? with metric IV. PERTURBATION METHOD

e 2 Now one could perturb the critical solutidf(x) with an
9»=diaggas.*¥ap), @) ansatzAZ(x,7)=e""f(x) and solve the linearized boundary
value problem for the discretgomplex eigenvalues. and
mode functiond (x). This program has been carried out both
for continuously[6,7] and discretely{8] self-similar solu-
tions, and has allowed a precise numerical calculation of the
critical exponenty, which can be shown by dimensional
analysis to be simply the inverse of the one positive real
eigenvalue\. As a byproduct, one can determine the entire
Berturbation spectrurtwhich is discretg

Here, we mainly want to know is if there &ny eigen-
value with positive real part among the non-spherical pertur-
bations, in addition to the one in the spherical perturbations.

o answer this yes/no question, we write the perturbation

whereg,g is an arbitrary metric oM?, r is a scalar orM?,
with r=0 defining the boundary d¥12, and y,;, is the unit
curvature metric or8?. This spacetime is continuously self-
similar if there are coordinates and = on M? such that in
these coordinates the rescaled metric coefficiefitg,g and
e?7r? do not depend on. It is discretely self-similar if they
are periodic in7. A linearized spherical perturbation of a
continuously self-similar spacetime can be decomposed int
modes of the schematic foret"f(x). The critical solution
has precisely one mode with Re0. This is the mode that
has to be beaten down by fine-tuning, while all other mode

die away naturally as the curvature singularity = is ap- equations as evolution equations in the time variablgVe

pro:scge%atter model we choose the perfect fluid with e ua_decompose into spherical ‘harmonics, and consider each
. 2 2 perte €aUaya1ue of I and m separately. Because the background is
tion of statep=cgp, with c{ a constant. While our equations

’ i - spherically symmetric, the dynamics of perturbations are the
hold for 0<cg<1, we have carried out the numerical calcu- g3 me for all values ofm (for given1). We evolve generic

lations only forc2=1/3, the equation of state of a radiation injtial data for these equations for a sufficiently large interval
gas. of 7. Generic data, with no field vanishing anywhere, consti-
The coordinates and r adapted to self-similarity are not tyte a superposition fll the (unknown perturbation modes.
unique, and they need not be fixed for the purpose of the |n the time evolution, the mode with the largest\Rakes
following discussion. In our numerical calculations, how- gyer after a transition period, and both thaand the corre-
ever, we make a coordinate choice that is based on thgsondingf(x) can be simply read off from the late-time data
Schwarzschild-like formds*=—N? dt*+A? dr®+r? dQ®  [g]. For|=0 in particular, this allows us to check our pro-

of the metric. The coordinate transformatiosr —e™ ", r cedure by reading off the critical exponent as-0.36 in

=sxe 7 brings this into the form agreement with previous calculatiof 7).
2 2on2 o r2 On a numerical grid, the frequency of modes that can be
gap=€ 2" —N7+SXTAT —SXA 2 represented is limited by the grid spacing, so that we are only
AB™

probing a large finite-dimensional subspace of all possible
modes. Nevertheless, one can rule out the existence of un-
e~ 27s2x2, (3)  stable modes at very high spatial frequertajth respect to

the coordinatex) by the following argument. The perturba-
As a final gauge condition, we impode=1 atx=0, thatis, tion equations form a system of linear wave equations with
t is central proper time. The spacetime in these coordinates isdependent coefficients and andependent mass matrix.

Symm ?A? )"

r2=

self-similar if N(x,7) andA(x,7) are functions ofk only. High-frequency modes propagate essentially by geometric
The background stress-energy tensor is optics, and the mass terms are irrelevant for them. Therefore
all high-frequency modes have the same dynamics. If they

t,,=diagtag ,ciprzyab), (4) are shown to be decaying at frequencies still resolved by the

numerical grid, but at which the mass-like terms can already

where be neglected with respect to derivative terms, then we can be

5 ) sure that even higher frequencies not resolved on the numeri-
tag=(1+cC5)pUalp+Cspdag, (5 cal grid will decay in the same way. The geometric optics
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t ande,y, is the covariantly constant totally antisymmetric ten-
sor onS?, e,,,.=0. Tensor perturbations based ¥rand its
S derivatives(even or polar perturbatiopslecouple from ten-
A sor perturbations based d®, and its derivativegodd or
N axial perturbations In the following we consider even and
N odd perturbations separately.
N GS express the 10 metric perturbations in the2split.
N They calculate their transformation to linear order under the
O 4 infinitesimal coordinate changes, and find 6 linear combi-
‘O nations of metric perturbationsvith coefficients depending
N on the backgroundthat are gauge-invariant to this order.
MUAN The 10 stress-energy perturbations can be combined to form
\ : 10 gauge-invariant ones. The linearized Einstein equations
can then be expressed in terms of those 16 variables alone.
The remaining 4 variables are pure gauge in the sense that
gne can give them arbitrary values, and reconstruct all 20

is the ingoing light cone. The dark shaded region is the numericametrIC and stress-energy perturbations in the particular gauge

domain of the background, spherical and odd perturbations calculéj-etermineq that way. . . .
tions. The total shaded region is the numerical domain of the even_ C@lculation with, and interpretation of, the GS variables is

perturbations calculation. simplified by the fact that there is a gauge in which they can
be identified directly with 16 gauge-dependent perturbations,

argument also app"es to |arge valued 'Ofvh|ch labels spa- Wh||e the r.emaining 4 gauge-dependent metric perturbations
tial frequencies in the angular coordinatesand . How-  Vanish. This gauge is the Regge-Wheeler gauge. In order to

ever, highl modes actually decay faster inwith increasing  keep the notation simple, we present the 16 gauge-invariant
I, by a factor ofe™'". Roughly speaking, this is because Perturbations in this manner. The split between the odd and

regular perturbations must be 6f(r') at the origin. even sectors is as follows. There are three odd metric pertur-
The spherical perturbation equations are obtained simpl ations, and one odd infinitesimal coordinate transformation,
by linearizing the spherical field equations. There is no dif-'€aving two odd gaugze-mvanant perturbations, in the form of
ficulty in writing them as evolution equations in time coor- & Vector field onM?. There are #3=4 even gauge-
dinate 7 and radial coordinate. Boundary conditions at  invariant metric perturbations, in the form of a symmetric
=0 arise from demanding regularity at the center of spherif€nsor and a scalar. There are three odd and seven even
cal symmetry(all fields must be either even or oddijp. The ~ 9@uge-invariant matter perturbations. The general odd metric
surfacex=1is an ingoing characteristic of the spherical per-2nd matter perturbations, in Regge-Wheeler gauge, but ex-

turbation equations, that is, a sound cone. No physicaPressed through the gauge-invariants, are

FIG. 1. The horizontal thin lines accumulatingtatO are lines
of constantr. The fanning thin lines are lines of constantThe
inner dashed line is the ingoing sound cone. The outer dashed li

boundary conditions for perturbations are required there. Nu- 0 KLY

merically, this absence of boundary conditions is imple- Ag ( A ib> 6)
mented by a finite difference scheme that is aware of the ¥\ Symm 0/’

characteristics. Then we can bound the numerical domain by

x=0 on one side and=1, or any larger constamni, on the ( 0 LAY

other and evolve to arbitrary values of If one allows for At,, Symm L(Sa:b—"sb:a)). (7)

non-spherical perturbations, one encounters gravitational as

well as sound waves. The numerical domain for the entirepy 4 general even metric and matter perturbations are
system of perturbations then has to be extended to the ingo-

ing light cone, that is tox=x. defined by sx;A(Xc) Kag 0
=N(x.). The background solution is easily extended from Ang( 2 ) (8
x=1 to x=x. and beyond. Figure 1 illustrates the coordi- 0 Kkrfyap
nates, the characteristics, and the numerical domain.
A _( Tag TaY b ) o
V. GAUGE-INVARIANT PERTURBATIONS “rlsymm T2y +T2Y ap) ©

_In going beyond spherical symmetry, one also has to dealye now define gauge-invariant fluid perturbations, and
with gauge-dependence and the presence of constraints in theasent them once more by giving the equivalent gauge-

linearized Einstein and matter equations. Throughout this 'etdependent perturbations in Regge-Wheeler gauge. The odd
ter, we use the formalism and notation of Gerlach and Se”perturbation of the fluid 4-velocity is

gupta (GS [10]. Any linear perturbation around spherical

symmetry can be decomposed into scalar, vector and tensor Au,=(0,8S,). (10)
fields onM? times spherical harmonicg™ on S2. Different a

I,m decouple. In the following we consider one valud @h 3 parametrizes axial fluid rotation. The even perturbation of
at a time, and no longer write these indicesYanSpherical  the fluid 4-velocity is

harmonic vector fields 08° areY., andS,= €,°Y.,, where

a colon indicates the covariant derivative 8 y4,.=0, Au,=(Aup,aY.,), whereAua=yn,+ kagu®. (11)
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Here nf*: €"Bug, with e, the totally antisymmetric covari- Kag= d(UpUg+NaNg) + ¢(UaNg+ NaUg), (18)

ant unit tensor oM 2. Note thatu®Au,=0. @ parametrizes

axial fluid motion, whiley parametrizes perturbations of the and to introduce the frame derivatives

radial fluid motion. The density perturbation also belongs to )

the even sector, and we parametrize it/s=wYp. (By f=urfa, f'=na. (19
virtue of our equation of stateAp=c2Ap.) The general . o _
gauge-invariant stress-energy perturbations of GS are relatdd'e three remaining source-free Einstein equations can then
to the gauge-invariant fluid perturbations as follows. In thebe written as
odd sector, we have

—(x) +(x")'=S,, (20)
La=B(1+c2)pus, L=0, (12)
(k) 2011\ —
and in the even sector, (k) +eg(k’)" =S, (21)
Ta=a(l+c)pus, T'=(o+k)clp, T?=0, (13 —§=5,, 22)

Tag= thB+2AU(AUB)(1+C§)P+ kABC§p- (14) wherey = ¢—k replacesp. The source term§, , S, andS_lJ,
are linear iny, k,  and their first derivativey’, k', #', x,
VI. ODD PERTURBATIONS andk, but do not contains. While the highest derivatives of
x form a wave equation with characteristics given by the

We must now extract a well-posed initial value problemmetric g,g= —usUg+nang, k Obeys a wave equation with
from the gauge-invariant perturbation equations. For the od@haracteristics given by the “fluid metric” —uaug

sector this is straightforward. The one nontrivial matter con-. co2nang. These characteristics have spegdelative to

servation equation isrL,)/"=0 (whereggc=0), or the fluid. Finally, ¢ is advected with the fluid. Therefore
(Br2puP) a=0 (15) chara_cterizes gravitatiqnal Wavésgound waves, ang po-
pPEIIATE: lar fluid flow. The metric perturbatiok “knows about” the
This equation is an advection equation f8r and can be spezed of sound because we have used=dp/dpAp
solved independently of all other perturbations, frrgiven ~ =CsAp in finding the source-free linearized Einstein equa-
on an initial spacelike hypersurface bf2. GS have shown fions. If we add to these three equations the identity
that by defining the scaldil=€"5(r ~2ka) g, the Einstein  (f'u*);a=(fn*) and the definitiong19), we have a com-
equations fork, can always be reduced to the scalar wavep|ete first-order system of equations. The variahleg, k, k
equation and ¢ can be set freely on a spacelike hypersurfac®lf
From the equations of motion, one can see that any regular
[r2(r* ) Al A= (1+2) (1 - 1) =167€*Lae, (16)  goyyiion mu(it scale at=0 ask~r', y~r'*1, and)(~r'y+2.g
This follows also from the requirement that the metric per-
bation(8) be a regular tensor in four dimensionsrat0.
urthermore, the perturbed metric remains continuously self-
similar if k, ¢ and y are independent of. The perturbed
metric is discretely self-similar if these fields are periodic in
7.
VII. EVEN PERTURBATIONS The Einstein equations we have not used yet give the
The even perturbations are more entangled. &#owe  Matter perturbations directly in terms of the metric perturba-
once again have an advection equation, but now witdions. As a check of the correctness of our equations and
sources. The first-order equations for the density perturbatioi1€ir numerical implementation, we have numerically differ-
» and radial velocity perturbatiory can be combined to €ntiated the numerical solution and verified that the per-
form a single wave equation at the speed of sound for eitheit!rbed matter equations of moti¢ar Bianchi identities are
 or y. For fixed metric perturbatioRag andk, the initial ~ obeyed. o
value problem would then be clear. Unfortunately, one ap- The case of=1 even perturbations is not covered by the
parently cannot extract a master equation for the metric peffamework of GS and has to be treated separately. Clearly
turbations from the linearized Einstein equations for arbitrary =1 does not admit gravitational waves, so that we can use
matter, but one always has a system with constraints. InNewtonian intuition. Thé =1 matter perturbations are pure
stead, we follow Seidel11] in first focussing attention on 9auge, corresponding to an initial displacement and velocity
those components of the linear Einstein equations with vanof the spherical background solution.
ishing matter sides. Four such components exist, because the
seven even stress-energy perturbations are linear in only the VIll. NUMERICAL METHOD
three even matter perturbations. One of these is

which they call the odd-parity master equation. The &yl
can be reconstructed by quadratures, once this equation h
been solved fofl. (Note that the sourck, is already known

in the case of perfect fluid mattgr.

We conclude with a remark on the numerical implemen-
ki=—167T?=0. (17)  tation. The linearized field equations are of the form

It is natural to decompose the trace-free tensgys covari- ou Ag—u+Bu (23
antly into two scalars, via ar IX '
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In order to make the numerical evolution stable even thoughwvhich is first-order accurate, and stable even for superlumi-
the lines of constant change from timelike to spacelike in nal shift. The matrixA is just sparse enough for its eigenval-
our computational domain, it is essential to use a characteties and eigenvectors to be calculated in closed form. As
istic scheme12]. Let V be the matrix ofcolumn eigenvec-  expected, the characteristics are the fluid world lines, light
tors of A. Let A be the diagonal matrix composed of the cones and sound cones.

corresponding eigenvalues. Thar VAV 2. Let A, be the
diagonal matrix with zeros in the place of the negative ei-
genvalues. Definé _, A, andA_ in the obvious manner, ACKNOWLEDGMENTS
so thatA=A_, +A_. We have used the numerical scheme
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