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Nonspherical perturbations of critical collapse and cosmic censorship

Carsten Gundlach
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~Received 14 October 1997; published 27 May 1998!

Choptuik has demonstrated that naked singularities can arise in gravitational collapse from smooth, asymp-
totically flat initial data, and that such data have codimension one in spherical symmetry. Here we show, for
perfect fluid matter with an equation of statep5r/3, by perturbing around spherical symmetry, that such data
have in fact codimension one in the full phase space, at least in a neighborhood of spherically symmetric data.
@S0556-2821~98!50212-3#

PACS number~s!: 04.25.Dm, 04.20.Dw, 04.40.Nr, 04.70.Bw
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I. COSMIC CENSORSHIP AND CRITICAL COLLAPSE

Spacetime singularities are a ubiquitous feature of gen
relativity. In astrophysical situations, singularities only ar
inside black holes. While no information~light signal! can
leave the black hole region of spacetime, the singularity
self cannot emit any light signal at all: It is spacelike, that
it can be thought of as a local end to time. Nevertheless,
field equations of general relativity also admit solutions w
timelike singularities. Such a singularity may be loose
thought of as a point in space, just like a particle, and
many solutions, light signals could travel from such a sing
larity to infinity. The spacetime to the future of the singula
ity is then no longer uniquely determined by initial data
the past. It is therefore an interesting question to ask h
generic or natural such spacetimes, or the initial data fr
which they evolve, are. A ‘‘cosmic censorship conjectur
has been formulated by various authors, stating roughly
naked singularities do not arise from asymptotically flat d
for reasonable matter@1#. The only counterexamples existin
until recently could be written off as either not asympto
cally flat, involving matter models~dust! that form singulari-
ties even in the absence of gravity, or requiring high symm
try ~spherical shells!. Until recently, however, it could still
be conjectured that no smooth, asymptotically flat data fo
reasonable matter model would evolve into a naked singu
ity. That was disproved by the spacetimes constructed
merically by Choptuik@2#, which we review now.

Consider a smooth one-parameter family of spherica
symmetric, asymptotically flat, smooth initial data for a se
gravitating scalar field. The only condition on the family
that it contains both data sets which form a black hole~say,
for large parameterp), and data sets which do not~say, for
smallp). Choptuik showed that by fine-tuning the value ofp
to a critical valuep* , one can obtain arbitrarily small blac
holes. Forp*p* the black hole mass scales approximat
as MBH.C(p2p* )g, with g.0.37 a universal constant. A
solution evolving from fine-tuned initial data approaches o
and the same solution, independently of what the initial d
looked like. The better the fine-tuning, the longer the so
tion follows this ‘‘critical solution.’’ The critical solution is
an attractor of codimension one, because it has precisely
growing perturbation mode. Its basin of attraction is t
black hole threshold, because the eventual fate of the s
tion depends on the amplitude of the growing mode in
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following manner. If it is present with, say, positive amp
tude, the final outcome will be a black hole. If it is prese
with negative amplitude, the final outcome will be dispersi
of the scalar waves to infinity, without a black hole. If i
amplitude is precisely zero, in the limit of infinitely goo
fine-tuning of the parameterp, the solution settles down to
the critical solution and never leaves it.

The crucial point for cosmic censorship is that the critic
solution has a naked curvature singularity. Any smooth,
ymptotically flat initial data in which the growing mode i
not present, approach the critical solution and its naked
gularity. These data form a set of codimension one~in
spherical symmetry! because only the amplitude of the on
growing mode needs to be fine-tuned to zero. The spaceti
arising from data on the black hole threshold do not cont
a ‘‘zero mass black hole,’’ but contain a region of the un
versal critical solution surrounding the naked singulari
which is smoothly matched to an asymptotically flat regi
that depends on the initial data. Near the singularity,
deviation of the actual collapse spacetime from the unive
critical solution decays as a~noninteger! power of geodesic
distance to the singularity. For a recent review of critic
collapse, see@3#.

II. BEYOND SPHERICAL SYMMETRY

An obvious question is if critical collapse is tied to sphe
cal symmetry. Abrahams and Evans@4# fine-tuned the col-
lapse of axisymmetric gravitational waves, and found e
dence for black hole mass scaling, universality, and a s
similar critical solution. This shows that critical phenome
can occur for axisymmetric, highly non-spherical initial da
In a complementary approach, we take here a known crit
solution in spherical symmetry, and perturb it no
spherically. We find that the only growing mode is the pr
viously known spherical one.

This result is weaker than that of Abrahams and Evans
being only perturbative. But a linearized result establishe
result in an open neighborhood, up to linearization stabil
In spherical symmetry the basin of attraction of the critic
solution was empirically found to be the entire black ho
threshold, even far from the critical solution@2#. This makes
nonlinear instabilities seem extremely unlikely, and sugge
that the open set may be in fact quite large. Generally i
remarkable how much in critical collapse can be underst
R7075 © 1998 The American Physical Society
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quantitatively through linear perturbation calculations: n
only the critical exponentg, but also universality with re-
spect to initial data and matter models, and critical expone
for the black hole electric charge and angular momentum

Our result is stronger than that of Abrahams and Evan
not being limited to axisymmetry. Choptuik’s spherical
symmetric results showed that a genericity condition on
tial data is necessary in formulating cosmic censorship. H
we have demonstrated for the first time that this condition
sharp: The set of ‘‘non-generic’’ initial data that form a n
ked singularity can locally have codimension one in the f
phase space.

III. THE BACKGROUND SOLUTION

We write the general spherically symmetric spacetime
a manifoldM5M23S2 with metric

gmn5diag~gAB ,r 2gab!, ~1!

wheregAB is an arbitrary metric onM2, r is a scalar onM2,
with r 50 defining the boundary ofM2, andgab is the unit
curvature metric onS2. This spacetime is continuously sel
similar if there are coordinatesx and t on M2 such that in
these coordinates the rescaled metric coefficientse2tgAB and
e2tr 2 do not depend ont. It is discretely self-similar if they
are periodic int. A linearized spherical perturbation of
continuously self-similar spacetime can be decomposed
modes of the schematic formelt f (x). The critical solution
has precisely one mode with Rel.0. This is the mode tha
has to be beaten down by fine-tuning, while all other mo
die away naturally as the curvature singularityt5` is ap-
proached.

As a matter model we choose the perfect fluid with eq
tion of statep5cs

2r, with cs
2 a constant. While our equation

hold for 0,cs
2,1, we have carried out the numerical calc

lations only forcs
251/3, the equation of state of a radiatio

gas.
The coordinatesx andt adapted to self-similarity are no

unique, and they need not be fixed for the purpose of
following discussion. In our numerical calculations, ho
ever, we make a coordinate choice that is based on
Schwarzschild-like formds252N2 dt21A2 dr21r 2 dV2

of the metric. The coordinate transformationt52e2t, r
5sxe2t brings this into the form

gAB5e22tS 2N21s2x2A2 2s2xA2

Symm s2A2 D , ~2!

r 25e22ts2x2. ~3!

As a final gauge condition, we imposeN51 atx50, that is,
t is central proper time. The spacetime in these coordinate
self-similar if N(x,t) andA(x,t) are functions ofx only.

The background stress-energy tensor is

tmn5diag~ tAB ,cs
2rr 2gab!, ~4!

where

tAB5~11cs
2!ruAuB1cs

2rgAB , ~5!
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andum5(uA,0) is the fluid 4-velocity. The calculation of th
background solution as a non-linear boundary value prob
was carried out along the lines of@5–7#. For the density we
make the ansatzr5e2tr̄(x), and for the radial velocity,
uAr ,A5v(x). Under this ansatz the Einstein and matter eq
tions go over into a system of coupled ordinary different
equations~ODEs!. These have a regular singular point~sonic
point!, where the surfacex5const becomes an ingoing ma
ter characteristic. The solution we want is the one uniqu
specified by regularity at the originx50 and at the sonic
point. We define the constants so that the sonic point is a
x51, and solve the ODEs as a boundary value problem
tween x50 and x51, solving for s as a nonlinear eigen
value.

IV. PERTURBATION METHOD

Now one could perturb the critical solutionZ(x) with an
ansatzDZ(x,t)5elt f (x) and solve the linearized boundar
value problem for the discrete~complex! eigenvaluesl and
mode functionsf (x). This program has been carried out bo
for continuously@6,7# and discretely@8# self-similar solu-
tions, and has allowed a precise numerical calculation of
critical exponentg, which can be shown by dimensiona
analysis to be simply the inverse of the one positive r
eigenvaluel. As a byproduct, one can determine the ent
perturbation spectrum~which is discrete!.

Here, we mainly want to know is if there isany eigen-
value with positive real part among the non-spherical per
bations, in addition to the one in the spherical perturbatio
To answer this yes/no question, we write the perturbat
equations as evolution equations in the time variablet. We
decompose into spherical harmonics, and consider e
value of l and m separately. Because the background
spherically symmetric, the dynamics of perturbations are
same for all values ofm ~for given l ). We evolve generic
initial data for these equations for a sufficiently large interv
of t. Generic data, with no field vanishing anywhere, cons
tute a superposition ofall the~unknown! perturbation modes

In the time evolution, the mode with the largest Rel takes
over after a transition period, and both thatl and the corre-
spondingf (x) can be simply read off from the late-time da
@9#. For l 50 in particular, this allows us to check our pro
cedure by reading off the critical exponent asg.0.36 in
agreement with previous calculations@6,7#.

On a numerical grid, the frequency of modes that can
represented is limited by the grid spacing, so that we are o
probing a large finite-dimensional subspace of all poss
modes. Nevertheless, one can rule out the existence of
stable modes at very high spatial frequency~with respect to
the coordinatex) by the following argument. The perturba
tion equations form a system of linear wave equations w
x-dependent coefficients and anx-dependent mass matrix
High-frequency modes propagate essentially by geome
optics, and the mass terms are irrelevant for them. There
all high-frequency modes have the same dynamics. If t
are shown to be decaying at frequencies still resolved by
numerical grid, but at which the mass-like terms can alrea
be neglected with respect to derivative terms, then we can
sure that even higher frequencies not resolved on the num
cal grid will decay in the same way. The geometric opt
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argument also applies to large values ofl , which labels spa-
tial frequencies in the angular coordinatesu and w. How-
ever, highl modes actually decay faster int with increasing
l , by a factor ofe2 l t. Roughly speaking, this is becaus
regular perturbations must be ofO(r l) at the origin.

The spherical perturbation equations are obtained sim
by linearizing the spherical field equations. There is no d
ficulty in writing them as evolution equations in time coo
dinatet and radial coordinatex. Boundary conditions atx
50 arise from demanding regularity at the center of sph
cal symmetry~all fields must be either even or odd inx). The
surfacex51 is an ingoing characteristic of the spherical p
turbation equations, that is, a sound cone. No phys
boundary conditions for perturbations are required there.
merically, this absence of boundary conditions is imp
mented by a finite difference scheme that is aware of
characteristics. Then we can bound the numerical domain
x50 on one side andx51, or any larger constantx, on the
other and evolve to arbitrary values oft. If one allows for
non-spherical perturbations, one encounters gravitationa
well as sound waves. The numerical domain for the en
system of perturbations then has to be extended to the i
ing light cone, that is tox5xc defined by sxcA(xc)
5N(xc). The background solution is easily extended fro
x51 to x5xc and beyond. Figure 1 illustrates the coord
nates, the characteristics, and the numerical domain.

V. GAUGE-INVARIANT PERTURBATIONS

In going beyond spherical symmetry, one also has to d
with gauge-dependence and the presence of constraints i
linearized Einstein and matter equations. Throughout this
ter, we use the formalism and notation of Gerlach and S
gupta ~GS! @10#. Any linear perturbation around spheric
symmetry can be decomposed into scalar, vector and te
fields onM2 times spherical harmonicsYl

m on S2. Different
l ,m decouple. In the following we consider one value ofl ,m
at a time, and no longer write these indices onY. Spherical
harmonic vector fields onS2 areY:a andSa5ea

bY:b , where
a colon indicates the covariant derivative onS2, gab:c50,

FIG. 1. The horizontal thin lines accumulating att50 are lines
of constantt. The fanning thin lines are lines of constantx. The
inner dashed line is the ingoing sound cone. The outer dashed
is the ingoing light cone. The dark shaded region is the numer
domain of the background, spherical and odd perturbations calc
tions. The total shaded region is the numerical domain of the e
perturbations calculation.
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andeab is the covariantly constant totally antisymmetric te
sor onS2, eab:c50. Tensor perturbations based onY and its
derivatives~even or polar perturbations! decouple from ten-
sor perturbations based onSa and its derivatives~odd or
axial perturbations!. In the following we consider even an
odd perturbations separately.

GS express the 10 metric perturbations in the 212 split.
They calculate their transformation to linear order under
4 infinitesimal coordinate changes, and find 6 linear com
nations of metric perturbations~with coefficients depending
on the background! that are gauge-invariant to this orde
The 10 stress-energy perturbations can be combined to f
10 gauge-invariant ones. The linearized Einstein equati
can then be expressed in terms of those 16 variables al
The remaining 4 variables are pure gauge in the sense
one can give them arbitrary values, and reconstruct all
metric and stress-energy perturbations in the particular ga
determined that way.

Calculation with, and interpretation of, the GS variables
simplified by the fact that there is a gauge in which they c
be identified directly with 16 gauge-dependent perturbatio
while the remaining 4 gauge-dependent metric perturbati
vanish. This gauge is the Regge-Wheeler gauge. In orde
keep the notation simple, we present the 16 gauge-invar
perturbations in this manner. The split between the odd
even sectors is as follows. There are three odd metric pe
bations, and one odd infinitesimal coordinate transformat
leaving two odd gauge-invariant perturbations, in the form
a vector field onM2. There are 72354 even gauge-
invariant metric perturbations, in the form of a symmet
tensor and a scalar. There are three odd and seven
gauge-invariant matter perturbations. The general odd me
and matter perturbations, in Regge-Wheeler gauge, but
pressed through the gauge-invariants, are

Dgmn5S 0 kAY:b

Symm 0 D , ~6!

Dtmn5S 0 LAY:b

Symm L~Sa:b1Sb:a!
D . ~7!

The general even metric and matter perturbations are

Dgmn5S kAB 0

0 kr2gab
D , ~8!

Dtmn5S TAB TAY:b

Symm T1r 2gab1T2Y:ab
D . ~9!

We now define gauge-invariant fluid perturbations, a
present them once more by giving the equivalent gau
dependent perturbations in Regge-Wheeler gauge. The
perturbation of the fluid 4-velocity is

Dum5~0,bSa!. ~10!

b parametrizes axial fluid rotation. The even perturbation
the fluid 4-velocity is

Dum5~DuA ,aY:a!, whereDuA5gnA1kABuB. ~11!

ne
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la-
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HerenA5eABuB , with eAB the totally antisymmetric covari
ant unit tensor onM2. Note thatuADuA50. a parametrizes
axial fluid motion, whileg parametrizes perturbations of th
radial fluid motion. The density perturbation also belongs
the even sector, and we parametrize it asDr5vYr. ~By
virtue of our equation of state,Dp5cs

2Dr.! The general
gauge-invariant stress-energy perturbations of GS are re
to the gauge-invariant fluid perturbations as follows. In t
odd sector, we have

LA5b~11cs
2!ruA , L50, ~12!

and in the even sector,

TA5a~11cs
2!ruA , T15~v1k!cs

2r, T250, ~13!

TAB5vtAB12Du~AuB)~11cs
2!r1kABcs

2r. ~14!

VI. ODD PERTURBATIONS

We must now extract a well-posed initial value proble
from the gauge-invariant perturbation equations. For the
sector this is straightforward. The one nontrivial matter co
servation equation is (r 2LA) uA50 ~wheregABuC50), or

~br 2ruA! uA50. ~15!

This equation is an advection equation forb, and can be
solved independently of all other perturbations, fromb given
on an initial spacelike hypersurface ofM2. GS have shown
that by defining the scalarP5eAB(r 22kA) uB , the Einstein
equations forkA can always be reduced to the scalar wa
equation

@r 22~r 4P! uA# uA2~ l 12!~ l 21!P516peABLAuB , ~16!

which they call the odd-parity master equation. The fullkA
can be reconstructed by quadratures, once this equation
been solved forP. ~Note that the sourceLA is already known
in the case of perfect fluid matter.!

VII. EVEN PERTURBATIONS

The even perturbations are more entangled. Fora we
once again have an advection equation, but now w
sources. The first-order equations for the density perturba
v and radial velocity perturbationg can be combined to
form a single wave equation at the speed of sound for ei
v or g. For fixed metric perturbationkAB and k, the initial
value problem would then be clear. Unfortunately, one
parently cannot extract a master equation for the metric
turbations from the linearized Einstein equations for arbitr
matter, but one always has a system with constraints.
stead, we follow Seidel@11# in first focussing attention on
those components of the linear Einstein equations with v
ishing matter sides. Four such components exist, becaus
seven even stress-energy perturbations are linear in only
three even matter perturbations. One of these is

kA
A5216pT250. ~17!

It is natural to decompose the trace-free tensorkAB covari-
antly into two scalars, via
o

ted
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kAB5f~uAuB1nAnB!1c~uAnB1nAuB!, ~18!

and to introduce the frame derivatives

ḟ 5uAf uA , f 85nAf uA . ~19!

The three remaining source-free Einstein equations can
be written as

2~ ẋ !˙1~x8!85Sx , ~20!

2~ k̇!˙1cs
2~k8!85Sk , ~21!

2ċ5Sc , ~22!

wherex5f2k replacesf. The source termsSx , Sk andSc

are linear inx, k, c and their first derivativesx8, k8, c8, ẋ,
andk̇, but do not containċ. While the highest derivatives o
x form a wave equation with characteristics given by t
metric gAB52uAuB1nAnB , k obeys a wave equation with
characteristics given by the ‘‘fluid metric’’ 2uAuB

1cs
22nAnB . These characteristics have speedcs relative to

the fluid. Finally,c is advected with the fluid. Thereforex
characterizes gravitational waves,k sound waves, andc po-
lar fluid flow. The metric perturbationk ‘‘knows about’’ the
speed of sound because we have usedDp5dp/drDr
5cs

2Dr in finding the source-free linearized Einstein equ
tions. If we add to these three equations the iden
( f 8uA) uA5( ḟ nA) uA and the definitions~19!, we have a com-
plete first-order system of equations. The variablesx, ẋ, k, k̇
andc can be set freely on a spacelike hypersurface inM2.
From the equations of motion, one can see that any reg
solution must scale atr 50 ask;r l , c;r l 11, andx;r l 12.
This follows also from the requirement that the metric p
turbation~8! be a regular tensor in four dimensions atr 50.
Furthermore, the perturbed metric remains continuously s
similar if k, c and x are independent oft. The perturbed
metric is discretely self-similar if these fields are periodic
t.

The Einstein equations we have not used yet give
matter perturbations directly in terms of the metric perturb
tions. As a check of the correctness of our equations
their numerical implementation, we have numerically diffe
entiated the numerical solution and verified that the p
turbed matter equations of motion~or Bianchi identities! are
obeyed.

The case ofl 51 even perturbations is not covered by t
framework of GS and has to be treated separately. Cle
l 51 does not admit gravitational waves, so that we can
Newtonian intuition. Thel 51 matter perturbations are pur
gauge, corresponding to an initial displacement and velo
of the spherical background solution.

VIII. NUMERICAL METHOD

We conclude with a remark on the numerical impleme
tation. The linearized field equations are of the form

]u

]t
5A

]u

]x
1Bu. ~23!
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In order to make the numerical evolution stable even tho
the lines of constantx change from timelike to spacelike i
our computational domain, it is essential to use a charac
istic scheme@12#. Let V be the matrix of~column! eigenvec-
tors of A. Let L be the diagonal matrix composed of th
corresponding eigenvalues. ThenA5VLV21. Let L1 be the
diagonal matrix with zeros in the place of the negative
genvalues. DefineL2 , A1 andA2 in the obvious manner
so thatA5A11A2 . We have used the numerical schem

uj
n112uj

n

Dt
5A1

uj 11
n 2uj

n

Dx
1A2

uj
n2uj 21

n

Dx
1Buj

n , ~24!
,’’
h

r-

-

which is first-order accurate, and stable even for superlu
nal shift. The matrixA is just sparse enough for its eigenva
ues and eigenvectors to be calculated in closed form.
expected, the characteristics are the fluid world lines, li
cones and sound cones.
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