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Primordial gravitational waves are created during the de Sitter phase of an exponentially, expand-
ing (inflationary) universe, due to quantum zero-point vacuum fluctuations. These waves produce
fluctuations in the temperature of the cosmic background radiation (CBR). We calculate the mul-
tipole moments of the correlation function for these temperature fluctuations in a spatially, closed
Friedmann-Robertson-Walker (FRW) cosmological model. The results are compared to the corre-
sponding multipoles in the spatially flat case. The differences are small unless the density parameter

today Qo is greater than 2.
PACS number(s): 98.80.Cq, 98.70.Vc, 98.80.Es

I. INTRODUCTION

Inflationary models of the early Universe contain a

well-studied mechanism which creates primordial fluctua- .

tions. The fluctuations originate as quantum-mechanical
zero-point fluctuations during the exponentially expand-
ing de Sitter phase. By a process which may be vari-
ously described as particle (graviton) production, nona-
diabatic amplification, or super-radiant scattering, these
fluctuations become large in the present epoch. As the
Universe expands, these perturbations are redshifted to
longer wavelengths and amplified; during the present
epoch these perturbations typically persist over a range
of wavelengths A from 102" cm < A < 102cm. For a
review of perturbations in inflationary models, see Kolb
and Turner [1].

The perturbations of the gravitational field may be
decomposed into scalar, vector, and tensor components.
The tensor perturbations considered in this paper may be
thought of as gravitational waves in a classical descrip-
tion, or as spin-two gravitons in the quantum-mechanical
description used in the present work. The modes of in-
terest have present-day frequencies in the range from
10717 to 10™!2 Hz and have extremely large occupation
numbers. Hence they may also be thought of as clas-
sical gravitational waves—the two descriptions coincide.
The gravitons are created during the de Sitter phase of
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rapid expansion by the mechanism originally proposed
by Parker; the same mechanism creates particles near a
black hole or in any other region where the spacetime
curvature is large and particle creation is not forbidden
by global symmetries or conservation laws. A simple cal-
culation showing how a potentially observable spectrum
of gravitons is created in inflation is given by Allen [2].

The tensor perturbations of the gravitational field pro-
duce temperature fluctuations in the cosmic background
radiation (CBR), via the Sachs-Wolfe effect. The ex-
pected values of the resulting temperature fluctuations
are described by the angular correlation function

Cy) = <0 0>

=3 B ) Pcos).
=1
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(1.1)

Here 6T /T (R?) is the fractional temperature fluctuation
in the CBR at point 2 on the observer’s celestial sphere,
v is the angle between 2 and @', and the quantum expec-
tation value is evaluated in the initial state of the Uni-
verse. The multipole moments {a?) are generally used to
describe C(v).

In a recent paper [3] the expected multipole moments
(a?) due to tensor perturbations are calculated in a spa-
tially flat & = 0 Friedmann-Robertson-Walker (FRW)
inflationary model. That paper contains a detailed re-
view of previous work on this problem, a comprehen-
sive description of the physical motivation, and a de-
tailed and self-contained “first-principles” calculation.
The present work repeats that calculation in the spa-
tially closed (k = +1) case. The only previous work on
tensor perturbations in the spatially closed case is that
of Abbott and Schaefer [4]. Note that the angle brackets
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around a} serve as a reminder that we are calculating
the expected or expectation values of these multipole mo-
ments, not necessarily the values that they might have in
any given realization of the Universe.

The calculation in this paper follows the previous work
by Allen and Koranda [3] very closely. In the present
work, we will assume that the reader is familiar with that
earlier paper, and present only the bare minimum of de-
tail required to generalize the work to the £k = +1 case.
In Sec. II we present the & = +1 cosmological model
and Sachs-Wolfe effect. Section III gives the form of the
metric perturbation operator for linearized gravitational
fluctuations. Section IV combines these results to obtain
an analytic form for the multipole moments {(a?). Section
V details the method by which these multipole moments
were evaluated numerically, and Sec. VI outlines the re-
sults and conclusions of that numerical study.

Throughout this paper, we use units where the speed
of light ¢ = 1. However, for clarity we have retained
Newton’s gravitational constant G and Planck’s constant
h explicitly. We choose function branches so that /z > 0
and arcsin(z) € [—7/2,7/2].

II. THE BACKGROUND SPACE-TIME
AND THE SACHS-WOLFE EFFECT

The spacetime considered here has the topology R x S3
of the static Einstein cylinder, and is covered by coordi-
nates z° = t,z! = x,z%2 = 0,2% = ¢ with the ranges
x,0 € [0,7], and ¢ € [0,27). The time coordinate ¢
ranges over a connected open subset of the real line,
which we will specify below. The spatial coordinates
cover a three-sphere of radius a(t); we refer to this func-
tion as the cosmological scale factor. The metric of the
spacetime is given by

ds? = a®(t)[—dt* + dx? + sin® x(d6? + sin? 6dg?)
+hij(t, x, 0, ¢)dztdz?] . (2.1)

The metric perturbation h;; is assumed to be small; in its
absence the spacetime metric is that of a homogeneous
and isotropic k = +1 FRW model. With our choice of
gauge for the tensor metric perturbations, the indices
1,7 = 1,2,3 run only over the spatial coordinates.

In order to completely specify the cosmological model,
we need to define the cosmological scale factor a(t). The
cosmological model is completely defined by the free pa-
rameters given in Table I. Note that we have assumed
that the Universe is currently expanding, since we require
Hj to be positive. The density parameter
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Qo = (2.2)

is the ratio of the present-day energy density py to the
critical energy density required to produce a spatially flat
k = 0 universe.

A. The matter-dominated (dust) phase

In our cosmological model, the Universe is assumed
to pass through three “phases,” appropriate to a simple
inflationary model. We let t = 0 denote the present time.
The most recent phase was a matter-dominated period
of expansion, described by the scale factor

a(t) = Asin®(t/2 + B) for teq <t <O. (2.3)
Here the constants A, B,t.q are defined by
A= (- 1)~
HO 0 (1] )
. o—1
B = arcsin , (2.4)
0
and
teq = 2arcsin -1 2 arcsin \/
e QO(l + Zeq

During this matter-dominated phase, the stress-energy
tensor is that of a perfect fluid, with zero pressure and
an energy density proportional to a=3(¢). We assume (as
indicated in Table I) that the surface of last scattering is
located within the matter-dominated phase. Thus, the
time of last scattering

. Qo —1 . Qo —1
tys = 2arcsin 4y | ———=—— — 2 arcsin , (2.5
LS \/ Qo(1 + Zrs) V. Q0 (25)

is given by a formula identical in form to (2.4) for teq,
and satisfies teq < trs < 0.

B. The radiation-dominated phase

Preceding the matter-dominated phase of expansion is
a radiation-dominated phase of expansion. During this
phase the scale factor is

TABLE I. List of the free parameters that define the cosmological model.

Parameter Units Range Description
H, length™! Hy >0 Present-day Hubble expansion rate
Qo dimensionless Qo >1 Present-day density parameter
AR dimensionless Zys >0 Redshift at last scattering of CBR
Zeq dimensionless Zeq > Zus Redshift at equal matter/radiation energy density
Zend dimensionless Zend > Zeq Redshift at end of the de Sitter inflation




1 CBR TEMPERATURE FLUCTUATIONS INDUCED BY . .. 1555

a(t) = Csin(t + D) for tend <t <teq. (2.6)

Here the constants C, D, tenq are defined by
1
C= —93/2(90 — 1)1 + Zeg) V2,

Qo—l
1+Zeq (2 7)

D = 2arcsin — arcsin

tend = —2 arcsin A / + arcsin

(Q0 — 1)(1 + Zeq)
Qo(l + Zend)z

Qo -1
90(1 + Zeq)

+ arcsin

During this radiation-dominated phase of expansion the
energy density is proportional to a~#(¢) and the pres-
sure is equal to 1/3 of the energy density. This phase is
preceded by a de Sitter phase.

C. The initial de Sitter (inflationary) phase

In our coordinate system, the de Sitter (exponentially
expanding, inflationary) phase has scale factor

E
t)= ———— f . .
a(t) St 1 F) or t < tend (2.8)
Here the constants E and F' are defined by
B = % 2(1+ Ze) /(1 4 Zena) ™,
and
= 2 arcsin A / — arcsin QO -1
Qo(l + Zeq)
—2arcsin (S — 1)(1 + Ze“). (2.9)

Q0(1 + Zend)2

Note that the constant E < 0 because sin(t + F) < 0
during the de Sitter phase. During the de Sitter phase,
the energy density is a constant

-2_ (1 + Zend)4
PO ¥ Zeg
_ 3Hgﬂo (1 + Zend)4
T 8TG 14 Zeg

3
Pde Sitter = 8_E
™

(2.10)

and the (negative) pressure is —pge sitter-

D. Properties of the cosmological model

It may be easily verified that the scale factor and its
derivative with respect to time ¢ are both continuous;
however, the second derivative is discontinuous. This
is because in our simple inflationary model, the energy
density is a continuous function but the pressure changes

discontinuously at both the beginning and end of the
radiation-dominated epoch.

The de Sitter phase “begins” at early times when the
time coordinate t approaches the value —7 — F'. At this
early time the cosmological scale factor is very large (ap-
proaching infinity ast — —w—F'). As the time coordinate
increases, the scale factor decreases, eventually reaching
a minimum value when t = tpi, = —7/2 — F. After
this time, the scale factor begins to increase again (expo-
nentially in physical time). One might find it reasonable
to demand that the Universe be expanding at time tenq
when the inflationary phase ends. This is the case if and
only if tnin < tend, Which implies that the free parameters
given in Table I must satisfy the inequality

\/ZQO —1)(1+ Zeq) <14 Zepa. (2.11)

Qo

It is also easy to determine the “amount” of inflation
that takes place. The amount that the Universe has ex-
panded between time ¢, when the spatial sections have
their smallest extent, and time tenhq, when the inflation-
ary phase terminates and the radiation-dominated phase
begins, is

a(tend) 0
a(tm::) B (1 + Zend)\/(Qo — 1)((:)1 + Zeq) ’ (2.12)

Comparison with (2.11) shows the obvious—if the Uni-
verse is expanding at the end of the de Sitter phase, then
the amount of inflationary expansion (2.12) is greater
than unity. In typical inflationary models, the free pa-
rameters have values of order Hy between 50 and 100
km/s Mpc, Qo < 2, 100 < Zis < 1500, 2 X 103 < Zeq <
2 x 10*%, and 10%° < Z pq.

There is a sense in which the spatially closed infla-
tionary models are not “natural.” One of the principal
motivations which led to the development of the infla-
tionary paradigm was the desire to solve the so-called
“horizon problem.” As we will now show, this problem
is only solved (for reasonable choices of the cosmological
parameters) if Qo < 2. Thus, while it is technically con-
sistent to use the results obtained in this paper for any
value of Q¢ > 1, one must bear in mind that the cosmo-
logical model, for large values of €2y, runs counter to the
spirit of inflation.

The horizon problem may be stated in terms of a set of
points C, which is the intersection of the past horizon of
an observer today with the surface of last scattering. The
horizon problem is “solved” if C lies within the causal
domain of influence of either (1) a point on the initial
singularity, in a big bang model, or (2) a point on the
surface at t = i, where inflation “begins,” in a model
with no initial singularity. Thus, in our model, which is
of type (2), the horizon problem is solved if and only if
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. Qo —1 Q-1
to — tLs| < |tLs — tmin| < 2arcsin -4 i [ i
[to | < |tLs — tmin| ’/ o arcsin ol T Zis) + arcsin

+2 arcsin

(Q—1)(1+Zeg) _n

90(1 + Zend)2 2 ’

For reasonable cosmological models, the terms contain-
ing Zys, Zeq, and Zenq may be neglected. The horizon
problem is then solved if and only if

[Q —1
arcsin (;20 <% <~ Qo < 2.

While we present results for any value of €2, the cosmo-
logical model itself should be viewed with some suspicion
if Qo is much larger than unity.

The final results of this paper are values of the dimen-
sionless quantities

PPlanck l(l + 1)
Pde Sitter 6

(2.14)

M = (a?). (2.15)
Here ppianck is the Planck energy density ppianck = ﬁé,
5x10% gm/cm3®. It will turn out that M; is independent
of Hy, and depends only upon the dimensionless quanti-
ties Qo, ZLs, Zeq, 30d Zeng. This is because pge sitter and
(a?) both are proportional to HZ. In addition, if Zaq is
sufficiently large then the M, are also independent of its
value.

~
~

E. The Sachs-Wolfe effect

If the metric perturbation h;; vanishes and the tem-
perature of the CBR on the surface of last scattering is
constant, an observer today would see exactly the same
temperature at each point on the celestial sphere, and
C(v) would vanish. However, the metric perturbations
will in general break the rotational symmetry and per-
turb the energy of the photons. This results in a temper-
ature fluctuation which varies from point to point on the
celestial sphere; the fluctuation may be calculated in the
same way as for a spatially-flat universe, given in [5].

We assume that the observeris located at ¢ = 0, and
at “radial” coordinate x = 0. (Because the coordinate
system is singular at x = 0 every value of 6, ¢ corresponds
to the same spacetime point at x = 0, so their values are
irrelevant when x = 0.) If the observer looks out at a
point © on the celestial sphere, he/she observes photons
that arrive, in the unperturbed metric, along the null
geodesic path

t(A) =2, x(A)=Al=-A,
(2.16)

(X)) =6q, ¢(A) = dq.

In these equations, 8 and ¢gq are the angular coordinates
of the point €2 on the celestial two-sphere. We have cho-
sen the (nonaffine) parameter A along the null geodesic
path to run through the range trs < A < 0 between the

(2.13)

time of last scattering and the observation today.

In the presence of the metric perturbation h;; the frac-
tional temperature fluctuation observed at point Q on the
celestial sphere is

T =5 [ ax (Z) e, x0,60,60).

L.

(2.17)

As indicated in this formula, the partial derivative with
respect to the time coordinate t is taken before setting
the coordinates equal to the values which they take along
the unperturbed null geodesic path. The Sachs-Wolfe for-
mula (2.17) assumes the CBR photons are massless point
particles, and thus that their characteristic wavelength is
shorter than the wavelength of any gravitational wave
(see note added in proof).

III. THE METRIC PERTURBATION OPERATOR

The classical metric perturbation h;; may be replaced
with a quantum field operator. The justification for this
is given in our detailed paper on the spatially-flat case
[3] and will not be repeated here. The basic idea is that
the inflationary epoch redshifts away all the perturba-
tions, with the exception of the zero-point quantum fluc-
tuations. Hence we calculate the expectation value of
¢Z(2)¢Z(Q') in the vacuum state |0) appropriate to the
initial de Sitter state.

A. Mode function expansion of metric perturbation
operator

The quantum field operator (which we denote with the
same symbol h;; as the corresponding classical perturba-
tion) may be expanded in terms of a complete set of mode
functions. As was originally shown by Ford and Parker
[6], in an FRW cosmological model, the time dependence
of these mode functions is the same as that of a massless
minimally coupled scalar field. The field operator is

hij (t9 X 07 ¢)

l

oco L
>3 3 [#unOTEH™ 000, Sesim
L=21=2

m=-—1

FPhim O™ (0,8, B) L
+YLim (T ™ (X, 0, 6)dLim

Y (O™ (3, 6, ¢)d2,m]. (3.1)
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In this expression, the sum is over a complete set of rank-
two symmetric transverse traceless tensors E(J'le). These
tensor modes are defined on a unit-radius sphere $2 and
are given explicitly by Higuchi [7]. (Note, however, a typo
[8] in one of the formulas which does not affect the results
which we need.) Henceforth we will denote the triple
sum that appears in (3.1) by ;.. without explicitly
indicating the ranges of summation. (The temperature
T can always be distinguished from the tensor modes
Tg"m), since the latter is always written with indices.)
The graviton has two possible polarization states, la-
beled s and v in this expansion, each of which has its
own set of tensor modes. The modes are labeled by
the three integers L, I, and m. (Note that Ford and
Parker’s [6] index » = L +1 in our notation.) Associated
with the s-polarization modes are creation and annihi-
lation operators cr;,,, and c}l,m, and associated with the

J

g g 2w
L dX sin2 X/ do sin9/ d¢Ti§p§Ll’rn)T'Sf';L'[lm')Piers — ‘SLL’éll’&mm’épp’ .
0 0

Here, the polarization indices p and p’ take on either of
the values s or v. The integral is over the unit-radius
three-sphere, and P*" is the inverse of the metric on the
unit-radius three-sphere:

Py;dz*dz? = dx? + sin® x(d6? + sin® 8d¢?). (3.4)
Note that the measure that appears in the normaliza-
tion integral (3.3) is the usual volume element defined by

y/det P;;. The Sachs-Wolfe effect (2.17) is produced only

by the xx component of h;;. Because T)E;;le) =0, only
the s polarization state contributes to the temperature
fluctuation. The only component needed is thus

TEE™ (x, 0,¢) = RL(X)Yim (6, ).

The Yn(0,$) are standard scalar spherical harmonic
functions on the two-sphere [9]. The “radial” dependence
is given by

Ri(x) = \/(l -+ 1) +2)(L+1)(L+1+1)

(3.5)

2L(L + 1)2(L + 2)(L — 1!

X (sin x)~5/2 P;il1+/12/2) (cosx), (3.6)
where the functions PZXT/IZ/ 2 (2) are associated Legendre

functions [9]. In Sec. V we explain how these functions
may be easily evaluated.

C. Normalization condition for wave functions

The quantum field operator h;; obeys canonical com-
mutation relations which can be derived from the
quadratic part of the gravitational action. We have al-
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v-polarization modes are creation and annihilation oper-

ators dr;,, and dhm. The only nonvanishing commuta-
tion relation among this infinite set of operators is the
relation

[cLim, C},:pm:] = [dLim, d},:,,m,] =00 0uOmm: , (3.2)

where § denotes the Kronecker delta function.

B. The transverse-traceless-symmetric tensor
harmonics

The tensor modes defined by Higuchi [7] obey the nor-
malization condition

(3.3)

ready specified the normalization of the creation and an-
nihilation operators (3.2) and of the spatial part of the
mode functions (3.3). The commutation relations for
h;; then determine the normalization of the time part
YLim(t) of the graviton wave functions. The details of
this procedure are given in [6] and yield a normalization
condition

Prim(O) () ~ B (8) e rim (8) = 32imhGa().
(3.7)

[Note that the normalization condition given in Eq. (3.3)
of Ford and Parker [6] contains a minor typo [10].]

D. Choice of an initial (vacuum) state

If one defines a Fock vacuum state by the property that
it is annihilated by all of the operators cri, and drim,
then the choice of vacuum state is really determined by
the choice of the mode functions %1, (t). For the reasons
given in [3] we choose these mode functions to be those
which correspond to the unique de Sitter invariant vac-
uum state |0) during the initial inflationary stage whose
two-point function has Hadamard form.

E. Wave function during the de Sitter phase

As shown in Eq. (2.18) of Ford and Parker [6] the mode
functions obey the minimally coupled massless scalar
wave equation

[dz 2da d

prrR e (3.8)

L+ 2)] YLim(t) = 0.
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There is a slight subtlety: it is impossible to define a
de Sitter invariant Fock vacuum state for the minimally
coupled massless scalar field [11]. However it was shown
by Allen and Folacci [12] that the difficulty only arises
for the L = 0 mode. In the case of the gravitational
field operator, the L = 0 and the L = 1 modes are both
absent; they correspond to “monopole” and “dipole” dy-
namical degrees of freedom which are not present in the
spin-two case. Hence in the case of the gravitational field,
it is possible to define the desired de Sitter invariant vac-
uum state. The corresponding normalized wave function
during the de Sitter phase is [2,7,11-14]

buuntt) = 0200 = T

1d ;
(z(L +1)— = d—:)e"(l’“)t

for t < tenq. (3.9)

We note in passing that this time-dependent part of the
wave function depends only upon L and not upon ! and

[This guarantees that the vacuum state will be in-
variant under all rotations of the three-sphere ¢t = const,
which is the subgroup SO(4) of the de Sitter group
SO(1,4)0. However the invariance of the state under the
de Sitter group SO(1,4) is not obvious from inspection.
Here the subscript on SO(1,4) denotes the part of the
group connected to the identity.] For this reason, from
this point on we drop the indices I,m from the time-
dependent part of the wave function, denoting ¥, by
1¥r. Because the wave equation (3.8) is a second-order
ordinary differential equation (ODE), the solution 1y, (t)
during the de Sitter phase completely determines the so-
lution at all later times. The solution at later times is
conveniently written in terms of Bogolubov coefficients.

F. Wave function during the radiation-dominated
phase

The epoch that follows the de Sitter epoch is the
radiation-dominated phase. One may write the solution
to the wave equation during this phase as
"/’L(t) — arad rad(t) +ﬁrad *rad(t) for tend <t < teq~

(3.10)

Here, the positive frequency mode during the radiation
epoch is defined by

167mhG
(L + 1)

e—i(L+1)t

for tend <t < teq.

rad( )

(3.11)

The Bogolubov coefficients are determined by a condition
which follows from the wave equation (3.8): both ¥ (t)
and its time derivative must be continuous at all times.
Continuity at time ¢t = t.nq requires that the Bogolubov
coefficients have the form
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apd = [L(L+2)]‘1/2(1(L+ D+/Q-1- 2(L+ 1))

B2 = S(L+ 1) HL(L +2)]72Qe Mt (3.12)
Here Q is the constant defined by
2

Q= Qo(l + Zend) (3'13)

(90 - 1)(1 + Zeq) '

We stress once again that the solution 1 (t) during the
de Sitter phase completely determines the solution at all
later times. In other words the choice of a “positive-
frequency” mode function during the radiation phase is
unimportant. Had we picked a different solution to the
wave equation (3.8) to call “positive frequency” then a‘}j‘d
and (3¢ would have changed in such a way as to keep
the mode function v (t) given in (3.10) unchanged. In
similar fashion, the solution of the wave equation during
the radiation phase completely determines its solution
during the matter-dominated phase.

G. Wave function during the matter-dominated
phase

The wave function during the matter-dominated (dust)
phase may again be expressed as a linear combination of
the natural positive-frequency solution and its complex
conjugate:

Yr(t) = appPt(t) + Bryi™ for teq <t <0. (3.14)

The positive frequency mode functions during the matter
epoch are

16whG
(L+1)(2L + 1)(2L + 3)

1da :
: - —i(L+1)t
x (21,(L+ 1) + u dt)e

VBN = ¢

for teq <t < 0. (3.15)

The Bogolubov coefficients oy, and 8z, are determined {as
in the spatially flat case [3]) by combining the Bogolubov
coefficients for the two different phases:

ar B _ (oL Br rad(OtL ,BL)mat
(& %)_(ﬁ %) g o) - G169

As previously, the Bogolubov coefficients a2t and SPat
are determined by matching the positive- frequency ra-
diation mode function 15*3(t) to the linear combination
aPetypat(t) + BPetey;™a at time toq. One obtains
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&+

ot = [(2L + 1)(2L + 3)] /2
( 2i(L+ 1)+ VW +4(Lv11))

gt — _Ti(L +1)71[(2L + 1)(2L + 3)] /2

xWe2illtDteq, (3.17)
Here the constant W is given by
Qo(l + Zeq)
= —— 3.18
w Qe _1 (3.18)

We are now in a position to evaluate the multipole mo-
ments (a?) of the angular correlation function C(v).

r= (ool

/ d / S S a0 (VR ()R (Vi)Y (@) {0
Lim L'U'm'

Here + is the angle between the points  and €' on the
celestial sphere. Because the Sachs-Wolfe formula (2.17)
involves the time derivative of the mode function, we
have defined 9 (t) = dy(t)/dt, where 91, is the mode
function during the matter-dominated epoch, given in
(3.14).

To simplify this expression, first note that the ma-
trix element (0|CL1mCL,/m:|0) = 051011/ 0mm'. This elim-
inates the triple sum )_;,;,.,. Because the summand is
independent of the summation index m, one may then

J

1 co L
0(7)=Z;§

Comparing this to the definition of the multipole mo-
ments (1.1), and noting that the summation 35> , S°F,
is equivalent to the summation Y ;°, 77 ,, one immedi-
ately obtains a simple formula for the multipole moment:

<a,>—4LZI / dt / OV R )R

1 oo
=3 S lonty +Buly . (4.4)
L=l

(See note added in proof.) The complex quantity I is
what remains of the integral of the mode function along
the radial null geodesic path:

IL = /t dtR. (|¢t)) "iq/;gm(t). (4.5)

Note that we have assumed (as is implied in Table I)
that the surface of last scattering lies within the matter-

IV. MULTIPOLE MOMENTS OF C(v)

Combining the results of the previous section, one can
easily obtain a formula for the multipole moments of the
angular correlation function C(v). One replaces the met-
ric perturbation that appears in the Sachs-Wolfe formula
(2.17) with expansion (3.1) of the field operator. The
resulting operator depends upon an angle € on the celes-
tial sphere. One then takes the expectation value of this
operator with an identical operator at a different point
Q' on the celestial sphere. This yields the correlation
function (see note added in proof)

(4.1)

CleC},lz'm' IO>

explicitly carry out the sum over m using the addition
formula for spherical harmonics, Eq. (3.62) of Ref. [15]:

{
> Yim(@)¥i (@) = 2L Picos).

m=—I

(4.2)

Because the argument of the Legendre function Pj(z) is
the cosine of the angle v between the points on the ce-
lestial sphere, this shows explicitly that the correlation
function depends only upon ~:

dt "$r(t)PL ()R (L) RL(']) - (4-3)
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FIG. 1. The normalized multipole moments

M, = E?:.ﬁ‘: '(H'l) (a?) of the CBR temperature fluctuations
are shown as a functlon of the multipole number [, for a spa-
tially flat (¢ = 1) and for spatially closed (0 > 1) cosmo-
logical models. Q¢ — 1 needs to be fairly large for the effects
of the spatial curvature to be significant. All the models be-
ing compared all have cosmological parameters defined by the

redshifts Zrs = 1300, Z., = 10%, and Zenq = 102.
q
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dominated epoch; the positive frequency mode function

during the matter phase is given by (3.15). The Bogol-
ubov coefficients are given by (3.16):

ar = a}?d mat ﬁradﬁ*mat

ﬂL — a?dﬁmat ﬁzad zmat’ (46)

where the Bogolubov coeflicients for the matter and radi-
ation transitions are defined by (3.17) and (3.12). In the
next section, we discuss how the multipole moments (a?)
may be rapidly evaluated using numerical techniques.

j

1+ Zeq (Q0—1
(1 + Zem:l)4 QO

32n2 I(1 + 1)

M, =
3 6

where

Ji = / dtRY (|t|) csc?(t/2 + B)e*E+DY_35(L + 1) cot(t/2 + B) — gcscz(t/2 + B) +2L* + 4L +1)].
tLs

Taken together with the definitions of ar and B given
(4 6), (3.17), and (3.12), the constants Q and W defined
in (3. 13) and (3. 18), and the radial function RY(x) de-
fined in (3.6), this is a self-contained formula for calcu-
lating M.

Before discussing the evaluation of M; in general, it is
worth commenting on two limits. The first limit is the
Zena — 00 case, where the amount of inflation is large.
In this case, it is easy to see that @ and hence oy, and 8
diverge o< (14 Zena)?. Thus in the limit, M; converges. A
second interesting limit is the spatially flat one, Qo —1 —
0%, where the density parameter approaches unity from
above. In this case, it is easy to see that Q and hence
ar and B; diverge as (2 — 1)7!, and the integral J%
diverges as (2o — 1)~/2. Once again, the limit is well
defined. In addition, in this case, the sum over L can be
rewritten as an integral, recovering the k = 0 spatially
flat formula given in [3].

We evaluated M; using a fourth-order Runge-Kutta
adaptive stepsize integrator [16] to obtain the integral
which defines Jr. In cases of interest, one frequently
needs to include many values of L in the summation.
In practice we found that summing over the range L €
LI+1,- - Lpax With lpa = 32+ (51 + 10)/|tLs| gave re-
sults accurate to a few percent for reasonable ranges of
the free parameters listed in Table I. Rather than com-
pute the J 2 one at a time, it is more pract1cal to compute
them “en masse,” determmmg J} J} 10 - J}mx simul-
taneously. This can be done easily because the associated
Legendre functions may be computed with a stable up-

] A+ +5-1)
R ;(x) = \/j(l +i+2)2L+5+1)

cos xR ;1 (x) — \/(3—1(21+J)(l+]—1)(l+J 2)
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V. NUMERICAL EVALUATION OF THE
MULTIPOLE MOMENTS

As discussed at the end of Sec. II, it is convenient to
define dimensionless quantities M; = —MM( 2.

Pde Sitter
Using the previous formulas one may write this in the
dimensionless form

oo

3 ———|aLJ}, +BLIL I,
L=l

C+DI+2) (5-1)

(5.2)

wards recursion relation.
The upwards recursion relation for the associated Leg-
endre functions is given in Eq. (8.731.2) of Ref. [17]:

—(1+1/2) 2(0+7) p-a+1/2)
Py (2) = A+j+1° (G-1)+1+1/2(2)
1-3 —(@+1/2)
o1l u-aia?)
for j=2,3,---, (5.3)

together with the boundary conditions (or initial values)
given in Eq. (8.755.1) of Ref. [17]:

(+1/2) 1 Sinx 1+1/2
-+
Pl+1/2 (COS X) = F(l + 3/2) ( 2 )
+1/2 +1/2
l+(3/2/ '(z) = l+(172/ (). (5.4)

These relations may be used to obtain a recursion relation

and initial values for the radial functions Rﬂ;. The initial
values are
I-1DI'(+1) _
Rl — ( 1/2—1
100 =1\ 3 /7T + 3/2) 12X
201+ 1
Ria () = cosxy ZEE D Rl (55)

and the recursion relation is obtained from (5.3):
for 3 =2,3,...

JRUAF+1)I+i+1)(I+5+2) 1+i—2(x) . (5.6)
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Multipole Moments
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FIG. 2. The  normalized multipole moments

M, = ;;fl;?"ﬂk;ﬂ—tl—(az) are shown as a function of Q¢ — 1
for I = 2,5,10,20,30,50. In all cases, the models being com-
pared have the same cosmological parameters as in Fig. 1.
Only when 2o becomes significantly larger than one do the
multipole moments change significantly from the spatially flat

case.

Although this recursion relation does not appear to be
stable, our experience has been that it accurately deter-
mines R} for I < L <[+ 6000.

VI. NUMERICAL RESULTS
AND CONCLUSIONS

The numerical results are presented as a series
of graphs Figs. 1-3 showing the values of M; =

Planck —(H'—ll(az) For all of these graphs, we have taken

Zena = 1028, Z., = 10%, and Zrs = 1300, and varied the
density pa.rameter Q. The graphs also show the values
of M, for the spatially flat k = 0 case, taken from [3].
This case corresponds to the critically bound 2 — 1
limit.

It is clear from the figures that this limit is quickly
approached; when Qp = 1.1 the M; are almost indistin-
guishable from the k = 0 spatially flat case. It is not
hard to see why. The effects of the spatial curvature
only appear if the past light cone of the observer, taken
back to the surface of last scattering, actually “probes”
a substantial fraction of the spatial three-sphere. If the
past light cone fails to do this, then within the past light
cone the Universe is indistinguishable (to good approxi-
mation) from a spatially flat model.

The fraction of the three-sphere (S%) within this past
light cone is easy to determine. The three-volume
contained within angle Xmax from the point x = 0
of the unit-radius $§% may be obtained by integrating
/det P;; where P;; is the three-metric (3.4). One obtains
V(Xmax) = T(2Xmax — Sin2Xmax)- The total volume of
S3 is V() = 2n2. If we assume that Zis is much larger
than one, then the fraction of the volume of S3 contained
within the past light cone is, approximately,

|4 (2 arcsin M)

V(ltusl) 0

V(r) 272

f() = (6.1)

Multipole Moments
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FIG. 3. The  normalized multipole moments
M, = —f;?:f:ﬂi(az) are shown as a function of Q¢ — 1
for ! = 100,200, 400. In all cases, the models being compared
have the same cosmological parameters as in Figs. 1 and 2.
Only when Qo becomes significantly larger than one do the
multipole moments change significantly from the spatially flat

case.

For 4 near 1, this fraction is well-approximated by

16 3
f(0) = 5;;(90 -1)% (6.2)
Thus when Q¢ = 1.1 the past light cone only explores
about 1/1000 of the spatial volume. Even if Qo = 2

the fraction of the three-sphere that is observed is only
f(©0 =2) =3 - %g ~ 0.1955... . This is why the
multipole moments are not very sensitive to Qo provided
it is close to unity.

The extension of this calculation to the case of a spa-
tially open FRW Universe appears straightforward. How-
ever it turns out to be much more difficult than expected,
primarily because the correct choice of initial state is not
the obvious one, and because the final result for the mul-
tipole moments appears to contain logarithmic (infra-
red) divergences at zero frequency. The spatially open
case will be the subject of a forthcoming paper.

Note added in proof. The sums over L and L' in (4.1)
and over L in (4.4) are formally (ultraviolet) divergent,
but are cut off at a maximum value L .. This cutoff
Lnax is determined by the wavelength Acgr of the CBR
photons today and is given by Lyax = a(t = 0)/AcBr-
This cutoff is very large and does not affect any of the nu-
merical results in Figs. 1-3. In a similar way the integral
over modes in Eq. (2.67) of Ref. [3] is formally divergent.
The integral should not extend to infinity but should be
cut off at a maximum wavenumber k.. Details of this
ultraviolet divergence and the necessary cutoff will ap-
pear in a forthcoming paper [18].
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