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We examine stochastic temperature fluctuations of the cosmic background radiation (CBR) aris-
ing via the Sachs-Wolfe effect from gravitational wave perturbations produced in the early Universe.
These temperature fluctuations are described by an angular correlation function C(vy). A new (more
concise and general) derivation of C(7) is given, and evaluated for inflationary-universe cosmologies.
This yields standard results for angles vy greater than a few degrees, but new results for smaller
angles, because we do not make standard long-wavelength approximations to the gravitational wave
mode functions. The function C(y) may be expanded in a series of Legendre polynomials; we use
numerical methods to compare the coefficients of the resulting expansion in our exact calculation
with standard (approximate) results. We also report some progress towards finding a closed form

expression for C(v).

PACS number(s): 98.80.Cq, 98.70.Vc, 98.80.Es

I. INTRODUCTION

Penzias and Wilson [1] discovered the cosmic back-
ground radiation (CBR) in 1965. Since then researchers
have studied the CBR using ground, balloon, rocket, and
satellite based experiments [2,3]. The evidence indicates
that this radiation is a remnant of an early hot phase of
the Universe, emitted when ionized hydrogen and elec-
trons combined at a temperature of about 4000 K [4]. In
the simplest models this combination occurs at a redshift
Z = 1300, although it is also possible that the hydrogen
was reionized as recently as redshift Z ~ 100 [5]. In ef-
fect, the CBR is a picture of our Universe when it was
much smaller and hotter than it is today.

The CBR has a thermal (blackbody) spectrum, and is
remarkably isotropic and uniform. Only recently have ex-
periments reliably detected perturbations away from per-
fect isotropy. Such perturbations are expected; in 1967
Sachs and Wolfe [6] showed how variations in the density
of the cosmological fluid and gravitational wave pertur-
bations result in CBR temperature fluctuations, even if
the surface of last scattering was perfectly uniform in
temperature.

During the past several years, the Cosmic Background
Explorer (COBE) satellite team has reported detailed
measurements of the statistical properties of these tem-
perature perturbations [3]. Analyzing the COBE data
is subtle; it requires subtraction of the dipole and
quadrupole moments arising from the Doppler shift due
to the Earth’s peculiar velocity with respect to the cos-
mological fluid, and also the subtraction of infrared and
microwave emission from stars, dust clouds, and gas
within our own galaxy. In this paper, we assume that
these contaminants have been removed from the data,
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and discuss only the perturbations of the CBR which are
cosmological in origin.

Additional measurements by other experimental
groups [7-14] have also reported perturbations of the
CBR over variety of angular scales. The range of angu-
lar scales covered by these different experiments is nicely
illustrated in Fig. 1(b) of [15]; the angular scales range
from full sky coverage (180°) down to angular scales less
than 1/10 of a degree. These experiments are ongoing,
and additional data should appear from these research
groups over the next few years.

For our purpose, the most useful statistical quantity
determined by COBE, and the device frequently used to
state and compare the results of the other experiments,
is the sky-averaged angular correlation function

o) = ) = (T @) FE) (1.1)

sky

In this formula, %4® and 9° are two unit-length spatial vec-
tors, pointing out from the observer’s location to points
on the celestial sphere. The CBR temperature fluctu-
ation in the direction 4® away from the mean value of
T is denoted 6T'(4®). The anglular brackets, as used in
individual experiments, refer to a uniform “sky average”
over all points on the celestial sphere separated by angle
v, where cosy = #4%%,. For this reason, the correlation
function depends only on the angle <y, and not on the ab-
solute position of the vectors % and #°. It is convenient
to expand this function in terms of Legendre polynomi-
als:

- (1.2)

— 20 +1
C(v) = a; WiPy(cos ).
2 i
The coefficients a? are referred to as the multipole mo-
ments of the expansion. Note that the monopole term
(! = 0) is absent; the dipole term (I = 1) is generally re-
moved from the data because it depends mostly upon the
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observer’s peculiar velocity. The quantity measured by
a given experiment is affected by the filtering properties
of the optics and receivers, which determine the angular
range over which the experiment is sensitive; the effect
of this filtering is incorporated into the “weight func-
tion” W;, which differs from experiment to experiment.
These weight functions are shown in Fig. 1(b) of [15] for
a number of different experiments; for the purposes of
this paper we will consider an “ideal” experiment that is
equally sensitive at all angular scales and has a weight
function W; = 1.

With cosmological models concrete enough to make
definite theoretical predictions, one may calculate the
expected value of this correlation function. If the cosmo-
logical model is isotropic then the correlation function
depends only on the angle v between the pair of obser-
vation points even before the “sky averaging” in (1.1) is
done; thus averaging is not necessary. It is important to
note however that in the experimental case, the multipole
moments a} associated with the observed sky-averaged
correlation function have definite measurable values, but
given a specific theoretical model, these actual values are
impossible to predict; they depend upon our location in
Universe, and additionally reflect the fact that our Uni-
verse is a single realization of the statistical ensemble
whose expected values may be determined theoretically.
Hence, the quantity determined in this paper is an expec-
tation value; we denote the associated expected multipole
moments by (a?). This ensemble average or expectation
value is equal to the uniform average over observers lo-
cated at all spatial locations, with all possible choices of
direction on the celestial sphere. Thus, in principle, one
could directly compare the observed a? with the expected
values (a?) by averaging observational data taken from
regions of the Universe that are currently not in causal
contact, but this process would take many times the age
of the Universe to complete. Hence there remains a prac-
tical problem, that of constraining the cosmological mod-
els by comparing the expected multipole moments (a?)
with the observed multipoles a?. This requires statisti-
cal analysis of the expected variance in a?; this problem
of cosmic variance will not be addressed here. One does
expect however that since the number of independent de-
grees of freedom in the /th multipole moment is 2! + 1,
for a good cosmological model the observed a? and the
expected (a?) should be very closely equal for large I.

This paper considers the angular correlation function
for models of the Universe that pass through an early
inflationary stage. More precisely, we consider models
where the cosmological length scale (scale factor) under-
goes a long period of exponential expansion, character-
ized by a constant, positive energy density and a con-
stant, negative isotropic pressure of equal magnitude.
Such cosmological models are attractive because they
solve the horizon and flatness problems in a “natural”
way [16,17]. For this reason an enormous variety of mech-
anisms for inflation have been proposed during the past
decade.

Since the proposed inflationary models differ in signifi-
cant ways, they make certain predictions that are quanti-
tatively very different. As an example, the perturbations
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in the CBR temperature that result from fluctuations
in the matter density are model dependent because the
matter content of these models is limited only by the
imagination of the model builder. Fortunately there are
certain predictions of inflationary models that are inde-
pendent of the details of the model. One significant ex-
ample is the subject of this paper; the perturbations of
the CBR temperature that result from the gravitational
wave fluctuations. These perturbations depend only on
a single parameter: the energy density during the period
of exponential expansion.

In the simplest perturbed Friedmann-Robertson-
Walker (FRW) models, one may classify the perturba-
tions which produce fluctuations of the CBR tempera-
ture as scalar, vector, or tensor in nature. The complete
angular correlation function C(v) is the sum of terms
arising from each of these; one generally assumes that
these add incoherently (or in quadrature). For a large
class of “slow rollover” inflationary models, the expecta-
tion value of the angular correlation function resulting
from scalar perturbations is

3, 2
C) = ) (n e

3
-1- —cos'y). (1.3)
2
(Note that the dipole moment has been removed.) This
corresponds to an expected spectrum of coefficients (a?)

given by (a?) = 7%_%. Only the overall amplitude of
the correlation function, here determined by the expected
value of the quadrupole moment (a3}, varies from model
to model. The correlation function due to vector per-
turbations is typically very small and is neglected. In
this paper we only consider the contribution to the angu-
lar correlation function from the tensor (or gravitational
wave) perturbations; as we will shortly explain, these are
entirely determined by the energy density during the in-
flationary phase and are otherwise model independent.

There is a substantial body of research on this topic.
In the following brief review we do not include much of
the important work on the effects of scalar density fluc-
tuations on the CBR, but principally discuss the work
on CBR fluctuations induced by gravitational wave per-
turbations. The original discovery that cosmological ex-
pansion could create particles is due to Parker [18] and
Zel'dovich [19]. However, they apparently assumed that
the linearized gravitational wave equation would be con-
formally invariant and hence that no gravitons could be
created. This oversight was corrected by Grishchuk [20]
who showed that due to the lack of conformal invariance
a period of rapid cosmological expansion could result in
the nonadiabatic amplification of weak classical gravi-
tational waves. The corresponding classical process for
black holes (superradiant scattering) implies the quan-
tum effect (Hawking radiation). In similar fashion, Ford
and Parker [21] showed how one could systematically
quantize the linearized gravitational field on a FRW back-
ground, and calculated the spectrum of gravitons created
by the cosmological expansion.

Starobinsky investigated this process in detail for in-
flationary cosmologies (but before the term “inflation”
had been coined [16] and before the advantages of such
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a period of expansion had been fully appreciated and
explained [17]) and found the power spectrum of grav-
itational radiation that would be left behind [22]. The
quadrupole (! = 2) and octupole (! = 3) anisotropies in
the CBR induced by the resulting gravitational pertur-
bations were later calculated by Rubakov, Sazhin, and
Veryaskin [23]. While the methods used and the inter-
pretation of the results are entirely correct, this work
suffers from technical errors. In particular, the octupole
moment is correct but the quadrupole moment has the
wrong value: the right-hand side of their Eq. (7) reads
“2.4ey /MB,”, but the correct result is (ATo/To)?

quadr —
1.55ey /M3, (see Table II). Soon afterwards, similar re-
sults were published by Fabbri and Pollock [24], who gave
the first general formula for the /th multipole moment in
inflationary models. This work has a minor typographi-
cal error [the right-hand side of their Eq. (14) should be
doubled] but otherwise their results are correct. About
a year later, this work was repeated and generalized for
power-law inflation by Abbott and Wise [25], who also
give a (now standard) correct formula for the {th multi-
pole moment. Shortly thereafter, Starobinsky [26] also
published the results of an independent analysis, giving
the same formula for the {th multipole and correcting the
errors in [23,24]. This early work considered all the spa-
tially flat £ = 0 FRW models; it was generalized to the
k = %1 cases by Abbott and Shaefer [27], who system-
atically considered the CBR fluctuations induced by all
three (scalar, vector, and tensor) types of perturbations
to the ¥ = 0,£1 FRW metrics in inflationary models.
The energy density of the classical gravitational waves
resulting from inflation was reexamined by Abbott and
Harari [28], who stressed the quantum-mechanical ori-
gin of this radiation, and by Allen [29] who elucidated
the first complete formula for the power spectrum in
gravitational radiation, and its connection to the low-
frequency instability (and peculiar infrared behavior) of
de Sitter space. As one consequence, Allen showed that
the energy density in gravitational waves falls off more
slowly with time than the corresponding background en-
ergy density of the dust driving the FRW expansion.
Nakamura, Yoshino, and Kobayashi later verified the re-
sults of ALlen (see note added in proof). This work was
subsequently extended by Ressell and Turner [30] who ex-
amined the effect of a “dustlike” phase during which the
scalar field oscillated and decayed on the gravitational
radiation power spectrum. The work was then further
generalized by Sahni [31], who repeated these calcula-
tions for power-law inflation.

Interest in this subject was reawakened by the pub-
lication of the COBE data [3]. A number of papers
have examined whether the different ! dependence of
the scalar and tensor contributions to (a?) permit one
to determine their separate amplitudes. Typically these
compare the scalar contributions expected from a period
of quasiexponential (slow-roll) expansion (which inflates
any early perturbations to well beyond today’s Hubble
radius) to the tensor perturbations. These include work
by Souradeep and Sahni [32], Liddle and Lyth [33], Davis
et al. [34], Salopek [35], Lucchin, Matarrese, and Moller-
ach [36], Dolgov and Silk [37], Turner [38], and Critten-
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den et al. [15,39]. Another possibility is that one may dis-
tinguish the scalar and tensor contributions to the multi-
pole moments by examining the polarization of the CBR.
This has been examined by Harari and Zaldarriaga [40],
by Crittenden, Davis, and Steinhardt [39], and by Ng and
Ng [41].

Krauss and White [42] have used statistical methods
and the COBE data to put tighter constraints on the
energy density during an inflationary epoch. Further de-
tails of a Monte Carlo simulation were given by White
[43] who also presented a concise derivation of the for-
mula for the (a?) due to tensor perturbations, and a table
of the first ten (a?). The effects of cosmic variance on the
ability to distinguish the scalar and tensor perturbations
and the slope of the power spectrum was also considered
by White, Krauss, and Silk [44].

A related analysis has been performed by Bond et al.
[45] and by Crittenden et al. [15] who investigate how
well one can measure a number of important cosmologi-
cal parameters from the collection of anisotropy observa-
tions. It turns out that the first few multipole moments
are sensitive to very-long-wavelength modes which probe
well outside our current Hubble radius. Stevens, Scott,
and Silk [46] and Starobinsky [26] have used these mea-
surements to put new lower limits on the “circumference”
of the Universe, in the case where it has toroidal spatial
topology. Such analysis may also be possible in the spa-
tially open case, where the Sachs-Wolfe effect has been
studied by Ratra and Peebles [47].

Grishchuk has also examined the multipole moments
arising from gravitational wave perturbations [48,49],
adapting the terminology and techniques of quantum op-
tics to carry out the analysis. Grischchuk stresses the
importance of the phase correlations between the modes
of the metric perturbations; we agree with this conclu-
sion but do not use Grischchuk’s “squeezed state” rep-
resentation of the field operator. It is possible to ob-
tain identical results using only the standard formalism
of curved-space quantum field theory developed in [21].
Our conclusion is that the standard formula for the mul-
tipole moments only gives reliable results for small values
of I; for the higher I moments the phase relationship be-
tween the positive- and negative-frequency components
of the wave functions does affect the multipole moments.

Deviations from Gaussian behavior may in principle
be observed through the three-point angular correlation
function. This was first calculated by Falk, Rangara-
jan, and Srednicki [50]; the implications of these results
and further analysis have been carried out by Luo and
Schramm [51] and Srednicki [52].

The physical processes giving rise to the CBR temper-
ature fluctuations may be understood (and explained)
in several ways. We repeat the interpretation given by
Allen [29], which also sheds light on our technical meth-
ods. The period of exponential expansion is an unstable
one, from the global point of view. During this expan-
sion, perturbations of the spatial geometry tend to freeze
in dimensionless amplitude, so that when viewed glob-
ally the spatial sections become more and more distorted.
However, another consequence of the rapid expansion is
that locally, any observer can only see (within her Hubble
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radius) a smaller and smaller region of this spatial sec-
tion. Hence from the observer’s local point of view, the
spacetime is getting closer and closer to a perturbation-
free de Sitter spacetime. One consequence of this global
instability and/or local stability is that gravitational per-
turbations which are of local origin (for example, due to
thermal fluctuations) are very rapidly redshifted in wave-
length and amplitude. At late times, after sufficient in-
flation, these perturbations are no longer visible to an
observer; the only perturbations which remain are those
of quantum origin (the zero-point fluctuations associated
with the uncertainty principle) because these fluctuations
extend up to arbitrarily high frequency and cannot be
redshifted away. (In similar fashion, the quanta radiated
by an evaporating black hole at late times are due to
quantum zero-point fluctuations at very high frequency
close to the event horizon.) Hence, to determine the grav-
itational perturbations present at late times, we assume
that the initial state of the Universe was the vacuum
state appropriate to de Sitter space, containing only the
quantum fluctuations and no additional excitations. For
this reason, one can do a calculation based entirely on
“first principles;” the amplitude of the primordial fluctu-
ations follows directly from the canonical commutation
relations obeyed by the linearized gravitational field, or
in physical terms, directly from the uncertainty principle.
The “particle production” in this case is the production
of pairs of gravitons, whose collective effects (since the oc-
cupation numbers are large, and they are bosons) appear
as classical gravitational radiation. Thus, we determine
the expected value of the correlation function (1.1) by
finding the expectation value of T (4?)%ZX (%) in the de
Sitter vacuum state.

The published calculations have two shortcomings
which are addressed in the present work. The first is
pedagogic. The calculations which have been published
are all rather sketchy; to reproduce the results requires
many pages of calculation which are not given in full but
are left as an exercise to the reader. We believe that
our method of performing this calculation is new; it is
short enough and elegant enough so that all of the de-
tails can be shown explicitly. The second advantage is
quantitative. The previously published calculations use a
“long-wavelength” approximation to the mode functions,
which is accurate for determining the values of the lowest
 multipoles, but inaccurate for the higher multipoles. It
is not obvious from the published work how to improve
this approximation to obtain more accurate results; in
the present work we give exact expressions for the corre-
lation function. The shortcomings of the standard “long-
wavelength” approximation have been pointed out in the
recent work of Turner, White, and Lidsey [53], who use
numerical methods to integrate the wave equation for
the mode functions and who obtain results similar to our
own.

This paper is organized as follows. After a few notes
on notation, Sec. II begins with the classic formula for
the Sachs-Wolfe effect in spatially flat FRW cosmological
models. This is used to derive an expression for the cor-
relation function C(vy) due to the gravitational radiation,
under the assumption that the initial state of the Uni-

verse is a vacuum state with only zero-point, quantum
perturbations. In Sec. III we derive from first princi-
ples the normalization condition on the graviton wave
functions. Section IV describes a simple inflationary cos-
mological model, also used in [29]. In this model, the
Universe “begins” with an infinite period of inflation,
then makes an instantaneous transition to a radiation-
dominated stage, and then later makes another instanta-
neous transition to a matter-dominated stage. We then
find the normalized graviton wave functions appropriate
to that model (and the corresponding Bogolubov coeffi-
cients). We also show how the standard results appear as
a low-frequency approximation to the exact expressions.
Section V is an attempt to obtain a closed form for C(v);
this attempt does not succeed but some progress is made.
Section VI compares the results of our exact expression
for the multipole moments (a?) with the more standard
results, and includes a discussion of some recent literature
on the subject. Because the high-frequency modes affect
the temperature perturbations on small angular scales,
the exact (a?) agree with those given by the standard
approximations for small /, and are different for large I.
Finally a pair of appendices show an alternative deriva-
tion of the formulas contained in Sec. II, and contain
a brief description of the numerical techniques used in
Sec. VI.

Throughout this paper, we use units where the speed
of light ¢ = 1. However for clarity we have retained
Newton’s gravitational constant G and Planck’s constant
k explicitly.

II. THE SACHS-WOLFE EFFECT
AND THE ANGULAR CORRELATION
FUNCTION

A. Notes on notation

We begin with a few notes on notation. The vec-
tors and tensors in this section are purely spatial; they
have no time components, although they may be time-
dependent functions. In a spatially flat FRW model, the
spatial geometry is flat Euclidean space. Since the ten-
sors and vectors are spatial we raise and lower tangent
space indices with the spatial part of the conformal met-
ric, which is just the Euclidean metric of #3. In Cartesian
coordinates, this is

dqp = diag(1,1,1). (2.1)
We denote spatial vectors by k%,v%, or u®, and spatial
tensors by hap,€qp, or Pap. The Latin indices a,b,..., f
run from 1 to 3. Associated with any spatial vector is
its magnitude, denoted by the vector symbol without a
tangent space index. For example, the magnitude of the
vector k€ is denoted k, where

k = k%, = \/bapkek®. (2.2)

A special notation is used for spatial vectors with unit
magnitude. The unit spatial vector k* is defined by



50 CBR ANISOTROPY FROM PRIMORDIAL GRAVITATIONAL ...

I';:a

ka
so that k%k, = 1. Thus one may decompose any spatial
vector u® into a magnitude and a unit vector, and express
it as

J

oo 0 2T oo
/d3k=/ dk k2/ doksinak/ d¢kE/ dk kzldﬂ,;,
0 0 0 0
[

denoting the polar angle associated with k€ by 6;, and the
azimuthal angle by ¢;. In a similar way we will denote
a function of the polar and azimuthal angles (such as a
spherical harmomic function) as

Yim (O, #1) = Vi (°). (2.6)

For example, the orthonormality condition for the spher-
ical harmonics is

/ 4 Vi (k) Y2y (k%) = S1pBmg. @2.7)
Note that we never integrate over the polar and az-
imuthal angles separately.

Hilbert space operators are denoted by an overbar, for
example,

aly) = [¢'),

and a dagger denotes the adjoint operator. An asterisk
denotes complex conjugation.

(2.8)

B. The Sachs-Wolfe effect

In a perfectly isotropic universe the CBR would have
the same temperature in all directions on the celestial
sphere. If, however, the cosmological metric is perturbed
away from isotropy, the temperature observed today fluc-
tuates over the celestial sphere, even if the last-scattering
surface had uniform temperature. The Sachs-Wolfe for-

mula [6] expresses the temperature fluctuation in terms
J

a(me)

Aobs )
14 7 = obs) (1 +1 / asab [—h.,,,(n,p(,\)m)] dA).
2 /i, on nN=nec+A

This equation is equivalent to (39) in [6] for the special-
ized case of gravitational wave perturbations.

The CBR is an ensemble of many photons which were
last scattered at conformal time 1 = 7, by the primordial
plasma of ionized hydrogen and electrons. Using (2.14)
one obtains the temperature fluctuation §T of the CBR
measured at the point on the celestial sphere pointed to
by the unit vector 4°:

8T 1 fre [0

— (%) = = u*w’ | ——has(n, D(A)a dl.

T( ) 2 v/z\e [3’!} b("] ( )u ):ln=n¢+A
(2.15)
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u® = ud’.

(2.4)
We use this notation throughout this section.

Often we need to integrate over all possible magnitudes
and orientations of a spatial vector. To integrate over k°,
we write

(2.5)

of the metric perturbation, to lowest order in the pertur-
bation.

Consider a spatially flat FRW universe perturbed away
from isotropy. The perturbed metric in comoving gauge
is

ds? = a®(n){—dn® + [6ab + has(n, z°)|dzdz"},

where 7 is the conformal time, and a(n) is the scale fac-
tor. Imagine a single photon emitted at conformal time
n = 7. and observed at conformal time 7 = 7obs. As
the photon propagates through the spacetime the metric
perturbations a?(n)hap perturb the null path of the pho-
ton. One may choose spatial coordinates so that (to zero
order in hgp) the photon follows a radial path in space
on its way to the observer, who is located at the origin
2% = 0. Furthermore, one may parametrize the path of
the photon by A, so that the spatial path of the photon
is

(2.9)

z*(\) = D(\)a®, (2.10)

where
D(A) = (nobs —TNe — A)v

4% is a unit vector pointing radially out from the origin,
and )\ varies from A, to A ps with

Ae =0,
Aobs = Tobs — Te-

(2.11)

(2.12)
(2.13)

Sachs and Wolfe have shown that to first order in hgp the
observed redshift of the photon is given by

(2.14)

|
This formula embodies the Sachs-Wolfe effect, and is
equivalent to (42) in [6] for the special case of gravita-
tional wave perturbations.

C. The metric perturbation hg

As noted in the Introduction, we examine the trans-
verse, traceless, tensor part of the metric perturbation
in models of the Universe that pass through an early in-
flationary stage. The period of exponential inflation is
unstable, and as a result of the rapid expansion, pertur-
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bations of the spatial geometry freeze in dimensionless
amplitude. From any observer’s local point of view the
spacetime quickly approaches a perturbation-free de Sit-
ter spacetime. At late times perturbations of local origin
are extremely redshifted in both wavelength and ampli-
tude, leaving only perturbations of quantum origin (zero-
point fluctuations) as the significant contribution to the
tensor part of the metric perturbations. For this reason
J
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we assume that the initial state of the Universe is the
de Sitter space vacuum state containing only quantum
fluctuations.

Since the significant tensor perturbations are quantum
in origin, we replace the classical metric perturbation hg
in (2.15) by the Hilbert space operator ko, appropriate
for the linearized theory of gravity. The plane wave ex-
pansion of hgp is

has(na?) = [ &% ( [eas (k)b (n, k)an(K) + e30(K) bt (1, k)ar, (k°)]

e ika ot (k) ph(m, K)aly (K°) + ean (k)83 (n, kc)fz}(k‘”)])-

Here ar(k°) and ar(k°) (their Hermitian conjugates)
are annihilation (creation) operators that destroy (cre-
ate) a right or left circularly polarized graviton. These
operators obey the commutation relations

[as (k). b, (k)] = [ar(k), ah(K'®)] = 6 (k* — K'*),

(2.17)

with all other commutators vanishing. The graviton
mode functions for the left and right polarizations are
éL(n, k°) and ¢r(n, k), respectively. If the spacetime is
isotropic and homogeneous, and therefore does not single
out any preferred directions, one may choose a particle
basis so that the mode functions depend on the magni-
tude k only. One may also choose a particle basis that
does not distinguish between the two possible spatial ori-
entations, so that these left- and right-handed gravitons
have the same mode functions. One then has

oL(n, k%) = ¢r(n, k) = ¢(n, k).

This mode function ¢(7,k) obeys the massless Klein-
Gordon equation [21]

(2.18)

&5+2Mq3+k2¢=0,

2.19
a(n) (219
where a(n) is the cosmic scale factor, and
0
= 2.20
= (220)

If one demands that h,, obey canonical commutation
relations, the commutation relations (2.17) imply that
the mode function satisfy normalization conditions. The
normalization condition is defined in (3.19).

The tensors e, (k°) and e, (k€) in expansion (2.16) are
the polarization tensors for a circularly polarized basis.
We first define the so called plus (+) and cross (X) po-
larizations. Consider a mode or wave propagating in the
k¢ direction. One may define two unit-length vectors ¢
and 7n° orthoganol to ke, and orthoganol to each other,
so that the set (k¢,m°, 7A°) is a right-handed triad with

k%, = k%h, = Mm%, = 0. (2.21)

(2.16)

[
In terms of these unit vectors the plus and cross polar-
izations are defined as

el (k) = tha (k)i (k) — (k) (k)

e (k°), = 1 (k€)fip (k°) + Tia (k) rip(K°).
The plus and cross polarization tensors together form a
complete basis for the tensor (spin-2) perturbations [6].

Note that both the plus and cross polarizations are trans-
verse, traceless, and symmetric:

+ + +
ely) (K)k® = €U, (ke) = ef) (k) = 0. (2.24)

One may define the circular polarization tensor egp(k€)
in terms of the plus and cross polarizations as

1
V2

- % [t (k) + i (k)] [ (k) + iR (k).

ean(kS) = —=[el) (k%) + i€y (k)] (2.25)

(2.26)

The polarization tensor e}, (k) is just the complex conju-
gate of the polarization tensor (2.25). The tensors eqp(k°)
and e}, (k°) also form a complete basis for the tensor
(spin-2) perturbation.

The vectors m.(k°) and 7.(k®) are not unique. Any
two unit vectors that satisfy (2.21) may be used to define
the polarization tensors. Any other right-handed triad of
vectors such as (I::c, m/¢, 7'¢), however, can be obtained by

rotating the triad (k¢,7°,7#°) through an angle ¢ about

kc. Under this rotation,

eLp (k) = e ey (K°). (2.27)
This shows that gravitons are a spin-2 field, since the
spin (or more precisely, the helicity) of a field is defined
as the number of times the phase of the field changes by
27, when the coordinate system is rotated once around
the momentum vector of the field.

The polarization tensors are closely related to the ten-
sor that projects onto a sphere of radius k, at a point k€.
We define the projection tensor Pgp(k€) by

Py (k®) = 8ap — kaks, (2.28)
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so that

Popk® = Pyyk® = 0 and P, P°. = P,.. (2.29)

This tensor projects onto the two-surface orthoganol to
k¢, which is just the two-sphere of radius k. To relate the
projection tensor P, to the polarization tensors, consider
the Euclidean metric 44 on R3. One may express d.p
using the three unit vectors k€, ¢, and 7°:

J

eap(k®)e2q (k) + €5y (k°)eca(k®) = Pac(k®) Poa(k®) + Paa(k®) Poc(k®) — Pab(k) Pea(k®).

Later we use this identity to find an elegant expression
for the angular correlation function.

D. The two-sphere of radius k

Besides being the projection tensor onto the two-
sphere of radius k, P,; is the natural metric induced
on this two-surface by the flat metric on R3. Since the
two-sphere is a maximally symmetric two-manifold, one
may immediately write the Riemann tensor on this two-
surface as

- 2
Rapea = pPa[cPd]b' (233)
The factor of k2 appears because the two-sphere has
radius k. We denote the covariant derivative on this sur-
face by V,, and define the Laplacian (J on this surface
by
PV, V, = VPV, =00 (2.34)
The spherical harmonics are eigenfunctions of this Lapla-
cian, and obey the eigenfunction equation

+1),

(i'lY,m(I::C) =- k2 Yim (K°).

(2.35)

Again the factor of k=2 appears because the two-sphere
has radius k.

Using the definition of the Riemann tensor, the iden-
tity (2.33), and the eigenfunction equation (2.35), we can
derive a useful identity:

Ovey;, = VPVev,Y;,
= (¥59°9, — Vo9, + VoV, vy,
= Rb“bcecYI:n + 6“@1’,;
= V¥, + o0,
_ [—z(z +1)+1

= ] veyg.. (2.36)

_ l Aobs 6 -
Cipn = = / dX / dQ, *“abY,:,,(ff)[—hab(n,D(/\)ff)]
2 /i, on
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bab = koky + Mathty + Rtaits. (2.30)

Using (2.28) and (2.30) one may write the projection ten-
sor as

Py (k°) = g (k) (k®) + 71 (k) 70s (). (2.31)
From (2.26) and (2.31) one may quickly verify the iden-
tity

(2.32)

This formula will prove useful in our derivation of the
angular correlation function.

E. The angular correlation function
1. The Sachs- Wolfe operator

The Sachs-Wolfe formula (2.15) is a result from classi-
cal general relativity, giving the temperature fluctuations
of the CBR over the celestial sphere as a function of met-
ric perturbations. As noted above, however, in inflation-
ary models the surviving metric perturbations are quan-
tum in origin; without further justification we replace the
classical metric perturbation h.p in the standard Sachs-
Wolfe formula (2.15) by the quantum field operator hgp.
The temperature fluctuation at a point on the celestial
sphere is now a Hilbert space operator, given by

Aobs b a _
N ) N
T =3 [ [0 phesn 08| s

nN=nc+A

(2.37)

We will refer to (2.37) as the Sachs-Wolfe operator.

Since the Sachs-Wolfe operator is parametrized by co-
ordinates on the celestial two-sphere, it is natural to de-
compose it into an expansion of (normalized) spherical
harmonics on the two-sphere. Using the orthogonality of
the spherical harmonics, one can write the Sachs-Wolfe
operator as

5T

7 (1) = g CimYim (4%, (2.38)

1 .
where > = 2;’20 Y m=_; and the expansion coeffi-
cient operator Cj,, is

(2.39)
n=ne+A

For the metric perturbation operator h,; we use (2.16). Since the first derivative of the metric perturbation, not the
perturbation itself, appears in the expression for the expansion coefficient Ci,,, it is useful to define the dimensionless
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function

Then from (2.16) and (2.39) we obtain for the expansion coefficient operator
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— .1/2 0
F(\ k) = kY2 | —o(n, k) (2.40)
37} N=ne+A
Acbe ab iD(A\)k%a
Cim = = / d,\/dﬂ kl/z wab Yy, (ﬁc){ IDNETEa (X, k) [ean(k®)aR(K°) + el (k°)ar (k°)]
(2.41)

+e DO (k) ey (k) (k) + easlk)al (1) .

We use this expansion of the Sachs-Wolfe operator to
examine the angular correlation function.

2. Angular correlation function C(9*,4°)

The quantity of interest is the angular correlation func-
tion (1.1). Since the temperature fluctuations are now
represented by a Hilbert space operator, the angular cor-
relation function is a matrix element:

0>.

C(ﬁ“,a“)s<o‘(‘”) COLATY

Here the quantum state |0) is the initial quantum state
of the Universe, which we have taken to be the de Sit-
ter space vacuum state for reasons discussed both in the
Introduction and in Sec. IIC.

Based on the isotropy of the FRW model and of the
state |0), one expects the correlation function to be ro-

1 Aobs Aobs
_1 / AN / A /
4 Ae Ae

x [eab(fc'e>e;d(fc8)<0|an(k'2>

(2.42)

|

A3k’

(0/C},Cim|0)

y / i, / QY (6°) Y7 (0

k'1/2

tationally invariant; i.e., to depend only on the angle v
where cosy = 9°%.. Using the expansion (2.38), one may
express the angular correlation function in the form

=>"> (0|C} - (5%).

lm pq

¢Cim|0) Y1 (4)Y,, (2.43)

Since one expects the correlation function to be rotation-
ally inva.rlant one ought to be able to write the matrix
element (0|C] Cim|0) as
(01CE,Cirnl0) = (015, (2.44)

and then use (2.41) for Ci,, and solve for (a?). In Ap-
pendix A we make this assumption, and obtain (a?)
somewhat more directly.

For now, however, we show by direct calculation that
the correlation function is rotationally invariant. Using
(2.41) the matrix element (OIC_’;qC_'I,n|O) is

d3k

S POV K)F* (A k)

[ i

R(K)[0) + €3y (K'®)eca(k)(0la (k')al (k)|0)

)5 sPacide—ik! (D(Nas—D(\)oy) (2.45)

One may immediately evaluate the two matrix elements on the right-hand side using the commutation relations (2.17)

for the creation and annihilation operators. Both matrix elements yield the Dirac § function 63(k®

identity (2.32) for the polarization tensors, one finds

— k'©). Using the

(0C], Cirml0) = % A ™ / i / dk k F(N, k)F* (A, k) Aimpq (k, D(A), D(X)), (2.46)
where
Aumpa(l ") = [ 6t [Puch) Pra() + Pua() P (5°) = Pas(61) Prs )
x¢‘{:gq}(r'kée)¢**{lfm}(rkl‘ce)}, (2.47)
and
b (k%) = / Qs Vi (0°) 2% 00 0. (2.48)

The braces in the equation above are to remind the reader that ! and m are not tangent space indices. We show in
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the next section that Ajmpq(k,r,7’) is proportional to the Kronecker deltas 6;,6,mq and is independent of m, so that
the correlation function is indeed rotationally invariant.

3. A closed form expression for Aimpq(k,r,r')

The function 'l,b‘{‘,bm} (k°) can be expressed in a way which allows one to exploit the projection tensors in (2.47). Note
from (2.48) that

Uity () = =V°9° [ a2y ¥i(a)e™ 01, (2.49)
where the derivative V, in Cartesian coordinates is

Va

d
e (2.50)

The plane wave ei*'84 can be expanded as an infinite sum of spherical Bessel functions j;(k) and spherical harmonics
(see Eq. 16.127 of [54]) so that

Wity () = =9 [ d2a ¥in(a) [4w§:zpap(k) 3 v (8 ¥5ak). (2:51)

p=0 q=-p
Using the orthonormality of the spherical harmonics one obtains
Yy (B°) = —4mit VEV5y (k) Vipn (). (2.52)

Note the dependence of the right-hand side on the vector k¢; the spherical Bessel function depends only on the

ma.gmtude k, and the spherical harmonic depends only on the polar and azimuthal angles. With this form for
{lm} (k°) (2. 47) becomes

16724P (—3)!
r2p2

Almpq(k,7,7')= / dQE{ [Poe(kke)P*(kke) + P4 (kk®) Pt (kke) — P°®(kk®) P4 (kk*®)]

[V k') Yy ()] [V Tk Y ) . (253)

We can now use the projection operators to make the final integration almost trivial.

Consider how the projection tensor Py acts on the gradient V, f(k¢). The gradient in general has components both
parallel and orthoganol to k°. When contracted with the gradient the projection tensor annihilates the components
parallel to k°. The remaining components of the gradient lie entirely on the two-sphere of radius k, so

P*Vaf (k%) = Vif(k°), (2.54)

where V, is the same derivative on the two-sphere defined in Sec. IID. Using (2.54), and noting that the spherical
Bessel functions depend only on the magnitude k, and are constant on the two-sphere of radius k, one obtains

167237 (—1)!

Atmpq(k,7,7') = r2p/2

solhr)kr) [ 04 [2(90FYoa) (F°94) = (O%3a) (O3], (2.55)
where O is the same Laplacian on the two-sphere of radius k defined in (2.34). The integrand is just deriva:tives on
the two-sphere of spherical harmonics, which, as discussed in Sec. IID, are eigenfunctions of the Laplacian (.

The first integral on the right-hand side above can be integrated by parts, and the second by inspection. To help
us evaluate the integrals, we write

16724P (—i)!

Aimpq(k, 7,7 "= 2z

Gp(kr")ji(kr) [2Q§7q (k) — Q{2 (F)], (2.56)
where using (2.7) and (2.35)

- S 12(1+1)2
Qi (k) = [ 40 (O%,0) i) = b1 (257)
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and

lmpq

Integrating (2.58) by parts once, we find

Q}fn?pq /dQ VbYPQ)( Vvalm)

Q@ (k) = / £ (VaVsYe) (VoVPYL,).
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(2.58)

(2.59)

since the two-sphere has no boundary. With the identity (2.36) we have

—l(l+1)+1

Ql(vzrzpq( )= _[ k2

]/dﬂ;(@prq) (ﬁbYl:n)

(2.60)

One may again integrate by parts and use the eigenfunction equation (2.35) for the spherical harmonics and (2.7) to

obtain
(2) _ ——l(l + 1) +
lmpq(k) - [ k2
= [l2(1+ 1)2

Substituting (2.57) and (2.62) into (2.56) one has

1672
Ampq(k, T, r') =

As previously indicated, the matrix element (O|C_‘;q

gtk )g(kr) (L= DU+ 1)1 + 2) SipOimg-

1] [_1(2: 1)]6;,,6,,", (2.61)
=1l + 1)]01p0mq- (2.62)
(2.63)

Cim|0) and the correlation function C(9¢, @) are indeed rotationally

invariant. Also note that (2.63) vanishes for [ =0 and [ = 1.

4. The angular correlation function

Using the above form of Apmpq(k,7,7’) one may derive a simple expression for the angular correlation function
C(9°,4°), and show directly that it depends only on the angle v between 9¢ and 4°. With (2.63) and (2.46) one has

. = 1+2
<0|C;qclm|0) =47 zHalpémq

where we have written the fourth-order polynomial in !
appearing in (2.63) as the ratio of two factorials. Noting
the symmetry of the right-hand side, and recalling the
definitions of D(A), A, and Aops, we define

Tlobs —7e
L(k) = /0 dAF(), k)J‘[g:t’s‘“ e A;\Z], (2.65)
and write the matrix element as
(01C},Cirm 0) = (a})b1p6mq; (2.66)
where
ey =20 [T F 0P 26
Substituting this expression into (2.43) we obtain
(2.68)

C(9°,8%) = ) (a])Yim (8°) Y3 (6°),
Im

where we have used the Kronecker deltas to eliminate

T dk /* ax /* A F (Y, k)F* (0, k) SEDONI D))
k b )

k2D2(\)D2(\) (2:64)

f

two of the sums. Making use of the addition theorem for
spherical harmonics (see Eq. (3.62) in [54]), the correla-
tion function is

= ot =Y B @ Pieosy), (269

C(%°,a°) =
=0

where
(2.70)

cosy = U0,.
As promised, the angular correlation function depends
only on the angle v between any two points on the celes-
tial sphere. Also note that the [ = 0 and the [ = 1 terms
in the expansion vanish exactly.

This form of the correlation function is very general.
The only dependence of the correlation function on the
details of any cosmological model is through the graviton
mode function (or more precisely, its first derivative),
which appears as F()\, k) in the definition of I;(k) (2.65).
Similar results, which are as general as (2.69), are given
by Grishchuk [see Eq. (4) in the second paper of [49]] and
Atrio-Barandela and Sik (see note added in proof).



III. GRAVITON MODE FUNCTION
NORMALIZATION

If one demands that the metric perturbation field op-
erator hg, obey canonical commutation relations, the
commutation relations (2.17) for the graviton creation
and annihilation operators imply that the graviton mode
function satisfy a normalization condition. Imposing
canonical commutation relations on the tensor field hqgs,
however, is subtle because as noted by Ford and Parker
[21], the canonical commutation relation that k., obeys
may be inconsistent with the gauge conditions on hgp.
J
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For this reason, we follow [21] and impose canonical com-
mutation relations on the two independent scalar degrees
of freedom in Agp.

The two independent degrees of freedom in the metric
perturbation field can be isolated by constructing two
scalar field operators from h,p. Recall from (2.16) that
the plane wave expansion of Agp is

hab(n, 2, k°) = (e""d" [eab(k)pr(n, k°)ar (k) + ey (k°)$L (1, k°)ar (k°)]

+e k%4 [or, (k) g (n, k°)ak (k%) + eas (k) B} (1, k“)ﬁ}.(kc)]) :

We define the scalar field operator

Foy (n,2°) = / Bk o (m, 2%, k)e DB (ke).  (3.3)
Contracting the integrand using (2.21)—(2.26) one ob-
tains

hy(n,z°) = \/i/dsk {eikd“qﬁ(n, k) [dg(kc) + dL(kc)]
+e_ikd‘°‘¢* (m, k) [dR(kc) +ar (k)] 1‘}. (3.4)

A second scalar field operator hy (7, z¢) is defined by re-
placing the plus signs (+) in (3.3) by crosses (x), which
has the effect of replacing @agr + @r by tap — i@r in
(3.4). Together the scalar field operators h(n,z¢) and
h (n, z¢) possess the same two degrees of freedom as the
metric perturbation operator hgp [21]. Since hy(n,z€)
and hy (7, z¢) are both scalar field operators, they obey
well-known canonical commutation relations for scalar
fields. Because our particle basis does not distinguish
between the two polarizations, we only need to consider
one of the two scalar fields, since both lead to the same
normalization condition for the mode function.

The scalar field operator h. (1, z¢) obeys the canonical

commutation relation
J

Fas(n, z°) = / &3k Fas(n, 2, k°), (3.1)
where
(3.2)
[
[’_"+(7’a mc)’i+(’71m’c)] = im:i(wc - xlc)v (3'5)

where the field operator 7 (7, z°) is canonically conju-
gate to hy(n,z¢), and is defined by

r,= 2L (3.6)
dhy
Here £ is the Lagrangian density of the perturbed spa-
tially flat FRW spacetime. To impose the commutation
relation (3.5) and find the normalization condition for the
graviton mode function we need to find the Lagrangian
density in terms of A, and hy.

The Lagrangian density is obtained by expanding the
gravitational plus matter action to second order in the
metric perturbation hg. The action for a FRW space-
time is

S = / d“zﬁ{ % + %[(p + P)utu¥g,, + (o + 3P)]}
(3.7)

where g,,,, is the metric for the FRW spacetime, R is the
Ricci scalar, p is the energy density, P is the pressure, and
u* is the four-velocity of the cosmological fluid. Varying
the action with respect to g, leads to the Einstein equa-
tion for a FRW model:

1
Gy =R, + iRg,‘,, = 87GT,, = 87G[(p + P)uyu, + Pg,,]. (3.8)
If the FRW spacetime is perturbed so that
Guv = ogpu + Vv, (3.9)

where 0gm, is the unperturbed or background FRW metric, but the pressure P and the energy density p are not
perturbed, then one finds that the second-order variation in the action is [21]

625=/d4m\/f§ .

647G

{(OV“'Y”e)(OV#'YVE) +87G(P — p)v* Yo + 20R#V'Y“E'7€u + 20R#V€0'Y"c‘7v£}- (3.10)

The superscript, for example in °V,, refers to the background spacetime. One should note that (3.10) is obtained by

b
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making a specific choice of gauge (transverse, traceless) [21]. Also note that this is to second order in the perturbation
Yuv, since the first-order part 45 vanishes because the background FRW spacetime satisfies (3.8).

Equation (3.10) is very general and true for any “small” perturbation v,, (that satisfies the gauge conditions)
away from a FRW spacetime with metric ng,. For our purposes, the perturbation v,, is simply a?(n)hqes, and the
background FRW spacetime is spatially flat. With a little calculation one can show that for the spatially lat FRW

spacetime perturbed by tensor perturbations

647G

528 = / diz ) { — haph®® + (a,,h,,c)(aahbc)}.

To calculate the momentum 7, conjugate to h,, one must express the action in terms of h, and hy.
calculation, and using (2.16), one can write the action as

525=/d4 a (")%{_(ﬁi+Ei)+(aah+)(aaﬁ+)+(a.,7zx)(6“ﬁx)},

4rG

so that the Lagrangian density is

_ ) L iR RD) b (Buhe)(0°hy) +

647G 2

(3.11)

With a little

(3.12)

(Oahx)(8%hx)}. (3.13)

This is just the Lagrangian for a pair of massless scalar fields minimally coupled to the background spacetime. Using

(3.6) and (3.13) the momentum is

7I'+(T), za) = -

a®(n) ;
h..
647G T

(3.14)

Then from (3.5) the canonical commutation relation for the scalar field operator A is

. 3
hy(n,z%),hy(n,2'*)] = —647ik G 6(4
a

Note that this is an equal-time commutation relation.

(3.15)

Using the commutation relation above and the explicit form for the scalar field ., one can derive the normalization
condition for the graviton mode function. Using (3.4) and (2.17) one finds

(s 0) b (n,2)] = 4 [ d{ (006 (1, Ry (2o~

— 9" (n, k)$(n, k)e~*"(Fa =)} (3.16)

Since we assume that the mode function ¢(n, k) depends only on the magnitude k, one can write

%), hy (n,2')]

Since the é function in (3.15) can be expressed as a plane
wave expansion
/d3ke"’°"<%‘*-ﬁ) = (2m)38%(z° — 2'°), (3.18)

(3.15) and (3.17) imply the mode function normalization
condition

{¢(Tl 2ihG

72a2(n)’

This identity determines the normalization of the gravi-
ton mode function, up to an (irrelevant) overall phase,
and would be equivalent to Eq. (3.3) of [21] if not for
a typo [55]. The main consequence is that fundamental
physical principles (the uncertainty principle) completely
determine the amplitude of the contribution to the an-
gular correlation function arising from gravitational ra-
diation.

¢* uB ) - ¢*(Tl» k)¢(na k)} =- (319)

—4 / ke @) {§(n, k)g* (n, k) — &* (1, k)b(n, k) }.

(3.17)

IV. INFLATIONARY COSMOLOGICAL MODEL
A. Graviton mode function

The cosmological model we examine “begins” with an
infinite inflationary phase, followed by radiation- and
then matter-dominated phases. We assume that the in-
flationary phase evolves into de Sitter spacetime. The
mechanism by which the Universe arrives at the de Sit-
ter spacetime is not important, since the period of rapid
expansion during the de Sitter phase effectively erases
the initial conditions. At the end of the de Sitter phase
the Universe undergoes an instantaneous phase transi-
tion to a radiation-dominated FRW phase. At the end
of the radiation phase the Universe again undergoes an
instantaneous phase transition, and evolves as a matter-
dominated FRW spacetime until the present.

If the initial de Sitter phase is sufficiently long, the
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spatial geometry becomes flat, and one may assume that
the Universe is spatially flat for all three epochs. The
metric for the spacetime is then given by (2.9), with scale
factor

(2- ?7{ _la(nl) —o0o < <1 de Sitter,

a(n) = ;,’I;a(m) m <n<mn, radiation,
2
10+ ) Ba(m) n2<n matter,
(a.1)

where 7; > 0 and 7, are constants. The redshift at the
end of the de Sitter phase Zenq and the redshift at the
time of radiation-matter equality Zequa are defined by

1+ ZendE a’(nobs) — (nobs + 772)2,

a(m) dmne

(4.2)

(Tlobs) _ (7obs + 712)?
a(n2) 4n,2

where 7),bs is conformal time today. Typical values for
the redshifts (for models “with enough inflation” to solve
the horizon and flatness problems) are Z.,q ~ 10?7 and
Zequal ~ 10%. We assume that last scattering at confor-
mal time 7, took place after the time of radiation-matter
J

1+ Zequa.lE ’ (43)
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equality so that 7. > n2. The redshift of the surface of
last scattering Zrs is

a(nobs) — (nobs + 2 ) 2
a’(ne) Ne + M2

A typical value for the redshift of the surface of last-
scattering is Z1s = 1300, although it is possible that the
hydrogen was re-ionized as recently as redshift Zi,s =~ 100
[5].

Note that the scale factor (4.1) and its first deriva-
tive are continuous. Because the second derivative of the
scale factor is not continuous, the scalar curvature of the
spacetime changes discontinuously at the phase transi-
tions. This instantaneous phase transition is a good ap-
proximation, except at high frequencies, where it predicts
too much graviton production [29].

With the scale factor above, one can solve the mass-
less Klein-Gordon equation (2.19) for the graviton mode
function during each of the three epochs. By making a
change of dependent, and then independent variable, the
Klein-Gordon equation can be cast in the form of Bessel’s
equation, for each of the three phases. The necessary
changes of variable, and the positive-frequency solutions,
are shown in Table I. Using the normalization condition
(3.19), and making a convenient choice of phase, one ob-
tains the following positive-frequency solutions for the
three epochs:

14+ Zys = (4.4)

8 .
¢f;§)(77, k) = —iy / g%‘f kY2 (n — 2m;)? hgz) [k(n — 2m)]e”**™ for the de Sitter phase, (4.5)
¢,(:d) (m, k) = —1 / ES;ZLPS kY2 g hgz)(kn)e"’"“ for the radiation phase, (4.6)
(2)
) (p k) = —ai, [ 2 PdS p1/z 2 hi[k(n +7m2)]
Drmat (M k) 41 37 pp kY4 mcn, e for the matter phase, (4.7)

where

3 a¥(m) 3 1
Pds = =

T 87Gat(n)  8mG m2a?(m) (48)

is the (constant) energy density during the de Sitter
phase, and
1

5 (4.9)

pp =

TABLE I

f

is the Planck energy density. The spherical Hankel func-
tions [54] are defined by

D (2) = ji(z) % iw(2),

where j;(z) and y;(z) are spherical Bessel functions of
the first and second kind. The negative-frequency mode
functions are the complex conjugates of the positive-
frequency mode functions. The positive- and negative-

(4.10)

Change of dependent and independent variables needed to cast the massless

Klein-Gordon equation in the form of Bessel’s differential equation, and positive-frequency (un-

normalized) solution.

Epoch Dependent Independent Solution ¢
~o<n<m ¢ = (n—2m)*x z = k(n — 2m) (n — 2m)*h{? (k(n — 2m))
m<n<mn ¢=x z=kn R$? (k)

m<n ¢=(n+m)""x z = k(n + n2) (n+ 12) AP (k(n + m2))
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frequency solutions for each epoch form a complete set of
solutions to the massless Klein-Gordon equation (2.19).

The choice of a mode function during the initial de Sit-
ter phase 7 < 7; completely determines the mode func-
tion at all later times. This is because a solution to the
Klein-Gordon equation (2.19) depends only upon the val-
ues of ¢ and ¢ on a spacelike hypersurface (i.e., a surface
of fixed 7). To express the solution ¢ at later times, af-
ter the de Sitter phase has ended, it is useful to adopt
the Bogolubov coefficient notation. In this notation, the
solution ¢ at later times is expressed as a linear combi-
nation a¢(*) + B¢(~) of the natural choices of positive-
and negative-frequency solutions during the subsequent
phases of expansion.

If one evolves the positive-frequency mode function
during the de Sitter phase ¢(+) into the subsequent ra-
diation phase via (2.19), it is necessary that the mode
function and its first derivative be continuous across the
phase transitions at 7 = n; and 7 = n;. Continuity from
the de Sitter to the radiation phase is assured if and only
if the Bogolubov coefficients a;.q and (;aq satisfy the
conditions

¢fj-§) (7711 k) = arad‘bx(-:d) (7’1 y k) + ﬂrad¢£;c.l) (771, k),

¢‘(1;) (7711 k) = arad(»‘bl(-:g (7]17 k) + ,Bradq.sl(-;d) (7’1, k) (411)
Solving this pair of linear equations one finds
) 1
ra ,k =—|1 7. T 95L2_2 |
arad (M, k) l( + o 2k27712)
1
Brad(m, k) = PTEmmE (4.12)

Likewise, if one evolves the positive-frequency mode func-
tion during the radiation phase ¢1(,:d) into the subsequent
J

¢S5 (n, k)
d(n, k) =

a gl (m, k) + B o5 (n, k)

where the coefficients o and 3 are given by

a BYN_(a B a fB
(ﬁ"l at) - (ﬂ* a*)rad ('B* a*)mat‘ (418)

The mode function (4.17) is the normalized, continuous,
graviton mode function which appears in the expression
for the correlation function (2.65). This expression for
the mode function is eract, and valid for all wave numbers
k.

B. Corrections to the instantaneous phase
transition approximation

Our inflationary cosmological model undergoes instan-
taneous phase transitions; first between the de Sitter and

aradqsl(-:d) (771 k) + ﬂrad¢£;(i) (71, k
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matter phase, the Bogolubov coefficients amat and Bmat
must satisfy

8833 (12, k) = Cmat 84 (12, k) + Benas et (712, k),
¢1(':d) (772’ ) = am8t¢mat(n27 ) + ﬂm8t¢mat (nZ?k)'

Solving this pair of linear equations we find

k21 2)eik(m+ﬂ2)
8 72 ’

(4.13)

amat(n2a ) - (1 + 2k172

e“‘(’h —3n2) X

ﬂmat(n% k) = (414)

i
8k2n,?
Since the mode functions are normalized by (3.19), the
Bogolubov coefficients obey the (easily verified) relation

|ﬂrad|2 = Iﬂmat'z =1 (415)

larad|2 - |amat|2 -

The Bogolubov coefficients above agree with [29], up to
an irrelevant phase.

As stated earlier, the choice of a mode function dur-
ing the de Sitter phase completely determines the mode
function at all later times. We choose the mode function
for the de Sitter phase to be the positive-frequency de
Sitter solution (4.5):

¢(+)( n,k) for —oo<n<mn. (4.16)

b(n, k) =
This is the unique solution corresponding to a de Sitter-
invariant vacuum state with the same (Hadamard) short
distance behavior as one would find in Minkowski space
[29]. Having calculated the Bogolubov coefficients, one
may now determine the way in which the positive-
frequency mode function (4.16) evolves continuously
from one phase to the next. The complete mode function
during all three epochs is

for —oo < < m de Sitter,

) for ;1 <n<mn, radiation, (4.17)

for no <7 matter,

f

radiation phase, and then between the radiation and mat-
ter phase. At these transitions, the scalar curvature of
the Universe changes abruptly, since the second deriva-
tive of the scale factor (4.1) is discontinuous. This abrupt
change in curvature produces gravitons, in much the
same way as an abrupt change in the electromagnetic
potential produces photons. This instantaneous phase
transition is a good approximation, except at high fre-
quencies, where it predicts too much graviton production
[29].

The physical Universe transforms smoothly from phase
to phase, with each transition taking place during a char-
acteristic period of time. If the characteristic time of
a phase transition is At, then one would expect the
spectrum of gravitons produced by the phase transi-
tion to be supressed above a cutoff frequency fcut, with
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feut ~ 1/At. Equivalently, the production of gravitons
whose wavelength is less than A;,z = At is supressed.
The idealization that the phase transitions are instan-
taneous is a good approximation for frequencies below
feut. For this reason, the multipole moments (a?) for
small values of ! should be unaffected by this idealiza-
tion. The (a?) for large !, however, will be overestimated
if we do not “smooth out” the phase transitions.

The adiabatic theorem [18,56] provides a simple way
to account for the effects of “smoothing out” the phase
transition, which does not require any detailed informa-
tion about how the abrupt change in d(n) is smoothed.
The cutoff wavelength A, corresponds to a cutoff wave
number k.,;. The adiabatic theorem implies that the Bo-
golubov coefficient 3 in (4.17), whose modulus squared
gives the number of gravitons produced in a given mode
[29], should decay exponentially for k > kcus, while the
Bogolubov coefficient a goes exponentially to 1. So for
large values of k with k& > k.u no graviton production
takes place.

1+ |ﬁmat (kcut)lzez_zk/kcm
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To be specific, consider the transition from the radia-
tion to the matter phase. We will assume that the char-
acteristic time of the phase transition equals the Hubble
length at that time. This gives a cutoff wavelength

/\cut(772) = %)' = H_I(T'z)'

At later times, the cutoff wavelength is redshifted by the
cosmological expansion to the longer wavelength

(4.19)

A(:ul: (TI) = A<:ui: (WZ) :((1;12)) .

(4.20)

The cutoff (comoving) wave number is then given by

= 2w~ L. (4.21)

The adiabatic theorem now implies that, for comoving
wave numbers above kcyt,

amat(k > kcut) = [

1 + lﬁmat(kcut) I2

ﬂmat(k > kCut) = ﬁmat(kcut)el_k/kc“t.

1/2
] Omat (kcut), (4.22)

(4.23)

We use these formulas to determine amat and Bmat for £ > kcyt. They only significantly effect multipole moments
(a?) with ! 2 1000. A similar analysis shows that the instantaneous transition from the de Sitter to the radiation
phase only affects the moments with extremely large I.

C. The long-wavelength approximation

As noted in the Introduction, the previously published calculations determine the angular correlation function using
a “long-wavelength” approximation to the graviton mode function. (We assume that the last-scattering event took
place after the Universe became matter dominated, i.e., 172 < 7; for the rest of this paper, the “mode function” means
the mode function during the matter phase.) The long-wavelength approximation is the same as an approximation
for small wave number k. To make a small k£ approximation to the mode function, it is helpful to express the mode
function in terms of spherical Bessel functions. Using (4.7), (4.10), and (4.17), one can write the mode function as

8 pas kim?n,

¢(n, k) = —4d 37 pp (n+12)

To understand the small k behavior of ¢(7, k), one can
expand the combinations of Bogolubov coefficients in
square brackets as power series in k. One finds

3 1

[a +ﬂ] = —ZW + O(k_z)
A 40m3n; — 4m2t\ |,
[« — 4] = (T)k +O().  (4.25)

Furthermore, the small k behavior of the spherical Bessel
functions can be understood by noting that, for a small
argument,

21 = ji(z) ~ g and y;(2) ~—2z"2.  (4.26)

Using (4.25) and (4.26), and noting that

{[a + Blia (K + m2)) — ilex — Bly (k(n + m))}. (4.29)
[
a(z) = \/%Jl+1/2(z), (4.27)

one sees that for small wave number k one may approxi-
mate the graviton mode function by

[+ Pas J3/2(k(n + m2))
, k) ~ 12—/— ==~ " -7
#(m k) pp  k3(n+n2)3/?

for 72 < 7 (matter). (4.28)

The validity of this small k or long-wavelength approxi-
mation, in the context of the angular correlation function,
is discussed in Sec. VL

Using (4.24) and (4.25) one can see why the long-
wavelength tensor perturbations can be thought of as
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classical gravitational waves. The Bogolubov coefficients
are restricted by the constraint |a|?—|3|2 = 1, and in re-
alistic inflationary models the “occupation number” |3|?
[56] is much greater than one for small wave number k.
Hence for small wave number o and (3 are both very large,
and almost equal, as is apparent from (4.25). In this limit
the graviton mode function (4.28) may be thought of and
treated as a classical gravitational wave, as one would ex-
pect for a bosonic field with large occupation number.

D. Standard results

Using the long-wavelength approximation to the gravi-
ton mode function we can reproduce the standard re-
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sults [23-27] for the angular correlation function due to
gravitational wave perturbations. Although the long-
wavelength approximation is valid only for small wave
number k, we assume it to hold for all k. Recall that
the first derivative of the mode function (2.40) appears
in the angular correlation function. With the approxi-
mate mode function (4.28) and the definition (2.40) for
the function F'(), k), one finds

[ pas Js/2[k(nz +ne + A)]
F(\E)=,/12—

( ) pp ]‘.,3/2(,,]2 + 7 +/\)3/2
Note that we have used the standard recurrence relations
(Eq. (9.1.27) of [57]) for Bessel functions to put F(\, k) is

this form. Substituting this into (2.65) and using (4.27)
one obtains

(4.29)

— Ne _)‘))

Tobs — e J k . A J k obs
Ii(k) = J6nPdS k—3/ d s/2(k(n2 + 7 + 1)21+1/2( (Mob
PP 0 (2 + me + A)3/%(1obs —

To compare our results with standard formulas, define
dimensionless variables

T = k(ﬂ2+77e+)‘)»

b= k(7obs + 712)- (4.31)

In terms of these variables, the multipole moments (2.67)
in the long-wavelength approximation are given by

_ 3Pds ; _ wd_y‘z
(af) = 242225 1)l(l+1)(l+2)/0 Y i),

(4.32)
where
. v Jsj2(z) Jiya/2(y — )
I, = d .
1(y) /Ey T (g — 2 (4.33)
and
J
Tobs —Te TNobs —Te oo
C(y) :’n’/ d)\/ d)\'/
0 0 0
where
(t+2)
(ryr' k) 2(21 + 1) Ji(kr)ji(kr') Pi(cos ),

)l
(5.2)

and D(]) is defined in (2.11). To obtain a closed form for
the correlation function one must complete the integrals
over A, A, and k, and the infinite sum over [.

A. The sum over

One can sum over ! and find a closed form for
B(r,r',k,vy) using an addition theorem for spherical

dk F(\ k)F*(XN, k)
k k2D2(\)D2(X\)

——T (4.30)
I
B ez

Equations (4.32) and (4.33) are equivalent to Eq. (8) in
[26]. The lower limit of the integral in (4.33) appears
different since the conformal time in our scale factor (4.1)
during the matter phase is shifted from that in [26] by
the constant 7.

V. PROGRESS TOWARDS A CLOSED FORM
FOR THE ANGULAR CORRELATION
FUNCTION C(v)

Equation (1.3) is a closed form for the angular correla-
tion function due to scalar perturbations. In this section,
we attempt to find a closed form for the angular corre-
lation function due to gravitational wave perturbations.
Using (2.65), (2.67), and (2.69) one may write the corre-
lation function as

B(D(A),D(X), k,7), (5.1)

f

Bessel functions. Consider the addition theorem (see
Eq. (10.1.45) in [57])

sinks

ks

= Z(Zl + 1)ji(kr)ji(kr') Pi(cosv), (5.3)

=0
where the length s is defined by the non-negative root of

§2 = p2 4 p'2

— 2r7' cos . (5.4)
The right-hand side of (5.3) is the same as the right-
hand side of (5.2), apart from the ratio of factorials. The
ratio of factorials is just a fourth-order polynomial in
l. To generate this polynomial we define the derivative

operator
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= _ 9 sin-y 9 ’ (5.5) Using the addition theorem (5.3) and (5.7) one obtains
sin~y 8y Oy
which is the Laplacian on the unit two-sphere for func- sinks
tions with azimuthal symmetry. The Legendre polyno- B(r,v',k,v) =P(P +2) ks (5.8)

mials are eigenfunctions of P, and obey

PPi(cosy) = —I(l + 1) Py(cos ). (5.6) One may distribute the derivative operator P(P + 2) on
sinks/ks to obtain a closed form for B(r,7',k,v). We

Using this one can quickly show that .
J Quckly show tha prefer not to distribute the derivative operator, and in-

! . . .
P(P + 2)Pi(cos ) = 8 i‘ ;;ipz(cos ). (5.7) Zt:ad use (5.1) and (5.8) to write the correlation function
J

Tlobs Tl Tlobs —7le < dk F(\ k)F*(X, k) sinks(A, X', )

= ! P Wt R Al VA bt 4 intusinhid Whi b 4
Cly) = W/O d,\/0 dA /0 N A A G R ss S (5.9)

where now

s(A, XN, y) = /D?%(X) + D2(X) — 2D(A)D(XN) cos . (5.10)

This form of the correlation function is very general. It only depends upon the cosmological model through the
graviton mode function (or more precisely, its first derivative) which appears as F'(A, k).

B. The integral over k

The next step to finding a closed form expression for the correlation function is to evaluate the integral over the wave
number k. Since the derivative of the graviton mode function depends on the wave number k, one can not integrate
over k without using a specific form for F(A,k). We use the long-wavelength approximation (4.29), and assume it
valid for all wave numbers k. The accuracy of this assumption is discussed in Sec. VI; the principle conclusion is that
C(v) will be accurate for v greater than a few degrees. Substituting the long-wavelength approximation into (5.9)
one obtains

_ £§§ Tlobs —Te Tobs — e , 2 2/\1 N —1
Cly) = 1225 A dA /0 dXN'{D?(A\)D*(N)R(\)R(N)}

% dk j2(kR(A))j2(KR(X))
X A 7 k4

sinks(A\, X, 7)
ks(A, X, 7)

P(P +2) (5.11)

where
R(A) =n2 + e + A (5.12)

Note that the only dependence of the right-hand side on « is in the derivative operator P(P + 2), and in s(, X, 7).

The derivative operator P(P + 2) is independent of k, so one might wish to take it outside the k integral. The
remaining integrand could then be recast as a sum of trigonometric functions times powers of k. The problem with
this is that the resulting integral over k is logarithmically divergent because the remaining integrand diverges as k!
for small k.

Still, one may take the derivative operator outside the integral by setting the lower limit to a small, positive number
€. After applying the operator P(P + 2) one can then take the limit as ¢ vanishes. So one can write the correlation
function as

Cly) = 1228 / T / T D (A D (V)R R(N)} ! lim P(P + 2)K(R(\), R(X),5(\ N, 7)), (5.13)

where

Ke(a,b,c(v)) = / "k jZ(kalzzz(kb) Sill::(:(;)'

The function K, is well defined and finite for ¢ > 0; one may evaluate it using standard techniques.
To evaluate K., express the spherical Bessel functions as exponential functions divided by powers [54], expand the
integrand, and integrate term by term (see (2.324.2) of [58]). This yields

(5.14)
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2p2
Kc(a,b,c(v)) = —(;—21)5— Ine+ U(a,b) + V(a,b,c(v)) + O(e), (5.15)
where the functions U and V are independent of €, and terms which vanish as € goes to zero are not explicitly shown.
The term proportional to Ine and U(a,b) do not depend on + and are annhilated by P(P + 2). Only the function
V(a,b,c(v)) contributes to the correlation function C(v). The function V (a,b,c(v)) is a sum of more than 25 terms,
each of which is a rational function of a, b, and c, or a rational function of a, b, and ¢ times In |p(a, b, ¢)|, where p(a, b, c)
is a second-order polynomial in a,b, and c¢. Using (5.13) and (5.15) one can write the angular correlation function as

Tlobs —Te

C(y) = 1228
PP

where we have neglected to explicitly write out the func-
tion V, since it is not very illuminating.

C. The integrals over A and X’

The final step in finding a closed form for the angular
correlation function is to complete the remaining inte-
grals over A and A’. These integrals, however, are difficult
for a number of reasons. Distributing the derivative op-
erator P (P +2) over the integrand of (5.16) yields on the
order of 1000 terms. A large number of these terms are
proportional to a logarithm, with argument linear in the
function s(A, A’). The function s(A, \') is the square root
of a second-order polynomial in A and A which is not
factorable for arbitrary . Integrating terms like these
over A and X is not trivial. Other terms are propor-
tional to odd powers of s(A,\'), and are difficult for the
same reason. The total number of terms, combined with
the difficulty of integrating each term, impedes further
progress.

Other methods for finding a closed form for the angular
correlation function do not appear more promising. One
can write K, in the limit as € vanishes as a hypergeomet-
ric function of two variables (see (6.578.1) in [58]), but
again the remaining integrals over A and )\’ are difficult.
The integral over the wave number k can be evaluated
before summing over [, though this involves the integral
of four Bessel functions, each with a different argument.
One may also consider the integrals over A and )\’ first.
These integrals are almost, but not quite, standard inte-
gral transforms of Bessel functions. Another approach is
to begin with the Sachs-Wolfe operator (2.37) and calcu-
late the angular correlation function (2.42) directly with-
out any expansions in terms of spherical harmonics. This
approach, however, reproduces (5.9).

J

2 — 2
<al )long-wavelength approximation — 487

Tlobs — e
dA / d\ P(P +2)
0

V(R(A)a R(Al)v (A, Ay 7))
DN DEONRMNR(V)

(5.16)

VI. COMPARISON OF THE EXACT
AND LONG-WAVELENGTH
APPROXIMATE MULTIPOLE MOMENTS (a?)

A. Analytical comparison

We are considering an inflationary cosmological model
that begins with a de Sitter phase followed by radiation-
and then matter-dominated phases. The graviton mode
function (4.17) that we obtained for this model is ezact,
and valid for all wave numbers k. Using this mode func-
tion one can calculate the multipole moments (a?) an
observer in this Universe model would measure.

In the standard literature [23-26,28,38,42-44], how-
ever, the long-wavelength approzimate mode function
(4.28), rather than the exact mode function (4.17), is
used to calculate the multipole moments. The approxi-
mate mode function is only valid for longer wavelengths,
so we expect the angular correlation function, when cal-
culated using the approximate mode function, to be accu-
rate only on large angular scales. Equivalently, we expect
the moments (a?) calculated using the long-wavelength
approximate mode function to only be accurate for small
l.

The straightforward way to determine for which (a?)
the long-wavelength approximation is valid is to numer-
ically calculate the moments using both the exact and
approximate mode functions, and compare. To calcu-
late the moments one substitutes into (2.65) either the
derivative (4.29) of the approximate mode function, or
the derivative of the exact mode function (4.17). One
then uses (2.67) to obtain the multipole moments. Mak-
ing these substitutions, one finds for the moments calcu-
lated with the long-wavelength approximate mode func-
tion

gf;;:%/ﬂw dy y*J{ (y), (6.1)

and for the moments calculated with the exact mode function

1+ 2)! had = - - -
(a) = 48“2H%/ dy y*{T1(y)J7 () + T2(¥) Y (v) — Ts(v)hi(»)Yi(v)}- (6.2)
: 0
The dimensionless variables  and y are defined by the change of variables
obs ™ le T A
p=lbs TN T nd Y = k(Nobs — 7e)- (6.3)

Tlobs — Tle
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The functions Ji(y) and Y;(y) are defined by

= ! sz+1/2(y$)jz[y(§"z)] an Ji+1/2(9) ya[y (€ — )]
i) = [ ae"GLT RS nd Yit) = / W E—0) (©4)

where £ is a dimensionless constant determined by the redshift of the last-scattering surface Zps:

obs + —1/27—
g= 1 =1 - (14 Zis) (6.5)

In realistic cosmological models, £ is slightly greater than one. The three functions Y;(y) depend on the Bogolubov
coefficients o and 3, and are defined as

Ti(y) = ‘33/3(12(2 (6.6)
— 4 3,2

T2(y) = {5.1/ (1G(a— (6.7)
— 64 64,2 *

Ta(y) = 5y ¢ GIm{a’} (6.8)

The Bogolubov coefficients are given by (4 18) with the changes of variable (6.3). The dimensionless constants {; and
(2 are determined by the redshifts Zepq, Zequal, and Zrs defined in (4.2)—(4.4):

C — U =_]_-( V1+ZLS )V1+Zequal (69)
l_nobs_ne 2 V1+ZLS"‘1 (1+Zend), ’
=" =l( v1+2us ) ! (6.10)
z—nobs_ne 2 V1+ZLS_’1 \/1+Zequal. )

To determine for which (a?) the long-wavelength approximation is valid one numerically integrates (6.1) and (6.2)
and compares the values for the moments.

For cosmological models with “enough” inflation to solve the horizon and flatness problems, {; is very small since
Zena > 10%8. For this reason one can approximate the Y;(y) by

[4y¢; cos(y(z) — sin(y(z) + 8y%(Z sin(y(z) + sin(3y(2))?

‘rl (y) = 36y2C22

+0(6), (6.11)

T _ |49z sin(y(z) — cos(y(z) + 8y%(3 cos(y(a) + cos(3y(z)]?

+ O(¢1), (6.12)

Ya(y) = glecz{ — sin? (y¢2) sin(4y(z2) — 4y2[1 + 2 cos(2y(2)] sin® (¥¢2) — 324%¢2 cos(y(z)
2

+16y°(3 cos(2y(z) + 16y*¢s Sin(2yCz)} + 0(61). (6.13)

[

In what follows, we neglect the O(¢1) and higher terms So for y(2 < 1, to a good approximation one has T;(y) =
in T;(y). Note that the standard long-wavelength ap- 1 and Y2(y) = Y3(y) =0.
proximation (6.1) is equivalent to setting Y;(y) = 1 and Using the power series (6.14)—(6.16) we can under-
T2(y) = YT3(y) = 0 in the exact expression (6.2). Indeed,  stand why the standard approximation (6.1) is the long-
expanding (6.11), (6.12), and (6.13) as power series in y wavelength approximation to (6.2). The functions Jg(y)
one finds and Yz(y) are peaked near y = l. Figure 1 shows Jz(y)

T1(y) = 1+ O(¥%¢3), (6.14) and lfl(y) for | = 10 and ! = 100. Hence, if ! < (5%, Jz(y)
and Y;(y) only have support for y < {;, which is the
same range for which T;(y) ~ 1 and T2(y) = Y3(y) = 0.

= 10 12,12 - \:
Ta(y) = 18 225 (¥62)" + O(¥™°¢2%), (6.15) For y > (;!, Ji(y) and Yi(y) have no support, and the
second and third terms in the integrand of the exact for-
T 54 O ) mula (6.2) do not contribute for large y. So one expects
2y) = 135 (yCz) +0W'G) - (6.16) the standard approximation (6.1) to give accurate values
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(9}
T
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FIG. 1. The functions |J;(y)| (solid curve) and |Yi(y)|
(dashed curve) for | = 10 and 100, normalized so that their
maximum value is one. For all curves Z s = 1300. Both Ji(y)
and Yi(y) peak fairly strongly near y = [, which makes the
long wavelength approximate formula for the angular corre-
lation function multipole moments accurate for I < z/?

equal”’

of (a?) for | < ¢;'. From (6.10) note that for realistic
models, (; = Z-2. So one expects that for [ < zZM?

equal* . | : equal
the standard long-wavelength approximation gives accu-

rate values for the multipole moments (a?).

B. Numerical comparison

Table II lists the multipole moments for various ! val-
ues, calculated using both the approximate formula (6.1)
and the exact formula (6.2) for Zeng = 1027, Zequal = 104,
and Zps = 1300. The difference between the exact
and long wavelength approximate moments is shown in
Figs. 2-4 for different values of the cosmological param-
eters. For 2 <[ < 10 our values of (a?) agree very well
with those of White [43] (due to a difference in the def-
inition of (a?), our results are smaller than White’s by
a factor of 21 + 1). As expected, for smaller [ the val-
ues of (a?) from the approximate formula are in good
agreement with the exact (a2). For ! < 30, the differ-
ence between the exact and approximate moments is less
than 2% of the exact result. For [ < 100, the difference
is less than 20%. When [ is 200, however, the disagree-
ment is more substantial; the exact value is more than
twice the approximate value. The disagreement is even
more for larger [, and for | = 1000, the exact value is
a factor of 69 larger than the approximate value. The
long-wavelength approximate formula (6.1) substantially
underestimates the contribution of the large ! moments
(a}) to the angular correlation function C().

Similar results, which reveal the shortcomings of the
approximate formula for (a?) have been obtained by

BRUCE ALLEN AND SCOTT KORANDA 50

TABLE II. Multipole coefficients (a?) for various ! pre-
dicted for a stochastic background of gravitational radiation
generated by exponential inflation. Exact values are calcu-
lated using the exact graviton mode function in (2.67) for the
multipole moments. Approximate values are calculated us-
ing the standard long-wavelength approximation to the gravi-
ton mode function. The values in this table are for redshifts
Zena > 10%°, Z.q = 10%, and Zrs = 1300.

l Exact Approximate
2 1.55 1.55
3 6.07x107 1 6.07x107 1
4 3.44x107? 3.44x107!
5 2.27x107! 2.27x107!
6 1.62x107! 1.62x107!
7 1.23x107! 1.22x107!
8 9.61x1072 9.59x1072
9 7.75x1072 7.73x1072
10 6.38x107 2 6.36x10" 2
25 1.08x1072 1.07x107?2
50 2.11x1073 2.01x1073
75 5.39x10™* 4.85x107*
100 1.22x107* 1.01x10~*
250 6.45x10°"7 1.47x1077
500 5.98x1078 3.49x10°°
750 1.49x10°8 4.93x10°1°
1000 5.07x107° 7.33x107 !

Turner, White and Lidsey [53]. Their approach is less
analytical than our own; they use numerical methods to
solve the Klein-Gordon equation and obtain exact mode
functions ¢(n, k) analogous to our Eq. (4.17). They ex-
press these exact solutions in terms of the standard long-
wavelength approximate mode functions, using a “trans-
fer function.” Figure 5 shows the results of our best
attempt to obtain the Turner, White, and Lidsey re-
sults from our analytical formula, together with their
published data. By tuning the parameters of our cos-
mological model to Zrs = 900 and Zequar = 2500, we
have been able to obtain fairly close agreement between
the two sets of results. One should note, however, that
Turner, White, and Lidsey consider a Universe which is
not completely matter dominated at the time when the
CBR is emitted. Their Universe model is more realis-
tic than our own, since we have assumed the Universe
to be completely matter dominated at the time of last
scattering. Ng and Speliotopoulos [59], is not completely
matter dominated at the time of last scattering. Their
results, which appear correct, do not seem entirely con-
sistent with those of [53].

We have shown that the long-wavelength approximate
formula (6.1) substantially underestimates the contribu-
tion of the large ! multipole moments (a?) to the an-
gular correlation function C(y). Although this long-
wavelength approximation has been used previously to
interpret published experimental data, one does not ex-
pect the new results presented here to significantly affect
the conclusions. This is because for reasonable values
of the redshift Zequal, the discrepency between the ap-
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FIG. 2. Multipole moments (a?) normalized
to the quadrupole moment (a3), with M; = (pp/pas)([I(l
+ 1)]/6)((a?)/(a3)). The upper curve is the correct result
calculated using the exact graviton mode function. The lower
curve is the result obtained from the standard formula found
in the literature using a long-wavelength approximation to
the graviton mode function. Both curves have Z.n,q > 10%°,
Zequal = 10%, and Zrs = 1300.

proximate and exact results is significant only for multi-
pole moments which one expects would be dominated by
the contribution from scalar perturbations [45]. However,
Krauss and White [42] and Grishchuk [60] have suggested
that the relative contribution to the CBR anisotropy
from gravitational waves has been underestimated, and

10-5 1 1

FIG. 3. Multipole moments (a?) normalized to the
quadrupole moment (a2) with M; the same as in Fig. 2.
All three curves are calculated using the exact graviton mode
function, and have Z.,q > 10%° and Zequal = 10%. The upper
curve has Zis = 1300, the middle curve Zrs = 800, and the
lower curve Zys = 400.
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FIG. 4. Ratio of multipole moments obtained with the
long-wavelength approximation to the exact multipole mo-
ments with R; = (a,z)long_vm,e]ength approx/(a,’). All three
curves have the same redshifts as in Fig. 3. The approxi-
mate moments fail to be accurate for I > Z:q/:al.
that these contributions might dominate the multipole
moments.

VII. CONCLUSION

In this paper, we have shown how the rapid expan-
sion of the Universe during an inflationary phase creates

_5 1
10 1 10 10° 10°

FIG. 5. Multipole coefficients (a?) normalized to the
quadrupole moment (a3), with M; the same as in Fig. 2. The
discrete points show the results of Turner, White, and Lidsey
[53] obtained by expressing exact mode functions (obtained by
numerically integrating the massless Klein-Gordon equation)
in terms of the standard long-wavelength approximate mode
functions using a “transfer function.” The upper curve shows
an exact result obtained from our analytic formula (6.2) with
Zrs = 900 and Z.qual = 2500. These parameters were chosen
because they appeared to give the best match to the Turner,
White, and Lidsey result. The lower curve is the result ob-
tained from the standard long-wavelength formula (6.1) with
the same parameters used for the upper curve.
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large numbers of gravitons, whose collective effects pro-
duce potentially observable fluctuations in the tempera-
ture of the CBR. The correlation function of these tem-
perature fluctuations may be calculated from first prin-
ciples; for example the overall magnitude of the pertur-
bations is determined by the uncertainty principle. The
exact expression that we obtain for the correlation func-
tion agrees with standard published results for the lower
multipole moments, but has larger temperature fluctu-
ations in the higher multipole moments than predicted
by the standard published formulas. This appears to be
in good quantitative agreement with recently published
numerical work by Turner, White, and Lidsey [53]. The
larger predicted temperature fluctuations in the higher
multipole moments, however, most likely will not lead
to a reinterpretation of the experimentally observed data
since it is generally expected that the observed anisotropy
for the higher multipole moments will be due almost en-
tirely to scalar, rather than tensor perturbations.

As mentioned in the Introduction, the original discov-
ery that a rapidly expanding Universe could create relic
gravitational waves was made by Grishchuk [20]. In re-
cent work [48,49], Grishchuk analyzed the temperature
fluctuations produced by these waves, using the tech-
niques of quantum optics. In his analysis, the classical
gravitational field “interacts” with the gravitons and acts
as a “pumping” field. This leaves the gravitational field
in a squeezed quantum state today. Grishchuk stresses
the importance of the resulting phase correlations to the
final form of C(v).

In our language, the (quantized) gravitational field is
taken to be in the vacuum state of the initial de Sitter
phase. (Note that we use the “Heisenberg picture” of
quantum fields in which the states do not evolve with
time, but the operators do; we also assume that a sucess-
ful inflationary stage leaves the Universe indistinguish-
ably close to the de Sitter vacuum state.) Although we
do not use any of the techniques of nonlinear quantum
optics that Grishchuk advocates, we nevertheless repro-
duce, as intermediate results, his final formulas for C(v).
In particular, Grishchuk’s formula (10) from [48] are the
same as our Eq. (5.9) with v — 0. Formula (11) from [48]
is the same as our equations (2.43) and (2.46)—(2.48), and

obs obs 3
(a,z)zi/ / dA/d—kF,\'
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formulas (12) and (13) from [48] are the same as our Eq.
(5.9) with the action of the operator P(P + 2) expanded
out. We agree that the correlation between phases s im-
portant; in the sense that for example in our Eq. (6.8)
the value of T3 depends upon the relative phase of the
positive- and negative-frequency wave functions. How-
ever, we stress that results identical to Grishchuk’s may
be obtained, as we have shown, using only the standard
machinery of linearized quantum fields in curved space-
time [18,56]. Recent work by Albrecht, Ferreira, Joyce,
and Prokopec has reached the same conclusion (see note
added in proof).

Note added in proof: Results equivalent to (2.69) have
been given by F. Atrio-Barandela and Joseph Silk, Phys.
Rev. D 49, 1126 (1994), see Egs. (7),(8). The reference
for the work by S. Nakamura et al. is Prog. Theor.
Phys. 88, 1107 (1992). The reference for the work by A.
Albrecht et al. is Phys. Rev. D (to be published).
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APPENDIX A

In Sec. IIE2 we argued that based on the isotropy of
the initial state of the Universe (which we took to be the
de Sitter vacuum state), and on the istropy of the FRW
model, one expects the angular correlation function to
be rotationally invariant. For this reason one may write
the matrix element (0|C_';q(71m|0) as in (2.44), and then
use (2.41) for Gy, to solve for (a?). In this appendix we
sketch this calculation. A somewhat more complicated
version of this calculation may be found in [43].

The primary advantage of writing the matrix element
as in (2.44) is that it allows one to make a useful choice
of coordinates and evaluate the integrals over angular
variables. Using (2.41) for Ci,, one obtains, from (2.44),

F@M%M%MM+@WmMﬂ

(A1)

x / Qs / Q4 Yirm (8°) Y, (1) 550000 abe ik [DN)Es —D()os],

where we have set p = [ and ¢ = m to eliminate the Kronecker delta functions on the right-hand side of (2.44). Since
by assumption both sides of the equation above are independent of m, one may sum both sides from m = ~l tom = [.
Using the addition theorem for spherical harmonics [54], and canceling factors of (2! + 1) on both sides, one obtains

. 1 /\obu N Aobs d3k , . for o sie . ie e
@) = 55 [ / ax [ SRRk FMHFMFAH+%%MM)
/dQ /dQ Pz(cos'y)vcvduaube—’kf[D('\)af_D(’\,)ﬁf], (A2)
where the angle « is defined by
cosy = 1%0,. (A3)

Note that we have not yet made a specific choice of coordinates.
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One is free to choose whatever coordinates one wants to compute the integrals over the angular variables Q;,Q;,
and Q;. In particular the choice of coordinates for {23 and (2; may depend on the vector k°. We choose coordinates

so that the vectors @¢ and ¢ are written in terms of the (¢, #A¢, k°) triad as
1€ = sin 03 cos g ® + sin O, sin PN ® + cos 0.—,1::“, (A4)
9 = sin 03 cos p3Mm® + sin 0; sin p3n® + cos 05k°. (A5)
With this choice of coordinates, and using the form of the polarization tensors given in (2.26), one can quickly show
that the contraction between the polarization tensors and the unit vectors is

ean(k®)er (k€ + eab(ke)ecd(ke)] 5°9%a°4® = sin? O sin? 0; cos(2¢4 — 2¢5)- (AS6)

Also using these coordinates one may again use the addition theorem for spherical harmonics to write

P[(COS’)’) ) Z lflm(au,lﬁu)ylm(gvy ¢v)7 (A7)

(2l+1

where
cosvy = cos 03 cos 85 + sin 0 sin 0; cos(da — Ps). (A8)

[Note the following subtle point. The Y} (0s,¢4) and Y, (05, ¢5) in the right-hand side of (A7) do not in general have
the same values as the spherical harmonic functions which appear in (A1) because we have done a coordinate rotation

that depends on ke. In general these values are related by a linear expansion involving Clebsch-Gordon coefficients.]
Using (A6) and (A7) one finds for the multipole moment

'\ob. Aobs 43k . ,
(a1> _ Tﬁ__ / dA/ —F(A, kI)Ft(A’ k) /dﬂﬁ / dﬂﬁe—tk[D(A)coso,—,—D(A ) cos 8]
U

x sin’ 8; sin® 8; cos(2¢a — 2¢;,){ @it 1) Z Y. (0a, da)Yim (05, ¢v)} (A9)

In this form one may evaluate all the integrals over angular variables.
The integrals over the angles 0;,0;,¢s, and ¢; can be done in a straightforward way by writing the spherical
harmonics as products of exponentials and Legendre functions. With the definition
(20+1) (I —m)!
I+ m)!
one finds, after integrating by parts ! — 2 times (formula (3.387.2) in Gradshteyn and Ryzhik [58] is helpful),

gy _ (L2 Ao, A gy gy JHED(A)) 5 (kD (X))
(a?) = 2(1_2)'/ dA/ dA/ dkk (X, K)F O, b 2 s

Yim(8,6) = P"(cosf)e™?, (A10)

2m
x/o d6, sin 6, / dé; Z(&m2+5,,., 2)- (A11)

m=—1

The remaining integals over 0; and ¢;, are trivial and yield 47. The sum over m is also trivial and contributes a factor
of 2. So one obtains, for the multipole moment,

2 (1+2)! dk A°"‘ Aotr 31(kD(X))5i(kD(X'))
2 ! *
(a?) = (1 — / / / AR, KVF O k) 2 (A12)
Recalling the definitions of D()) and I;(k), one can write APPENDIX B
this as
14+2) [~ dk This appendix describes the numerical techniques used
(alz) = 4772( — ), _IIl(k)|2- (A13) in Sec. VI. The primary numerical technique used to
t-2J, k

evaluate both the approximate (6.1) and exact multipole
This result is the same given in (2.67). moments (6.2) is numerical integration. Both integrals
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over y in (6.1) and (6.2) were done using a fifth-order
embedded Runge-Kutta-Fehlberg algorithm with adap-
tive stepsize control [61]. Although formally the upper
limit of the integral extends to infinity, we only integrated
until the remaining contribution became negligible. This
is possible because the integrands in (6.1) and (6.2) fall
off at least as fast as y~2 for large y. Special care must be
taken in determining when the remaining contribution is
negligible since the integrand does have periodic zeroes,
even for large y. _

Both Ji(y) and Y;(y) (or more precisely, these functions
multiplied by y7/2) were also calculated using a fifth-
order embedded Runge-Kutta-Fehlberg algorithm with
adaptive stepsize control. No special treatment is needed
since both the upper and lower limits are finite, and the
integrands are well behaved. The spherical Bessel func-
tions in the integrands of (6.4) can be expressed in terms
of trig functions [54], and evaluated using standard ma-
chine routines.

The Bessel function with index [ + 1/2 was evaluated
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with the routine “BESSJY” given in Chap. 6 of [61]. Al-
though this routine is very accurate and fairly fast, we
did not use it to calculate the value of the Bessel function
every time it was needed in the integration algorithms.
This is because the argument of the Bessel function is a
function of both z and y, and so the argument is unique
for every step taken while the integral over z is being
calculated; it is not possible to store certain values and
“reuse” them later. A typical integration to find a sin-
gle moment for a particular ! would easily require on the
order of 10° calls to the routine BESSJY.

To reduce the number of “expensive” calls to BESSJY
we used a cubic spline interpolation scheme to calculate
the Bessel functions with index ! + 1/2. For each dif-
ferent value of [, a table of Bessel functions evaluated
at equally spaced intervals A = 1/32 was tabulated us-
ing BESSJY. This interval is small enough so that cubic
spline interpolation gives values accurate to at least one
part in 108. The cubic spline was implemented using the
routines “spline” and “splint” from Chap. 3 of [61].
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