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A cosmic-string network in an expanding universe evolves by losing energy to loops which in turn os-
cillate and emit gravitational radiation. The power radiated at a frequency corresponding to the nth
fundamental mode of oscillation of the loop is characterized by a dimensionless constant P,, with the to-
tal power radiated being proportional to y = 3 P,. Previously, these constants were estimated by ana-
lytic or numerical analysis in idealized situations, generally for simple loop shapes. Here, we determine
these constants more realistically, for loops produced in a numerical simulation of the cosmic-string net-
work. The resulting numerical values of the P, appear to show a linear dependence on loop size, indicat-
ing that small-scale structure on the loops is very important in determining the overall radiation power.
Long-string radiation is also studied, confirming this conclusion. The power radiated by a horizon-
length string increases with time, because in the current simulations the small-scale structure on the
string does not yet scale relative to the horizon length. With an appropriate extrapolation one can con-
clude that gravitational radiation from the long-string network will provide a significant energy-loss
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mechanism and may occur at a rate roughly comparable to energy loss due to loop formation.

PACS number(s): 98.80.Bp, 04.30.+x

I. INTRODUCTION

It is thought that the universe underwent several phase
transitions as it expanded and cooled. In many unified
theories, which describe the behavior of matter at very
high energies, phase transitions of this type can lead to
the formation of one-dimensional linear objects, known
as cosmic strings [1-3]. These strings may be thought of
as topologically trapped vortex lines; for the cases of
cosmological interest these strings always form in closed
loops or essentially infinite strings, and are primarily
characterized by their mass per unit length p. At the
time of the phase transition, causality ensures that string
segments formed in different causally disconnected re-
gions of space are completely uncorrelated. Because of
this, on length scales larger than the Hubble radius,
strings are described by a random walk in three-
dimensional space. For statistical reasons, with U(1)
strings it turns out that =~80% of these random walks
have infinite length; the remaining =20% have finite
length.

The time-evolution behavior of the resulting cosmic-
string network has been extensively studied for about a
decade. In the last four years, substantial progress has
been made in understanding this behavior, primarily
through the use of numerical simulations of the string
network [4-6]. The network consists of long strings and
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loops, which are characterized respectively, as being
longer or shorter than the horizon length. The numerical
simulations have shown that the energy density in long
strings is a small constant fraction of order Gu of the to-
tal cosmological energy density, where G is Newton’s
gravitational constant. This is referred to in the litera-
ture as the ‘“‘scaling solution.” If one lets 7 denote the
proper time measured from the big bang by an observer
at rest with respect to the cosmological fluid, this means
that the energy density of long strings is p= Au/t%. The
dimensionless parameter 4 has been determined by the
numerical simulations to have a value in the range 10-20
in the radiation-dominated era: our own numerical work
[6] finds 4 =161t4.

As the universe expands, the long strings continually
cut off small loops, which oscillate and gradually convert
their energy into gravitational radiation. This produc-
tion of energy in the form of gravitational radiation is the
main topic of this paper; we estimate the energy radiated
by both the loops and by the long strings. The long-
string network appears to have considerable substructure
with many kinks and traveling waves, and analytic esti-
mates have suggested that if certain assumptions hold,
one might expect to find between 10* and 10° kinks per
Hubble radius on the long string [7-9]. (Formally, a kink
is a velocity discontinuity on the infinite string which re-
sulted from an intercommutation. Such kinks travel at
the speed of light, and slowly decay in amplitude.)

The gravitational radiation produced by the cosmic-
string network has in the past been determined by a com-
bination of analytic estimates and numerical work. The
first work that considered the emission of gravitational
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waves by cosmic-string loops was that of Vilenkin [10].
This early paper was a simplified order-of-magnitude cal-
culation, and assumed that the dimensionless parameter
v = 3 P, characterizing the rate of emission was of order
unity. Later, in a more detailed calculation, Turok [11]
considered gravitational-wave emission from a two-
parameter family of “looplike” strings which were
artificially fixed at the two ends, and found ¥ in the range
from 0.15 to 8. A year later, Vachaspati and Vilenkin
[12] considered for the first time a realistic two-parameter
family of cosmic-string loops, and found numerically that
for these trajectories, ¥ >50. This work was verified
analytically and extended by Burden [13] who examined a
three-parameter family of loops, again obtaining y > 50.
Two years later, Garfinkle and Vachaspati [14] con-
sidered a one-parameter family of “kinky” loops, contain-
ing velocity and direction discontinuities. They found
values for y in the range y >45. The most interesting
work, and the most closely related to our own, was that
done three years later by Scherrer, Quashnock, Spergel,
and Press [15]. That work uses a numerical method that
“evolves” the cosmic-string loops exactly in flat space,
without introducing any errors at the intercommutations.
This is the only work in which the back reaction (loop en-
ergy loss into gravitational radiation) is taken into ac-
count. The loops are allowed to fragment repeatedly un-
til they reach a non-self-intersecting state, and the result-
ing family of loops was then studied in great detail.
Starting from two rather different sets of initial condi-
tions, the final sets of daughter loops were shown to have
essentially identical distributions of y, with more than
half the non-self-intersecting loops having values of y in
the range from 40 to 60. The mean value found was
¥ =62. The most recent work on the subject concerns
infinite strings. Hindmarsh [9] analytically considers the
gravitational radiation emitted by linear perturbations
(structure) on an infinite straight string, and Quashnock
and Spergel [16] numerically examined the back reaction
effects due to kinks, obtaining a kink lifetime of order
1/(50G 1) where [ is the mean interkink distance.

This paper is intended to provide a step beyond these
studies by examining gravitational radiation directly
from the long-string network and from the loops it
creates, in an expanding universe. The principal uncer-
tainties in this work may be easily described. Because the
size distribution of the loops produced by the current
simulations do not appear to scale [6], we have to regard
the size distribution obtained with some caution. Most
loops are either created at a size within an order of mag-
nitude of the minimum loop cutoff set in the simulation
or else fragment down to these scales. In principle,
however,the rate of gravitational-wave emission from
some given loop does not depend upon the size of that
loop, but only upon its shape. To state this more precise-
ly: if loop A can be transformed into loop B by uniform-
ly scaling its size, without changing the velocity of the
string, then loops A and B radiate at the same rate. (We
call two such loops scale equivalent.) Our results show
that the energy radiation rate does depend upon the loop
size. Thus the large loops produced in our simulation are
not scale equivalent to the small loops. In fact our results

suggest that the main mechanism by which the loops ra-
diate gravitational radiation is via the oscillations associ-
ated with the small-scale bumps and kinks along the
string. It appears that, in a first approximation, the ener-
gy radiated by loops is proportional to their length, indi-
cating that all of the loops contain small-scale structure
of fixed physical length.

The simulation incorporates a lower cutoff in the size
of loops. This forbids any intercommutations which
would result in the formation of a loop containing less
than some given number of points (of order thirty). This
artificial cutoff is required for practical considerations,
because the evolution algorithms that we use require that
the loops have at least a certain number of points. Con-
sequently, the loops have substructure (short-length-scale
convolutions) that would tend to be cut off the loops if
our algorithms did not require an artificial cutoff. Thus,
if the loops in our simulation do differ in shape from
those that one might expect in the real world, they prob-
ably differ because they have too much substructure.
Such substructure might be expected to enhance the total
radiated energy, and consequently our energy-loss rates
are probably reasonable upper bounds on the true values.

In the case of the long strings, the principal uncertain-
ty is the mechanism by which structure forms on the long
strings, and the mechanism by which this structure be-
gins to scale. The numerical simulations do not have
enough dynamic range in time to be able to see the scal-
ing of structure on the long strings, and thus we are
forced to make certain assumptions about these mecha-
nisms in order to determine the rate at which gravitation-
al radiation is emitted by the long strings. It is important
to distinguish this continuing evolution of small-scale
structure from the ‘“‘scaling” behavior of the large-scale
properties of the long-string network, about which there
is considerable confidence. The evidence observed for
this latter scaling includes the stability of the relative
long-string energy density (p_t?), consistency with the
long-string intercommuting rate, and the scaling of the
long-string substructure energy per correlation length
(even when the gravitational radiation spectrum has not
begun to scale) [4-6].

A brief outline of the paper is as follows. In Sec. II, we
examine the gravitational-wave emission by a spatially
bounded source, and obtain a formula for this quantity in
terms of the Fourier transform of the transverse spatial
components of the source stress-energy tensor. In Sec.
III, this formula is used to calculate the rate of
gravitational-wave emission by an oscillating loop of
cosmic string, and the radiated energy is expressed in
terms of a pair of one-dimensional Fourier transforms of
functions associated with the left- and right-moving com-
ponents of the string. An essentially identical formula
has also been obtained by Burden [13], and by other au-
thors. In Sec. IV, a numerical algorithm to perform these
computations is described, based on fast Fourier trans-
form (FFT) techniques. In Sec. V, a series of numerical
tests is described, based primarily on the differential and
total emission from a planar loop of cosmic string, and
from a kinky (Garfinke and Vachaspati) loop. These tests
provide a nice demonstration of the various techniques.
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Section VI presents the results for the gravitational-wave
emission by cosmic-string loops. Section VII contains the
corresponding results for long strings. This is followed
by a short concluding Sec. VIII, which compares the rela-
tive magnitudes of the different energy-loss mechanisms
for the cosmic-string network.

Note that within this paper, Newton’s gravitational
constant is denoted by G, and the speed of light by ¢. In
most places, we set ¢ =1, however in certain key formu-
las, the speed of light is included explicitly.

II. GRAVITATIONAL-WAVE EMISSION
BY A BOUNDED SOURCE

The starting point of this work is a standard formula
(Weinberg, [17]) which expresses the energy flux in gravi-
tational waves emitted by an isolated radiating object
with stress-energy tensor T%(t,x). The metric perturba-
tions induced by the gravitational waves are assumed to
be small enough so that the space-time remains effectively
flat; thus the effects of back reaction are neglected.

Far away from the isolated source, the power dE emit-
ted per unit solid angle d(Q in the direction Q at angular
frequency w in gravitational waves is given by

dE _ Gao?
a0 e’

[ Zb(coﬁ)'r"b(wﬁ)—%|T"a(a)ﬁ)|2]. 2.1

The spatial direction vector O has unit length ﬁ-ﬁ=1,
and 7, is the Fourier transform of the stress-energy ten-
sor, defined by

7%(k)= lim L

lim —— dtfd xeiklt—kx)aby o)

(2.2)

The spatial part of the Fourier-transform integral (2.2)
converges because we assume that the source is isolated,
so that the stress-energy tensor vanishes outside a large
sphere |x|2=R?2 On the other hand, the time part of the
Fourier transform is expressed as an infinite-time limit,
enabling us to consider a source that does not “turn off”
at early or late times. In our case, since the string loops
move periodically in time, losing only a tiny fraction (of
order Gu) of their energy in a single oscillation, the value
of the time integral may be obtained by evaluating it over
a single oscillation period of the string loop.

This formula may be simplified algebralcally if one in-
troduces a basis of four- vectors, =(1, Q)/ \/2
1°=(—1,0)/v2, v7=(0, V), and w?=(0,W) where the
unit three-vectors Q ¥, and % form an orthonormal
triad. The vectors k¢ and /¢ are null, and have inner
product k%, =1. All other dot products among different
basis vectors are zero.

Because the vector fields k¢ /% w? and v? form a
basis, the Fourier transform of the (symmetric) stress-
energy tensor can be expressed in terms of them:
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5 wQ)=c k% +c,11°+c30% +c ww?
+c5k(“lb)+c6k(“vb)+c7k("w")

+egl 4ol +c¢ v w? . 2.3)

In this forAmula, the ten coefficients c; are functions of the
vector w{). Conservation of the stress-energy tensor
V,T°=0 now implies that

pbt S0 b

0=k,m%°=c,l® +——k + 2 >

(2.4)

Thus one has ¢,
compute the square and trace of 7%

1%, =les12+ ey >+ Lleyol? and 77,

=c5=cg=cy=0. Now one can easily
. One obtains

=c3 '+'C4 . (25)
Thus, the quantity appearing in formula (2.1) for dE /d Q
is

T ™= L7 | =1es—cy [P +leyol?)

(2.6)
This simplification shows that (1) the radiated energy is
positive definite, and (2) the only components of 7%
which are needed to determine the energy in gravitational
waves radiated in direction  are the spatial components
in the two spatial directions (v and W) transverse to Q.

dE Gw

at b2
dQ  27c?

(|70 =7 ww

+ 10wl +T,wb|?) . 2.7)

We note that the invariance of this quantity under rota-
tions of the pair of vectors v and w? in the spatial plane
orthogonal to Q can be explicitly demonstrated by writ-
ing it in the form

dE Gw?

—— [l (v +iw) vl +iw®)|?
dQ 4mc’ (7 |

+ 7 (0 —iw) i —iw®)|?] . (2.8)

Under a rotation by angle 8 around the axis defined by ﬁ,
the vectors V+£iW are only modified by pure phase fac-
tors:
i 9( ve—iw?) ,
(2.9)
and the radiated energy is unchanged. The phase factors
e 2% appear in (2.8) because energy is being carried off in
the helicity £2 states of the gravitational field.

Formula (2.8), which is valid for flat space-time, can
also be applied to loops of cosmic string in an expanding
universe. This is because the loops of string are smaller
than the horizon length. The loops do not ‘“‘see” the
large-scale curvature of the universe, and behave exactly
as if they were radiating into flat space-time.

vitiwt—e " Ovitiw?), vi—iw’—e

III. GRAVITATIONAL RADIATION
FROM LOOPS OF STRING

In order to calculate dE /dQ, a practical method is
needed to compute the Fourier transform of the stress-
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energy tensor, 7°°. In this section, 7°° is expressed in

terms of one-dimensional Fourier transforms. In the next
section, we show how these quantities may be computed
from our cosmic-string simulation using fast Fourier
transform (FFT) techniques.

In flat space-time, consider a loop of cosmic string of
energy M. The trajectory of the string is described by
functions y“%o,t)=(t,y(o,t)), where o is a spacelike pa-
rameter along the string world sheet in the range
0 €[0,L], and ¢ is time. In terms of the right- and left-
moving fields a and b, the string trajectory is described by

y(o,t)=1[alc—1)+blo+1)] . (3.1)

In many of the standard treatments of cosmic strings, it is
assumed that the coordinates (¢,x) are those in which the
center of mass of the string loop is at rest, so that the
string loop has no net momentum or overall linear veloci-
ty. However, the string loops produced in the numerical
simulation are not at rest with respect to the rest frame of
the cosmological fluid; they do have a net momentum
(which is redshifted away by the expansion). As a result,
the right- and left-moving fields satisfy the pseudoperiod-
icity conditions:

a(u +L) VL ,
b(u +L)=b(u)+VL .

=a(u)—
(3.2)

For a given string loop, these equations are satisfied for
given fixed values of L and V, and for all values of u. The
velocity V of the center of mass of the string loop is given
by
_ 1 L, .

V—Zf0 doy . (3.3)
The pseudoperiodic conditions (3.2) ensure that the two
ends 0 =0 and o =L of the string touch, so that the
length of string forms a periodic loop at any time. In ad-
dition, the right- and left-moving fields satisfy the condi-
tions

a'(g)a'lo)=1,

b'(o)-b'(o)=1,

(3.4)

which ensure that the gauge condition y(o,t)-y'(o,1)=0

is satisfied. Here a prime denotes d /do and an overdot

denotes d /dt; they are derivatives with respect to the
spatial and temporal parameters on the world sheet.

The stress-energy tensor of a loop of cosmic string in

_

1

k)= lim — [ " dt [[@x /ULt VLN + L /2, x+VL/2) .

T—ow 2T
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flat space-time is given by
T"b(t,x)=y,fOLda[y“(a,t))}b(a,t)

—y'%o,t)y'0,1)]83(x—y(o,1)) .

(3.5)

The quantity that appears in the integrand above can be
expressed in the form of a four-by-four matrix:

1 Vs
Ve $r VsV Vs

ra, rh —

yop° -y (3.6

where r and s run from 1 to 3 and denote the spatial in-
dices of the three-vector y. The total energy (kinetic plus
potential) of the string is now easily obtained, as

= 3.0 — L, _

M=— [d*TC ,ufoda' uL . (3.7)
Hence L =M /u is the invariant length of the loop. [This
is the invariant length in the center-of-mass rest frame,
times (1—V?)~172],

Because the functions a and b are pseudoperiodic with
period L (3.2), one can show that the motion of the string
loop is periodic in time, apart from the uniform linear
motion of its center of mass. However the period is not L
as one might imagine, but is L /2. This is because the
string’s position and velocity repeat with this period:

ylo+L/2,t +L/2)=y(o,t)+VL/2,
y(o+L/2,t +L/2)=y(o,t) .

(3.8)

Note that the value of o corresponding to the ‘“‘same”
point on the string after one period (time L /2 later) is not
the same as the value of o that corresponded to that
point at time ¢. Nevertheless, at any time the loop is
covered exactly once by the parameter range o0 €[0,L].

Because of the time periodicity of the loop motion, the
stress tensor of the string loop satisfies 7%%(t,x)
=T(t +L /2, x+VL/2). This means that the Fourier
transform 7°%(k) defined by (2.2) must vanish except
when the length of k takes on certain preferred values.
To see this, consider

(k)= Jim L

oT dtfd3xe’(“‘|' kx)rab(s,x) .

(3.9)

Since the integral is over all space and time, we can dis-
place the integration variables, obtaining

(3.10)

The periodic property of the stress-energy tensor shows that this equals

(k)_ i(|k|—k-V)L /2 lim _f dtfdiixet()k!t kx)Tab(t x) .

T— o

We thus conclude that 7%%(k)=e’ Il‘J—I"V)L/%"’b(k). The
wave vector k may be written k=w{ where ©>0 and O
1s a unit spatial three-vector. It follows immediately that

™(»0)=0 unless w= w,=4mn/L(1—Q-V) for

(3.11)

=1,2,3,... a non-negative integer. [Since formula
(2.1) contains an overall factor of w?, the n =0 mode can-
not radiate]. We refer to the remaining n =1,2,3, ...
values of w as the emission-mode frequencies of the loop.
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The frequency at which gravitational radiation is emit-
ted by a particular mode of the loop (labeled by n) de-
pends upon the angle between the direction of emission
and the direction of the center-of-mass velocity of the
loop. As one might expect, the gravitational radiation
emitted in the forward directions (along the velocity
V-0 >0) is blueshifted to higher frequencies, and the ra-
diation emitted in the backwards direction (V-Q <0) i

ab )= I -
(a)(). im NL 2

N>

(j+1)L/2 io t
f te " fd3xe
jL/2

|

l _
el NL

1
lim ——
v NL E

j=—N
_l L/2
_Lf

thde

—iw, Q-x

Tt,x) .

oA
—iw, Q-x

redshifted. Along directions perpendicular to the
center-of-mass velocity of the loop (V-Q=0) there is no
frequency shift at all.

The Fourier transform of the stress tensor may now be
rewritten in terms of an integral over a single oscillation
period. To do this, we break the long time period

€(—T,T) into 2N intervals of length L /2. This gives

T2(¢,x)

2 fL/Zdtfd3xeim"[t+jL/2—.(),-(x+VjL/2)]Tab(t+jL/2’ x+VjL/2)
~vJo

tw L—Q-V)/2_, pL/2 io (t—0x)
" ]/f dtfd3x e " T(t,x)
0

(3.12)

The second line above is obtained by shifting the integration variables in space and time. The third line then follows be-
cause of the periodic transformation property of the stress tensor. In this third line, the quantity in square brackets is
unity for any of the emission-mode frequencies w,, and hence the summand is independent of j, from which the final

line is obtained.

If one now uses expression (3.5) for the stress tensor, one obtains

. s Vs
A L2 L —io, Qylo,
o, Q)= [ [Fag e Tt T (3.13)
0 0 Yr Vr Vs ™V Vs
If r and s denote spatial indices, one may then express this in terms of the right- and left-movers a and b, obtaining
Oy —2 L2 ot rL —ilw, /20 (alc—n+blo+D] , o
7. (0,0) ——/iL fo dte fo doe al (o —0b)(c+1), (3.14)

where the symmetrlzatxon symbol is a(,b/,=(a,b;+b/a

ponents of a’ and b’

.)/2. As earlier, the subscripts r and s denote the spatial com-

This integral may be reduced to the product of a pair of one-dimensional integrals, by introducing a set of null coor-

dinates u and v.

u=og—t, v=o+tt.

The measures in the two coordinates systems are related by du dv =2do dt.

(3.15)

The region of integration in the (u,v)

plane is shown in Fig. 1; it consists of three regions labeled R1, R2, and R3 which taken together correspond to the

rectangle t €[{0,L /2] and ¢ €[0,L].

T,S(m,,ﬁ)=1LﬁfwaR2UR3du dv I(u,v) . (3.16)
The integrand is the function
I(u,v)=emn(u—u>/ze-imnn~[a(u)+b(u)1/2aZr(u)b;)(v) ' (3.17)

It is now possible to show that I(u +L, v)
R1' of Fig. 1. This is because a’(u +L)

iw, (v —u—L)/2—iw, Q-[(a(u +L)+b(v)]/2
e =

By a similar argument, one can show that I (u, v +L)

i, (v —u)/2—io, O-[a(u)+b(v)]/2

=1I(u,v), so that the integrand takes on identical values in regions R 1 and
=a'(u) is periodic, and because

iw, (v —u)/Z—iwnﬁ~[a(u)+b(v)]/2 'iwnL(l—ﬁ-V)/Z
e

(3.18)

=1I(u,v) and hence that the integral over region R2 is the same

as the integral over the region R2'. One thus obtains an integral over the square region u,v €[0,L].
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Trs(wnﬂ)z:LyL OLdu fOLdU eiwn(v—u)/ze o, - [alw+b(»)]/2
L 2
=L |2n | Arlen®)Byle,2),

where the quantities 4, and B, are defined by the follow-
ing Fourier transforms:

A(wnﬁ):_zir_fLe—i(m"/2)[u+ﬂ~a(u)]a,(u)du ’
2 L (o, /2)[v—{-b(v) (3:20)
Blo,f)="T [ A

The problem of calculating the energy radiated by a loop
of cosmic string is thus reduced to the problem of finding
the spatial components of a pair of one-dimensional in-
tegral transforms. An essentially identical formula
occurs in Eq. (7) of Burden [13], although in that work it
is assumed that the center of mass of the cosmic-string
loop is at rest.

There is still some additional complication involved in
computing the functions A and B. This arises because
the right- and left-moving vector fields a and b are not
stored directly in the simulation (however their deriva-
tives a’ and b’ are readily available). Moreover, the forms
of A and B are not yet Fourier transforms that can be
evaluated by (for example) an FFT algorithm. To put the
A integral (for example) into an easily computable form,
one changes to a new variable

x =2—7T,\{u +8-[a(u)—a(0)]}
L(1—-V-Q)
with
dx=—2T  [1+8-a"(u)]du .
L(1—-V-Q)

Note that because both © and a’ have unit length, the
quantity [1+Q-a’'(u)] lies in the range [0,2]. Conse-

FIG. 1. The region over the (u,v) plane used to evaluate the
integral in Eq. (3.16). The integrand (3.15) is the same in re-
gions R1 and R1’ and in regions R2 and R2'. Hence the in-
tegral over the shaded region equals the integral over the L XL
square.

al,(u)b}(v)

(3.19)

—

quently, x is a monotonically increasing function of u.
Since a is a pseudoperiodic function, the range u €[0,L]
corresponds to a range of the new variable x €[0,27].
One obtains (modulo a pure phase factor e’® which can-
cels out of dE /dQ))

Ao, )=(1-V-0) [ “dx e " a(x)

a'(u)
1+Q-a'(u)
Note that in this expression, the derivatives a’(u) denote
derivatives with respect to the original parameter u of the
string. They do not denote derivatives with respect to the
new parameter x along the string. Thus, the vector field
a’(u) is still unit length (3.4). The corresponding expres-
sion for B is

with a(x)= (3.21)

Blo,)=(1-V-8) [ "dx ¢ "B(x)

b'(u)
1-0-b'(u)
where once again, the vector field b'(u) has unit length.

Each component of the vectors A and B has now been
expressed as a Fourier transform, of a@ and B, respective-

ly.

with B(x)= (3.22)

IV. NUMERICAL COMPUTATION OF THE FOURIER
TRANSFORM OF THE STRESS-ENERGY TENSOR

To compute these quantities numerically, the following
procedure is used. Here, we illustrate the method for A;
the method for B is similar. We label the N segments
making up the string loop by i =1,...,N. At each of
these segments, the quantities a;, b; and du; are known
(these quantities are fundamental variables that our nu-
merical simulation evolves at each time step). The quan-
tity du; represents the “Lorentz-uncontracted length” of
the ith segment; the total energy of the loop is

N
uL =p Yy du; .

i=1

4.1

. . - . . A
For a given, predetermined choice of direction {2, one
defines the quantities

Ax;=(1+Q-a))du,, i=1,...,N. 4.2)

The sum of these small increments [times
2m/L(1—V-Q)] defines the quantities x;, which corre-
spond to the variable of integration x defined immediate-
ly before Eq. (3.21):

i
x =3 Ax;, i=1,...,N.
i=1

4.3)

Since the function a(u) is periodic, S, a/du; =0, and
hence xy=L.
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The integrand for the Fourier transform is a function
a(x), which is now discretely defined by three sets of N
pairs of points (x;,X-a;), (x;,¥-a;), and (x;,Z-a;), where
a;,=alx;),

a;=a;du;/Ax;, i=1,...,N . (4.4)

If the x; were equally spaced (i.e., Ax; =constant) and N
were a power of 2, one could simply apply standard fast
Fourier transform (FFT) techniques three times. Howev-
er the values of x; are not in general evenly spaced. In
order to use an FFT to evaluate A, we need to estimate
(interpolate) the values of the function a(x) on an evenly
spaced grid of x’s. We will denote this evenly spaced grid
of x’s by X; where i =1, ..., M. For optimal efficiency,
the number M of equally spaced points should be a power
of 2.

We first choose M =2°2? where s is the smallest integer
not less than log,N, and p is an integer between 3 and 13
which increases the number of interpolated points to
prevent anti-aliasing in the FFT. The evenly spaced
points are then

X =—xy, i=1,...,M. (4.5)

The values of the function a(X;) are determined at these
evenly spaced points in a very simple way. Any given
point lies on some particular segment, i.e., x, <X; <x, ;.
Here the integer r labels the particular segment of string;
it lies in the range 1 =7 =N. The value of a(X;) is then
taken to be exactly the value of a for that segment, i.e.,
a(x,). This method, which involves no interpolation,
models the loop of string as being composed of exactly N
straight segments, each of which has uniform velocity
and a constant tangent vector. Hence the integrand of
the FFT is piecewise constant. Many other interpolation
methods, including polynomial interpolation, rational-
function interpolation and cubic-spline interpolation were
also tried, and were found to be about equally effective at
preventing anti-aliasing; we chose the fastest method.

The function being Fourier transformed is defined by
the pairs of points (x;,a;). In regions where )-a’ is very
J

dEn _ G[u2cnz(1—ﬁ-V)2
dQ 473

We define a set of dimensionless constants P, by the equation

dE, i
dQ '

E,=Gu*P,= f

(IFla-®+i®)), PIF[B-R+i®)]_, P+ |F[B-@+i®)], IFla-@+i®)]_,[*} .
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close to —1, the values of Ax; are quite close to zero.
For this reason, the successive x;’s are space very close
together, and the values of a; are quite large. These
smallest segments are those regions directed along line-
of-sight () vector; these segments contribute large
amounts of high-frequency energy to the Fourier trans-
form of a, since over a small range of x the function a(x)
becomes large. If the number of points M used for the
discrete FFT is too small to represent this highest fre-
quency, then some of the energy that should end up at
high frequencies gets shifted (or ‘“‘aliased”) to lower fre-
quencies. The ‘‘piecewise-constant” interpolation
method that we use has as its principle advantage that
the points X; tend to fall very infrequently onto those tiny
segments where the successive x;’s are spaced very close
together, and the values of a@; are quite large. In produc-
tion work, we increase p until every segment is landed on
at least once (typically M =2°17>21%). In the unlikely
event that we do step onto one of these tiny segments, the
value of the integrand is limited to a maximum value of
=M /16; however, this limiting is invoked only very rare-
ly. By increasing the inverse of the spacing interval until
all segments are landed on, we ensure that the inverse of
the spacing interval is greater than twice the Nyquist fre-
quency of a. This is for statistical reasons: further in-
creases in M do not change the fraction of points with
any given value a;. This proved to be an effective means
of preventing anti-aliasing. In future work, it would be
desirable to use analytic expressions for the energy radi-
ated from string segments which have a’ antiparallel to
or b’ parallel to Q.

In the tests described in the next section, the value of p
was kept very small (p =3 or p =4) to provide an espe-
cially stringent test of the algorithm. It was found that in
the worst case, energy radiated in the plane of the loop,
the number of frequency values n which were reliable was
always at least M /10. Thus, by using large numbers of
interpolating points, we were able to generate reliable
values of P, for n >>N.

If we denote the discrete Fourier transform of the
points a(X;) by F[a], and the corresponding Fourier
transform for B(X;) by F[3], then one has

(4.6)

(4.7)

This formula gives the power radiated per unit solid angle at the frequency w,. The dimensionless constants character-

izing the radiation rate are

21 _0.V2
Pﬁ%‘v)*f{\F[a-(v+im]nIZiF[B-(vﬁa)]_n|2+lF[B-WH@)L,lle[a-(°+iv’v>]-n\Zldﬂ :
T

The reader will note that all reference to the length L has
disappeared from this expression, since a, B, and their
corresponding FFT’s are dimensionless. This is a direct
consequence of the “scale independence” of the P,’s, dis-

(4.8)

f
cussed near the end of the Introduction, in Sec. 1.

In order to determine P, it is necessary to integrate
dE, /dQ over all directions on a two-sphere. The only
way to do this integral for a general string network is by
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FIG. 2. In order to integrate over the sphere, a set of points
is chosen at which to determine dP, /d€Q). This set of points is
obtained by Cantor interpolation; the set is shown for five levels
of interpolation, corresponding to (2°—1)? points.

choosing directions on the two-sphere, and then sampling
dE, /dQ at those points. The sequence of points that we
use is shown in Fig. 2; the results for the string network
are (quite sensibly) independent of the set of directions
that are used, because the thousands of loops produced in
a typical run of our numerical simulation are randomly
oriented.

V. NUMERICAL TESTS

In order to test the numerical methods, the code to cal-
culate dE, /dQ was used to analyze a plane circular loop.
In this case the answer was obtained analytically by
Vilenkin and Vachaspati [12], and then later reproduced
by Burden [13]. They analyzed the case of an ideal plane
circular loop (here called a “smooth loop”’). Most of the
energy is radiated near 6=1/2 where 6 is the equatorial
angle measured from the axis of symmetry of the loop.
In this direction, the exact result for the “smooth loop” is
given by Eq. (2.16) of [12] as

1

dP,/d Qo= /= 2

niJ, o (m)—J,_(m)]*,  (5.1)
where J, is a Bessel function of order n. A more general
formula [Eq. (2.15) of [12]] is also given for the energy ra-
diated in an arbitrary direction 8. This exact result is
shown for comparison purposes in Figs. 3 and 4.

In Fig. 3, the exact result for dP, /dQ in the direction
6=m/2 is compared to the numerical results obtained for
loops composed of N =15, 50, and 100 points. The
“discrete loops” do not agree precisely with the exact re-
sult because they are composed of N straight kinks, and
are not in any sense “smooth.” For smaller angles
6 < /2 which are not shown, these “discrete loops” are
in much closer agreement with the exact “smooth loop”
results.

In Fig. 4, the exact result for a “smooth loop” is com-
pared to the numerical one for a “discrete loop” com-
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dP,/dQ

20 40 60 80 100

Mode Number n

FIG. 3. The calculated gravitational emission dP, /d) from
an exact planar circular loop is shown in the equatorial plane
0=m/2 as a solid line. The remaining three curves show the
numerical algorithm of this paper applied to discrete circular
loops composed of 15, 50, and 100 points. The radiation in the
equatorial plane falls off very slowly with increasing n, and is
the most difficult test of a numerical method.

posed of 1000 points, for three different values of 6. For
gravitational waves radiated in the directions 6= /4 and
6=3m/8 the exact results are indistinguishable from the
numerical ones. The only difference appears for 6=1/2,
where the numerical results for the “discrete loop” are
seen to contain slightly more energy at high frequencies
than the ideal “smooth loop.” This is because the num-
ber of interpolating points is only a factor of 8 (p =3)
greater than the number of loop points. Increasing the
number of interpolating points M in this case reduces the
excess emission and makes the numerical result indistin-
guishable from the exact one. In all of our production
runs, we set p much larger than 3 to prevent these types
of effects.

Circular Loop Test

T
101 algorithm (6=m/2)
0%y AN exact result
® N
X w0} N\ ’ 1
5 N
0+ | g 3
‘\“ .\‘
£ \
10% | \ . 1
\ 6=m/4 » 0=31/8
10 L “. '
10° 10! 10? 10°
Mode Number n

FIG. 4. Gravitational radiation from a circular loop, shown
in three directions, 6=m/4, 6=37/8, and 6=w/2. This is
compared to the result of the numerical algorithm for a
discrete, 1000-point loop. For the first two values of 6, the ex-
act result and the algorithm result cannot be distinguished on
the graph. In the case of =1 /2 the exact result gives slightly
less high-frequency energy. This is because the discrete loop
contains small kinks which increase its emission at high fre-
quencies.
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The method of integration described at the end of Sec.
IV was also tested using an ideal plane circular “smooth
loop.” In this case, the value of P, (an integral over the
two-sphere) reduces to a single integral over the equatori-
al angle 6. In order to provide a realistic test, this sym-
metry was not exploited. The resulting P, are shown in
Fig. 5, for loops containing 15, 50, 100, and 1000 points.
For comparison purposes, Fig. 5 also shows the exact P,,
obtained by integrating the analytic differential formula
of Vachaspati and Vilenkin. The resulting curves (nu-
merical and analytic) are almost indistinguishable. In all
cases, the resulting P, are slightly larger than the exact
values, leading us to conclude that our results for y pro-
vide upper bounds to its value. This test demonstrates
the accuracy of our methods in the continuum limit for a
smooth loop.

We have also tested the algorithm on a family of loops
possessing kinks. We used a particularly simple set of
kinky-loop solutions for which y was determined analyti-
cally by Garfinkle and Vachaspati ([14], first paper). The
family of kinky loops is defined by

a=lu—L|a, o<u<if,

4
b= v—% B, 05v<%, (5.2
b= %_U B, %§U<L,

where A and B are arbitrary unit vectors. The loops
consist of four straight segments separated by four kinks;
two kinks propagate in the opposite direction to the other
two. In the special case with A-B=0, the loop is planar
and oscillates between being a square and a doubled line.

10! T T

102 1 |
10° 10! 102 10°

Mode Number n

FIG. 5. The value of P, for an ideal planar circular loop is
shown by the solid lower line. The remaining three curves show
the results obtained numerically for a discrete circular loop con-
sisting of 15, 50, and 100 points, respectively. These results are
obtained by numerically integrating dP, /dQ over the surface of
a two-sphere. This is done by adding up the value of dP, /d() at
916 points uniformly spaced over the surface of the sphere, as
shown in Fig. 2.
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The radiation rate for these solutions can be evaluated
analytically, and is given in Eq. (3.9) of the first paper of
Ref. [14]. In the special case where A and B are perpen-
dicular the result is

Y =641n2~=45 . (5.3)

These loops were created as initial conditions for the nu-
merical code and used to test both the evolution and
gravity-wave algorithms. As reported earlier, the evolu-
tion algorithm proved reliable for many thousands of
time steps in an expanding universe, provided the number
of points on a loop was above a threshold near N > 20.
For a kinky 32-point loop, energy conservation was 98%
and the other gauge constraint <1% after 2000 time
steps. In order to calculate the gravitational radiation
rate we sampled dP/dQ with the wave vector k=w,Q
pointing in random directions. For the perpendicular
loop, we obtained a convergence of ¥ to within 5% of the
result (5.3) for any sampling number beyond 64, and con-
siderable improvement beyond this. For loops with
N =32 points and above, the value of ¥y was time in-
dependent even after thousands of time steps. This result
demonstrates the correct operation of the gravitational-
radiation algorithms. It also shows that for samples of
many more than 100 randomly oriented loops containing
kinks, an accurate value for the average of ¥ can be ob-
tained by sampling in only one direction k.

VI. NUMERICAL RESULTS FOR LOOPS

The main interest is in the gravitational radiation dur-
ing the epoch when the universe is radiation dominated.
Our simulation is run until well after the time at which
the energy density in the infinite strings begins to scale.
The lower limit on loop size is set to 30 points, in the re-
gime where the accuracy of the gravitational-radiation al-
gorithms has been tested. The P, are then determined
for those loops whose length at that time is less than 7L,
where L =2t is the horizon length. To prevent anti-
aliasing, the value of p, defined before Eq. (4.5), was in-
creased to large values, corresponding to at least
216=65 536 points per loop.

To see how the P, depend upon the size of the loops,
the loops are binned by energy. The equally logarithmic-
ally spaced bins are labeled by an integer kK =0,1,2, ... .
A loop of energy ul is placed into bin k if its length [ lies
in the range wL2 %~ 1'<] <7#L27%, where L is the hor-
izon length. The results are shown in Figs. 6(a)-6(c),
which show the P, for the different-sized loops at three
different times. The corresponding values of

Yy=XP, (6.1)

are shown in Fig. 6(d). The time in Figs. 6(a)-6(d) may be
quickly determined from the ratio L /L, of the horizon
length L to the horizon length L, when the simulation
was started.

It can be readily seen that over more than three orders
of magnitude in loop length, y varies linearly with /.
This seems to indicate that all of the loops contain small-
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scale structure at a fixed physical length scale, and that
the total energy being radiated from a loop therefore is
some constant times the total length of the loop. In Fig.
6(d), the mean values of the emission rate and loop length
at the three times are

({y)=69.3,(1)=0.528L)
when L /L,=8.97,
((y)=64.4,(1)=0.455L)
when L/L,=32.87,
((7)=64.8,(1)0.459L )
when L/L;=61.23 .

(y),{IN= (6.2)

The mean values of y are between 64 and 70 at all three
times. Noting that our cutoffs prevent the loops from
shedding at least some of their small-scale structure and

GW Emission by Loops
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further reducing their gravitational radiation rate, we ob-
tain a fairly conservative upper bound of ¥ ~ 65, which is
quite consistent with the results of Scherrer, Quashnock,
Spergel, and Press [15].

We noted in the Introduction that, while the large-
scale properties of the network are scaling in the simula-
tion, the spectrum of substructure and the loop-
production function were not. In a realistic scaling solu-
tion our expectation is the loops would be created and
fragment to smaller sizes than permitted by the current
numerical resolution. At least some loops, therefore,
should possess excess substructure. Since we observe that
the loop substructure is a significant source of gravita-
tional radiation this will produce more gravitational radi-
ation and therefore an upper bound for y. We also do
not introduce gravitational back reaction, so that small-
scale structure that would be expected to be smoothed
out on a time scale considerably shorter than the loop
lifetime continues to radiate. During the latter stages of

GW Emission by Loops
10? I I T
Loop length 1is 2*' < I/nL < 2* ( b )
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FIG. 6. The three graphs show P, as a function of n, for loops whose invariant length / is less than 7 times the horizon length L.
In graph (a), the horizon has expanded to 8.97 times its initial value L, in graph (b) to 32.87 times its initial value, and in graph (c) to
61.23 times its initial value. In each of the three graphs, the curves labeled by k correspond to loops with a different range of /. For
curve k, the loop size / lies in the range 7L27*~!<I <7L27*. The P, decrease with decreasing I. For large n, the P, fall off at a

rate between n ~ 12

and n ~ %, The sum of these P, determine 7, the total energy-loss rate from the loop. (d) This graph shows ¥ as a

function of loop length for each of the three times in graphs (a), (b), and (c). This graph includes a small correction for the missing
area under the large-n tail of the first three graphs. The mean values of ¥ and //L; at the early, intermediate, and late time, respec-
tively, are given in Eq. (6.2). For a given loop size, the value of ¥ is independent of time, as one might hope.
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loop decay, the lower harmonics would begin to predom-
inate reducing the effective y. Again, this would act to
make our estimate an upper bound.

It is interesting to note the fairly good agreement with
the flat-space results of Scherrer et al. [15], since the
loop-production processes are so different. They study
daughter loops produced by the fragmentation of a
smooth convoluted parent loop in flat space whereas, in
our case, we have fractal long strings with low coherent
velocities which produce small loops directly in collaps-
ing regions [6]. This appears to lend support to their
claim that loops that are the end products of a fragmen-
tation process will have properties independent of their
earlier evolution. Although their results do not set a
scale for the loops produced by a network in an expand-
ing universe, they may well be relevant for their other
properties.

VII. INFINITE STRINGS

In this section, we will obtain the spectrum of radia-
tion emitted by the infinite strings. Because the infinite
strings are not small relative to the horizon length, they
feel the effects of the large-scale curvature of space-time,
or in other words, the expansion of the universe. At
present, there is no formalism available which gives the
expanding-universe equivalent of Eq. (2.1), expressing the
rate at which an isolated system radiates energy in gravi-
tational waves. Thus, in this section, we assume that the
flat-space formula (2.1) can be applied in curved space,
and that it is correct for energy radiated in modes whose
wavelength is significantly smaller than the horizon
length.

In the case of small loops of cosmic string, the funda-
mental (lowest) frequency is set by the length L of the
loop to be w=4mc /L. In the case of the infinite strings,
we expect that on physical grounds the long strings will
radiate only above a minimum frequency of order
w=4mc/L,, where L, is the radius of the horizon (hor-
izon length). This is for the following reasons. First, on
length scales longer than L, the infinite strings are not
correlated, for reasons of causality. Second, for “wave-
lengths” longer than L,, the energy carried in gravita-
tional waves vanishes because the universe is not old
enough for the waves to have had time to oscillate even
once. Lastly, since the strings are created by a causal
process, on long length scales they are necessarily isocur-
vature perturbations, and their energy must be compen-
sated by a deficit in the surrounding cosmological fluid.
Thus, on length scales larger than the horizon, the
Fourier components of the stress-energy tensor are
suppressed.

In this section, we assume that the universe is radiation
dominated. The space-time  metric is  ds?
= —dt’+a*(t)dx* with cosmological scale factor
a(t)=t'2. Thus, L, =2t is the horizon length. The spa-
tial section forms a three-torus, whose coordinate size is
fixed, so that the range of the comoving coordinates
x,9,2€[0,L,,,]. Thus the volume at any time ¢ is
V(t)=a3(t)L;,,. The energy density in infinite strings is
given by p,=p At ? with 4~16. The simulation is
started at the “formation time” ¢, with an initial horizon

B. ALLEN AND E. P. S. SHELLARD 45

length L,=2t,, and an initial correlation length on the
infinite-string network given by L, /8.

The gravitational radiation in the infinite strings can be
characterized completely in terms of a set of dimension-
less coefficients, C,. These coefficients are analogous to
the P, for the loops. In particular, the value of C, deter-
mines the rate of gravitational radiation at angular fre-
quency

w,=4mn /L, , (7.1)

where the mode index »=1,2,.... The crucial
difference is that the frequency of the mode n is deter-
mined entirely by the horizon length. In addition, as we
will define them, the C,’s include the effects of all the
infinite strings; they do not simply correspond to a “‘sin-
gle” infinite string.

The definition of C, is as follows. The rate at which
energy E is radiated by the long strings as gravitational
waves in the frequency range w €(w,,®, ) in volume ¥V
is

dE, 1%

Power= ar = FGych,, .
The volume V is assumed to be changing in time so that
V /a3(t) is a constant; in other words the volume V is the
volume of a fixed region in the space x of the comoving
coordinates. To apply this formula to our simulation, we
use as the volume the entire simulation box:
V=L3 a).

The C, can now be determined numerically in terms of
the corresponding P, of the infinite strings. We let the
index k label the M different infinite strings in the numer-
ical simulation, so k =1, ..., M. The physical length of
the kth string is denoted by L,, and the gravitational ra-
diation coefficients for the mth mode of the kth string are
denoted P,(nk’. [These coefficients are defined by Eq. (4.8)
where the subscript m denotes the mth mode whose fre-
quency is 4mm /L, .] One then has

(7.2)

Ly /L,

t} M
P(k)

2 P, -

j=0

C = A
" Llioxa3(t) k=1

(7.3)

This formula includes in the nth mode C, the contribu-
tions of the L, /L, modes of the kth string that lie in the
frequency range from o, to @, ;. These L, /L, modes
are labeled by the index j.

The surprising behavior observed is that the maximum
emission from the long strings appears to take place at a
fixed physical frequency which does not decrease as the
horizon length increases. This can be easily seen by ex-
amining the graph of the C, shown in Fig. 7. The graph
shows data obtained at three different times, as described
in the figure caption. The frequency of maximum emis-
sion is given by

(7.4)
where L is the horizon length at the time that the string

network formed. The wavelength corresponding to this
maximum frequency is Ap,,=~L,/16, which is exactly
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FIG. 7. The energy radiated by the long strings in the form
of gravitational radiation is characterized by a set of dimension-
less constants C,, with mode index n corresponding to frequen-
cy 4mn/L(t). Here L(t) is the horizon length. The data for
these three curves were taken at different times. For large n, the
C, fall off as «<n ~"!. This was used to estimate the contribu-
tions to I' from large values of n. Curve 1 has L/L,=7.65,
Npax =359, and T'=7.7X10*. Curve 2 has L/L;=21.0,
Nmax =160, and T'=1.3X10* Curve 3 has L/L,=34.2,
Nomax =268, and I'=2.3X10* The characteristic frequency of
emission, at which the C, are peaked, remains constant in time.
The C, are only expected to approach constant values at very
late times, when I'=1/(100G ).

half the correlation length of the string network at its
time of formation.

A ‘‘true scaling solution” is the term we will use to de-
scribe a cosmic-string network for which every charac-
teristic length scale increases in proportion to the horizon
length L, =2¢. For a true scaling solution, the statistical
appearance of the string network at time ¢ is identical to
that of an earlier time ¢’ after magnification by the di-
mensionless ratio ¢ /t'. For a true scaling solution, each
C, is a constant, which is independent of time, and thus
I'= 73, C, is also independent of time. The rate of ener-
gy loss per unit volume into gravitational waves is then

1dE _

V dt (7.5

t 3G C, =t 3G’ .
h

This has the same time dependence as dp. /dt, where

po=Aut % is the energy density in the infinite-string

network.

However it can be seen from our graphs that, during
the duration of our simulation, the cosmic-string network
is not a true scaling solution: the C, are not constant in
time. The reason why can be easily seen if we plot the
C,(2) not as a function of n but instead as a function of
physical frequency , which is related to n by
w=4mn/L, giving n(w)=L,w/47. In Fig. 8, we plot
C, () as a function of the physical frequency w. One can
see immediately that after a period of adjustment (relaxa-
tion) the function C, ,,.(¢) appears to become almost in-
dependent of time t. It is easy to see that this implies that
I" increases linearly with time: the number of modes dn
in the frequency interval dw is dn =t d w /27, and thus
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dn(w)
r= 2 Cn = fcn(m)(t)—dw_dw

=t/27 [ Cpptide . (7.6)

The value of the final integral, as can be seen from Figs.
8(a) and 8(b), varies only slowly with time once the hor-
izon has expanded by a factor of about 20 from its initial
size. This is shown more clearly in Fig. 9, where the data
has been smoothed with a 30-point bandwidth. Modeling
the results as a power law, one finds that

K

t
Iy

I'=Q (7.7)

with k=0.8%0.5. The actual value of Q depends strong-
ly upon the resolution of the simulation (the number of

Long-String Gravitational Radiation

10 | | - T

3
E 10|
o)
101 l I I I
10! 10° 10! 10? 10° 10*
Angular Frequency oL
Long-String Gravitational Radiation
10! T T | T
(b)
3
E 10°| —
O

10! | | | |
10! 10° 10! 10? 10° 104

Angular Frequency oL,

FIG. 8. The C, are shown as a function of the physical fre-
quency w. After an initial period of relaxation, the function
C,, becomes constant in time. They are peaked about
oL~ 10, where the wavelength is half the correlation length
of the long-string network at the time of formation. (a) The
C,(, are shown at two times, L /L,=7.65 (upper curve) and
L/L;=21.0 (lower curve). (b) The C,(,, are now shown at a
later time; L/L,=40.2, where they have not changed
significantly from earlier times. If this curve does not change
with time, then since the number of modes in any given frequen-
cy interval dw increases linearly with time, " increases linearly
with time.
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Long-String Gravitational Radiation
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FIG. 9. This graph shows the gravitational-radiation

coefficients C (1), as a function of physical angular frequency
o at four different times. The values of L /L, show the ratio of
the current horizon scale to the horizon scale at the time that
the string network was formed. The C(t),,, cease to depend
upon ¢ at late times, and are only a function of @. While they do
decrease slightly with time, this decrease is much less rapid than
1/t and implies that the energy radiated per unit length of long
string is approximately constant in time. The data in these
graphs has been smoothed with a bandwidth of 30 points, to
prevent the scatter in the graphs from smearing the graphs to-
gether.

string points per initial correlation length divided by the
minimum number of points in a loop). As might be ex-
pected, when the resolution is low (of order ‘_%) it is
difficult for the long strings to shed their small-scale
structure, and Q =750. For high-resolution (of order 4)
runs the long strings lose much of their small-scale struc-
ture and Q =100 is considerably smaller. Part of this de-
crease in Q is due to a decrease in the long-string energy
density associated with the higher resolution, but the ma-
jority of the change is due to the reduction in small-scale
structure on the long strings. However the fact remains
that in both the high- and low-resolution runs, the peak
of the C, is at a fixed physical frequency, and I' grows
with time. This increase in I' appears to be due to the
presence of persistent structure on the cosmic-string net-
work at a fixed physical length scale equal to the initial
correlation length of the string network. The presence of
this structure is not entirely surprising; it is predicted by
recent analytic work showing that structures approach a
constant mean separation of order ¢ ’ [7,8,9]. In this case,
however, the structures appear to be more closely related
to the initial conditions of the string network, which is
formed with perturbations of length ¢,. These perturba-
tions persist even at late times.

Other research has investigated the small-scale struc-
ture on the long strings, primarily through the use of the
fractal dimension, which measures the “straightness’ of
the string on a given length scale. That work showed
that, as time goes by, the strings always straighten out on
a fixed physical length scale [5,6]. Our results appear
somewhat different. At early times, the emission of grav-
itational waves at a fixed physical frequency decreases;
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however after about 20 expansion times the emission at a
fixed physical frequency is only slowly decreasing—
certainly less quickly than 1/z. Our results seem to show
that once the amplitude of the small-wavelength pertur-
bations on the strings becomes small enough, the expan-
sion of the universe does not strongly damp the oscilla-
tions. These small-amplitude perturbations at small
wavelengths do not show up as clearly in the fractal
curves used previously to analyze the small-scale struc-
ture on the long strings. This is due, in part, to the short-
er lifetimes of high-frequency modes; they radiate away
their energy more quickly and dominate the spectrum of
gravity waves (especially when back reaction is not in-
cluded).

Because the numerical simulations can only run for a
limited amount of time, it is impossible to follow the in-
crease in ' for a long period in time. It is therefore
necessary to extrapolate the observed increase, and to
speculate about the physical effects that prevent I' from
increasing indefinitely. Eventually, one expects I' to be-
come large enough so that the rate of energy loss into
gravitational waves becomes comparable to the rate of
energy loss into the formation of loops. This occurs
when V 'd(VAut %) /dt~TGu*t™3 which implies
= A/2Gu. This occurs when ¢/t lies in the range
1072/Gu to 107! /Gpu. After this time, our expectation
is that the C, will indeed become constant in time, with
I'=A/2Gu. In the following, we shall assume for the
purposes of discussion that I' increases linearly, k=1 in
(7.7).

VIII. CONCLUSIONS

In this section, we compare the different ways in which
the infinite-string network converts its energy into gravi-
tational radiation. This conversion of energy is effected
via two mechanisms: (1) the direct emission of gravita-
tional radiation by the long strings, as considered in the
previous section; (2) the production of loops which subse-
quently convert their energy into gravitational radiation.

The rate at which the infinite string loses energy into
gravitational waves is determined by '=3,C,. In a
fixed comoving volume ¥V of the universe, in time dt the
infinite strings lose an amount of energy

dE?Z =dt Vt 3Gu*T .

grav wave

(8.1)

(Note: from this point on, we use the superscript on E to
denote the type of string losing energy, and the subscript
on E to indicate by which mechanism the energy is lost.)
It is straightforward to compare this rate of energy loss
to the other means by which the long strings lose energy:
the formation of loops. The energy density in the infinite
strings is p,. = Aut ~ > with 4 =~16. Hence, in time df the
infinite-string network loses an amount of energy into
loop formation and stretching given by

dElogop form :%dt Vi 73AH’ . (8.2)

If the mean velocity squared of the infinite-string network
were + then there would be no stretching, and all the en-
ergy would be lost to loop formation. Since (v?)=~0.43
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this is a reasonable approximation to make, and we make
it. The ratio of the two energy-loss rates is then
E‘ o0

grav wave __

2Gull
i

(8.3)

ke
E loop form

Our expectation, as explained in the previous section, is
that I" will increase until the right-hand side of Eq. (8.3)
is of order one, after which time I"' will remain constant.
In this case, the two energy-loss mechanisms are very
roughly comparable in magnitude: E g, wave ~E Joop form
If some other effect intervenes, and prevents I' from
reaching this large value, perhaps, because we have un-
derestimated the smoothing effect of gravitational back
reaction, then we would have E ;7,, wave <E j50p form-

It is also possible to compare these energy-loss rates
with the rate at which gravitational radiation is emitted
by the loops of string. To do this, we make the standard
assumptions of the one-scale model. A loop formed at
time ¢’ is assumed to have a length at’. (The numerical
simulations have not clearly established the size of the di-
mensionless parameter a, but have shown that a < 1072)
Hence the power emitted by all surviving loops in the
form of gravitational radiation at time ¢ is given by

E'vloops =fﬂtldt'Z_NyG#2

grav wave t ’

=1yt 3 4o lyGuABT A1) . (8.4)

Here dN /dt =1 Aa~ 'Vt ~* is the rate of loop formation
in the volume V, and B=yGu/(a+yGu) determines the
lifetime of the loops.

There are two possibilities, depending upon the relative
magnitudes of @ and yGu. The most likely possibility is
that a > ¥ Gu, in which case

a1/2

(')/G[.L)l/z :

In this case, the relative magnitudes of these three
energy-loss mechanisms are

ER®S e =1dt Vi Ap (8.5)

< E loops

grav wave °

(8.6)

© v 0
Egrav wave ~Eloop form

The other possibility, which we consider less likely, is
that the loops are chopped off the string network at a
length scale a smaller than yGpu. In this case, one has
B=~1+a/(yGu) and hence

E =ldt vt Ap .

grav wave

(8.7)

In this case, the loops which are formed are so small that
they radiate away their energy almost instantly, and so
the rate at which the infinite strings transfer energy into
loops is the same as the rate at which the loops convert
their energy into gravitational radiation. In this case, one
has

fy 00 L™  Erloops
Egrav wave Eloop form Egrav wave °

(8.8)
However, in either case, it appears that while the power
radiated in gravitational radiation by long strings is a
significant energy-decay mechanism, it will never exceed
the power radiated in gravitational radiation by the loops
of string.

There are three observational constraints on the gravi-
tational perturbations produced by cosmic strings, arising
from the standard model of nucleosynthesis, the timing
noise in pulsars, and the isotropy of the microwave back-
ground radiation. The results of this work have some
bearing on the first two of these constraints. This issue is

investigated in more detail in work currently in progress
[18].
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FIG. 1. The region over the (u,v) plane used to evaluate the
integral in Eq. (3.16). The integrand (3.15) is the same in re-
gions R1 and R1’ and in regions R2 and R2'. Hence the in-
tegral over the shaded region equals the integral over the L XL
square.



