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We discuss various aspects of the Higgs mechanism that takes place in strung theories .
considering the _77 _3 eterotic orbifold as a specific example . Some emphasis is put on the duality
invariance of the effective field theory description .

The Higgs mechanism provides a consistent field theoretical description of
massive Yang-Mills fields . It is realized also in string theory, as the masses of
certain states depend on continuous background parameters of the internal com-
pact space [1], that is, on the moduli [2] of the corresponding conformal field
theory (CFT). At special ("critical") points in moduli space some masses can
actually vanish . In particular, various vector and scalar bosons, though massive at
generic points, can be massless at special points in moduli space. Thus, at these
points, extra gauge symmetries occur. This phenomenon is called the stringy Higgs
effect . We will discuss various aspects of this mechanism, in particular an effective
lagrangian description . This description involves a gauged sigma model with
spontaneous symmetry breaking . It contains just the lightest string degrees of
freedom, namely, in addition to the massless moduli, those fields which can have
arbitrarily small masses (like the weak scale) . The other string excitations that have
large masses (like the Planck scale) do not enter the effective lagrangian.
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n general, there are certain discrete transformations, acting in particular on
moduli and also on other fields, that leave a CFT invariant . These transformations
constitute the "target space duality" group [3-17] . Duality invariance is a stringy
phenomenon and typically mixes fields with different masses. It imposes, in
principle, constraints on any effective field theory [10,16]. Specifically, the fields
that are involved in the stringy iggs mechanism mix with infinitely many other
fields under duality transformations . We will discuss how such symmetries can be
reconciled with a field theoretic description of the Higgs effect that involves only a
finite number of fields . We will find that the situation is conceptually similar to
electron bands in a solid.
The simplest and best understood example which displays the stringy Higgs

effect is given by a heterotic compactification on the -7 3-orbifold [181 . This OFT has
just one (complex) modulus T, and the gauge group that appears at any critical
point r. is particularly simple and given by (1) x U(1) . The duality group is just
given by the modular group, PSL(2, Z). Furthermore, three copies of this CFT lead
to a semi-realistic, N = 1 supersymmetric heterotic string model that allows for an
easy effective lagrangian description. We will, however, rather first focus on one
copy of this model, as it already displays many interesting features. The generaliza-
tion to six dimensions will then be discussed subsequently .

2. C

	

and the 713-orbifold

The Z ;orbifold model can be described as a two-dimensional torus compactifi-
cation on the root lattice of SU(3), modded out by 71 3 twists . Two moduli, the
antisym etric tensor background B and the scale of the lattice R, survive the twist
and can be combined into one complex modulus, r = B + irR2 . The internal left-
and right-moving momenta pL R = (1 / F)(p ir. R + ip2 R ) are then
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Here, m i and n i are the momentum and winding numbers, respectively, and
P = e2-' i /3 . It is easy to determine how duality transformations r ---3. (ar + b)j
(cr + d), which belong to PSL(2, 7L) (a, b, c, d E 71, ad - be = 1), act on the theory.
The conformal dimensions, Ti = p + p - and h =pip R , of the winding states only
remain invariant if one simultaneously shifts the winding and momentum numbers.
For the generators of the modular group, S : r --> -1 /r and T: r -* r + l, one



finds [9,13,14]
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n, --+M l-M2

	

in, --->n,
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n2--+ r12

m,-+n,+n2 m2 --*m2 -j1 ,

These transformations, in spite of leaving h, h invariant, induce a background-
dependent rotation [19] on the momentum vectors pL R. Therefore, to get invari-
ant vertex operators i;,1, � ,, �,1, �,î = e °PLR* XL.R (where p -X =p'X-+ p -X+), one
also has to rotate the torus coordinates X,:R. For a general PSL(2, /Z) transforma-
tion one finds
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(2.3)
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where A is a T-independent phase which depends on the parameters of the
PSL(2, 71) transformation : e.g . A = p for ST.
We now discuss the (untwisted) spectrum and the action of the modular group

on the relevant states . First, the (complex) marginal operator 5X~âXR corre-
sponds to the freedom of having the modulus T as a free parameter. It creates a
single-particle state, namely a four-dimensional scalar 1i) whose mass vanishes for
all backgrounds T. Its vacuum expectation value < z > takes arbitrary values as a
function of T. Using (2.3) we deduce that 7- transforms under duality transforma-
tions as

T --)~
cT+d _

T .
cT+d

The winding and momentum spectrum is generated by 7L3 twist-invariant combina-
tions of vertex operators At any critical point r, there are certain
states which are massless just at this point (there are infinitely many such critical
points, which are images of T, =p under PSL(2, 7l)). That is, any valid choice of Te

determines a particular set of labels {r1 1 , m i), corresponding to massless states .
Taking for example Tc = p, there are massless, four-dimensional space-time vec-
tors*

V+ 1r3 (~c .o,c,c + V-c,c,-c,o+ Vo,-c,o.-c)(aX~.R+ . . .)~

1V1.1- = _75- ( V- j +11L -t,t .o+ VO . c .o,c)(aXtL tt+

43?

(2 .4)

(2 .5)

*We denote vertex operators and the corresponding fields by the same symbols. The dots denote

other operators needed for BRS invariance .
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and two real scalar degrees of freedom may be regarded as longitudinal

	

odes o
the vector bosons .
The fields j,

	

1 and

	

, do not have well-defined charges under the two U(1)
currents, It is thus convenient to build linear combinations with definite U(1) x U(1)
charges

	

. (i = 1, 2,
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(2.8)

The spectrum is anomaly free . The winding states have zero vacuum expectation
value, , due to internal momentum conservation . This implies that all
three fields s,, have the same vacuum expectation value, < sa > = < T > / F .
Under general modular transformations (2.2), the fields (2.5) and (2.6) transform

into different fields, with in general different masses. As the modular orbit length
is infinite, it seems a priori difficult to achieve a duality-invariant effective field
theory with only a finite number of massive fields . However, as any choice of Tc
defines a particular set of labels (ni , m ;), we can achieve a reasonable effective
field theory description by considering fields which formally depend on T, instead
of (n;, m ;) . That means -rc must transform under general modular transformations
like

	

rc ---) OT, + b)/(cT, + d), as this is equivalent to transforming the labels
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(3 1 . I
this new basis, the vertex operators for the massless fields s. are
exponentials of the bosons Y., s. =

	

- It follows then fr,R
momentum conservation that all fields must have zero vacuum expectation values,
< T-(-,,,)> = 0. Moreover, since exponentials create states normalized to
the corresponding kinetic terms in the effective action must be canonical at all
critical points. Finally, adopting the above basis, it can easily be shown that all
three fields s,,, transform with the same 2 .3-phase under the particular modular
transformation that fixes a given -, c (e.g. ST for -, c = p). Thus, at the critical
point, this duality transformation acts just like the finite gauge transforniation
s,, --* exp(4vi[( 1 /3 F2 )Q'. + ( I / C6 )Q.2 J)s. [9] .

éctive lagrangian descriptio

We start by considering only one copy of the Z 3-orbifold . The usual four-
dimensional N= I supergravity action for the modulus superfield t is the
SUO, D/U(1) non-linear sigma model with Uhler potential*

K(t, i) = - log(t + i) -

	

(3.1)

It can be derived, for example, from string theory by computing [23] the Zamolod-
chikov metric gti = I 1( t + i)2 = (a'-/at at)M t, j) . or by truncating the ten-dimen-
sional supergravity action [24,25] . It is crucial to realize that the "standard"
supergravity field t cannot be identified with the string field Ts,ri .g that is created

F_From here on we will follow supergravity conventions and use the variable t 1 0

	

i7

	

3 R2
2iB . We v., :!l use t to denote both the superfield and its lowest component .
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arginal operator 5X - W . It does not transform under duality transfor-L R

(This leaves (ID invariant up to a KAhler transformation, 1, K=2logjict+dj.)In
addition, (t > = tC i-,, at the critical point in contrast to < i,tring ) == 0. To relate
the two fields let us first perform a holomorphic field redefinition,

tstrims! =

ict + d

tC - t

-

iciC
+ d
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Oi ~ -Oi,ict + d

iggs '~fl.1.fect
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i + t C

(3.2)

QQ

which under simultaneous PSL(2,-,7) transformations of t and tC transforms with a
constant, background-independent phase,

(3.4)

To arrive at the string basis we have to perform the additional non-holomorphic
field redefinition

(3 .5)

The field Tstring does indeed transform as f in (2.4) .
Let us now include the two scalar fields OL2 . As they behave like ordinary

matter fields with metric g,,~, = bijl(t + i) [26], they enter the Kiihler potential as

K = -log( t + i _ 10112 -102
12) .

	

(3.6)

This describes a sigma model on the Kdhler manifold SUO, O/SUM xUM. In
order for K to be invariant (up to irrelevant Kdhler transformations) under
PSU2, Z) duality transformations (3.2), the fields Oi have to transform with
modular weight minus one,

(33)

where A is a field-independent phase . Thus, the fields Oi do not have the correct
modular transformation behaviour to be identified with the string fields ~j dis-
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cussed earlier . In addition, the above o

	

of the effective action is

	

t suitable for
including gauge fields, since it is no: manifestly gauge invariant . To achieve this.
(3.3) must be accompanied by a

	

olomofphyc field redefinition of the
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(3.10)

up to â Kähler transformation . It is completely invariant under the duality
transformation (3.4) and (3.9) which is equivalent to transforming t, .0, and tc
simultaneously. Under usual PSL(2, Z) transformations acting only on t and 0,, it
is invariant up to a Kähler transformation . The corresponding metric leads to a
canonical kinetic term for t near the critical point, where r(tc ) = 0. Note also that
(3.10) is manifestly SUM x U(1) invariant . Both features are in accordance with
the considerations of the last paragraph of sect . 2 . Actually, linear SUM x U(1)
invariance combined with the SU(1,1)/U(1) coset structure implies as complete
coset structure SU(1, 3)/SU(3) x U(1) . This justifies (3.6) a posteriori .

Replacing t and ~; by the charge eigenstates sce in eq. (2.8), the Kähler potential
can easily be made gauge invariant by including gauge superfields V` for the
U(1) x U(1) subgroup of SUM,

K= - !og
1

	

a=1
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1 -	y sar exp
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(3.11)
i )

	

1

In order for IK to transform properly under PSL(2, 71), the vector fields have to be
invariant under modular transformations. Note that under the modular transfor-

mation that fixes the given choice of tc , the fields t, ~i and thus sa transform with

a common Z 3 phase that can be interpreted as a discrete gauge transformation . All

this is in agreement with what we have discussed in sect . 2 .

* To switci, from the supergravity to the string basis, one has to perform a non-holomorphic field

redefinition : a,string = Oi/( t + -)1/- . â(tring then transforms under modular transformations as in

(2.9) providedthat one identifies thephases in (2.9) and (3.7).



~. . d~~~~r~'~ ~'~ ct~. ~> ~~r~9~~o°

	

~~~~ ~~.~~t'~°~

e ter s ~, where

1
_

	

~95~1~ ® IS~I' ®
I~~I~

	

,

®

	

/ S~

	

~~/Y wit

	

Y= e ®~ I ry~ =(, are

(3.12)

broken

	

~ ® 1 space-ti

	

e supersy

	

etry t us i

	

plies t at the vacu

	

expecta-
tion val zs of the three fields S,~ are i entical,

e un eher fined parameter S ascribes a single at direction o t e

	

-term
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follo`ving identification between field theory vev and string theory background
fields :
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ec anism within the effective field theory. The mass
matrit for the t vo Ld(1) gauge bosons can be read off from th_e covariant kinetic
energy terms for tilt; s`alarS Sam : i31®j =~a~3~%~~~S~S~.
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etric on SLl(3,1)/SLJ(3) x 1.J(1). Explicitly we obtain, using eqs. (3 .13),
(?.S) and (3.14),

(3 .15)

in agreement with the modular invariant conformai field theory formula (2 .10) . It
is interesting to observe that (2.10) anticipates, in a sense, the structure of the
l~ä ler potential, as it involves a factor 1 /Y ~ e ~`~ .

l~ote that so far we had to restrict the parameter range to some fundamental
region (which depends on the particular choice of t~ in eq . (3.14)). Specifically, for
t~ _ ( - i)P, the modulos must be restricted to t E ( - i ).~, where*

~ This fundamental domain contains only one neighbourhood of a critical point, in contrast to the
usual fundamental domain, which has two distinct regions that are arbitrarily close to some T~ .
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tion in familiar terms, let us fix R-' = 91 t/

	

= 1/2. Then the mass spec
depends only on B = - ;

	

t and can be described by infinitely many shifte
intersecting parabolas in®(

	

) =

	

(1 + 6i + 4B)-, i E=- 2. This is much like free12

electron dispersion relations in a solid. Duality invariance under y =

	

corre-
sponds to lattice periodicity and (3.16) to the first Brillouin zone. Our prescription
(3.17) amounts to including only the lowest "energy band" in the effective theory.
The field theory vacuum expectation value, s, becomes a - periodic" (but non-
smooth) function of the string background, and can take values only in the image
of .t under the map (3.14) [up to a phase (3.4) that is induced by modular
transformations] . Though (3.17) is defined for all background values t E ( -Ml, it
does not give a good description at the boundary where any two "Brillouin zones"
..Y, .Y . Y . meet, and level crossing occurs . At these lines, the particle spectrum is
degenerate, and our description misses certain states* .

(i = 1, . . . . 3) as X; ----> e2T`l3 X,.
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eterotic compactification on the six-dimensional 713-o	fold

The discussion of the previous sections generalizes in a straightforward way to
the compactification of the heterotic string on the six-dimensional 73-orbifold.
This model is obtained as three copies of the two-dimensional 73-orbifold where
the 7 3 twist acts simultaneously on the three complex coordinates Xj , Xj = Xj

* Brief inspection suggests, however, that at the one-loop level there occur direct mixings between
degenerate states . This can happen as the internal momenta are not conserved in the twisted
sectors. Only certain 71 ;-invariant combinations of the momentum and winding quantum numbers

are. The mixings correspond to D-terms in the effective theory. One therefore expects that, similar

to the situation in a solid, the degeneracies at the boundaries of the "Brillouin zones" are lifted by

loop effects, and disconnected bands appear. Thus, including loop corrections, it makes conceptu-

ally perfect sense to define an effective action that describes only the lowest, periodic and
presumably smooth "band".
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e will first focus on the nine (complex) marginal operators of the form
Tij = ~Xi i.'OXjR with the nine corresponding moduli 7ij describing the metric (three
radii and six angles) and antisymmetric tensor degrees of freedom . The duality
group that acts on the moduli

	

has been conjectured [16] to be SU(3, 3; 71). For
simplicity, we will set the off-diagonal moduli to particular, fixed values such that
the three SU(3) root-lattices are orthogonal to each other. The moduli matrix then
reduces to Ti) = iiBi j , with 7, = 2

	

; + a

	

R , and the duality group breaks to
SU2, )'.
The momentum and winding spectrum is characterized by three pairs of momen-

tum and winding numbers (it 1, it,,m ~, in,), . In analogy with the two-dimensional
case one now considers six vector bosons Vi,,,, 1;,, and 18 scalars of the form

i _
a +PV- a . 1 . - i .() + PVi~ . - 1,0, - a )i( (7XjR+ . . .

1

r3 (	-"),-1,-t+PV1. - i .i .0+P
_
VO.' .0.1)i(aXjR+ . . .

The states with labels i are massless at the critical point 7-i,, + p. Thus, the
maximal gauge symmetry is U(1)' (this is also the case for the complete theory
including all nine moduli). Away from the critical points the masses of these states
are

We now construct the effective low-energy action which describes the stringy Higgs
effect for the six-dimensional orbifold compactification . The N = 1 supersymmetric
action of the moduli fields t i j = - l7ij is based on the SU(3, 3)/SU(3) x SUM x
U(1) sigma model [25,271 with Kdhler potential

We also want to include the 18 additional scalars (~ ;j (a = 1, 2, i, j = 1, 2,3) . As in
sect . 3 one has to perform field redefinitions to switch to states with well-defined
U(1) charges . There are in total 27 charge eigenstates s i'j' that are built in analogy
to (2.8) . Their (U(1) x U(1W charges are, as in eq . (2.8), given by the roots a of
SUM: (s ij') ----- a, i = a . In terms of these fields and the six vector bosons V�,, the
effective lagrangian is

K= -logdet(tij +tj

(4.2)

(4 .3)
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It represents a sigma model on the 27 complex dimensional Mähler manifold
SU(3, 9)/SU(3) x SUM x U(1), where the UM' subgroup of SUM3 C: SU(9) is
gauged.
Studying the flat directions of the D-potential and introducing the appropriate

vevs, the gauge boson masses are easily computed and found to be identical to the
CFT result (4.2) . Only six of the 27 bosons can get non-zero masses by the iggs
mechanism. They are given by O°. The masses for the twelve remaining fields
(besides the moduli), 0~ (i 0j), are provided by the superpotential (which is absent
for the two-dimensional orbifold). In fact, the three-point couplings among vertex
operators containing aX;R are only non-vanishing if all fields carry a different
right-moving index i . The field theory superpotential that reproduces the C
three-point couplings is

3
.W- 6EapyEèjk

	

sgsßtj s' ie
1=1

(4.5)

K and W are separately invariant under the transformations (3.4) and (3.9). The
masses which are induced by this superpotential agree with eq. (4.2) if one
redefines the matter fields such as to have canonical kinetic energies .

In summary, if the field t; gets a non-vanishing vev, four complex scalars

	

~j
(1= 1, 2 i 4= j) become massive due to the superpotential, whereas ~� become
massive dug to the Higgs mechanism ; all these masses are equal and agree with the
string model. That six complex bosons become massive for each U(1)2 gauge
symmetry breaking reflects the fact that the untwisted sector can be obtained as a
truncation of an N = 4 supersymmetric theory .

In heterotic compactifications, there are also other marginal deformations
besides the metric and antisymmetric tensor moduli*. These are the Wilson line
backgrounds a. As we will show, in a similar way that the complex ti] moduli are
associated to vevs of the fields si"), the untwisted Wilson line backgrounds are
associated with vevs of matter fields that transform as (3,27)- under an SUM x E6
gauge group (1 = 1, 2,3 is a right-moving index labelling the SUM sublattices). In
the following, we will discuss the stringy Higgs mechanism involving vevs of these
fields . As we will show, the effective description is very similar to what we
discussed in the previous sections . As a general conclusion, one finds that though
at some multicritical point the maximal gauge symmetry of the 713-orbifold is
SUM x E6 x U(1)6 , the generic symmetry is rather just SUM.
We consider first the remainder of the gauge boson spectrum of the heterotic

7 3-orbifold . Before performing the 713 twist, the charged gauge bosons correspond
to 16-dimensional quantized momenta P E TEKXE, with P2 = 2. One can easily

*We restrict ourselves to the untwisted sector ; the moduli in the twisted sector are not moduli of the
orbifold but rather of the underlying conformal field of which the orbifold is a critical point.
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check that these gauge bosons necessarily have vanishing winding numbers n k
Q = L . . - 61 although they may have non-vanishing quantized moments in k . The
mass formula for these gauge bosons is given by

1

	

2
a,), + (1)12

	

J
P,a,)h

_ (112,

	

P

	

1a),(P?z, - Pa2),
2

6

The 96 Wilson line moduli a k (

	

= I,-,Q I = U . . , 16) correspond to marginal
operators of the form C

	

4 M'

	

Inspection of eq. (4.6) shows thatlk = (jX1

	

'Xk- )R*
among the infinitely many states characterized by the momentum numbers Mk'9
there are certain states that are massless if <CA > = 11ak - P, a' = 0 (for given a 1 ) .k

	

k
Thus, zero vevs of the fields Cry define infinitely many critical values for the
Wilson line moduli. Generalized duality transformations [7,8], which belong to

21Q 21 act on the ink and on the Wilson lines a' such that the mass formula isk
invariant .
We now consider the effect of the Z ., twists. They act on the gauge degrees of

freedom by an order-three Weyl rotation of the E,, x E . root lattice . (The standard
embedding through shifts is only possible if the Wilson lines are quantized, i.e . at
the critical points in moduli space where the theory possesses left-moving n = 2
world-sheet supersymmetry . Then one can perform a rebosonization procedure in
analogy to the case discussed at the end a sea. 2.) This was studied in some detail
in refs . 124 191 The gauge embedding of the twist is done by considering the first
three SUM subgroups of E, and performing a simultaneous 120-degrees rotation
of their weight lattices . Only linear combinations of states invariant under that
rotation will survive in the spectrum . Then Z3-invariant gauge bosons will obtain as
follows . The fourth SUM group inside E 8 which is left untouched by the rotation
will of course remain unbroken. There will be six linear combinations of states of
the form ± Ei2=

(1(V L p, 0; 0; 0) and similar combinations with the entries in the
second and third SUM. ± dpi, with i = 0, 1, 2, are (in complex notation) the root
vectors of the SU(3) subgroups . These six linear combinations correspond to
Cartan generators of the unbroken group. Finally there are linear combinations of
the formE;2-�(P'da; Pid

	

= - iV-23 p' (a = 0, 1, 2) are theb; pid, ; O), etc., where the d,,
weights of the 3 representation of SU(3). There are 9 X 8 invariant combinations of
this type which, together with the 8 + 6 generators above, correspond to the gauge
bosons of E 6 x SUM.
We turn to the Z3-invariant matter scalars . Only nine (complex) scalars from the

original 96 oscillator states of the following form survive the -7 3-twist,

CKI = (5XkM8X)R 7

(4k)

(43)
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where the j k (K = 1, 2,3) are the (complex) Carta
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1
three SUM's inside Es which are rotated by the twist .
marginal operators of the Z3-orbifold CFT.

	

e corresponding

	

li are the
Wilson lines aK leading to four-dimensional scalars with arbitrary vev.
the CKj correspond to the singlet fields f~ j ,
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s c

	

r
(aX®)L by (8Xk )L. In addition there are 23

	

matter scalars with vertex
being linear combinations o

	

=ex

	

r
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L
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L

	

x

	

r`
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a )a
linear combinations are characterize by the following combinations f lattice
vectors P: ± y®= 0p'(2 p' ; 0; 0; 0) and similar combinations with the entries i the
second and third SUM. In addition, there are linear combinations of the
1:?=~~P'(P'da ; P'db ; pd,; 0). Altogether, combining with the nine scalars CKi in
(4.7) there are 243 matter fields

	

, that transform under the gau
E6 x SUM as (27, 3); .

Let us now discuss the gauge symmetry pattern in the presence of Wilson line
background fields. To keep the discussion transparent, we consider first only one
Wilson line along the first non-contractable loop of the to

	

s, i.e., CK t = a,'
(note that we are considering the sector with zero internal momentum, m = , a
that PK is a complexified entry of the lattice vector P, PK = (1 / P,K _ t + PZK ))
and CK ,_ 3 = 0. In addition, we restrict ourselves to Wilson lines with only non-
vanishing contributions in the first SUM inside EK, i.e . to symmetry breaking due
to C., = P, a,' . The gauge bosons of the fourth SUM subgroup will of course
remain massless since the Wilson line does not touch them. For the same reason
there are 9 + 9 linear combinations ± E?=(,(0; p'da; - p'di, ; pd,) of massless wind-
ing states . Finally, four of the six linear combinations involving SUM roots
corresponding to the second and third SUM subgroups of E,, will survive.
Altogether there remain 30 generators which can be seen to correspond to an
unbroken SO(8) x U(1)2 gauge group. In the same way one can check that the
untwisted matter fields that stay massless transform as (8� + 8c + 8 s + 1)j under
SON x U(1)2 . Thus, from (3,27)- only 25 x 3 states remain massless. Out of the
168 massive states, 56 states (with K =j = 1) correspond to the Goldstone super-
fields which are swallowed by the Higgs mechanism and fill up the coset E6 x
SUM/SON x U(1)2 . The remaining 112 states become massive in a way that can
be described by a superpotential . This will be discussed below.

If additional Wilson lines are turned on, further symmetry breaking occurs .
Consider, for instance, the more generic case CKj * 0, which means that the
Wilson line in the Kth SUM inside Ex along the ith non-contractable loop of the
torus is non-vanishing. One can easily check that the unbroken gauge group will be
just SU(3), since the fourth subgroup of E,, is untouched by the Weyl rotation as
well as the Wilson lines . We thus see how the gauge symmetry of the standard
-7 3-orbifold is generically just SU(3), and only at a multicritical point is it enlarged
to SUM x E6 ( x U(1)6 if there is further enhancement from the internal sector).
The mass of the gauge bosons, respectively matter fields, due to non-vanishing
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Wilson line

	

is given by (see e+q . (4,6))

We like to give a field theoretical description of the stringy Higgs effect in the
chiral matter sector . The Kahler potential involving the singlet moduli tft as well as
the chiral matter fields , r (27, 3), is given by a gauged sigma model based on the
coset SU(3, 3 + 3 x 27) SU(3) x SLl(84) x Lß(1) [30,3 1],

Note that in order to relate the supergravity matter fields A i to the corresponding
string variables, one has to perform a non-holomorphic field redefinition, A tring =

(t i + i ;) 1 /-' . Note also that the E,, gauge couplings are not compatible with the
SLl(84) symmetry. It is straightforward to determine the flat directions of the
-term potential . These are just given by the nine fields CK®. For only one

non-vanishing vev the surviving gauge symmetry is SON x U(1)'-, just as we found
using string arguments in the previous paragraph. Giving vevs to additional matter
fields, the gauge symmetry breaks further to SUM. The gauge boson masses that
follow from (4.9) are given by

'1a& i = IC
~K

il /6Ri2 ,

_ -logdet[tàj + ij -A à exp( VSU(3) + V Et,
) Ajl .

	

(4.9)

I

	

1Cj2
'"Ki =

ti + t i - ICKi I Z

t string = t SG -	1

	

A .i

	

t

	

i FI

	

t12 .

(4.8)

(4.10)

This is not the same as the string theory formula (4.8) . In fact, the effective field
theory action reproduces the correct string theory mass formula only if we perform
a further non-holomorphic field redefinition*,

* This shift was already discussed in the early days of string compactification [24,321.

This shift is irrelevant for the matter fields that have vanishing vev. Note that the
supergravity field tsG now contains both types of moduli, (R;, Bl} and the Wilson
lines, so the non-compact directions of the underlying Kdhler space are shared by
both types of marginal defogorations . The necessity of this field redefinition car
also be traced back to the behaviour of the backgrounds with respect to duality
transformations . That is, the bilinear anan transforms along with the G + B
background [7,81 as follows :

S :

	

(G +B),t,n + ~a,Kan ~ ((G +B) + -!a KaK)ntt1

	

(4 .12)
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The effective action of the untwisted matter sector also involves
whose cubic part is

W = ~Et .Eij1AriA'njA,,j

5. Conclusions

It gives a mass to e.g. CKa, i = 2,3 when <CK I >

	

0. That three (su

	

r gelds et the
same mass due to the Higgs effect is again a consequence of the truncated N = 4
supersymmetry in the untwisted sector .
To summarize, we want to display the complete effective action of the

	

.;-o
fold that contains all untwisted fields of the theory. The KAhler potential describes
a SU(3, 90)/SU(3) x SU(90) x U(1) sigma model, with additional gauge fields,

su

K(Sj , ij ,si,Âi ) _ -logdet[bij-siexp(Q-Vu('P)sj-Aiexp(Vsu3 )
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ential.

(4.13)

(4.14)

(To obtain this form, one has to redefine the matter fields Aj above. Also, we have
suppressed all gauge indices.) The superpotential is given by the sum of (4.5) and
(4.13). For generic vacuum expectation values, eq. (4.14) describes gauge symmetry
breaking from E6 x SUM x U(1)6 down to SUM.

The stringy Higgs mechanism that takes place in the 7L3-orbifold compactifica-
tion of the heterotic string can perfectly be described by a conventional, gauged
supersymmeri sigma model. This form of the effective action reproduces various
features of the underlying string theory. The appropriate Kdhler manifold is larger
than the usual manifold that describes the geometry- of moduli space.
The symmetry breaking order parameters in the effective field theory corre-

spond to marginal deformations of the underlying conformal field theory . The
fields are related by certain non-linear transformations whose precise form is
dictated by duality symmetries . This aüows for an effective field theory description
that contains only a finite number of fields, despite the fact that duality transfor-
mations mix infinitely many gauge and Higgs bosons in the string model. The price
one has to pay in order to achieve this is that in the effective field theory the
vacuum expectation values are not arbitrary, but are restricted to live in fundamen-
tal domains . In particular, s in eq. (3 .13) can take only values in the image of
( - i),F̂ under the map (3.14) (this applies to the other vacuum expectation values
as well, but the precise forms of the corresponding fundamental domains are not
explicitly known) . Outside these domains, the effective action does not describe
the string spectrum appropriately . This feature of a non-trivial global structure of
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