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We discuss various aspects of the Higgs mechanism that takes place in string theories. by
considering the ” ; heterotic orbifold as a specific example. Some emphasis is put on the duality
invariance of the effective field theorv description.

1. Introduction

The Higgs mechanism provides a consistent field theorectical description of
massive Yang-Mills fields. It is realized also in string theory, as the masses of
certain states depend on continuous background parameters of the internal com-
pact space [1], that is, on the moduli [2] of the corresponding conformal field
theory (CFT). At special (“critical”’) points in moduli space some masses can
actually vanish. In particular, various vector and scalar bosons, though massive at
generic points, can be massless at special points in moduli space. Thus, at these
points, extra gauge symmetries occur. This phenomenon is called the stringy Higgs
effect. We will discuss various aspects of this mechanism, in particular an effective
lagrangian description. This description involves a gauged sigma model with
spontaneous symmetry breaking. It contains just the lightest string degrees of
freedom, namely, in addition to the massless moduli, those fields which can have
arbitrarily small masses (like the weak scale). The other string excitations that have
large masses (like the Planck scale) do not enter the effective lagrangian.
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In general, there are certain discrete transformations, acting in particular on
moduli and also on other ficlds, that leave a CFT invariant. These transformations
constitute the “target space duality” group [3-17]. Duality invariance is a stringy
phenomenon and typically mixes fields with different masses. It imposes, in
principle, constraints on any effective field theory [10, 16). Specifically, the fields
that are involved in the stringy Higgs mechanism mix with infinitely many other
fields under duality transformations. We will discuss how such symmetries can be
reconciled with a field theoretic description of the Higgs effect that involves only a
finite number of fields. We will find that the situation is conceptually similar to
electron bands in a solid.

The simplest and best understood example which displays the stringy Higgs
effect is given by a heterotic compactification on the Z ;-orbifold [18]. This CFT has
just one (complex) modulus 7, and the gauge group that appears at any critical
point 7, is particularly simple and given by U(1) X U(1). The duality group is just
given by the modular group, PSL(2, 7). Furthermore, three copies of this CFT lead
to a semi-realistic, N = 1 supersymmetric heterotic string model that allows for an
easy effective lagrangian description. We will, however, rather first focus on one
copy of this model, as it already displays many interesting features. The generaliza-
tion to six dimensions will then be discussed subsequently.

2. CFT and the Z ;-orbifold

The Z -orbifold model can be described as a two-dimensional torus compactifi-
cation on the root lattice of SU(3), modded out by Z, twists. Two moduli, the
antisymmetric tensor background B and the scale of the lattice R, survive the twist
and can be combined into one complex modulus, 7 = B + iV3 R2. The internal left-
and right-moving momenta p{, =(1/V2 X p}  +ip} r) are then

i N
P = (m,+pm,+7(n,—pn,)), pr=(p)',
\/E(\/E_ST)I/Z 2 i 1 2 L ( L)
]
P = (my+pm,+7(n,—pny)), pr=(pg)’. (2.1)
‘/5(‘/—537)1/2 2 1 1 2 R R

Here, m; and n; are the momentum and winding numbers, respectively, and
p=¢e?™/3 It is easy to determine how duality transformations 7 — (a7 +b)/
(¢t + d), which belong to PSI(2,7) (a,b,c,d € Z, ad — bc = 1), act on the theory.
The conformal dimensions, / = piLpL and h=pgpg, of the winding states only
remain invariant if one simultaneously shifis the winding and momentum numbers.
For the generators of the modular group, S: 7— —1/7 and T: r— 1+ 1, one
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finds [9, 13, 14]
n,—m,—m, ny—n,
ny,—>m iy, ™R
. 2 2 ] 2 2
§: m,—n, ’ T: m,—>m;+n," (2.2)
m2—>n|+n2 ”12""’"2""]
\

These transformations, in spite of leaving A, h invariant, induce a background-
dependent rotation [19] on the momentum vectors p{ x. Therefore, to get invari-
ant vertex operators V, . . m,= e’PLr' XLr (where p-X=p*X +p~X*), one

also has to rotate the torus coordinates X,*y. For a general PSL(2, Z) transforma-
tion one finds

cr+d1"? cr+d1'"?
X > X:,  Xio\ Xz (2.3)

where A is a t-independent phase which depends on the parameters of the
PSL(2, 7Z) transformation: e.g. A =p for ST.

We now discuss the (untwisted) spectrum and the action of the modular group
on the relevant states. First, the (complex) marginal operator dX;dX;, corre-
sponds to the freedom of having the modulus 7 as a free parameter. It creates a
single-particle state, namely a four-dimensional scalar [7) whose mass vanishes for
all backgrounds 7. Its vacuum expectation value {7) takes arbitrary values as a
function of 7. Using (2.3) we deduce that 7 transforms under duality transforma-
tions as

cT+d _ 24
ct+d T (24)

T

The winding and momentum spectrum is generated by Z; twist-invariant combina-
tions of vertex operators V, . ,, ... At any critical point 7. there are certain
states which are massless just at this point (there are infinitely many such critical
points, which are images of 7. = p under PSL(2, Z)). That is, any valid choice of 7,
determines a particular set of labels {n;, m;}, corresponding to massless states.
Taking for example 7.=p, there are massless, four-dimensional space-time vec-

tors*

1
Vo= V_;(Vl.().l.l +V a0t VO.-I.o,-l)(aX”R*l- ),
_ 1
V, = —3(V_|.0.~1.-1 +Vi ot VO.,_(,,,)(&XMR +...). (2.5)

* We denote vertex operators and the corresponding fields by the same symbols. The dots denote
other operators needed for BRS invariance.
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Thus there is an extra U(1) X U(1) gauge symmetry. The left-moving momenta are
the two -invariant combinations of roots of SU(3): the right-moving momenta
vanish. In addition, there are two massless (complex) scalars,

. i _

&' = 7 VMioaa oV i iotoVe Cro 00X 5 +..0),

b* i ¢ Y g P

¢ = ?‘f-”i—l.n.‘a. oV CieteVoa o 0Xg +.00). (2.6)

For arbitrary background parameters the above fields have non-vanishing masses,

i |t —phz

M =pgpr = . (2.7)

V3 +-7F

and two real scalar degrees of freedom may be regarded as longitudinal modes of
the vector bosons.

The fields 7. 6, and &, do not have well-defined charges under the two U(1)
currents. It 1s thus convenient to build linear combinations with definite U(1) X U(1)
charges Q! (i=1.2, @ = 1.2.3),

5|=(!/\/§)(':_d;l“d;*)3 Q,=(v2,0),

52=(1/‘/§)(‘:_l—’d;1‘9<5:): Q3=(—1/v§,\/§),
si=(/V3)7-pd,—5d2):  Q:=(-1/VZ,-V3). (28

The spectrum is anomaly free. The winding states have zero vacuum expectation
value, (é,> =0, due to internal momentum conservation. This implies that all
three fields s, have the same vacuum expectation value, (s ) = (F)/V3.

Under general modular transformations (2.2), the fields (2.5) and (2.6) transform
into different fields, with in general different masses. As the modular orbit length
is infinite, it seems a priori difficult to achieve a duality-invariant effective field
theory with only a finite number of massive fields. However, as any choice of T,
defines a particular set of labels {n;,m,}, we can achieve a reasonable effective
field theory description by considering fields which formally depend on 7., Instead
of {n;, m;}. That means 7, must transform under general modular transformations
like 7.—>(ar.+b)/(cT,+d), as this is equivalent to transforming the labels
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{n,,m,). Using (2.3) the scalars &, then transform as

(5.5) A cF+d)"? _[ar+b ar. +b )
T T) = . . 2
e cr+d Ner+d ¢ +d (29)

whereas the vectors V(7,7.) are inert. The mass formula. valid for any given
choice of =, is

M’ =pipg = (2.10)

It is invariant under modular transformations.

At any critical point. 7 = 7, one can “re-bosonize” [20-22] the coordinates by
writing id X;* =(1/V3)E_exp(tie- ¥, ) (+e are the six root vectors of SU(3). In
this new basis, the vertex operators for the massless fields s, are simply the
exponentials of the bosons Y, s, =e'*"taXy. It follows then from internal
momentum conservation that all ficlds must have zero vacuum expectation values,
(#(7.)) =0. Moreover, since exponentials create states normalized to one.
the corresponding kinetic terms in the effective action must be canonical at all
critical points. Finally, adopting the above basis, it can easily be shown that all
three fields s, transform with the same Z,-phase under the particular modular
transformation that fixes a given 7. (e.g. ST for 7_=p). Thus, at the critical
point, this duality transformation acts just like the finite gauge transformation

s, — exp{dil(1/3v2)Q + (1/V6)Q2Ds,, [91.

3. Effective lagrangian description

We start by considering only one copy of the Z,-orbifold. The usual four-
dimensional N =1 supergravity action for the modulus superfield ¢ is the
SU(1, 1) /U(1) non-linear sigma model with Kéhler potential*

K(t,t) = —log(t+1). (3.1)

It can be derived, for example, from string theory by computing [23] the Zamolod-
chikov metric g,; = 1/(t +1)> =(8? /3t d1)K(z,1), or by truncating the ten-dimen-
sional supergravity action [24,25]. It is crucial to realize that the “standard”
supergravity field ¢ cannot be identified with the string field t’String that is created

* From here on we will follow supergravity conventions and use the variable tly-o= —i7 = V3R -
2iB. We will use ¢ to denote both the superfield and its lowest component.
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by the marginal operator dXy 8Xy. It does not transform under duality transfor-
mations as in (2.4) but rather as

at —ib
f—

. 3.2
ict +d (3.2)

(This leaves (3.1) invariant up to a Kihler transformation, 4K = 2loglict +d|.) In
addition. {t) =1,= —ir, at the critical point in contrast to {7 ;,.> = 0. To relate
the two fields let us first perform a holomorphic field redefinition,

. t.—1
t(t,t.)= e (3.3)

<

which under simultancous PSL(2, 7) transformations of ¢ and ¢, transforms with a
constant, background-independent phase,

. —ict . +d\ .
—)(——)t. (3.4)

ict.+d

To arrive at the string basis we have to perform the additional non-holomorphic
field redefinition
tstring = (

The field 7, does indeed transform as 7 in (2.4).
Let us now include the two scalar fields ¢, ,. As they behave like ordinary
matter fields with metric 84,3,= 9 ;/(t + 1) [26], they enter the Kahler potential as

| ==t

+1\_ .-t 3s
f= < . .
+1 i+1, (3:5)

K= —log(t+i—|d>,|2—|d>2|2). (3.6)

This describes a sigma model on the Kihler manifold SU(3,1)/SU(3) X U(1). In
order for K to be invariant (up to irrelevant Kihler transformations) under

PSL(2,7) duality transformations (3.2), the fields ¢, have to transform with
modular weight minus one,

A
ict +d

;- o, (3.7)

where A is a field-independent phase. Thus, the fields ¢; do not have the correct
modular transformation behaviour to be identified with the string fields ¢, dis-
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cussed earlier. In addition, the above form of the effective action is not suitable for
including gauge fields, since it is nct manifestly gauge invariant. To achieve this,
(3.3) must be accompanied by a holomorphic field redefinition of the & *.

. t.+1,
1 ‘stslc = —_—— i .
Bl bitit) = S (38)
which transforms as
o —ici_+d )" .
. —> —_— A
¢ ict.+d é:- (39)
The Kihler potential then reads
K = —log(1 - (171 +16,I* +1,1%)) (3.10)

up to a Kihier transformation. It is completely invariant under the duality
transformation (3.4) and (3.9) which is equivalent to transforming ¢, ¢; and 7.
simultaneously. Under usual PSL(2, 7) transformations acting only on ¢ and ¢, it
is invariant up to a Kihler transformation. The corresponding metric leads to a
canonical kinetic term for 7 near the critical point, where #(z.) = 0. Note also that
(3.10) is manifestly SU(3) X U(1) invariant. Both features are in accordance with
the considerations of the last paragraph of sect. 2. Actually, linear SU(3) X U(1)
invariance combined with the SU(1,1)/U(1) coset structure implies as complete
coset structure SU(1,3)/SU(3) X U(1). This justifies (3.6) a posteriori.

Replacing f and d; by the charge eigenstates s, in eq. (2.8), the Kahler potential
can easily be made gauge invariant by including gauge superfields Vi for the
U(1) X U(1) subgroup of SU(3),

2
K= —!og[l - i 5, exp( Y Q;V")sa]. (3.11)

=1 i=1

In order for K to transform properly under PSL(2, Z), the vector fields have to be
invariant under modular transformations. Note that under the modular transfor-
mation that fixes the given choice of ¢, the fields 7, ¢; and thus s, transform with
a common Z , phase that can be interpreted as a discrete gauge transformation. All
this is in agreement with what we have discussed in sect. 2.

*To switce from the supergravity to the string basis, one has to perform a non- -holomorphic field
redefinition: qb“"'"g— ./ + 2. d)“""g then transforms under modular transformations as in
(2.9) provided that one identifies the phases in (2.9) and (3.7).
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The D-terms D' = IzﬂQf,s where Ifﬂ =31\;/6sa =5,/Y with Y= e"‘;ﬂw;o, are

a®

2 (31 2 2
D=1/ 5 S(Is:l =lsi). (3.12)

Unbroken N = 1 space-time supersymmetry thus implies that the vacuum expecta-
tion values of the three fields s, are identical,

(57 =(8,) =(s3) =s5. (3.13)

The undetermined parameter s describes a single flat direction of the D-term
potential. This agrees with our conclusions in sect. 2 (cf. eq. (2.8)), if we make the
following identification between field theory vev and string theory background
fields:

s(R.B) = %f((t)EﬁRz—ZiB,tc). (3.14)

We now study the Higgs mechanism within the effective field theory. The mass
matrix for the two U(1) gauge bosons can be read off from the covariant kinetic
energy terms for the scalars s, mj; = K, 504,045,355 Here, K5 =0K /35,5, is
the Kéhler metric on SU(3, 1)/SU(3) X U(1). Explicitly we obtain, using egs. (3.13),
(2.8) and (3.14),

=12 2
|71 lt — ¢

-

2 = = - —5..,
o=t (i) +i) Y

(3.15)

in agreement with the modular invariant conformal field theory formula (2.10). It
is interesting to observe that (2.10) anticipates, in a sense, the structure of the
Kéhler potential, as it involves a factor 1/Y ~ ek

Note that so far we had to restrict the parameter range to some fundamental
region (which depends on the particular choice of ¢_ in eq. (3.14)). Specifically, for
t.=(—i)p, the modulus must be restricted to t € (—i).7 , where*

F={rlreH*, ~1<Rr <0, with |7|> 1 for -1 <Rr<0,
and |7+ 1> 1for —1<Rr< -1}, (3.16)

* This fundamental domain contains only one neighbourhood of a critical point, in contrast to the
usual fundamental domain, which has two distinct regions that are arbitrarily close to some 7.
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Otherwise, outside this region, our effective action would not be appropriate. as
there exist then other fields with lower masses, which are not taken care of. On the
other hand, certainly ail backgrounds ¢ € (—i)H* are allowed. We thus seek an
effective action that is equivalent to (3.11) in each of the infinitely manv modular
copies of 7 in H*. Effective actions that display such “periodic™ behaviour by
means of modular functions have been discussed in refs. [10,16]. It turns out,
however, that for our situation there does not exist an easy. smooth description in
terms of modular functions. Rather, denoting eq. (3.11) {together with a choice of
t. in eq. (3.14) by K (1), a lagrangian that is duality invariant and appropriate for
all t €(—i)H"* can be obtained by defining patchwise

K(t) =K, __in (1), ifte(=i)7,, (3.17)

where .;%y denotes the copy of 7 under vy € PSL(2. 7). To give this an interpreta-
tion in familiar terms, let us fix R>=R¢/v3 =1/2. Then the mass spectrum
depends only on B= — %31‘ and can be described by infinitely many shifted,
intersecting parabolas m?(B) = 15(1 + 6i + 4B)?, i€ Z. This is much like free
electron dispersion relations in a solid. Duality invariance under y =T corre-
sponds to lattice periodicity and (3.16) to the first Brillouin zone. Our prescription
(3.17) amounts to including only the lowest “energy band™ in the effective theory.
The field theory vacuum expectation value, s, becomes a ““periodic” (but non-
smooth) function of the string background, and can take values only in the image
of .7 under the map (3.14) [up to a phase (3.4) that is induced by modular
transformations]. Though (3.17) is defined for all background values r € (—i)H ™, it
does not give a good description at the boundary where any two “Brillouin zones™
jy,jy. meet, and level crossing occurs. At these lines, the particle spectrum is

degenerate, and our description misses certain states*.

4. Heterotic compactification on the six-dimensional Z ;-orbifold

The discussion of the previous sections generalizes in a straightforward way to
the compactification of the heterotic string on the six-dimensional Z;-orbifold.
This model is obtained as three copies of the two-dimensional Z;-orbifold where
the Z, twist acts simultaneously on the three complex coordinates X, X; =X,
(i=1,....3)as X, > e’™/? X,

* Brief inspection suggests, however, that at the one-loop level there occur direct mixings between
degenerate states. This can happen as the internal momenta are not conserved in the twisted
sectors. Only certain Z ;-invariant combinations of the momentum and winding quantum numbers
are. The mixings correspond to D-terms in the effective theory. One therefore expects that. similar
to the situation in a solid, the degeneracies at the boundaries of the *Brillouin zones™ are lifted by
loop effects, and disconnected bands appear. Thus, including loop corrections, it makes conceptu-
ally perfect sense to define an effective action that describes only the lowest, periodic and
presumably smooth “band”.
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We will first focus on the nine (complex) marginal operators of the form
Ty = X, aX ;r With the nine corresponding moduli 7;; describing the metric (three
radii and six angles) and antisymmetric tensor degrees of freedom. The duality
group that acts on the moduli 7;; has been conjectured [16] to be SU(3,3; Z). For
simplicity, we will set the off-diagonal moduli to particular, fixed values such that
the three SU(3) root-lattices are orthogonal to each other. The moduli matrix then
reduces to 7;=1;9,;, with 7,=2B,+ iV3R?, and the duality group breaks to
SL(2,2)°.

The momentum and winding spectrum is characterized by three pairs of momen-
tum and winding numbers (n,, n,,m,,m,),. In analogy with the two-dimensional

case one now considers six vector bosons V,, V and 18 scalars of the form

-

1
fb};: :/g—(VLﬂLLI +pV—l.L‘l.()+p—V0.—l.().—l)i(anR+ cer)s

o _
&;= "/?(V—l.u.—l.—l oV ot AV000)i(0XGR +.00). (4.1)

The states with labels i are massless at the critical point 7, +p. Thus, the
maximal gauge symmetry is U(1)® (this is also the case for the complete theory

including all nine moduli). Away from the critical points the masses of these states
are

i |r,—p {2
nr =ml=—

y ol (4.2)

We now construct the effective low-energy action which describes the stringy Higgs
effect for the six-dimensional orbifold compactification. The N = 1 supersymmetric
action of the moduli fields ¢;; = ~ir;; is based on the SU(3,3)/SU(3) x SU@B3) x
U(1) sigma model [25,27] with Kihler potential

K= —logdet(s; +1;). (4.3)

We also want to include the 18 additional scalars ¢ (a=1,2,i,j=1,2,3). As in
sect. 3 one has to perform field redefinitions to sw1tch to states with well-defined
U(1) charges. There are in total 27 charge eigenstates s;; that are built in analogy
to (2.8). Their (U(1) X U(1))* charges are, as in eq. (2. 8) given by the roots o of

SUQ): 0(s7) =@, ;= a. In terms of these fields and the six vector bosons vV, the
effective lagranglan is

3
K= —logdet|5;~ ) Stiexp(Qu k" Vi) sk |- (4.4)
=1

a, k=
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It represents a sigma model on the 27 complex dimensional Kihler manifold
SU(3,9)/SU3) x SU(9) x U(1), where the U(1)® subgroup of SU(3)? c SU(9) is
gauged.

Studying the flat directions of the D-potential and introducing the appropriate
vevs, the gauge boson masses are easily computed and found to be identical to the
CFT result (4.2). Only six of the 27 bosons can get non-zero masses by the Higgs
mechanism. They are given by ¢¢. The masses for the twelve remaining fields
(besides the moduli), ¢} (i # j), are provided by the superpotential (which is absent
for the two-dimensional orbifold). In fact, the three-point couplings among vertex
operators containing dX;; are only non-vanishing if all fields carry a different
right-moving index i. The field theory superpotential that reproduces the CFT
three-point couplings is

3
= 1 v
W = g€op,€iix Y s;’;sﬁsl;.\, . (4.5)
=1

K and W are separately invariant under the transformations (3.4) and (3.9). The
masses which are induced by this superpotential agree with eq. (4.2) if one
redefines the matter fields such as to have canonical kinetic energies.

In summary, if the field 7, gets a non-vanishing vev, four complex scalars d;f,
(I=1,2 i+j) become massive due to the superpotential, whereas d;ﬂi become
massive duc to the Higgs mechanism,; all these masses are equal and agree with the
string model. That six complex bosons become massive for each U(1)* gauge
symmetry breaking reflects the fact that the untwisted sector can be obtained as a
truncation of an N = 4 supersymmetric theory.

In heterotic compactifications, there are also other marginal deformations
besides the metric and antisymmetric tensor moduli*. These are the Wilson line
backgrounds a. As we will show, in a similar way that the complex #;; moduli are
associated to vevs of the fields s}, the untwisted Wilson line backgrounds are
associated with vevs of matter fields that transform as (3,27), under an SUQ3) X E,,
gauge group (j = 1,2,3 is a right-moving index labelling the SU(3) sublattices). In
the following, we will discuss the stringy Higgs mechanism involving vevs of these
fields. As we will show, the effective description is very similar to what we
discussed in the previous sections. As a general conclusion, one finds that though
at some multicritical point the maximal gauge symmetry of the Z;-orbifold is
SU3) X E, X U(1)%, the generic symmetry is rather just SU(3).

We consider first the remainder of the gauge boson spectrum of the heterotic
Z ;-orbifold. Before performing the Z twist, the charged gauge bosons correspond
to 16-dimensional quantized momenta P €I , g with P?>=2. One can easily

* We restrict ourselves to the untwisted sector; the moduli in the twisted sector are not moduli of the
orbifold but rather of the underlying conformal field of which the orbifold is a critical point.



446 L. Ibanez et al. 7/ Stringv Higgs effect

check that these gauge bosons necessarily have vanishing winding numbers n,
(k = 1.....6). although they may have non-vanishing quantized momenta m,. The
mass formula for these gauge bosons is given by

pi 3 (m,-Pal)+(m,y- P,al); - (m, — P,a!) (m,— P,at),
2 6R? '

(4.6)

The 96 Wilson line moduli @ (k=1,...,6,1=1,...,16) correspond to marginal
operators of the form C, =(3X,)(8X,)g. Inspection of eq. (4.6) shows that
among the infinitely many states characterized by the momentum numbers m,,
there are certain states that are massless if (C,,) =m, — P,aj = 0 (for given a}).
Thus, zero vevs of the fields C,; define infinitely many critical values for the
Wilson line moduli. Generalized duality transformations [7,8), which belong to
0(22.6: 2). act on the m; and on the Wilson lines @/ such that the mass formula is
invariant.

We now consider the effect of the Z, twists. They act on the gauge degrees of
freedom by an order-three Weyl rotation of the E; X E; root lattice. (The standard
embedding through shifts is only possible if the Wilson lines are quantized, i.e. at
the critical points in moduli space where the theory possesses left-moving n = 2
world-sheet supersymmetry. Then one can perform a rebosonization procedure in
analogy to the case discussed at the end of sect. 2.) This was studied in some detail
in refs. [28,29]. The gauge embedding of the twist is done by considering the first
three SU(3) subgroups of E; and performing a simultaneous 120-degrees rotation
of their weight lattices. Only linear combinations of states invariant under that
rotation will survive in the spectrum. Then Z ;-invariant gauge bosons will obtain as
follows. The fourth SU(3) group inside E; which is left untouched by the rotation
will of course remain unbroken. There will be six linear combinations of states of
the form +¥?_(vV2p',0;0;0) and similar combinations with the entries in the
second and third SU3). + v2p', with i =0, 1,2, are (in complex notation) the root
vectors of the SU(3) subgroups. These six linear combinations correspond to
Cartan generators of the unbroken group. Finally there are linear combinations of
the form I7_ (p'd ; p'd,; p'd ; 0), etc., where the d, = —i\/gp" (a =0,1,2) are the
weights of the 3 representation of SU(3). There are 9 X 8 invariant combinations of

this type which, together with the 8 + 6 generators above, correspond to the gauge
bosons of E, X SU(3).

W¢ turn to the Z;-invariant matter scalars. Only nine (complex) scalars from the

original 96 oscillator states of the following form survive the Z,-twist,

Cxi= (5XI’()L(aXi)R ’ (4.7)
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where the dX;; (K = 1,2,3) are the (complex) Cartan subalgebra generators of the
three SUQ3)’s inside E, which are rotated by the twist. These are nine additional
marginal operators of the Z,-orbifold CFT. The corresponding moduli are the
Wilson lines aX leading to four-dimensional scalars with arbitrary vev. Note that
the Cy; correspond to the singlet fields 7;; j» by replacing the torus coordinate
(9X,) by (3X),. In addition there are 234 matter scalars with vertex operators
being linear combinations of V= exp(iP-X| +ip, - X, Jexplipy - Xg)aX,s. The
linear combinations are characterized by the following combinations of lattice
vectors P: +¥2_p'(V2p';0;0;0) and similar combinations with the entries in the
second and third SU(3). In addition, there are linear combinations of the form
Xi_op'(p'd,; p'dy; p'd 5 0). Altogether, combining with the nine scalars Cy,; in eq.
(4.7) there are 243 matter fields A, that transform under the gauge group
Eq X SUQ3) as (27, 3),.

Let us now discuss the gauge symmetry pattern in the presence of Wilson line
background fields. To keep the discussion transparent, we consider first oniy one
Wilson line along the first non-contractable loop of the torus, i.e., Cy, =alP,. # 0
(note that we are considering the sector with zero internal momentum, m = 0, and
that P, is a complexified entry of the lattice vector P, Py =(1/V2 X P.x_, +iP,;))
and Cg, ;=0. In addition, we restrict ourselves to Wilson lines with only non-
vanishing contributions in the first SU(3) inside E,, i.e. to symmetry breaking due
to C,, = P,a}. The gauge bosons of the fourth SU(3) subgroup will of course
remain massless since the Wilson line does not touch them. For the sanie reason
there are 9 + 9 linear combinations +X7_(0; p'd; — p'd,; p'd_) of massless wind-
ing states. Finally, four of the six linear combinations involving SU(3) roots
corresponding to the second and third SU(3) subgroups of E, will survive.
Altogether there remain 30 generators which can be seen to correspond to an
unbroken SO(8) X U(1)? gauge group. In the same way one can check that the
untwisted matter fields that stay massless transform as (8, + 8_+ 8, + l) under
SO(8) x U(1)>. Thus, from (3, 27); only 25 X 3 states remain massless Out of the
168 massive states, 56 states (wnth K =j=1) correspond to the Goldstone super-
fields which are swallowed by the Higgs mechanism and fill up the coset E, X
SU(3)/SO(8) X U(1)?. The remaining 112 states become massive in a way that can
be described by a superpotential. This will be discussed below.

If additional Wilson lines are turned on, further symmetry breaking occurs.
Consider, for instance, the more generic case Cy; # 0, which means that the
Wilson line in the Kth SU(3) inside E; along the ith non-contractable loop of the
torus is non-vanishing. One can easily check that the unbroken gauge group will be
just SU(3), since the fourth subgroup of E is untouched by the Weyl rotation as
well as the Wilson lines. We thus see how the gauge symmetry of the standard
Z s-orbifold is generically just SU(3), and only at a multicritical point is it enlarged
to SU3) X E, (X U(1)® if there is further enhancement from the internal sector).
The mass of the gauge bosons, respectively matter fields, due to non-vanishing



348 L. Ibanez et al. / Stringy Higgs effect

Wilson line aX is given by (see eq. (4.6))
my, =|C,I>/6R2. (4.8)

We like to give a field theoretical description of the stringy Higgs effect in the
chiral matter sector. The Kahler potential involving the singlet moduli t;; as well as
the chiral matter fields A; ~ (27, 3); is given by a gauged sigma model based on the
coset SUB.3+3x%x27)/ SU(B) X SU(84) x U(1) [30,31],

= —logdet[tij +1,; — A, exp(VSUD + P Ee) A].] . (49)

Note that in order to relate the supergravity matter fields A, to the corresponding
string variables, one has to perform a non-holomorphic field redefinition, 45" =
A;/(1; +1)'72, Note also that the E, gauge couplings are not compatible with the
SU(84) symmetry. It is straightforward to determine the flat directions of the
D-term potential. These are just given by the nine fields Cy;. For only one
non-vanishing vev the surviving gauge symmetry is SO(8) X U(1)?, just as we found
using string arguments in the previous paragraph. Giving vevs to additional matter

ficlds. the gauge symmetry breaks further to SU(3). The gauge boson masses that
follow from (4.9) are given by

2
ICril®
- 2 .
t,' + t; - ICKil

2
my, =

(4.10)

This is not the same as the string theory formula (4.8). In fact, the effective field
theory action reproduces the correct string theory mass formula only if we perform
a further non-holomorphic field redefinition*,

tf‘ri"g=t,-SG— %Z|A'_|2_ (4.11)

This shift is irrelevant for the matter fields that have vanishing vev. Note that the
supergravity field +5¢ now contains both types of moduli, {R;, B;} and the Wilson
lines, so the non-compact directions of the underlying Kihler space are shared by
both types of marginal deformations. The necessity of this field redefinition can
also be traced back to the behaviour of the backgrounds with respect to duality
transformations. That is, the bilinear aXaX transforms along with the G + B
background [7, 8] as follows:

S: (G +B),,, + }akaX > ((G +B) + ta¥a¥) . (4.12)

* This shift was already discussed in the early days of string compactification [24, 32).
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The effective action of the untwisted matter sector also involves a superpotential.
whose cubic part is

W= %Glmneij'lEAliAmjAnE . (4.13)

It gives a mass to e.g. Cy;, I = 2,3 when (Cy,) # 0. That three (super)fields get the
same mass due to the Higgs effect is again a consequence of the truncated N =4
supersymmetry in the untwisted sector.

To summarize, we want to display the complete effective action of the Z,-orbi-
fold that contains all untwisted fields of the theory. The Kihler potential describes
a SU(3,90)/SU(3) x SU(90) x U(1) sigma model, with additional gauge fields,

If(si, A5, fi) = —logdet[cS,j —5;exp(Q - VUM)s, -—AT,iexp( ysu 4 VEf')A-i} .

(4.14)

(To obtain this form, one has to redefine the matter fields 4 ; above. Also, we have
suppressed all gauge indices.) The superpotential is given by the sum of (4.5) and
(4.13). For generic vacuum expectation values, eq. (4.14) describes gauge symmetry
breaking from E¢ X SU(3) X U(1)® down to SU(3).

5. Conclusions

The stringy Higgs mechanism that takes place in the Z;-orbifold compactifica-
tion of the heterotic string can perfectly be described by a conventional, gauged
supersymmetric sigma model. This form of the effective action reproduces various
features of the underlying string theory. The appropriate Kihler manifold is larger
than the usual manifold that describes the geometry of moduli space.

The symmetry breaking order parameters in the effective field theory corre-
spond to marginal deformations of the underlying conformal field theory. The
fields are related by certain non-linear transformations whose precise form is
dictated by duality symmetries. This aiiows for an effective field theory description
that contains only a finite number of fields, despite the fact that duality transfor-
mations mix infinitely many gauge and Higgs bosons in the string model. The price
one has to pay in order to achieve this is that in the effective field theory the
vacuum expectation values are not arbitrary, but are restricted to live in fundamen-
tal domains. In particular, s in eq. (3.13) can take only values in the image of
(—i)% under the map (3.14) (this applies to the other vacuum expectation values
as well, but the precise forms of the corresponding fundamental domains are not
explicitly known). Outside these domains, the effective action does not describe
the string spectrum appropriately. This feature of a non-trivial global structure of
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parameter space is the main difference between the effective actions described
here and conventional supersymmetric unified theories.

We thank S. Ferrara and J. Lauer for useful discussions.
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