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The nonlinear evolution equations for Yukawa coupling matrices are discussed in the context of the standard, double Higgs and 
supersymmetric model of electroweak interactions. In each case, even in the presence of a very heavy top quark the approximate 
analytical solutions for the nonlinear evolution of masses and mixing angles are found. Comparison of the analytical approach 
with numerical solutions confirm the excellent validity of the approximation. Some possible further applications of the developed 
method are suggested. 

The renormalization group (RG)  equations pro- 
vide an elegant and extremely useful tool for the study 
of  grand unified theories (GUT ' s ) .  Also, the pattern 
o f  masses and coupling parameters in the standard 
model might be explainable through the renormali- 
zation group flow of  these parameters. Studying the 
experimental values of  the gauge couplings with these 
ideas in mind typically leads to high unification scales 
Mx of  the order o f  10 ~5 GeV. Predictions like 
mb/m~,,~ 3 are consequences o f  the linearized RG 
equations for Yukawa couplings [ I ]. As long as only 
light quarks ( <  50 GeV) are considered lineariza- 
tion is a good approximation. But meanwhile heavy 
quarks seem to be realistic and therefore the nonlin- 
earities become important.  Up to now the full prob- 
lem for an arbitrary number  o f  generations is 
unsolved. There exist numerical studies for different 
quantities [ 2 ] and analytical solutions for some spe- 
cial problems [ 3 ]. 

In a recent paper [4] we have given analytical so- 
lutions for masses and mixing angles for the stan- 
dard model (SM) with three generations. Here we 
extend our considerations to the case o f  the double 
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Higgs ( D H M )  [ 5 ] and supersymmetric model (SU- 
SYM) [6] o f  electroweak interactions. As previ- 
ously we construct approximate analytical solutions 
for masses and mixing angles. 

Since the method adopted here depends only on 
some coefficients which define the beta functions of  
the R G  equations one can in fact generalize this ap- 
proach to any theory with an analogous form of  the 
beta functions. The solutions allow a discussion of  
the evolution o f  low energy parameters to arbitrary 
high scales varying not only unknown parameters but 
also the model. The possible structure o f  solutions is 
indeed much easier than expected from recent nu- 
merical simulations [ 7 ]. This is because the analyt- 
ical solutions depend systematically only on special 
combinations o f  input parameters, a fact not  easy to 
extract f rom numerical solutions. 

The one-loop R G  equations for Yukawa couplings 
are generally written as [ 8 ] 

-- 16r~ 2 d M v ( t ) / d t  

= [Gv(t )  - Tv(t)  - S v ( t ) ] M v ( t ) ,  (1) 

where Y = U, D, N, E stands for the corresponding 
quarks and leptons, respectively. 

My contains mass-matrices normalized in terms 
of  vacuum expectation values vi. In the standard 
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model v - 1 7 5  GeV defines the strength of the di- 
mensionless elements in My. The other two models 
considered here have two VEV's related by 
v~ + v~ = v 2. v~ = rv 2 and v] = (1 - r) v 2 with a free pa- 
rameter r. In the following, we fix r at the phenom- 
enologically possible value ½. (r close to 1 or 0 is 
excluded since then strong Higgs processes would 
show up in low-energy experiments.) 

Gv contains the effective gauge coupling terms. As 
the one-loop r-function for the gauge couplings are 
decoupled they can be solved independently. In gen- 
eral we have 

3 
Gv = Z K ~ g ~ ( t ) ,  (2) 

i = 1  

with the solution for g~(t): 

g~(t)  =g~(0)/[ 1 -g~(O,c,t]. (3, 

For the three models considered here the coefficients 
K(z and ci are given in tables 1 and 2 (N is the num- 
ber of generations). 

In eq. (1) Tv denotes trace terms: 

Tu =Trace(  3 M u M ~  + 3 a M D M  + 

+ M N M ~  + a M z M ~  ) , (4)  

To = Trace(3aMuM~ + 3MDM3 

+ a M N M ~  + M E M  + ) , (5) 

T N = T u ,  T E = T D ,  (6) 

a are numbers given in table 3. The last term in eq. 
(1) isSv.  

Table 1 
K~ for SM, DHM and for SUSYM. 

Model Y i 

1 2 3 

SM, DHM U 17 9 ~ 8 
D fi  -94 8 
N ~ ~ o 
E ~ 9 0 

SUSYM U 13 16 y 3 -y 
D -79 3 '4 
N 1 3 0 
E 3 3 0 

Table 2 
c, coefficients in units of l /8n 2. 

Model i 

1 2 3 

SM 2o ~ 4 43 4 N -  11 -~ N+ g 3 N -  T 
DHM 20 t * 4 y N +  ~ ~ N -  7 ~ N -  11 
SUSYM -~N+ 1 2 N - 5  2 N - 9  

Su=~(bMuM~j  +cMDM[,  ) ,  

SD=3(bMDM3,  + c M u M + ) ,  

SE =3 ( bMEM+ +CMNM~ ) , 

a N  ~ 3 + ~(bMNM~ +CMEM~ ) . 

(7) 

(8 )  

(9) 

(10) 

In table 3 the numbers a, b, c are given for the three 
models considered. 

At this point we specialize to N =  3 and make the 
approximation where all contributions to Tv and Sv 
are due to a heavy top quark. With this approxi- 
mation we get 

T u = T N ~ - 3 ~ ,  TD=TE~- -3a~ ,  (11) 

S v ~ - 3 b ~ E 3 ,  S D ' 3 c ~ E 3 ,  SE=SN---0,  (12) 

E l  3 = 0 . ( 1 3 )  

0 

Before we write down the solutions of  eq. (1) with 
the above approximation we define 

12 

O~v(tl,  t2) = e x p (  - -  1 - - - ~  2 1  f G v ( Z )  d * ) ,  

II 

I2 

fl(tt.t2)=exP(l~-~fg((z)dz ) . (14, 
II 

Table 3 
a, b and c of  eqs. ( 7 ) -  (10) for the models considered. 

Model a b c 

SM 1 1 - 1 
DHM 0 1 
SUSYM 0 2 
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Note that av  and fl are not always identical to O~v 
and fl in ref. [ 4 ] as the coefficients K§, ci and a, b, 
c depend on the model. 

Applying the same method as in ref. [4] we solve 
eq. (1) for small mixing angles and arbitrary phase. 
The solutions are 

gb(tx) =OgDfla+c/2N/l +A2Lb gb(tz) , 

gs.d(tx) =Otofla~/1 +32Ls.d g~.a(tz), 

g,(tx) = ottjfl(h+ z)/2 gt( tz) , 

gu,c( tx) =auflg,.c( tz) , 

ge.,., ( tx) = OtEflage.,., ( tz) , 

gv ........ (tx) =o~Nflgv ........ ( tz ) .  (15) 

Here the L are model independent and therefore 
identical to the quantities defined in ref. [4]: 

Lb = (1 - - 2 3 - ' ) I f l  2 , 

L~ = --Lb/(1 +z~2Zb) , 

Ld = 0 ,  (16) 

where ~ = l - - f l  -c/2. [f[2= {02+0/3ei612 is the only 
relevant mixing angle dependence. 

To leading order in small quantities the evolved 
mixing angles are 

01(tx) =01(tz) + O ( 3 ) ,  

02(tx) = 02(tz)fl -c/z + O ( 2 ) ,  

03(tx) =03(tz) fl-c/2 + 0 ( 2 )  , 

8(tx) =8( tz)  + 0 ( 2 ) ,  (17) 

where the orders of the next corrections are indi- 
cated by O(...). To summarize the results we note 
that the model specifications enter in four ways: 

(a) through a modified gauge evolution (coeffi- 
cients ci in eq. (3)); 

(b) through a modified contribution of the gauge 
couplings to the evolution of Yukawa couplings 
(coefficients K v in eq. (2) and in c~v ofeq.  (14)); 

(c) through a modified fl, depending on all 
coefficients; 

(d) through a dependence of the solution s eqs. ( 15 ) 
on powers of fl given by the coefficients a, b and c. 

For a quantitative discussion we evaluate fl now 
numerically. By solving eq. (14) otv is given analyt- 
ically through 

t2 

f gZ(z) d z = -  
t l  

l l n (1 -g~(O)c ,  t2 ) 
Ci 1--g2(O)Citl " 

(18) 

Note that 0 < Cry ~ 1 and fl t> 1. 
It turns out that our approximate analytical so- 

lutions are so precise that we can present them, within 
resolution, together with the numerical solutions, by 
one curve only. Therefore the whole discussion of 
results will be performed in the language of the an- 
alytical solutions. Since in the presence of the heavy 
top quark the Yukawa couplings (as being propor- 
tional to mass) play a crucial role, some remarks 
concerning Higgs corrections to the Yukawa cou- 
plings of the neutral scalars are in order here. As we 
work in the mass-independent renormalization 
scheme (or in the ultraviolet limit) all masses can be 
neglected. Therefore in each considered model one 
observes cancellation of vertex corrections induced 
by real and imaginary parts of the neutral compo- 
nents of the Higgs doublets. This is a simple con- 
sequence of the additional factor 'i '  which appears in 
couplings of imaginary parts to fermions. As can be 
easily checked the same cancellation does not occur 
in corrections to external legs since gvg + always ap- 
pears and contributions from real and imaginary 
parts enter with the same sign. The next remark con- 
cerns the charged Higgs contributions to vertex cor- 
rections. Since in the SUSYM and DHM each quark 
doublet couples to only one of the Higgs doublets 
(this is automatic in the SUSYM and arranged such 
as to avoid flavour changing neutral currents 
(FCNC) in the DHM) it is easy to see that in these 
models there are no virtual charged scalars in vertex 
corrections - the exchange of a charged Higgs in- 
duces in a loop a fermion of different charge to which 
an external neutral scalar does not couple. 

As we learn from eqs. (15)-(17) the most trans- 
parent difference between the SM and SUSYM or 
DHM consists of the fact that in the former the pa- 
rameter c is negative whereas in SUSYM and DHM 
c is positive. This fact explains why the heavy top 
effects are smaller for gb than for gd and gs in the SM 
(additional negative power of fl + c/2 _ see eq. (15)). 
Since we have c> 0 for SUSYM and DHM we ob- 
serve in these cases an opposite behaviour (fig. la). 
As is seen from our solutions, the sign of c is also re- 
sponsible for a different evolution of mixing angles 
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Fig. 1. The result of  the evolution for the (a) up-type (b) down- 
type and (c) the Kobayashi-Maskawa mixing angles 0r as a func- 
tion of  mr. The end points of  each curve correspond to the pole 
in the evolution of  g,. The solid, dotted and dashed lines corre- 
spond to the standard, double Higgs and supersymmetric model 
of  the weak interactions, respectively. 

(tig. lc) - in the SM a heavy top increases 02/3(Mx) 
whereas in the other models it leads to a decrease. 
Let us try to find the source of these differences. 
Looking at individual diagrams one easily notices 
that fermion loops (contributing to Tv) and correc- 
tions to the external quark legs have the same sign 
and cause increasing heavy top effects. Only vertex 
corrections with a virtual charged scalar enter with 
an opposite (negative) sign. However as we recall 
these diagrams appear only in the SM. It turns out 
that in this case they are dominant and result in c < 0. 
As these diagrams are absent in the other cases we 
have c> 0 in the SUSYM and DHM. 

The positive sign of c is a direct consequence of 
natural suppression of FCNC in models where such 
currents could in principle appear (DHM). The fact 
that for SUSYM c (and also b) is twice the value in 
the DH model reflects the new contributions coming 
from superpartners of ordinary particles appearing 
in loops (external quark-leg corrections). 

In fig. lb we present the results for the evolution 
of the up-type Yukawa couplings. As we see heavy 
top effects are bigger for gt than for gu and go. In terms 
of our solutions it is the result of a positive b (for all 
considered models). Such a behaviour is clear as only 
neutral scalars can produce heavy top effects in the 
evolution of gt and as we already know these con- 
tributions enter always with the same positive sign. 
It is remarkable that the behaviour of g, and gc are 
exactly the same (as was predicted by our solutions 
eq. (15)) - the small intergeneration mixing is re- 
sponsible for this effect (the same is also true for the 
evolution of the down-type Yukawa couplings). 
Comparing figs. la and lb it is seen that the heavy 
top effects are smaller in the case of gb than gt. It is 
related to the fact that in the case of gb we observe 
a kind of destructive interference between diagrams 
contributing to the trace Tv and those which give Sv 
in the beta function of eq. (1). Also in this case it is 
related to the presence of the vertex corrections from 
charged scalars for gb which enter with a negative 
sign. As we explained, such diagrams do not appear 
for gr- 

In fig. lc we also see how precisely our analytical 
solutions work; all predictions (eqs. (17) for 
O~(Mx/Oi(Mz) are satisfied - no evolution of 0~ and 
exactly the same behaviour for 02 and 03. The fol- 
lowing remark is in order here. As we know from ex- 
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Fig. 2. The running of the lepton Yukawa couplings as a function 
of m,. The end points and the labelling of the curves is as in fig. 
1. 

per iments  02 and 0 3 a re  small  angles. It is easy to 
unders tand the peculiar  conservation of  0~ just  in the 
l imit  o f  02/3-* 0 namely  f rom the general solut ion for 
the down type sector (eqs. (11), (12))  we see that  
wi thout  any addi t iona l  approx imat ion  we get an ex- 
act conservat ion o f  the K - M  matr ix  ([E3, 
U•_M(tZ)] = 0), which means that  0~ (Mx)  = 01 (Mz)  
and 6 ( M x ) =  6 (Mz) .  The last qual i ta t ive  predic t ion  
is in fact consistent  with our  systematic  expansion 
(eq. (17)) ,  as should be since we have t reated the 
mixing angles as small  quanti t ies.  

For  completeness,  in fig. 2 we present  also the re- 
sult for the evolut ion o f  leptons. As ind ica ted  by our 
equat ions the behav iour  o f  e, ~t and  x is exactly the 
same since heavy top effects energy enter  only 
through the trace T (eqs. (6) ,  (9) ,  (10))  producing  
an universal factor for all families. Let us remark  that  
due to the ment ioned  cancel lat ion the running o f  
leptons in even bigger than for gb coupling. Addi-  
t ionally the QCD suppression is not  acting on leptons. 

To summarize ,  we have found very precise ana-  
lytical s i tuat ions o f  the R G  equat ions for Yukawa 

coupling matrices.  Our  solutions, having a s imple 
form allow easily to answer quest ions about  nonlin-  
ear  evolut ion o f  masses and mixing angles between 
arbi t rary  scales in the s tandard,  double  Higgs and su- 
persymmetr ic  model  o f  electroweak interactions. The 
method  adopted  here is general enough to be appl ied  
to other  models  with a s imilar  structure o f  the beta  
function. A possible appl ica t ion  o f  our  approach  
consists most ly  in a s impl i f ied  construct ion o f  the- 
ories of  grand unificat ion.  Our  formulas  can be used 
to put  strong constraints  on a par t icular  GUT.  The 
restr ict ions are pa ramet r ized  by mt and also by some 
not  precisely measured  low-energy quant i t ies  like 
light quark masses or some mixing angles. The re- 
maining  degrees o f  f reedom would ei ther  allow to 
match the condi t ions  or  rule out  the model.  An op- 
posite appl ica t ion  is certainly also possible. Assum- 
ing some embedding  scenario one can obta in  some 
informat ion about  the parameters  o f  the evolut ion 
(mr .... ) fit t ing high-energy predic t ions  to low-energy 
exper imenta l  data. 
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