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ANTI-DE SITTER SPACE AT FINITE TEMPERATURE
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We consider a conformally invanant scalar field at finite temperature 1n anti-de Sitter space, and find the symmetric two-point
function. Since 1t 1s meromorphic and 1t has both a real-time and imaginary-time periodicity, 1t 1s an elliptic functron. From it,
the expectation values of ¢? and the stress—energy tensor are calculated exactly, and then compared to a Tolman-redshifted radia-
tron gas, and to Page’s “optical” approximation The total energy of the radiation 1s finite.

1. Introduction. Anti-de Sitter space (ADS) is a hyperbolic sheet with topology S' X R?* [1]. It is a maximally
symmetric spacetime with constant negative curvature, which arises naturally in gauged supergravity theories,
and whose properties have been extensively studied [2-4].

This paper considers the effects of filling the spacetime with a gas of thermal radiation. In effect the field is
coupled to an 1imaginary “external’ heat bath and then allowed to come to equilibrium.

ADS contains closed timelike curves and 1s not globally hyperbolic. For the latter reason one must impose
boundary conditions at spatial infinity in order to solve the Cauchy problem [2]. These boundary conditions
are also required by supersymmetry [3]. They have the effect of reflecting any flux of energy-momentum that
reaches spatial infinity back into the space. Thus these boundary conditions conserve energy by preventing
escape across the timelike infinity. There are two possible choices of these reflecting boundary conditions, here
called Neumann (N) and Dirichlet (D).

Because of the boundary conditions, ADS acts like a perfectly reflecting box, and can be filled with a radiation
gas [4]. In equilibrium, the local temperature of this radiation is proportional, via the Tolman relation, to
(goo) ~'"? [5]. This has the effect of breaking anti-de Sitter invariance: the location of the imaginary heat bath
singles out a prefered center in the spacetime. In this way SO(2,3) invariance 1s broken to SO(2) XSO(3) by
the presence of the temperature.

For a bosonic field 1n equilibrium at temperature T=1/8, the n-point correlation functions are pertodic in
imaginary time, with period if [6]. Now ADS space 1s already periodic in real time. Thus the correlation
functions, considered as complex functions in the complex-time plane are doubly periodic. This fact permits
one to find the two-point symmetric function with virtually no effort. This 1s because it is an elliptic function,
and 1s thus completely determined once its two periods are known, and the locations and residues of its poles
in one fundamental cell are specified (see fig. 1) [7]. In section 2 we use this technique to find the symmetric
two-point function for a conformally invariant scalar field ¢.

The symmetric two-point function contains all the information about the non-interacting quantum field. In
particular, the stress—energy tensor can be found from it. Essentially it is determined by the short-distance
behavior of the propagator. In section 3, we find the stress—energy tensor in this way. We then compare it to the
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fourth power of the local “Tolman” temperature. In section four, we obtain a finite expression for the total
energy by integrating the energy density 7% over a spatial surface. This result can also be obtained directly
from the partition function of the radiation.

2. The symmetric two-point function. In this section, we use the double-periodicity of the two-point function
to express it as an elliptic function.
The metric of ADS is [1]

ds?=a~?% sec?p [ —dt? +dp* +sin?p (d6% +sin?6 de?)], 2.1)

where a is a constant, and the coordinate ranges are te ] —oo, +oo[, pel0, 7], 0€[0, n] and ¢ [0, 27]. We use
the curvature conventions of ref. [1], and set i=k=c=1. The Ricci tensor is R,,= —3a°g,.
For zero temperature, the propagator for a conformally invariant scalar field obeying (~ 1+ $R)¢=0is [2]

DV (x, x')=(#(x)p(x") +¢(x)@(x)> =~ [a*/(27)*1[(1-Z) ' £ (1+Z)~']. (2.2)
Here the O(2,3) invariant biscalar function Z(x, x’) is

__cos(f—t') —sinpsinp’ cos £

Z V= , .
(x, x") ©03 p 08 p’ (2.3)

where

cos 2=cos 0 cos 8’ +sin @ sin 8’ cos(g—¢'). (2.4)

Since Z is a function of 7=¢—¢', we will write (2.3) as Z(1; p, p’; Q). Note also that Z(t+7; —p, p’; Q)=
—Z(t;5p,p'5 82).

In formula (2.2), and elsewhere in this paper, the upper sign refers to Dirichlet boundary conditions, and the
lower sign to Neumann boundary conditions [2,3]. These boundary conditions are also called, respectively,
regular and irregular boundary conditions.

If we now demand that the point p=0 be held at temperature T=1/8 the propagator becomes periodic in
a~ 't with period if. Thus letting G§" denote the finite temperature propagator, we find

Gi0(x, ') = - [a*/(22)?115(5; p, p') £ st + 15 —p, p)], (2.5)
where
(Ep )= 3L [1-Z(c+iahnpp' D). (2.6)

The function J, is a doubly periodic function of the complex variable 7 and we will now show that 1t is an
elliptic function [7].
The periodicity properties of J; are as follows:

(1) Je(m30,p)=Jds(z+2m,p,p"),

(2) Js(t;p,p")=Jp(t+iaB; p, p'),

as can be easily seen from (2.3) and (2.6). Property (1) reflects the real-time periodicity of ADS, and property
(2) is due to the thermal imaginary-time periodicity. Within a fundamental cell shown in fig. | (—7<Ret<n
and —ap/2 <Im1<af/2), the function J; has two poles of opposite strength. The poles are located at = 1,
where

n(p, p’; Q)=cos~"'[cos p cos p’ +sin p sin p’ cos 2], (2.7)

and they have residues tcos p cos p’ csc 5, respectively. The function J; is meromorphic in the complex t-
plane and is thus an elliptic function.
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Q|
T=—N [ =47 Re1
-
x x x x x x x x Fig 1. Fundamental cell in the complex 7-plane. The propagator
1s a doubly periodic elliptic function, with two poles 1n 1ts fun-
- damental cell, at 7=t #. The real-time periodicity of the space-
time provides the real period, the thermal heat bath at temperature
B~ provides the imaginary period

From a fundamental theorem of elliptic functions (see p. 474 of ref. [7]) such a function is completely
determined by its two periods and the locations and strengths of its poles in a fundamental cell. Thus we find

Jg(15p,p") = (c0s p cos p'/sin 7)[(d/d7) In 6,(§(7—1n), exp(—1aB)) — (d/d7) In 6, (3 (7 +n), exp(—1ap))].
(2.8)

Here 8,(Z, q) is an elliptic theta function as defined in ref. [ 7]. A useful formula for it is
(d/dZyIn 0,(Z, q)=cot Z+4 Y (g~*—1)~"sin 2kZ. (2.9)
k=1

There 1s in addition an additive constant in (2.8), which can be set to zero. We can now use (2.5), (2.7), (2.8)
and (2.9) to find the following form for the propagator:

2

D(tp o Ne— -2 | (1_z)-1+ oy
Gi(t;p.p': Q)= 2m)? [(1 Z)- t(1+2)
= (sinkn(p,p'; Q) L Smkn(—p, p'; .Q)) cos kt ]
—4 o3 (SR P ) ke . .
cospeose k;(sinn(p,p’;ﬂ) (=1 sinn(—p, p'; Q) / exp(kap) —1 (2.10)

It is easy to see that the zero-temperature limit §— oo reduces to the correct function (2.2), and that the flat-
space limit at finite temperature is also correct.

3. {@?) and the stress tensor. Now that the exact form of the symmetric function G}’ is known, it is straight-
forward to calculate the expectation value of ¢2(x), the expectation value of the stress tensor 7°°(x) and the
total energy, which is the integral of the energy density over a spacelike surface.

To do this, we will utilise the Hadamard development of the symmetric function G§". It can be put in the
form

G§) =(2n)"2 (4 Ia+ W), (3.1)

where o is one-half the square of the geodesic distance and 4 1s the Van Vleck determinant. In ADS they are
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o(x,x')=6R"[cos~! Z(x, x)]? (3.2)
and

4= (3Ra)¥? csc®(3Ro) 2. (3.3)
The symmetric biscalar W(x, x') can be developed in a short distance expansion of the form

W(x, x)=w(x)—iw(x)o?+iwu(x)ea? +..., (3.4)
where

w(x) = iini Wx, x'), w.x)=0(x)a wau(x)= ){,imx W(x, x') ab- (3.5)

If w and w,, are known, then the expectation values of ¢* and the stress tensor 7 are given in ADS by the
following formulae [8,9]:

(P*>=(87%)"'w, (3.6)

<Tab>=(8n2)_l[—(wab_%gabwcc) +(_T]IgabD+%V avb+ %azgab)w‘foa“gab]‘ (37)

One can now calculate these quantities from the exact two-point function which we have found in the previous
section.

To express w,, and (T,,> in a geometric form, one can introduce unit length timelike and radial vector
fields, which we call #* and p° respectively. They are given 1n coordinates (¢, p, 8, @) of the metric (2.1) by

t,=a"'secp(1,0,0,0), p,=a'secp(0,1,0,0), (3.8)

and are normalised so that 7,t°= —1 and p,p°=1.
Using the formula for G§" (2.10) and the above definitions, we find after a long and tedious calculation,
that @ and w,, are given by

w=a*{[}+4 cos’p fi(af)] £ [~ 4+2 cotp So(aB, p)]} (3.9)
and

wa=a*{[— 195+ $(cos’p—3) cos’p fi(aB) — § cos*p f3(aB)]18us
+[~% cos*p fi(aB) — £ cos*p f3(aP)] taty + (2 5in2p £1(aB)] pups}
ta*{[i—1 cotpcsc’p(l+2sin’p)So(ap, p) +cot’p Ci(aB, p)] gas

+ [~ cotpesc?p So(ap, p) +cot’pcos 2p C,(aB, p) —2 cot p cos?p Sy(aB, p)] tats

+[3 cotp csc®p So(ap, p) —cot’p(2 sin’p+3)C (aB, p) —2 cot p cos’p S,(aB, p)] pups}- (3.10)
The functions f,,, S,, and C,, are given by the following formulae:
fu(X)= ¥ n™(e™~1)"", (3.11a)
Smx,p)= 3 n7(~1)"(e™ —1)~" sin 2np, (3.11b)
n=1
C..(x,p)= E n"(=1)"(e™~—1)""! cos 2np. (3.11¢)

n=1
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Now using the Hadamard definitions (3.6) and (3.7) of the expectation values of ¢ and the stress-energy
tensor, we find

($*>=a*(8n%) " "{[1+4 cos’pfi(af)] £ [—}++2cotp Se(aB, p)]}, (3.12)

and

(T =a*(8n%)~'{[ —tho + 3 cos*p f3(aB)] gar + [ cos*p f3(aB)] tats}
*Ta*(8n%) ' {[—4 csc?p cos 2p Sp(ap, p) + 1§ cotp Ci(aP, p) + 1 cos’p S,(aB, p)] &as
+[4(3—cot?p) So(ap, p) +cot p(1—3 cos?p) C(ap, p)+2 cos’p Sx(aB, p)] tats

+[$(3 csc’p—4) So(ap, p) +cotp (3 sin’p—1) Ci(aB, p) —3 cos’p Sy(aB, p)] pups}. (3.13)

As before the upper sign is with Dirichlet (regular) boundary conditions, and the lower sign 1s with Neumann
(irregular) boundary conditions. Before continuing, we note that the stress tensor consists of a zero-tempera-
ture trace anomaly, which is proportional to the metric and 1s independent of the boundary conditions, and of
a temperature-dependent part which vanishes at low temperatures and dominates at high temperatures.

We now examine several limits, in particular the limits p—0 and p— {x and the limits # -0 and f—co.

In the limit p=0 we find that the stress tensor becomes

(T (p=0)=—(a*/9607°) ga, + (a*/167%) A(aB)(gap +41215), (3.14)

where

Ax) = 3 (e =1)~'n[3n2 £ (=1)"2n2+1)]. (3.15)
n=1

Note that the termal structure of the stress tensor at p=0. The temperature dependent contribution is propor-
tional to the radiation stress tensor (—3, 1, 1, 1).

In the limit p=l# (spatial infinity) the stress—energy tensor reduces to the trace-anomaly term. It is easy to
understand why the thermal part vanishes. It 1s because the redshift 1s infinite at p= 1z and thus any quanta
that manage to get all the way out to spatial infinity have zero energy upon their arrival. Because the thermal
part of the stress-energy tensor vanishes at spatial infinity, it is clear that there can be no flux of
energy-momentum across spatial infinity, the “box” does not leak!

In the low-temperature limit - oo the series that appear in {7, ) are well approximated by their first terms.
Hence

4

a
<Tab>ﬂ:'°°'_Wgab- (3.16)

Thus only the trace anomaly survives in the zero-temperature limit.
Finally in the high-temperature limit # -0 * one can use the Mellin transform

[ 1@ )= (9es) (3.17)
0
to approximate f;. The sums S, and C, can be approximated also and give, up to exponentially small terms of

the form e~ /2,

SolaB, p) = (n/2aB)[(cosh Z)/sinh Z—-1/Z],
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C\(aB, p) = - (n/aB)*(1/sinh?Z - 1/Z?),

Sy(aB, p) = —(n/aB)*[(cosh Z)/sinh*Z—1/Z3], (3.18)

where we have introduced the variable Z= (2n/aB)(p—4n). Note that it is only when Z is of order 1 that S,
(for example) is of order 8 ~?; otherwise S, is small. For Z to be of order 1, p must be close to n/2 —fa. Thus at
high temperature these “boundary terms™ only contribute very close to spatial infinity. Nevertheless because
the volume of a spatial surface is infinite, we will see shortly that the boundary terms still contribute a term of
order 3 to the total energy.

Thus at high temperature, the stress—energy tensor takes the approximate form

(T =~ (a*/9607m?) gup+ d5m> B~ *[gap +41,1,] cOs*p

3
) :] (gab+31atb "papb)- (319)

T hnag-? cos’p I:cosh[(Zn/aB)(p—én)] ( af

sinp | sinh*[(27/aB)(p—3n)]  \2n(p—inm)

This formula is interesting for two reasons. First, notice that the boundary terms are of odd order in -}, as is
to be expected from the contribution of boundary terms to the asymptotic form of the heat kernel [10]. Second
the leading term proportional to 8~ is exactly what would be expected from the Tolman formula [5] discussed
in the introduction. That relation 1s

T (p)/TL(0) = [8.(0)/gu(p)]"?, (3.20)

where T (p) is the local temperature at radial distance p. The term in (3.19) proportional to §~* corresponds
to a local energy density 47227 (p)* - exactly what one would expect from the Tolman relation.

4. The total energy. In the previous section we found an exact expression for the stress—energy tensor < T, .
One now easily calculates the total energy at temperature !,

E(B)= f TK, d%,. (4.1)

Here K, is the timelike Killing vector (normalized to unit length at the “heat source” located at p=0) and d%,
1s the volume element of the spacelike surface t=constant,

K,=(cosp)'t,, (4.2)

dZ, =a3t,(cos p)~* sin’p sin 8 dp 46 dg. (4.3)

Because the trace anomaly gives an infinite contribution to the energy integral, one must compare the energy at
two different temperatures, by calculating E(8) — E(oo). This is the purely thermal part of the energy density,
in which the vacuum energy (zero-point energy) has been left out.

To calculate the energy one substitutes the stress—energy tensor (3.10) into the integral (4.1). Because of the
spherical symmetry, the integral over the angular variables 8, ¢ gives 4n. The remaining integrals over p can all

be reduced (via integration by parts) to the basic integral
n/2
j sin p sin 2np

cosp dp=—}n(-1)", n=>1L (4.4)

One thus obtains the simply result

E(B)—E(c0)=a 2 1n2(nT 1) [exp(aBn)—1]-". (4.5)
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We will now show that this result can also be obtained 1n a much simpler way, with a partition function.
The energy levels for the two reflecting boundary conditions are given in ref. [2]. They are

E, =a(2n+1+2) Durichlet, (4.6a)

E,..=a(2n+[1+1) Neumann. (4.6b)
Here the quantum numbers 7, m, / take the values
n=0,1,2,.. 1=0,1,2,.., m=—1 .. +1 (4.7)

Using the method of Allen and Davis [11] one can easily show that the partition function Z[f] is
InZ[pl=— ) In[l—exp(—pE,.)]=— bZ 1k(kF 1) In[1—exp(—apk)]. (4.8)
nm,i =1

Thus the total energy E= — (3/d8)In Z is exactly the same as in the previous calculation (4.5). (Note that the
zero-point energy is automatically excluded from the definition of the partition function (4.8). This is explained
inref. [12].) The properties of the partition function are discussed in more detail in ref. [13].

5. Conclusion. In this paper, the double periodicity of the propagator at finite temperature in ADS was exploited
to find an exact formula for it in terms of elliptic functions. This permitted an exact evaluation of the finite-
temperature stress—energy tensor 7,,. At high temperature, the stress tensor 1s the sum of a trace anomaly and
a term proportional to the fourth power of the local temperature. Our work gives a more refined description of
a heat bath in ADS than that originally given 1n ref. [4].

One might wonder if the Page approximation [14,15] to 7, is exact as is the case in de Sitter space. Unfor-
tunately it 1s not. Page’s formula reproduces the correct result a zero temperature only 1f 7 is given the imagi-
nary value 7= (27n) ~'(34) "2 At finite temperature the Page formula gives a non-real result. However, Page’s
method can probably be modified as discussed 1n ref. [15], by adding the contributions from multiple spatial
geodesics. This would probably give the high-temperature limit of the “direct” term of our calculations, i.e., the
average of the Neumann/Dirichlet results. However, this approximation could not be expected to reproduce
the boundary-condition dependent terms, because it relies on the Schwinger-DeWitt expansion which is purely
local.
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