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We consider a conformally lnvarlant scalar field at fimte temperature m ant~-de Sitter space, and find the symmemc two-point 
function. Since ~t xs meromorph~c and it has both a real-t~me and imaginary-time peno&c,ty, it ~s an elliptic function. From it, 
the expectation values of~ 2 and the stress-energy tensor are calculated exactly, and then compared to a Tolman-redshlfted radm- 
t~on gas, and to Page's "optical" approximation The total energy of the radmtxon is finite. 

1. Introduction. Anti-de Sitter space (ADS) is a hyperbolic sheet with topology S ~ × R s [ 1 ]. It is a maximally 
symmetric spacetime with constant negative curvature, which arises naturally in gauged supergravity theories, 
and whose properties have been extensively studied [ 2 -4  ]. 

This paper considers the effects o f  filling the spacetime with a gas o f  thermal radiation. In effect the field is 
coupled to an imaginary "external" heat bath and then allowed to come to equilibrium. 

ADS contains closed timelike curves and ts not globally hyperbolic. For  the latter reason one must impose 
boundary conditions at spatial infinity in order to solve the Cauchy problem [ 2 ]. These boundary  conditions 
are also required by supersymmetry [ 3 ]. They have the effect o f  reflecting any flux of  ene rgy-momentum that 
reaches spatial infinity back into the space. Thus these boundary  conditions conserve energy by preventing 
escape across the timelike infinity. There are two possible choices o f  these reflecting boundary conditions, here 
called Neumann  (N)  and Dirichlet (D) .  

Because o f  the boundary conditions, ADS acts like a perfectly reflecting box, and can be filled with a ra&ation 
gas [ 4 ]. In equilibrmm, the local temperature o f  this radiation is proportional, via the Tolman relation, to 
(goo) -~/2 [ 5 ]. This has the effect o f  breaking anti-de Sitter invariance: the location o f  the imaginary heat bath 
singles out a prefered center in the spacetime. In this way SO (2,3) mvariance is broken to SO (2) × SO (3) by 
the presence o f  the temperature. 

For a bosonic field in equilibrium at temperature T =  1/fl, the n-point correlation functions are periodic m 
imaginary time, with period ifl [ 6]. Now ADS space ~s already periodic in real time. Thus the correlation 
functions, considered as complex functions in the complex-time plane are doubly periodic. This fact permits 
one to find the two-point symmetric function with virtually no effort. This is because it is an elliptic function, 
and ~s thus completely determined once its two periods are known, and the locations and residues o f  its poles 
in one fundamental  cell are specified (see fig. 1 ) [ 7 ]. In section 2 we use this technique to find the symmetric 
two-point function for a conformally invariant scalar field ~. 

The symmetric two-point function contains all the information about the non-interacting quantum field. In 
particular, the stress-energy tensor can be found from it. Essentially it is determined by the short-distance 
behavior o f  the propagator. In section 3, we find the stress-energy tensor in this way. We then compare it to the 
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fourth power of  the local " T o l m a n "  temperature.  In section four, we obtain a finite expression for the total 
energy by integrating the energy density T°o over  a spatial surface. This result can also be obtained directly 
f rom the part i t ion function of  the radiation. 

2. The symmetrzc two-point function. In this section, we use the double-periodicity of  the two-point  function 
to express it as an elliptic function. 

The metric of  ADS is [ 1 ] 

ds 2 = a - E  secEp [ _ d t  2 +dpE+ sinEp (d0 2 + sine 0 d(oE)], (2.1) 

where a is a constant,  and the coordinate ranges are t~ ] - ~ ,  +oo[ ,  pe  [0, 7t], 0~[0, rt] and ~0~ [0, 2n].  We use 
the curvature conventions of  ref. [ 1 ], and set h = k =  c =  1. The Ricci tensor is R a b  = - -  3a Egab .  

For zero temperature,  the propagator  for a conformally invariant  scalar field obeying ( - [] + ~ R ) ~ = 0  is [2] 

D~)(x, x') = ((b(x)(b(x') +~)(x')fb(x) ) = - [aE/(2rt)E] [(1 - - Z )  -1 +_ (1 + Z )  -~ ]. (2.2) 

Here the 0 ( 2 , 3 )  invariant  biscalar function Z(x, x') is 

cos ( t -  t ' )  - sin p sin p '  cos ~2 
Z(x,x ' )= , (2.3) 

cos p cos p '  

where 

cos IE=cos 0 cos 0' +s in  0 sin O' c o s ( ~ - ~ ' ) .  (2.4) 

Since Z is a function o f z = t - t ' ,  we will write (2.3) as Z ( r ;  p, p ' ;  I2), Note  also that Z ( z + n ;  - p ,  p ' ;  I 2 ) =  
-Z(z;p ,p ' ;  IE). 

In formula (2.2),  and elsewhere in this paper, the upper  sign refers to Dirichlet boundary  conditions, and the 
lower sign to N e u m a n n  boundary  conditions [2,3 ]. These boundary  conditions are also called, respectively, 
regular and irregular boundary  conditions. 

I f  we now demand  that  the point  p=O be held at temperature  T= 1/~ the propagator  becomes periodic in 
a -  ~z with period ifl. Thus letting G~ ~) denote the finite temperature  propagator,  we find 

G~(x ,  x') = - [aE/(2rt)  2] [Jp(z;  p, p ' )  + J p ( z  +Tr; - p ,  p ' ) ] ,  (2.5) 

where 

q-oo 

Ja(z;p,p')= ~ [1-Z(z+iafln;p,p';IE)] -~ (2.6) 
n :  --oo 

The function Jp is a doubly periodic function of  the complex variable z and we will now show that  it is an 
elliptic function [ 7 ]. 

The periodicity properties of  Ja are as follows: 

(1) Jp(r;p,p')=Ja(z+2n,p,p'), 

(2)  Jp(z;p,p')=Jp(z +iafl;p,p'), 

as can be easily seen f rom (2.3) and (2.6).  Property (1) reflects the real-time periodicity of  ADS, and property 
(2)  is due to the thermal  imaginary-t ime periodicity. Within a fundamental  cell shown in fig. 1 ( - n < Rez  < 
and - a~/2 < Im z < a~/2), the function Jp has two poles of  opposite strength. The poles are located at z = + r/, 
where 

r/(p, p ' ;  I2) = cos -  ~ [ cos p cos p' + sin p sin p '  cos rE], ( 2.7 ) 

and they have residues + cos p cos p '  csc r/, respectively. The function Jp is meromorph ic  in the complex r- 
plane and is thus an elliptic function. 
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Fig 1. Fundamental cell m the complex z-plane. The propagator 
is a doubly periodic elhptlc function, with two poles m its fun- 
damental cell, at r = _+ 0. The real-time penodloty of the space- 
txme provides the real penod, the thermal heat bath at temperature 
fl- ~ provides the imaginary period 

From a fundamental  theorem of  elliptic funcnons (see p. 474 of  ref. [7])  such a function is completely 
determined by its two periods and the locations and strengths o f  as  poles m a fundamental  cell. Thus we find 

J~(z; p,p') = (cosp  cos p ' /s in ~/)[(d/dz) In 0~(½ ( ~ -  ~/), exp( - ½aft)) - (d/dr)  In 0,(½ ( r  +~/), exp( - ½aft))]. 

(2.8) 

Here 02 (Z, q) is an elhptic theta function as defined in ref. [ 7 ]. A useful formula for it is 

(d /dZ)  In OI(Z, q)=cot Z + 4  ~ (q -2k_  1)-J  sin 2kZ. (2.9) 
k = l  

There is in addition an additive constant in (2.8),  which can be set to zero. We can now use (2.5), (2.7), (2.8) 
and (2.9) to find the following form for the propagator: 

GJ'>(z;p,p'; .Q)=- (2~t)2 ( 1 - Z ) - '  _+ (l + Z ) - '  

sm kq( - p ,  p ' ;  g2) "~ cos kr  -] -4cospcosp '  ~, ( , s inkq (p ,p '_ ; .Q)+ ( - I )  k • . (2.10) 
k=, \ sin r/(p, p ' ;  12) - s~m ~(--~-,  y ~  ~ ) exp (--k~afl) - 1 _J ' 

It is easy to see that the zero-temperature limit f l - ~  reduces to the correct function (2.2), and that the flat- 
space limit at finite temperature is also correct. 

3. (02)  and the stress tensor. Now that the exact form of  the symmetric function G~ ~) is known, it is straight- 
forward to calculate the expectation value o f  ¢2(x) ,  the expectation value o f  the stress tensor Tab(x) and the 
total energy, which is the integral o f  the energy density over a spacelike surface. 

To do this, we will utilise the Hadamard  development o f  the symmetnc  function G~ '). It can be put in the 
form 

G~ l) = (27t) -2 (31/2/o'+ W) , (3.1) 

where a is one-half the square o f  the geodesic distance and ,J is the Van Vleck determinant.  In ADS they are 
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a(x, x') = 6 R - I  [cos -1 Z(x,  x')]  2 

and 

,4= (~;Ro-) 3/2 C S C 3 ( ~ R a )  1/2. 
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(3.2) 

(3.3) 
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f , , ( x )=  ~ nm(e"Z-1)  -1, (3.11a) 
n ~ l  

Sm(x,p)= ~ n ' ( - 1 ) " ( e " X - 1 )  -I  sin2np, (3 . l i b )  

C,,,(x,p)= ~ nm(-1 )~(e~X-1)  -1 cos2np. (3.11c) 

The symmetric biscalar W(x, x') can be developed in a short distance expansion of the form 

W(X, x') =w( x )  - l Wa(X)a'a + ½Wab(x)a'aa 'b +.. . ,  (3.4) 

where 

to (x )=  lim W(x,x ' ) ,  toa(X)=to(X).~,, toab(X)= lim W(X,X'),ab. (3.5) 
x' ~ x  x' ~ x  

If to and Wab are known, then the expectation values of ¢2 and the stress tensor T '~b are given in ADS by the 
following formulae [ 8,9 ]: 

( ~ 2 )  = ( 8 n 2 ) - -  I O'), (3.6) 

( T~b ) ---- ( 81t 2) - t [  _ (toab -- ½g~bWc ~) + ( -- -~g~br~ + ~V ~V b + laEgab)to -- ~oa4gab]. (3.7) 

One can now calculate these quantities from the exact two-point function which we have found in the previous 
section. 

To express tomb and (Tab) in a geometric form, one can introduce unit length timelike and radial vector 
fields, which we call t ~ and p~ respectively. They are given m coordinates (t, p, 0, ~0) of the metric (2.1) by 

ta=a - l  secp(1,0,O,O),  p~=a -1 s e c p ( 0 , 1 , 0 , 0 ) ,  (3.8) 

and are normalised so that t~t ~ = - 1 and pap ~ = 1. 
Using the formula for G~ 1) (2.10) and the above definitions, we find after a long and tedious calculation, 

that to and toab are given by 

to =a2{ [-~ +4 cos2pfi(afl)] + [ - l  +2  cot p So( aft, p)]} (3.9) 

and 

(4) ab = a 4 { [ _ ~ + ] ( cosEp__ 3 ) c o s E p  fi (aft) - ~ cos4p f3 (aft) ] gab 

+ [ - ~  cos4pfi(aft) - ~  cos4pf3(afl)] tatb+ [2 sinE2pf~(aft)] PaPb} 

+-a4{[¼--1 cotp cscEp( 1+2 sinEp)So(afl, P)+Cot2pCt(aft, P)] gab 

+ [ _ l cot p csc 2p So (aft, p) + cot 2 p cos 2p Ct (aft, p) - 2 cot p cosEp Sz ( aft, p) ] ta tb 

+ [2 cotp cscEp So(aft, p) --cotEp(2 sin2p+ 3)CI (aft, p) - 2  cotp cosEp S2(aft, p)] PaPb}. (3.10) 

The functions fro, Sm and Cm are given by the following formulae: 
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Now using the Hadamard defimtions (3.6) and (3.7) of  the expectation values of ¢2 and the stress-energy 
tensor, we find 

(¢2)  =a2(8z~2)-,  {[] + 4  cos2pf(afl)] + [ - ½ + 2  cot p So( aft, p)]}, (3.12) 

and 

( Tab ) =a4(  8It 2) -1 { [ _ l-~ + ] cos4pf3(aft)] gab + [ ~ Cos4pA(aft)] tatb} 

+ a4(8~2) -1 { [ _ ~ csc2p cos 2p So(aft, p) + ] cot p C 1 (aft, p) "31- 3 ~ Cos2p 32 (aft, p)] gab 

+ [ ~ ( 3 - cot 2p) So ( aft, p) + cot p ( 1 - ] cos2p) C1 ( aft, p) + 2 cosZp $2 ( aft, p) ] t~ tb 

+ [~ (3 cscZp-  4) So(aft, p) +cot  p ( ] sinZp - 1 ) C, (aft, p) - ] cos2p S2(afl, p)] PaPb}. (3.13) 

AS before the upper sign is with Dirichlet (regular) boundary conditions, and the lower sign is with Neumann 
(irregular) boundary conditions. Before continuing, we note that the stress tensor consists of  a zero-tempera- 
ture trace anomaly, which is proportional to the metric and is independent of  the boundary conditions, and of 
a temperature-dependent part which vanishes at low temperatures and dominates at high temperatures. 

We now examine several limits, in particular the limits p ~  0 and p o  ½ n and the limits ft ~ 0 and ft--, ~ .  
In the limit p =  0 we find that the stress tensor becomes 

( Tab ) ( p = 0 )  = -- (a4/960zc 2) gab + (a4/16rC 2) A(afl)(gab + 4ta tb), (3.14) 

where 

A ( x ) =  ~ ( e X - 1 ) - ' n [ 3 n Z + ( - 1 ) " ( 2 n 2 + l ) ] .  (3.15) 
n=l  

Note that the termal structure of  the stress tensor at p =  0. The temperature dependent contribution is propor- 
tional to the radiation stress tensor ( - 3, 1, 1, 1 ). 

In the limit p =  ½n (spatial infinity) the stress-energy tensor reduces to the trace-anomaly term. It is easy to 
understand why the thermal part vanishes. It is because the redshift is infinite at p =  ½zc and thus any quanta 
that manage to get all the way out to spatial infinity have zero energy upon their arrival. Because the thermal 
part of  the stress-energy tensor vanishes at spatial infinity, it is clear that there can be no flux of  
energy-momentum across spatial infinity, the "box" does not leak! 

In the low-temperature limit ft--, oo the series that appear in (Tab) are well approximated by their first terms. 
Hence 

a 4 
(Tab) "~" gab" (3.16) 

a~oo 960ZC 2 

Thus only the trace anomaly survives in the zero-temperature limit. 
Finally in the high-temperature limit f t - 0  + one can use the Mellin transform 

i xS-l(e l~x- l )  -ldx=ft-lI'(s)~(s) ( 3 . 1 7 )  

o 

to approximate f3. The sums S, and C, can be approximated also and give, up to exponentially small terms of 
the form e -  l/a, 

So(aft, p) ~ ( n/2aft)[ ( cosh Z)/sinh Z -  l /Z] ,  
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C, ( aft, p)  ~- - ½ ( n/aft)2( l/sinh2 Z -  l/Z2), 

S2( aft, p) ~- - ( rc/aft)3[ ( cosh Z)/sinh3 Z - l/Z3], (3.18) 

where we have introduced the variable Z =  (2rc/aB)(p-  ½n). Note that it is only when Z is of order 1 that $2 
(for example) is of order f t-  3; otherwise $2 is small. For Z to be of order 1, p must be close to rt/2 - f la .  Thus at 
high temperature these "boundary terms" only contribute very close to spatial infinity. Nevertheless because 
the volume of a spatial surface is infimte, we will see shortly that the boundary terms still contribute a term of 
order f t-  3 to the total energy. 

Thus at high temperature, the stress-energy tensor takes the approximate form 

(Tab) = -- (a4/9607t 2) gab-1-~-OTE2ft--4[gab+4tatb] COS4p 

~_il,2~aft_3 cos3ff rcosh[(27[/aj~)(p_½7~)] ( aft t )B] 
sm-r-~ [ s inh3[ (2n /a f t ) (p -½n) l  2 n ( ~ -  ½~r) (gab+3t~tb--P~pb). (3.19) 

This formula is interesting for two reasons. First, notice that the boundary terms are of odd order in f t -  1, as is 
to be expected from the contribution of boundary terms to the asymptotic form of the heat kernel [ 10 ]. Second 
the leading term proportional to ft-4 is exactly what would be expected from the Tolman formula [ 5 ] discussed 
in the introduction. That relation is 

TL(p)/TL(O) = [gtt(O)/gtt(P)] ,/2, (3.20) 

where TL(p) is the local temperature at radial distance p. The term m (3.19) proportional to ft-4 corresponds 
to a local energy density ~on 2 TL(p) 4 - exactly what one would expect from the Tolman relation. 

4. The total energy. In the previous section we found an exact expression for the stress-energy tensor (Tab). 
One now easily calculates the total energy at temperature f t -  1, 

E( f l )=  J Tabga d,S b. (4.1) 

Here/Ca is the timelike Killing vector (normalized to unit length at the "heat source" located at p=  0) and d£b 
is the volume element of the spacelike surface t = constant, 

K a = ( c o s p ) - ' t ~ ,  (4.2) 

d, ff, b =a3tb(COSp) -3 sin2p sin 0 dp dO d~. (4.3) 

Because the trace anomaly gwes an infinite contribution to the energy integral, one must compare the energy at 
two different temperatures, by calculating E(fl)  - E ( o o ) .  This is the purely thermal part of the energy density, 
m which the vacuum energy (zero-point energy) has been left out. 

To calculate the energy one substitutes the stress-energy tensor (3.10) into the integral (4.1). Because of the 
spherical symmetry, the integral over the angular variables 0, ~ gives 4n. The remaining integrals over p can all 
be reduced (via integration by parts) to the basic integral 
~t/2 

sm p sin 2np dp 
co--~-p (4.4) ~ - - ~ ( - - 1 )  n , n>_-l. 

0 

One thus obtains the simply result 

E ( f l ) - E ( o o ) = a  £ ½n=(n-T- 1 ) [ e x p ( a f l n ) -  l ] -1 (4.5) 
n=l 
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We will now show that  this result can also be ob ta ined  in a much s impler  way, with a par t i t ion  function. 
The energy levels for the two reflecting bounda ry  condi t ions  are given in ref. [ 2 ]. They are 

E,..~=a(2n+l+2) Dirichlet .  (4 .6a)  

E~ml=a(2n+l+l) Neumann .  (4 .6b)  

Here the quan tum numbers  n, m, I take the values 

n = 0 ,  1 ,2  .... , / = 0 ,  1, 2 .... , r n = - l ,  .... + l .  (4.7) 

Using the method  of  Allen and Davis  [ 11 ] one can easily show that  the par t i t ion  function Z[fl] is 

l n Z [ f l ] - - -  E l n [ 1 - e x p ( - f l E ~ , n / ) ] - - -  ~ ½k(k-T-1)ln[1-exp(-aflk)]. (4.8)  
n , m , l  b =  1 

Thus the total  energy E =  - (O/8fl)ln Z is exactly the same as in the previous  calculat ion (4.5) .  (Note  that  the 
zero-point  energy is automatical ly  excluded from the definit ion o f  the par t i t ion function (4.8).  This is explained 
in ref. [ 12 ] . )  The proper t ies  of  the par t i t ion  funct ion are discussed in more  detai l  in ref. [ 13 ]. 

5. Conclusion. In this paper,  the double per iodici ty  of  the propagator  at finite temperature  in ADS was exploited 
to f ind an exact formula  for it in terms o f  ell iptic functions.  This permi t ted  an exact evaluat ion of  the finite- 
t empera ture  s t ress-energy tensor  Tab. At high temperature ,  the stress tensor  is the sum of  a trace anomaly  and 
a term propor t iona l  to the fourth power  o f  the local temperature .  Our  work gives a more  ref ined descr ipt ion of  
a heat  bath  in ADS than that  original ly given in ref. [ 4 ]. 

One might  wonder  i f  the Page app rox ima t ion  [ 14,15 ] to Tab is exact as is the case in de Sit ter  space. Unfor-  
tunate ly  it is not. Page 's  formula  reproduces  the correct  result a zero tempera ture  only i f  T is given the imagi-  
nary value T =  (2n)  - ~ (1A) 1/2. At finite t empera tu re  the Page formula  gives a non-real  result. However ,  Page's  
me thod  can probably  be modi f i ed  as discussed in ref. [ 15 ], by adding the contr ibut ions  f rom mul t ip le  spatial  
geodesics. This would p robab ly  give the h igh- tempera ture  l imi t  o f  the "d i rec t "  term of  our  calculations,  i.e., the 
average o f  the Neumann /Di r i ch le t  results. However ,  this approx imat ion  could not  be expected to reproduce  
the boundary-condi t ion  dependen t  terms, because it relies on the Schwinger -DeWi t t  expansion which is purely 
local. 
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