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Summary. As has been pointed out by Weinberg, Ellis and others,
even an exact determination of the apparent luminosity S(z)
(or — equivalently — of the angular size) of distant galaxies as a
function of redshift z would not suffice to determine both the
expansion factor and the curvature of the (purely kinematic)
Robertson-Walker metric. Nor would a determination of the
number N(z) of galaxies per unit solid angle up to redshift z. But
jointly these two functions do determine the metric if L(f) and
n(t), the intrinsic luminosity of a standard galaxy and the proper
number density of galaxies in the past, are provided by theory.
In that case the model is in fact overdetermined, so that either
of L(t), n(t) could be used to find the other. Here we examine
these and similar relationships by geometric methods without
recourse to series expansions. In particular, we find the curvature

K, = k/R} from the formula
20m ., 36mV?— 43
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where the volume V and surface area A of a geodesic sphere
around the observer are calculated respectively from the pairs
N(z), n(t) and S(z), L(?).
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1. Introduction

Our aim in this paper is to examine if and how observable rela-
tions can in principle determine a suitable relativistic model of
the universe we inhabit. We shall assume local isotropy every-
where, and thus a Robertson-Walker (RW) spacetime, but no
field equations (“kinematic approach”).

Usually one imposes Einstein’s (or alternative) field equations
(“dynamic approach”) ab initio, parametrizes the resulting cos-
mological solutions, and tries to use the results of observations
mainly to fit those few parameters. In the case of Friedmann-
Lemaitre models with matter, radiation and cosmological con-
stant, for example, four parameters are needed. In view of the
uncertainty of the presently available data, that may be the most
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practical strategy. Nevertheless it is a fundamental question of
cosmology which observable functions, if any, in principle de-
termine a kinematical cosmological model and could, therefore,
be used to test dynamical cosmological theories. In this less re-
stricted kinematical approach one is led to focus on observable
functions, not just on a few parameters, and in the long run this
may even be of practical value.

Yet in this paper our interest is primarily theoretical; we wish
to examine what information the various observations contain
in principle, and what logical connections exist between them.
Our main conclusion is that the kinematic information contained
in the “one and only” past light cone reaching us here and now
(cf. Fig. 1) not only suffices to determine, but even overdetermines
the isotropic model provided it can be supplemented by suitably
detailed theoretical predictions for the evolution of galaxies (their
sizes and luminosities) and for the change in their number density
for causes other than the cosmic expansion.! Whereas this holds
in principle, in practice it will be very difficult indeed to carry
through the programme observationally.

A relativistic model universe that is locally isotropic every-
where is also homogeneous and is characterized by the familiar
Robertson-Walker (RW) metric which we write in the form
ds? = dt? — R¥(t)(dy? + p*dw?) 0]
in units such that ¢ = 1, where p is given by
p = (siny,y,sinhyy) for k = (1,0, —1), 2
k being the curvature index. As usual dw? = d6? + sin?0 d¢?
denotes the metric of the unit sphere so that 4nR%(t)p? is the
area of the sphere p = const. at cosmic time t. The substratum
representing idealized galaxy-worldlines corresponds to the con-
gruence t = var and “our galaxy” in particular shall correspond
to ¥ = 0 and the present time to t = 0. Instantaneous ruler dis-
tance from us at time ¢ is given by R(t)y and instantaneous “area-
distance” by R(t)p. We assume the cosmic sections ¢ = const. to
be simply connected and complete, so that for k = 1, y ranges
over the closed interval [0, 7], otherwise over [0, o).

2. Variables on the incoming ray

Figure 1 illustrates our past light cone “now”, and in particular
one of its rays. Once we have decided on isotropy, all our cos-

! Strictly speaking galaxy evolution and cosmic expansion can-
not be separated; this does not, however, affect the following
analysis.
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Fig. 1. Our past light cone with a light ray and the parameters associated
with its events

mological information essentially rides on this one ray. Asso-
ciated with any of its events are four intrinsic variables ¢, ¥, p,
R, to which we add the redshift z of the galaxy at that event. By
definition, 1 + z is the ratio of proper wave lengths at emission
and reception which are proportional to the corresponding radii
of the universe:

R,
1+z= R’ 3)
where variables without index here and below refer to the general
event on the incoming ray and those with index 0 to their value
att = 0. Since the incoming ray is a radial null line (d0 = d¢ = 0,
ds = 0) with dys/dt < 0, Eq. (1) gives
ay 1
d R’ @
We shall assume that the universe was expanding, R(t) > 0, in
at least some finite past t; < t < 0, which ensures that ¢, {, R, z
are strictly monotonic functions of each other in their corre-
sponding ranges; p can be expressed as a function of any one of
these variables.

If the last period of expansion was preceded by one of con-
traction, we can also cover that by suitably patching it to the ex-
panding one, and so on. Note that ¢, {, z and p vanish together,
and that as a ray-variable Y must not be limited above, even if
k = 1, since a ray can come from beyond the antipode and can
even have gone several times round the universe.

It is easy to convince oneself that if, instead of R(¢), any of
the three variables y, t, R is known in terms of a second, Eq. (4)
will yield the relation between the second and the third. More
generally, if a relation of the form F(y,t,R) =0 is known, (4)
can be solved for each of its variables in terms of each. As a
consequence then of Egs. (2), (3) and (4) we have: given one addi-
tional (suitably solvable) relation between two or three variables
belonging to different brackets in the following scheme

(t) - (l//ap, k) - (Rs Z; RO)’ (5)

each of the five ray variables can be expressed in terms of each;
however, such expressions will in general involve the parameters
k and R,, since these enter the transition from y to p and from
R to z respectively.

Of the variables discussed so far, only z is directly observable
here and now. The other three chief observables of cosmology
are the (bolometric) flux S (total radiative energy crossing unit
area in unit time) due to a distant galaxy, the solid angle w sub-
tended by a distant galaxy, and the number of galaxies per unit

solid angle of sky with redshift no greater than z or flux no
greater than S, denoted respectively by N(z) and N[S].

Each of S, w, N has a progenitor: S is related to the
(bolometric) luminosity L of a standard galaxy (total radiative
energy emitted in unit time), o to the average cross-sectional
area F of a galaxy orthogonal to the line of sight, and N to the
number n of galaxies per unit volume of space. In view of our
knowledge of star formation and of the evolution of the bright-
ness of stars, we expect L to change over cosmic times, as we do
F, for dynamical reasons. Even nR3(f), which would remain con-
stant if galaxies were conserved, is probably a variable, because
of galaxy formation and galaxy cannibalism. We shall therefore
consider all three of these galaxy parameters as a priori unknown
functions of cosmic time: L(t), F(t), n(t).

A theory of galaxy formation and evolution could throw light
on these functions, and possibly determine them. We shall show
that cosmology provides interconnections that might yield two
of these function in terms of a third; thus in principle cosmo-
logical observations can test such theoretical relations.

3. The information contained in a single data pair

The following well-known equations (cf. Weinberg, 1972; Rindler,
1977) connect the observables with their respective progenitors
at area-distance R,p and redshift z:

L
= - 6
§ (1 + z)?4nR3p?’ ©
F(1 + 202
=R (7
nRop® dy

Given an RW-model [R(t);k] we can calculate via (5) t(z) and
p(2), so if L(¢) is known it can be converted to L(t(z)), and (6)
then reads S = S(z): the RW-model together with L(t) predicts
an S-z relation. Analogously it predicts w-z and N-z relations.

The questions of primary interest to us, however, are converse
ones, e.g. do observable relations S(z), w(z), N(z) alone determine
the shape, size and motion of an RW-model? The answer to this
question is: no. Any three such functions are compatible with
any RW-model [R(¢); k]; such a model uniquely determines z(t)
and p(t) and (6) then determines L = L(t); similarly (7) and (8)
respectively determine F = F(t) and n = n(t). The observations
have thus completed the model to [R(t); k; L(¢), F(t),n(z)] — but
they have not restricted its kinematics.

We can go much farther with a data pair [S(z), L()], its first
component given by observation, its second by theory. Equation
(6) then constitutes a relation between z, t and p, and according
to (5) this yields a unique R(z) for any choice of the parameters
R, and k, at least for sufficiently small |t| and p. We shall demon-
strate this in detail. First we invert the explicitly z-dependent part
of (6), (1 + 2)*S(z), [piecewise, if necessary, in the intervals in
which (1 + z)25(z) is monotonic — a limitation relevant in the case
k = 1, when S(z) becomes infinite at Y = =, 27, etc.] Such inver-
sion yields z as a function of ¢ and ¥ and the model-parameters
Ry, k:

z = z[t,Y; Ry, k]. ©
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With (3) and (4) we then get a differential equation of the form

ay 1

—_—= - = ;R 10
dt Ro (1 + Z) f[t,'//5 O’k]’ ( )
which can be uniquely solved, since ¥, = 0:

Y = ¥(t; R, k). (11)

Lastly we get R(t; Ry, k) = —(dyr/dt)™?, using (4).

Thus, knowledge of [ S(z), L(f)] determines, for each choice of
R, and k, a corresponding expansion function R(t) as far back as
the data allow. But R, and k are left free unless, for example, for
some finite z,, S(z,) is infinite (practically: is exceptionally large
in all directions, a contingency not observed in our universe!).
For that can occur only in a closed universe, and then it occurs
for the first time at the antipode y = n. With t, = t(z,) we have
in that case (cf. (3), (4)) the following two equations

w(tA’ RO& 1) =T,

d 1
gt Vi Ro D= =1+ 2),

(12)
(13)

from which ¢, can be eliminated and R, found, giving us a unique
model. (This presupposes that our particle horizon has already
swept over the antipode, thus making it “visible”.) As a matter
of fact, the functions S(z), L(t) belonging to a closed universe
cannot in general be reproduced by an open model beyond a cer-
tain point closer than the antipode. In a closed model (1 + z)2S(z)
goes from oo to oo in the range 0 < Y < 7, so it has a minimum
in that range, and with it L/p? (cf. (6)). For simplicity, let us as-
sume that L(t) is constant. At the minimum of L/p? we have
dp/dz = (dp/dt)(dt/dz) = 0 and since dt/dz is not zero, dp/dt = 0.
This implies k = 1 since in an open universe dp/dt = —(dp/dy)-
(1/R) < 0. With this information, the “correct” value of R, could
be found analogously to (12), (13).

For the data pair [w(z), F()] the arguments and results are
analogous. For [N(z),n(s)] the results are again analogous but
the argument is slightly more complicated. We re-write (8), using

(10)(i):

1+ 2PN % = R0+ W = Ry, (14)
Now from (10)(i) it is clear firstly that any function of z, for ex-
ample the coefficient of dz/dt in (14), can be converted to a func-
tion of dy/dt; and secondly that dz/dt = — Rod*y/dt*. Thus (14)
yields a differential equation of the form

a? d

]

which, together with the initial conditions ¥, = 0, (dy/dt), =
—1/R,, can be solved uniquely for y(t; Ry, k); and that, as before,
yields R(t; Ry, k) = —(dy/dt) .

Closed models are characterized not only by infinites of S but
also of w at Y =0, &, 27, etc. and corresponding zeros of dN.
In between, these functions have turning points, which, as in the
case of S(z), can lead to the unique determination of the model.

An independent method of determining the present curvature
K, = k/R% and thus of k and R, has been suggested by Weinberg
(1970). (Together with one of three pairs [S,L], [w, F], [N,n],
this would then give the model uniquely.) The method hinges on
the possibility of measuring the parallax € of a single distant
galaxy, and it has been proposed that a line from earth to an

3

artificial solar satellite might serve as base line b. This parallax
can be related either with the brightness or angular size of that
galaxy as follows (Weinberg, 1970, 1972; see also the Appendix

below):
b JL (1+2F

= = , 15
€ JanS(1 +z)* — KoL o — Ko F(1 + z)? s

and since these relations involve K, that would be determined if,
for example, the L, S and z of that one galaxy were also known.

4. The information contained in two data pairs

One does not need to go outside the data pairs [S,L], [w, F],
[N, n] to obtain the full model. But we need [N, n] and one of the
other pairs to determine K. For this purpose it is convenient to
make use of the following result from differential geometry (cf.
Rindler 1977, Egs. (7.4)): the Gaussian curvature K of a 3-space
of constant curvature is given by

_ 20m 36nV? — 43

lim ————,

K
3 4-0 A*

(16)
where V is the volume and A the surface area of a geodesic sphere,
in our case a sphere p = const at t = 0. Its volume 4nRj3 | p* dys
(cf. Eq. (1)) as a function of z could be obtained by integrating (8),
V = 4nf n~'(t)(1 + 2)>N'(z) dz if we knew #(z) so as to be able to
convert n(t) to n(t(z)). Its area 4nR3p? is given directly by (6) or
(7), but here again translations from the given functions L(f) or
F(¢) to functions of z are needed.

For this and other purposes, we derive three important
model-independent identities by eliminating R3p? pairwise be-
tween Egs. (6), (7), (8) — using the form (14) for (8):

4n(1 +2)*'S L

, a1

w F
w(z)N'(z)dz = —n(t)F(t)dt, (18)
4n(1 + 2)*S(z)N'(z)dz = —n(t)L(t)dt . (19)

For definiteness, we assume we know [S(z),L(:)] and
[N(z),n(t)]; the argument for [, F] in place of [S,L] is anal-
ogous. Integrating (19) (with the initial condition z, = 0) then
yields an equation of the form

f(2) =4,

which can be solved uniquely for either variable:
t=1t2),

z=1z(t).

(20)
ey

The function (20) provides the translation L(t) — L(t(z)) and
n(t) — n(t(z)), which was all we still needed to determine K, using
(16). The easiest way then to determine the expansion function
is via (3) and (21): R(t) = Ro(1 + z(£))~ .

But, of course, knowing K, we could alternatively determine
R(t) from either [S(z), L(t)] or [N(z),n(t)] as shown in the last
section. In a concrete case, this overdetermination of the model
could serve as a check on our data and assumptions, in particular
of homogeneity. Of greater interest perhaps is the now apparent
possibility to derive two of the “theoreticals™ L(z), F(t), n(t) from
the third and from the observables S(z), w(z), N(z). If K, can be
found independently, e.g. by the parallax method or in a closed
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universe, then, as we have seen, a single data pair such as [S, L]
will determine the model uniquely, hence also z(t); and with that,
the relevant two equations of (17)—(19) yield the other two theo-
reticals. If K, is not known independently, a second theoretical
must be known at least for “small” values of ¢, so as to allow the
determination of K, from (16), and then again all three theo-
reticals are fully determined.

5. Conclusion

The following schemes, in an obvious notation, summarize our
findings:

[R@), k, L(D)] = S(z)

[R(), k, F(t)] = w(z)

[R(), k,n(t)] = N(2)

[S(z), L(t), N(z), n(t), for small t,z] = K|,

[w(z), F(t), N(z), n(2), for small t,z] = K,

[S(2), L(1), K] = R(9)

[w(z), F(1), Ko] = R(1)

[N(2),n(t), Ko] = R(t)

[S(2), N(z), L(¢) resp. n(t), Ko ] = n(z) resp. L(t)

[w(z), N(z), F(t) resp. n(t), Ko] = n(t) resp. F(t)

[S(z), w(z), L(¢) resp. F(t), Ko] = F(t) resp. L(t)

Our results complement those of Weinberg (1970, 1972), who
considered single data pairs and constant galactic functions, and

those of Ellis et al. (1985) who considered a more general kine-
matic model (isotropy about “us” only), with less detailed results.

Appendix: distance by parallax

We here give a simple derivation of formula (15) above, under
the assumption that the baseline is normal to the line of sight;

e/2

Ohb————=—=—¢

Fig. 2. Distance by parallax in an RW model

the general case is only trivially different. Figure 2 shows two
rays issuing from a galaxy G at angle dw and meeting our base-
line with a separation b and with total parallax €. From Eq. (1),
b = Ryp dw. Local distance normal to b is measured by Ry, so

€ = db/d(RyY¥) = (dp/dy)dw = /1 — kp? do .
It follows that
b Rop

€ J1—kp?’

and the two parts of Eq. (15) then result from substituting for p
from (6) and (7) respectively.
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