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We consider the graviton propagator in a de Sitter background. The propagator depends upon the
choice of a gauge-fixing term Lgy= -ZLF 2 and we consider the “e gauges” with

F'=V, (h*—eg"h°,). We show that the propagator is completely finite and has no infrared diver-
gences provided that € is not given certain “‘exceptional” values. It is only for these “exceptional”
values of € that the propagator has an infrared divergence. We then show that in these exceptional
cases the divergences are gauge artifacts and are not physical: they make no contribution to any
physical tree-level scattering amplitudes. Furthermore, we show that at one-loop order the zero
modes which arise (only) if € is given one of the exceptional values are canceled by the Faddeev-
Popov ghosts. There is thus no evidence that the de Sitter background is inconsistent when gravita-

tional fluctuations are considered.

I. INTRODUCTION

The purpose of this paper is to examine the graviton
propagator in a de Sitter background. In particular, we
are concerned about whether the propagator is finite (for
separated points) or whether it is infrared divergent and
thus infinite (for separated points).! The situation is com-
plicated slightly because the graviton propagator depends
upon the choice of a gauge-fixing term in the gravitation-
al action. We show in Sec. II that for “most” gauge-
fixing terms there is no divergence in the graviton propa-
gator and that only for certain “‘exceptional” gauge-fixing
terms does an infrared divergence arise. In Sec. III we
then demonstrate that in those special instances where
divergences do arise, they are harmless gauge artifacts and
make no contribution to physical scattering amplitudes.
In Sec. IV we show how this cancellation takes place at
one-loop order. For brevity we will give only the main ar-
guments and results; details will appear in a later publica-
tion.2 The infrared behavior of gravitons in de Sitter
space has also been previously examined.’~°

To compute the two-point function we will work on the
Euclidean version of de Sitter space, which is a four-
sphere S* of radius a. The cosmological constant
A=3/a% The two-point function is a maximally sym-
metric bitensor’ and is a function of the distance u(x,x’)
between the two points x and x'. The same function of u
is also the two-point function for de Sitter space with a
Lorentzian signature metric. The only difference is the
range of u: in the Euclidean case u?€[0, ) but in the
Lorentzian case ,uZE(——oo,eo). Thus we use the four-
sphere as a tool for finding the propagator, but having ob-
tained it, we have also found the propagator on the origi-
nal Lorentzian physical spacetime.

II. THE FREE GRAVITATIONAL ACTION
AND THE GRAVITON PROPAGATOR

We begin by introducing a complete set of. pure spin-2,
spin-1, and spin-0 functions on the four-sphere.*° These
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functions are chosen to be eigenfunctions of the Laplacian
. The spin-0 scalar functions satisfy

O¢,=A¢,, eigenvalues: A\"'=— L;-n (n+3),

degeneracy: (n +1)(n +2)(2n +3)/6 .
2.1

The index n equals 0,1,2,.... The lowest eigenfunction
¢o=const and thus Ag”:_O. When n =1 there are five de-
generate functions ¢} (i=1-5) with eigenvalue
AMY=—4A/3. These functions will become important
later. They can be simply expressed: if we embed the
sphere in R® as a?=X,*+4 - - —+7X52 then ¢} «X;. The
derivatives of these functions V,¢ are the five conformal
Killing vectors on the four-sphere. They therefore obey
the equation

j A i
V.Vodl=— T gudl, i=1....5. 2.2)

The spin-1 vector functions &) are transverse so V, &4 =0
and satisfy the eigenvalue equation

OE“ =AVE:, eigenvalues: k;l):——/}(nz—kSn +3),

degeneracy: (n +1)(n +4)(2n +5)/2 .

(2.3)

As before, the index n equals 0,1,2,.... When n =0
there are ten degenerate eigenvectors with eigenvalue — A.
These (£§)° (i =1—10) are the ten Killing fields that gen-
erate rotations of the four-sphere. The spin-2 tensor har-
monics A are symmetric hl*=0, traceless g,,h’=0,
and transverse V,h.'=0. They satisfy the eigenvalue
equation
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OrP =AM, ecigenvalues: AY = — %(n2+7n +8),

degeneracy: S5(n +1)(n +6)(2n +7)/6,

(2.4)

and again the index n equals 0,1,2,.... We will shortly
expand an arbitrary metric perturbation in terms of these
three complete sets.

Using the different spin eigenfunctions given above, we
now construct a complete basis for all symmetric second-
rank tensor fields on the four-sphere. First normalize the
basis functions above so that

8i8um = [ bnibmd(vol)= [ &L, EmId(vol)
= [ hyinnid(vol) . 2.5

(In this equation we have added another index i that la-
bels the degenerate set of eigenfunctions. In general we
will continue to suppress this index whenever possible.
Thus for example 3, a,¢, means 3, d, by, ie., all
summations Y, = include an implicit suppressed degenera-
cy index.) Now define the symmetric tensor modes

ViP=[ -+ AP+ A)]120%EY for n =1,2,.
Wuv_[l(())( )\,(0)+A)]_1/2 veyL— uvD)¢
forn=2,3,..., (2.6)

X" =5g"¢, forn=0,1,....

Together with the original transverse-traceless (TT) func-
tions A,", these form the desired normalized basis. V3’ is
the transverse ( T) spin-1 part, W," is the longitudinal (L)
spin-0 part, and X, is the pure trace (PT) spin-O part.
Notice that the index n does not start from zero for either
|

647G (S +Sgauge) = 3 @, — A2+ 2 A)

+ oMs
oM
()

The way to think about this formula is as follows: Each
possible field configuration #*(x) is defined by an infin-
ite set of constants {a,,b,,c,,e,}, which are like Fourier
coefficients in (2.7). The value of the action for the con-
figuration specified by these constants is then given by
(2.9). Note that for the “standard” choice of gauge, which
is €=, the c,e, cross term vanishes and the action is the
sum of squares.

Now the two-point function can be easily obtained.
The propagator is a sum of terms:

G (x,x")=(h®(x)h ¥ (x"))
—647G(GEY 4 Gabd
Gabc d’

ngc'd'
+G&Y) . (2.10)

The different parts are, respectively, the transverse-
traceless (TT) spin-2 part, the transverse ( T) spin-1 part,

+3 b, (=2, —A)
1

(1 +4e— 8N 1241+ S 8(e—
2

V. or W,", since, for example, V*V’¢y=V*V*(const)=0.
Similarly, the right-hand side of expression (2.6) for W,’,"’
vanishes for n =1 as a consequence of (2.2).

An arbitrary perturbation A" of the metric tensor can
now be represented as

=S ah 1S b VS e W S e, X, (2.7
0 1 2 0

where the coefficients {a,,b,,c,,e,} are a countably infin-
ite set of constants that are uniquely determined by 4.
[Note that these coefficients have a suppressed degeneracy
index, as explained after Eq. (2.5).] Thus the measure on
the space of all metric perturbations is

d[h*™]= ‘ﬁda,,
0

e
1

ﬁ de,
2

ﬁ de,
0

The reader unhappy with this mode expansion may find it
helpful to count degrees of freedom. The perturbation
h™ contains ten arbitrary functions. These are divided
between the different components as h,":5, V,;*:3, W1,
and X,":1.

The quadratic part of the gravitational action, includ-
ing an adjustable gauge-fixing term, is'°

S+Sgauge=(16176)"
X [(+h*(—0O+%A)h,,
+;Ah2—7(V,,h"")

+ 5[V, (k™ —eg®m)F}d (vol) .  (2.8)
Here h=h"*, and h “=h"— +g"“h. Thus for the general

metric perturbation (2.7) on the four-sphere, the quadratic
part of the action is

+3 e, —A—2A)
2

AL + A ¢, 2.9)

r

the longitudinal (L) spin-O part, the pure-trace (PT) spin-
0 part, and a spin-O cross term (CT). The cross term
arises because when e;&% there is a c,e, cross term be-
tween the PT and L terms in the action (2.9). Note that
on the four-sphere the points x and x' are always space-
like separated, and the field operators commute. Thus
G (x,x") =G ?(x" x).

The propagator may be easily obtained from the action
(2.9) by the following “inversion” process. One inserts the
mode expansion (2.7) for h%¥(x), and expression (2.9) for
the action, into the definition

J h®0he? (x")expl — (S + Sgauge) 1A [1*]

Gabc'd' ,
J expl —(S +Sgange) 1d [A*]

and evaluates the resulting Gaussian integrals, which are
of the form
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f xzexp(—)»,,xz)dx/f exp( —A,x3dx =(2A,,) 7!
One thus obtains?

o h2(x)hE ¥ (x')

abed’ _ 1
Grr T24 @4 2p
i _ % Ve (x)VCED (x)
4 (A4 A) ’

G =(VoVP — g O)(VE VY — 12T g(x,x") ,

2.11)
G =gugdf (x,x') ,
G —[gob(VEVd — Lgc’d'Dl)
+g<4 (Vv — 1g%0) A (x,x") .

The TT and T sums are evaluated in Ref. 11 using the
methods of Ref. 7; they are € independent and finite. The
scalar functions f,, g, and h, depend upon the gauge-
fixing parameter €, and are

A 3 T N
fe=——5+ (e—1) S (0b (x)
€ 38477  256A n E,l (X)),
1 & }\'(O)_{_ZA '
32 ; [(1—eAQ + AT $n(X)n(x"),
_i (1+4e—8eH)A +2A
1= A f AP(ZA9 £ AR
X¢n(x)¢"(x') , 2.12)
n(x)d,(x

he="(e— —)i

From these expressions we can easily understand the in-
frared behavior of the propagator.

We will now show that the two-point function has an
infrared divergence if and only if one of the denominators
in (2.12) vanishes. If all of the denominators are nonzero
then the two-point function is finite for xs£x’. Thus,
provided that the gauge-fixing parameter € does not take

|
on one of the “exceptional” values €=+,+5,, . . .,

[(1—e)k‘°’+A]2 ’

(2.13)

€exceptional =
the propagator is finite and free of infrared divergences.
The two-point function for a scalar field of mass m is’

Gn(x)d,(x")

G(m2,2)=§ 20 m?

I'(5+u)0(3 —v)
B 16ma?

F(3+v,3 —v;2,Z(x,x"),

(2.14)
|

A =<in

[ Tu()G™ B (x,x )T (x WEd*xVgd s’ !out) :
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where v =(5 —a’m?)'/? and Z (x,x')=cos*[u(x,x’)/2a].
Here p(x,x’) is the geodesic distance between the two
spacetime points x and x’, and a is the radius of the
four-sphere, so A=3/a% One can see that G (m?2,Z) is fi-
nite provided that all of the denominators in the mode
sum (2.14) are nonzero. This is because the nonpositive
values of m? for which the denominators vanish are the
same as the values of m? for which 3 —v is a negative in-
teger and the gamma function I'(3 —v) diverges.

If we define a mode sum which is identical to (2.14) ex-
cept that it starts at n =2, we obtain

G(m%Z)=G(m*Z)— 37 *m~%a—*

15

— 27 la"H44+m¥a®H 22 -1) .

(2.15)
Now expanding the denominator of (2.12) using partial
fractions, and observing that (3/dm?)G(m?%Z) is the

mode sum with “squared” denominators, we obtain the
following closed forms for f, g, and h:

fe=—t(1—e)? (1—26)—5(— +(l—6) |6 k,2Z),
ge=3A"2G(0,Z)++A2G(k,Z) —TA"2G(—+A,Z)
_ ’A“(l—ze)(l—e)‘l—é%é(k,Z) , (2.16)

20 &
he=—3(e—5)(1—¢) 23,{‘6(":2)’

where k =A(e—1)~!. The reader can easily confirm that
these quantities are finite and free of infrared divergences
provided that € is not given one of the exceptional values
defined in (2.13). For example if we take the “standard”
gauge €= —'2— then f, g, and A are all finite.

In a certain sense we have finished, because we have
shown that the graviton propagator is finite, unless one
makes a bad choice for the gauge-fixing parameter €. In
the next section we show what happens in these exception-
al cases, for example, if e=+. We will see that although
the propagator diverges in that case, the scattering ampli-
tude remains finite and € independent. This proves that
the infrared divergences that occur for the exceptional
choices of € are gauge artifacts.

III. GAUGE DEPENDENCE OF THE GRAVITON
PROPAGATOR AND TREE-LEVEL SCATTERING

Suppose that we add to our action for free gravity an
interaction term

SI:%f[(Vud’)z-%mzzﬁz]d(vol) ,

which is the action of a massive scalar field ¢. We can
now calculate, for example, the tree-level scattering of two
scalar particles, as shown in Fig. 1. The amplitude for
this process is

(3.1

(3.2)
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where |in) and |out) represent the arbitrary in and out states of the scalar field. The stress tensor T, is the operator

1 26S;
\/_ g “(x

Ty(x)= =(V,$)V,¢)—

78w (V,0)*+m?¢?] (3.3)

which is the variation of the interaction action with respect to the variation of the background metric. .
Now inserting the graviton propagator (2.10) into the amplitude (3.2) one sees that G%“ and G%“ give e-
independent and finite contributions to 4. The e-dependent terms can be written as

Ap+Apr+ Acr=647G(in| [ [ To(x)pdx 1T (x Vg d s VEds Jour) (3.4)

where p.=f+00g. /16—

(0+40O')h /4. In obtaining (3.4) we have assumed that the stress tensor is conserved, i.e.,

that V,T*=0. This is true for the matrix element of T’ between (on-shell) physical states such as |in) and |out).
We have also integrated by parts. The boundary terms vanish since T is conserved and symmetric.'?
The function p(x,x’) that appears in the integrand of (3.4), which represents the e-dependent contribution to the am-

plitude A, can be obtained from (2.12). It is

A 3 1 l

2 '
Pe= €E—7% ¢i(x)¢i(x I+ 15
= 38472 T 256A ) 2’, :
- 38[:172 + 202;2 (e~ 3722 ~1) =56~

2 $a(x)8,(x")
MDA

(3.5

From this expression one can see that the scattering amplitude A4 contains a single term that appears to depend upon ¢,

and which appears to diverge when €=+
In the amplitude (3.4) the e-dependent term is

3 +)72 2<m‘f f T°,(x)$}(x)T%

256A

(x")$i(x Vg Vg'dx d*x’

. We will now show that this term contributes nothing to A, for any value of €.

out> . (3.6)

Inserting a complete set of (physical) states of the ¢ field, 1= .| C){C | we obtain for the (apparently) e-dependent

term of A

256A 4
We will now show that this term vanishes, because the ¢';
obey Eq. (2.2) which is
. A ;
Vu Vv¢ll = —:{guv‘bl .

Because the stress tensor between physical states is con-
served, we.have

0= [(in| V,T%(x)| C)V, ¢}V gd*x (3.8)

but integrating by parts this means that from (2.2)

huv

$ ¢

FIG. 1. Tree-level scattering of a scalar field ¢ by a graviton
h*.

(e— i>-222f<m|ra (x)| C)¢ixvVgd*x [(C|T,

) lout)di(x )Vg'd*x' . (3.7)

0= [(in| T™|C)V,V,8id (vol)

:_%fﬁn; T*,(x)| C)did(vol) . (3.9)

Thus we see that as long as the interaction stress tensor is
conserved, the tree-level scattering amplitude is gauge in-
variant because the term proportional to (e — )~ contri-
butes nothing. This means that the scattering amplitude
is finite for any value of €. It does not matter if € is given
one of the exceptional values, or even if €=+, because the
only e-dependent term in the amplitude vanishes. Thus
we conclude that the apparent infrared divergences that
occur for the exceptional values of € are gauge artifacts,
and are not physical.

IV. THE GRAVITON ZERO MODES ARE CANCELED
BY GHOSTS IF €=

In this section we compute the one-loop partition func-
tion Z. This partition function can be expressed as a
functional determinant which can then be evaluated by
various regularization schemes, for example, by ¢-
function regularization.®~!%13 The details of this calcula-
tion may be found in Ref. 2 but the results alone are very
simple.
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The partition function Z may be expressed as a path in-
tegral

Z=A[ d[h*)exp(—S[h*]—Sgueelh*] , @1

where the measure d[h"’] on the space of metric pertur-
bations is defined just after Eq. (2.7), the gauge-fixed ac-
tion is given in (2.8), and A is the Faddeev-Popov ghost
determinant which compensates for the effects of the arbi-
trarily chosen gauge-fixing term. The path integral in
(4.1) (without the A factor) is a product of Gaussians, and
equals'*

Dety(— A2+ 3 A) ™ DetP(— Ay —A)~12

X Det’[(1—eAY +A] " [Ale— )] . (42)
The first two factors arise from the TT and T parts of the
action. The remaining factors arise from the combined
effects of the L and PT parts of the action. Notice that as
€—+ the PT determinant has a zero mode which makes
the path integral diverge.

The Faddeev-Popov ghost determinant A on the other
hand is

A=DetP(—A —A)DetP[(1—e)AL +A]
X[Ale—1)] (4.3)

and it has a zero mode that makes it vanish as e—+. The
product of (4.2) and (4.3), which is the partition function
Z, is entirely independent of e:

Det?(—AL —A)2
Dety(—A2 4+ 3A)172

(4.4)

If there had been a true infrared divergence then Z would
have had a zero mode in the denominator, and would have
diverged. This result can also be found in the work of
Yasuda.!

V. CONCLUSION

We have shown that the graviton propagator in de Si-
tter space is free of infrared divergences if the gauge-
fixing term is correctly chosen. This same conclusion has
also been reached by Higuchi.’ In addition, we have
shown that the infrared divergence which occurs if the
gauge-fixing parameter € is given one of the “exceptional”
values is not a physical divergence: it is a gauge artifact.
Thus a bad choice of €, for example e= %, can lead to for-
midable problems, especially if one is not aware that the
resulting divergences are not physical.

The reason why the exceptional values of the gauge-
fixing parameter e=(n2+3n—3)/(n?+3n) (n=1,2,...)
cause infrared divergences in the graviton propagator is
easy to understand. For the exceptional values of € the
classical gauge-fixing condition

F’=V,(h"—eg"h°,)=0 (5.1

fails to determine A" uniquely: it fails to fix the gauge.
This is because under a gauge transformation
h*—h" 4+ k™Y the gauge-fixing term transforms as
F'—>F°+V,(k'“" —eg"k?.,). Thus the gauge condition
determines A" uniquely if and only if all solutions k* to
the equation V,(k*" —egk?.,)=0 satisfy k“=0.
This is in fact the case if € is not given one of the “excep-
tional” values. If, however, € is given one of the excep-
tional values (n%243n —3)/(n*+3n) then k*=V*%, is a
solution to the above equation, but has k“:?>£0. Thus
for the exceptional values of € the gauge-fixing condition
fails to fix the gauge.

The reader who is not sure if these Euclidean results ob-
tained on S* apply equally well to Lorentzian de Sitter is
urged to reread the Introduction. As we stressed there,
the four-sphere is used to obtain the two-point function
for spacelike separations (u?>0). The same function is
also the two-point function on the Lorentzian spacetime,
only there the range of u? is — o <p?< . Formula
(2.14) illustrates this nicely; it is explained in detail in Ref.
7.

In the case of a massive scalar field, the requirement of
de Sitter invariance does not select a unique vacuum state.
There is however a unique de Sitter-invariant vacuum
state which is specified by either of the two additional re-
quirements:* (1) The propagator has Hadamard form, or
(2) the propagator is finite for x and x’ antipodal points.
This state is commonly called the “Euclidean” vacuum
state.

The situation for the graviton is identical. In our calcu-
lation we have used the path-integral method, and in-
tegrated over all field configurations which are regular on
S*. Thus we have obtained the graviton two-point func-
tion in the “Euclidean” vacuum state. It satisfies both of
the above requirements.

The alert reader will have noted that we have given nice
closed forms (2.16) for the spin-0 scalar part of the gravi-
ton propagator but that we have not given the correspond-
ing formulas for the spin-2 (TT) and spin-1 (T) parts
(2.11). These quantities are maximally symmetric biten-
sors and can be found using the same techniques as in the
vector case.” The solutions will be published shortly.'!
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