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We 1nvestigate the supersymmetry transformation laws 1n an arbitrary compactification of
d=11 supergravity to four dimensions The d=4 fields of gauged N =38 supergravity are
identified 1n a class of SO(7)” mvanant backgrounds The two stationary pomts i these
background configurations correspond to the round and parallelized S7 We expheitly demonstrate
that the latter comcides with the SO(7)~ stationary pomnt of the N =8 supergravity potential
Chiral SU(8) 1s found to play a crucial role m estabhishing these results, we speculate on 1ts
possible relevance 1n the full d =11 theory

1. Introducfion

It 1s by now well established that compactification of d = 11 supergravity [1] leads
to effective d = 4 theories with and without residual supersymmetries whose proper-
ties are to a large extent determined by the ground state solutions of the d =11
theory and their symmetries (for recent reviews of the subject, see refs. [2—4]). Much
progress has been made in understanding and classifying the small fluctuations in
the vicnity of the ground state solution. Such considerations are for instance
sufficient to elucidate the structure of the (classical) mass spectrum which has now
been calculated in several cases of interest [3,5]. On the other hand, much less 1s
known about the nonlinear structure of the effective d =4 theory and how this
nonlinear structure emerges in the compactification. Even in the conventional
Kaluza-Klein theories [6] this problem did not receive much attention. The most
obvious candidate to study this 1s N = 8 supergravity. the d = 11 supergravity theory
admuts a classical solution with background metric (AdS), X S, full N = 8 super-
symmetry and SO(8) internal symmetry [7,8], and the massless excitations are
known to constitute a standard N = 8 supermultiplet with maximum spin-2 [9, 8].
One may conjecture that the resulting effective d = 4 theory corresponds to gauged
N = 8 supergravity [10] coupled to an infinite tower of massive N = 8 multiplets, but
there are several subtleties which make a straightforward demonstration of this fact
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rather difficult. In fact, a recent analysis of G, invariant solutions of d=11
supergravity has led the authors of [11] to cast some doubt on such a relation. A
more complete understanding of the nonhnear structure of the theory 1s therefore
important and, in fact, indispensable to clarify the correspondence between the rich
variety of stationary points of gauged N =8 supergravity [12] and therr d=11
counterparts. In this paper, we study some of the nonhnear aspects of the S’
compactification with particular emphasis on the relation between the paralielized
solution of the d=11 theory [14] and the SO(7)~ stationary point of [12,13]; some
of the results presented and elaborated here have already been announced in [4).

As we have mentioned above it 1s a first necessity to analyze the spectrum of small
fluctuations about a given background. Hence one assumes that the d = 11 space-time
15 compactified according to

MM - M x M. (1.1)

The coordinates z¥ are split accordingly into z* — (x*, y™). Subsequently one
expands the fields of d =11 supergravity, collectively denoted by ¢(x, y), in terms
of a suitable set of eigenfunctions Y (")( y) of the relevant mass operator according to

¢(x, ) =L (x)Y"(y), (1.2)

and determines the eigenfunctions Y ”( y) that characterize the y-dependence of the
fluctuations.

However, the analysis of small fluctuations is not of much use if one wants to
understand the nonlinear structure of the compactification. The first complication is
that the y-dependence of the modes m (1.2) 1s not free of ambiguity because the
ansitze are subject to y-dependent gauge transformations. Spurious modes may be
eliminated by imposing a gauge condition; while such a procedure 1s useful in
determining gauge invariant quantities such as the mass spectrum, it 1s of little help
in studying the effective d =4 theory because most gauge conditions induce com-
pensating supersymmetry transformations which are nonlocal in terms of the extra
coordinates y™. Secondly the proper identification of the d=4 fields involves
nonlinear modifications as has been pointed out in [13). Instead of specifying the
y-dependence of ¢(x, y), one may be specifying the y-dependence of f(¢(x, y))
where f is some unknown function such that f(¢(x, y))* ¢(x, y) mn the linear
approximation. Therefore, from the results of a linearized analysis one cannot infer
anything about the full y-dependence of the fields. There 1s no doubt that such
complications do indeed play a role because even in the sumplest case of the
reduction on a 7-torus [15), nonlinear field redefinitions are required for a proper
identification of the effective d = 4 fields. Also, the supersymmetry transformation
parameter has to be redefined although these modifications disappear in the super-
symmetric background.
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The problem of nonlinear modifications becomes acute when one considers the
truncation to the massless modes of the theory, and investigates therr symmetry
transformations. In the case of the 7-torus, the truncation to the massless modes was
effected by imposing the restriction that all fields no longer depend on the extra
coordinates. This leads to a truncation of the full theory which is obviously
consistent in the sense that supersymmetry transformations preserve the inde-
pendence of the extra coordinates and thus do not remtroduce massive (ve.,
y-dependent) modes which have been discarded in the truncation. For the S’
compactification, this is no longer the case [13]. If one inserts the linearized ansatze
of [9, 8] into the d = 11 transformation rules

8¢(x, y)=F(¢(x,y), &(x, y)), (1.3)

where &(x, y) denotes the d=11 supersymmetry transformation parameter that
leaves the background invariant, one finds that the y-dependence of the left- and
right-hand sides of (1.3) does not match. This means that one cannot consistently
put the massive modes equal to zero because these modes will reappear through the
supersymmetry transformation (1.3). Therefore the multiplet structure of the fluctua-,
tions 1s not manifest in the transformation rules, and this 1s a major obstacle in
relating the d =4 field theory to d =11 supergravity. In principle the problem of
defining a consistent truncation also arises in standard Kaluza-Klein theories with
respect to the bosonic symmetries [16].

To examine the nonlinear modifications in more detail, we therefore adopt a
strategy 1n which the qualitative features of the d = 4 transformation rules are used
as input. After redefining fields according to the “standard” procedure [15], one
finds that the fermionic transformation laws contain all the generic terms of the
d = 4 transformation rules. At this point, 1t is no longer possible to make arbitrary
field redefinitions, but one must restrict oneself to redefinitions that take the form of
field-dependent chiral SU(8) transformations. Subsequently one exploits these SU(8)
redefinitions to bring the transformation rules in a form that is consistent upon a
truncation to the massless sector. These redefinitions vanish 1n the supersymmetric
background of the round sphere, but for finite deviations from that background the
proper definitions of the fields thus involve a finite chiral rotation.

The fact that we have two solutions of d=11 supergravity that may have an
Interpretation m pure N =8 supergravity, namely the round and parallelized S7,
gives us a umque opportumty to test the viabiity of this strategy. Namely, we
consider the transformation rules in an S” background where the field strength with
“internal” indices is proportional to a parallelizing torsion but with an arbitrary
proportionality factor. After making an appropriate chiral SU(8) rotation, we then
establish the consistency of the spin-2, -3, -1 and -1 transformation rules m this
background. We should emphasize at this pomnt that 1t is by no means guaranteed
that consistency can be achieved by a mere SU(8) redefimtion, so this result must be
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viewed as the first nontrivial indication that our approach 1s correct. The linearized
approximation of our results 1s also consistent with the work of [17] where the
redefinitions of the supersymmetry transformation parameter were determined to
lowest nontrivial order by requiring the consistency of the truncation to that order.

Having identified the proper d = 4 fields in the chosen background configuration,
we may consider the transformation rules at the two pomts that characterize the
round and parallelized solutions of &= 11 supergravity, and try to compare them
with the known d = 4 solutions [12,13]. Based on the linearized approximation of
the fluctuations about the round S’ it has been argued that the round S’ compactifi-
cation corresponds to the supersymmetric solution of gauged N = 8 supergravity,
whereas the parallelized S” compactification should correspond to an SO(7)” in-
variant solution of that theory in which the pseudoscalar fields acquire an SO(7)~
invariant expectation value [18,9]. This is indeed confirmed by our results, because
we find a complete numerical agreement between the 4 = 11 transformation rules in
the parallelized S7 background and the d =4 transformations at the SO(7)" sta-
tionary pomt of the N = 8 supergravity potential. Since the d =11 transformations
contain the inverse S’ radius m-, whereas the d = 4 results are expressed in terms of
the SO(8) gauge coupling constant g, we also find the relation between g and m., at
the round and parallelized spheres

g=V2m,, (round §7),
g=4X5"%*m,, (parallehzed S7). (1.4)

Using this relation we can express the d = 4 cosmological constant in terms of m;
one finds A = —12m?2 and A = —10m?3, respectively, in agreement with the result
of the d =11 field equations which were no input 1 this calculation.

The reader will notice that we do not analyze the scalars and pseudoscalars and
their transformation rules in any detail here. The reason 1s that further comphcations
appear in this sector as will be plausible from our discussion: a chiral SU(8)
transformation mixes scalars (conventionally assumed to be contained in the 7-met-
ric) and pseudoscalars (conventionally assumed to be contaned in the three-index
field). It therefore appears that in order to describe these fields in a umfied way, one
must transcend the geometrical framework of the S7 background.

This paper is organized as follows. In sect. 2 we evaluate the =11 transforma-
tion rules in an arbitrary background of type (1.1). In sect. 3 these transformation
rules are then determined 1n an SO(7)~ invariant background 1n such a way that the
truncation to the massless N =8 supermultiplet 1s consistent. This yelds
the transformation rules of the N = 8 supergravity fields in a background where the
pseudoscalars acquire an SO(7)” vacuum expectation value. Agreement between
d=11 and d =4 is then estabhished. In sect. 4 we discuss the implications of our
results. Particular emphasis is given to the chiral SU(8) group which plays such a
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crucial role in the definition of the d = 4 fields. Some useful formulae are collected
in an appendix.

2. Transformation laws

Our starting point are the transformation laws of d =11 supergravity, which we
will analyze in this section in the context of an arbitrary ground state of type (1.1).
We here follow the conventions and notation of [19] and refer the reader to that
paper for more details. The transformation rules relevant for our discussion are
those of the elfbein E,* and the d = 11 gravitino ¥,, which are given by

8E,A =1y, (2.1)
89y =Dy () e+ A5v2 (1) "0 — 88T ) ek, . (22)

For solutions describing spontaneous compactification to four dimensions, the
d =11 indices are split into curved and flat d=4 indices p, »,... and a,8,...,
respectively, and curved and flat d =7 indices m, n,... and a, b,..., respectively.
For example, the d =11 gravitmo decomposes according to

¥, (x, )

In(x, 7). 23)

|

For the elfbemn, we make use of the local SO(1,10) invariance of the d = 11 theory to
fix a gauge where [15]

0 e

Ey'= [e" B ] (24)
In this gauge, the local SO(1,10) mvanance is reduced to local SO(1, 3) X SO(7).
Moreover, compensating rotations are needed i the supersymmetric transformation
laws (2.1) and (2.2) to maintain the gauge choice (2.4). In order to rewnte the theory
within the d =4 context and to make contact with N =8 supergravity, we then
redefine the fields in the standard way [15]. Here we briefly summarize the various
steps that are required in this procedure. One first re-expresses (2.2) in terms of flat
indices and redefines the spin-3 and spin-} fields such as to eliminate an off-diago-
nal kinetic term muxing spin-3 and spin-i fields. One then performs a Weyl
rescaling to obtain the canonical d =4 Einstemn action and kinetic terms for the
spin-3 and spin-4 fields; there is also a corresponding redefinition of the supersym-
metry parameter. Finally, a y>-redefinition of the fermionic fields is required for the
conventional panty assignments. To keep the properties of the background as
mamnifest as possible, 1t proves convenient to Weyl rescale the fields not with respect
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to the full siecbenbein determinant det e,%; rather, we write

e (x,y)=8,"(»)8(x, »), (2.5)

where ¢é,°(y) is an orthonormal frame on OM’, and define the Weyl rescaling with
respect to the factor

A(x, y)=detSt(x,y). (2.6)

With this choice the relation between the gravitational couphng constants in d=4
and 4 =11 takes the form (see for instance [20])

1 1
— =|— d’ydet é. 2.7
(Kz)d-4 (Kz)d-uf@]U 4 ¢ ( )

In the final expressions, all derivatives d,,, which act on internal coordinates, may be
replaced by derivatives D, which are convariant with respect to the M’ back-
ground. After going through all these redefinitions, one obtains expressions which
can be still further simplified by the use of chiral notatton for the spinors; the
analogy with the d =4 results of [10] then becomes even more suggestive. We will
use the letters A, B, C,... to denote spin-7 indices (although these were previously
used to denote tangent-space indices in the d=11 theory there should arise no
confusion because the latter will not be needed in what follows). Subsequently the
indices are promoted to chiral SU(8) indices by taking chiral projections. For the
redefined gravitino field Vi these are introduced in such a manner that

YA =ut, Y= (2.8)

For the redefined spin-} fields ¢/, ,, one first ehminates the M’ vector index m by
switching to the combination I (48¥mc) where I'"” denotes the d =7 I'-matrices,
which are discussed in the appendix. Subsequently one introduces a chiral SU(8)
notation through

XA = (1+7°) 32 Iig¥mcy

XaBCc = (1 = YS)%"/EF[';B%.CV (2.9)

Taking into account all that has been said so far one arrives at the following results
after a somewhat tedious but otherwise straightforward calculation. Up to higher
order fermionic terms, the gravitino transforms as

8\]/"[‘ = { a,— Bpmi)m - %wfﬂ'yaﬁ - -}yﬂy”eDmB,,’" } e
+ %%‘;‘Be"’ + y“ﬁyugap'“’e}, + i(‘){wy”e;,. (2.10)

Before explaining the various symbols in (2.10), we emphasize that we have not
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made any assumption about the y-dependence so far; therefore (2.10) and similar
formulae below are still completely general and independent of the specific com-
pactification one may choose to consider. So, D, denotes the derivative that 1s
covariant with respect to the given background configuration; in sect. 3 we will take
1t the covanant derivative m the S background. The primes which appear on the
right-hand side of (2.10) indicate that one 1s dealing with Weyl-rescaled quantities;
for example, w’u"‘ﬂ is the standard spin connection expressed in terms of the rescaled
vierbein field e’,*= 4%, with the modified derivauve 9,— B,"D,,; similarly
Y, = €’,*Y,- More mmportantly, the tensor %u" g takes values in the Lie algebra of
SU(B), and has all the characteristic features of a connection field associated with a
local SU(8). We will return to the possible implications of this fact at the end of this
paper. The tensor 9,,5’43 1s a complex tensor antisymmetric in [AB] and antisymmet-
ric and antiselfdual i d =4 Lorentz indices [af]. Both %,"; and §,,# have been
calculated explicitly, but since they are not relevant in what follows here, we reframn
from giving the corresponding expressions. The remaining quantity to be defined 1n
(2.10) 1s ©,"3; thus operator 1s given by

®1AB =A—l/2{%F:BS_lab(°Db - %A_lbbA) +%ngcs_lad(s~lbds)bc

~iT5pS T (STID.S) P} + W2 T4 F p + V2 £8,5. (210)
The quantities f and F,,, are derived from the field strength Fy,yp, by

f= - '%[IA—I/ZeaﬂyaFaﬂ78 H

F,

" =A™V 2, defsF, (2.12)

efg?

where F,g 5 and F,, , denote the field-strength components with d =11 tangent-
space indices taking values in 9 * and M, respectively. The factor 7’ 1s related to
the convention for the d =7 I''matrices and is defined 1n the appendix.

A similar compilation leads to the final result for the spin-1 fields x*5¢

Sx45C = 3\/59‘%57"38’0 + %ﬁyu@:BCDeb + OABC ¢ (2.13)

where we made use of the formulae Listed in the appendix. The complex tensor
@,4%¢P is selfdual 1n [4BCD] with respect to the 8-index Levi-Civita symbol; we

again reframn from giving its explicit expression here. The operator 0,75€ is given
by

0,45, = 33 A VAT g8y pS (D, — 347D, A) + 32 A~ VAT, TS,
X (S7(STDs8) o + S7LUSTD,S) . + STL(STD,S) )
— i T lép+ 4 [aAB(ZFade - SS:FCd)C]DFbcd' (2.14)

We stress once more that the results (2.10) and (2.13) are vahd irrespective of the
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chosen background. Also we have not imposed any restrictions so far on the
y-dependence of the fields and transformation parameters. Nevertheless the structure
of (2.10) and (2.13) is strongly reminiscent of the transformation rules of gauged
N = 8 supergravity [10], with O; and O, playing the role of the SU(8) tensors 4, and
4,.

The spmn-2 and spmn-1 transformation rules do not require as much effort.
However, whereas the compensating rotations are irrelevant for the fermions as long
as one disregards higher-order fermionic terms, they must be taken into account for
the bosonic transformation laws. One of them we have already mentioned: it is the
“off-diagonal” SO(1,10) rotation required to mamntain the special gauge (2.4). In
addition, a compensating SO(1, 3) rotation 1s needed to cast the vierbein transforma-
tion law mto the canonical form

be =4eyy,  +he. (2.15)

A little more work is required to determine the spin-1 transformation law 1n terms of
chiral spinors; 1t reads

8B, = W21l A7V (22,7 + &Ly, x*¢) + h.c. (2.16)

Hence we have now given the transformation rules for the spin-2, -3, -1 and -3
fields. In this we were gmded by the form that these transformations take in gauged
n = 8 supergravity. The observation which will be crucial for what follows 1s that the
field redefinitions that preserve the structure of these transformation rules must take
the form of a (field-dependent) chiral SU(8) transformation. These transformations
are naturally defined on the chiral spinors ¢,* and x*#¢

YA(x, y) = Us(x, )90 (x, ),

x2(x, y) = U (x, Y)UPp(x, )UE(x, y)x "5 (x,y).  (2.17)

In the next section we will see that such an SU(8) redefinition 1s indeed 1mportant
m order to extract the correct d = 4 fields. Of course, in that case we will choose a
specific background related to the sphere S’. It 1s intriguing that the SU(8) structure
of the transformation rules (2.10) and (2.13) also persists in the context of more
general backgrounds. We will return to the possible imphcations of this fact in
sect. 4.

3. Consistent supersymmetry in an SO(7) ™ invariant background

In this section we study the supersymmetry transformations (2.10), (2.13), (2.15)
and (2.16) in an S7 background where

en’(x,7)=¢,%(y) (3.1)
is the (globally defined) siebenbein of S7, and the field strength Fonp(X, y) 18
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proportional to one of the Cartan-Schouten [21] torsions S, which satisfies

mnp?
bmsnpq = %m7nlsmnpqrstSrSI’ (3.2)
as well as [9,13]
S[m"PStl]"S = — “T[ 8mrlpq[r Ss]tu (33)
Smnpsq = 28'"" 11’/ mnqrsmsstu (34)

where m, is inversely proportional to the S radius. If F,, » =0, then we are dealing

with the round sphere, whereas F,, = + V2m.,S,,, » corresponds to the parallelized

sphere, which is a solution of d =11 supergravity [14]. Hence the class of back-
ground configurations that we consider contains two solutions of d = 11 supergrav-
ity. Furthermore 1t 1s well known that these configurations are SO(7) invanant
[13,22], and the results of this section show that they are clearly related to an
SO(7)™ nvariant background in gauged N = 8 supergravity.

Since we assume that the background 1s also AdS invariant we may drop the
x-dependence and concentrate on the transformation rules

(09, (2, 9)) = v (BTD, = VI T Fp = W2 1) Pep(x, ), (35)
BXABC(X, Y)> = {3‘/%—1F[‘1A56C]D°Da - %fF[aABFCq]D

+ EIZF[aAB(ZFaM_ 36:F6d)C]DFbcd} eP(x, y) (3.6)

(8¢, (x, y)) =38,(x, y)r¥,  + he., (3.7)

(8B,"(x, y)) = 21T (2/25%,° + 503, x15C) + h., (38)

where we have dropped the primes.
For small deviations from the round S background (Fynp = 0) the small fluctua-
tions can be expressed 1n terms of products of eight Kilhng spinors 4'( y) satisfying

b= —Ym, I, (3.9)
where m, is equal to

=427, (3.10)

Ultimately we want to compare our results to N = 8 supergravity, so that we will try
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to preserve the y-dependence of the d = 4 fields irrespective of the value of F,,,, in
the chosen background. This forces us to keep m, constant, so that the S7 radius is
fixed. On the other hand the Freund-Rubin parameter f may then change under
vaniations of F,,,, so that the relation (3.10) is only valid for the round sphere
where F,,,=0.
Only the round S7 background is fully supersymmetric as can be venfied from
(3.5)—(3.8), since all the supersymmetry variations vamsh in the background if
F,,,=0 and (3.10) holds, provided that the 8 independent supersymmetries are

characterized by the S Killing spinors (3.9). Hence in chiral notation
#(x, y)=¢'(x)ny(y),

gy(x, y)=e,(x)n4(»), (3.11)

where ¢ (g,) and ¢’ (¢;) denote the positive (negative) chirality components. The
massless gravitino field associated with these supersymmetries is contained in
¥,(x, y) and must have the same y-dependence as the corresponding supersymmetry
parameters &,(x, y). Furthermore 1t has been shown that small fluctuations n F,,,,
proportional to the Cartan-Schouten torsion, i.c. within the class of background
configurations that we consider, are also contained in the massless N = 8 supermulti-
plet [8,9]. Nevertheless, 1f these fluctuations are inserted in the night-hand side of
(3.5) with e, =¢,, then (8y,) does not satisfy the Kiling condition (3.9). This
indicates that the massive modes transform into the massless modes, so that the first
ones cannot be put to zero in a consistent fashion, since they will reappear through
the supersymmetry transformations. However, this result is clearly unacceptable
because the small fluctuations about a background must always transform among
each other under the 1sometries of that background, and can thus be classified
according to irreducible representations of the 1sometry group.

In the mtroduction we have already outlined how one may attempt to make the
transformation rules consistent upon truncation to the massless sector, by introduc-
ing redefinitions of the fields and the transformation parameters. Since the transfor-
mation rules (2.10), (2.13), (2.15) and (2.16) were already 1n qualitative agreement
with those of N = 8 supergravity, one must restrict oneself to redefinitions that take
the form of a field-dependent chiral SU(8) transformation. Since S,,,, 1s the only
quantity in the backgrounds considered here from which such a chiral SU(8)
transformation can be constructed we start from

U= exp(378™"7(y) [y s) -

Since we use chiral components throughout we may drop the y; here and consider
the y-dependent SU(8) transformation

U(r) = exp(278™2(¥) Ly ) - (3.12)
This 8 X 8 matnx, which is an element of the SU(8)/SO(8) coset space, can be
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calculated by using (3.4), and one finds

U(t)=4%(e "+ 7e") + ki(e "~ e")S’""P(y)I‘,,,,,p . (3.13)
Using (3.2) one may also verify the useful identity
D,U(7)=4im,[L,,,U(7)]. (314)

We now assume that for nonvanishing F,,,, « S,,,, the supersymmetry parameters
of the background must be modified by the SU(8) transformation (3.12), where 7 1s
related to the proportionality factor between F,,, and S,,,. To preserve the
qualitative features of the transformation rules this SU(8) transformation must act
uniformly on all fields. Hence after redefining ¢, — Uy, and & — U, the transfor-

mation for the redefined field takes the form
; AB,
(89 (x, )y =1 {U(=7) (317D, — HV2T*F,,. — 12 £ YU(=1)} " t5(x, y),
(3.15)

for the positive chirality component. The next step is to investigate whether this
redefinition can now be used to remove the inconsistent term in {8y, proportional

to F,,,. This turns out to be possible provided we choose
Ezbc = 2\/7m 7tg(4T)Sabc ’ (316)
f=VZm,(3 - 41gk4r). " (317)

The vanation (3.15) now takes the form

3
(8yi(x, y)y= Y,,m7{ COSZZT (2cos?47+ 2 — 3cos4r)
cos“4r

si2r

cosZ4r

(2cos™ar+2+ 3cos47)}éA(x, ), (3.18)

which 15 obviously consistent. It is gratifying that our strategy of employmg only
SU(8) redefinitions does indeed allow us to achieve consistency. A priori these
redefinitions could also have taken the form of an SI(8) transformation.

At this point one may wonder what would be required 1n case the siebenbein
would also deviate from the round S” background. This 1s much more complicated
to analyze 1n general, but for small deviations it becomes rather straightforward.
Upon inspection of the full transformation rule one discovers the need for an SU(8)
transformation

U=exp(i§,I'™), (3.19)

where at the linearized level £,, can be expressed in terms of the S” derivative of the
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massless fluctuations contained m the siebenbein, which 1s proportional to
#UT,, 775"yl The redefinition of &(x, y) according to (3.19) now gives rise to
one of the terms which were found in [17]. Combining this term with the linearized
result arising from (3.12) and with the linearized effect of the Weyl rescaling of
#(x, y) one finds all the terms of [17].

Let us now return to the previous background and continue the analysis of the
transformation laws. Note that all relevant quantities have already been determined
in terms of the background parameter 7, so that the remaining calculations serve as a
consistency check. It is clear that the SU(8) redefinitions do not affect the vierbein
variation (3.7), so let us turn to the supersymmetry variation of the spin-1 fields.
Applying the same SU(8) transformation to all the spinor quantities on the right-hand
side of (3.8) yields

(8B,(x, y)) =2 (UT(r)I™U(r)) 5(2/2 842 + by, xP€)

+ 32 (U (=) IU( —7))AB(2‘/E%:A‘PFB + éCY,uXABC) )

(3.20)
which can be written as

(8B (x,y)y =%vZe 2{(2cos4t + 1sm4r)iI™ 5+ 15in(47)S™, ,Tif }

x (22849, + &3, x*5€) + h.c. (3.21)

As follows from the results presented n the appendix (3.21) is mndeed consistent
upon truncation to the massless sector, because 1f one takes ¢ and ¢, proportional to
a Killing spinor, and x proportional to an antisymmetric product of three Killing
spinors, then the right-hand side of (3.21) is precisely proportional to the Killing
vectors

£ ()= (YL (y). (3.22)
This y-dependence thus coincides with that of the massless spin-1 fluctuations
contained in B,™.

It remains to evaluate (3.6) 1n this background. A straightforward but somewhat
tedious calculation leads to

(8x*2¢(x, y)) = (33 1(U(=1)TUT(=7))pandeip D,
- %f(U(—T)FaUT("”))[AB(U("")FGU("'))CID
+ % (U(=1)TU (= 1))as(U(=7)(2L,2%4 = 382T°4)U(7)) ¢ pFpea} 2°
= — W2m I 58S mn B
X e2'"tg41(cos47 + 2sin4dr tgdr +15ind7). (3.23)

Let us now consider these transformation rules n the truncation to the massless
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sector. To that order one specifies the y-dependence of the fields according to

Ya(x, y) =i (x)nk(»),
x*BC(x, y) = x"*(x)ny () mp(¥)n&(y),
B™(x,y)=BN(x)w'(y)Iv'(y),

e, (x,y)=e5(x). (3.29)

Substituting the ansatze (3.11) and (3.23) mn the right-hand side of the supersymme-
try variations, one finds that the vanations are again consistent with (3.23). The
symmetry transformations for the d = 4 fields corresponding to the massless sector
can then easily be extracted and read

Se,* =18y, + hec., (3.25)
oy =ym { cos?2r (2c0s?47 + 2 — 3cosdr)
# T cosMT
sin’27 )
—1———(2c0s47 +2 + 3cosdr) b¢;, (3.26)
cos“4r

8B, ={sV2 e *"{(2cos47 +15md7) 8, + LisindrCHy, )
X (2\/'2—51(4/5 + EMY,LXKLM) +h.c., (327)
Ox ¥ = — 42 m,CVK elet g 41(smdT — 1(cosdr + 2547 tgdr)). (3.28)

The antisymmetric selfduat tensor CYX%, which 1s introduced in the appendix,
comncides precisely with the tensor that has been used to study two solutions of
gauged N =8 supergravity; in these solutions the scalar or pseudoscalar fields have
vacuum expectation values proportional to this tensor [13]. One of the important
properties of CVKL js

CHRPC, pop = 68145, + 981LCTK, (3.29)

We may now consider (3.25)—(3.28) in the background of the round and parallelized
sphere, corresponding to F,,,=0 and F,, =+ V2m,S,,, p» respectively. This

corresponds to taking 7= 0 (round sphere) and tg47 = + 4 (parallelized sphere).
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For the round sphere, the only nontrivial result 1s
8y, =myye,. (3.30)

For the parallelized sphere we quote (tg47 = + 3)
8¢,/ =v,m A5 41 +V5) 3 +V5 + 212 = V5))ey, (3.31)

8B =4V25 Y41 +V5) A {((2+V5) +1(9-4/5))87,

+(=1+ 35+ 1), H2V2 85y, F + &y 7, x <™ ) +hee., (3.32)
SX K =1W2m,5734(1+V5)2(Y5 — 5+ 21/5 ) CVREL, (3.33)

This may now be compared directly to the explicit solution of N = 8 supergravity
where the pseudoscalars have an SO(7) -invariant vacuum expectation value. For
zero expectation value (3.30) follows, provided the SO(8) gauge coupling constant g
is chosen according to

gl =v2|m,]. (3.34)

For non-zero vacuum expectation value all results comncide with (3.31) (3.33) after
adjusting for the dufferent normalizations used i [13] provided that

lgl =4X%534m,]|. (3.35)

Inserting (3.34) and (3.35) mnto the corresponding expressions for the cosmological
constant at these d = 4 stationary points [12,13] gives

A= —6g%=—12m2,
A=—-%/5g2=—-10m3, (3.36)

which coincides precisely with the values that follow from the d =11 field equations
for the round and parallelized S7 solutions. This fully confirms that we have indeed
succeeded in identifying the proper d = 4 fields of N = 8 supergravity directly from
the d =11 theory, at least in the SO(7)~ invariant background. The manipulations
that were required in order to obtan these results are highly nontrivial, so the
conclusion that d =11 supergravity on the round S’ corresponds to gauged N =8
supergravity coupled to an infinite tower of massive supermultiplets seems hard to
avoid.
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4. Conclusions and outlook

In this paper we have evaluated the transformation laws of d =11 supergravity in
an arbitrary background that anses through the spontaneous compactification of
this theory to four dimensions. These transformation rules have then been analyzed
in an SO(7)” invanant class of background configurations, and by requiring
consistency in the truncation to the massless sector, we have 1dentified the d=4
fields of gauged N =8 supergravity. Furthermore there is complete numerical
agreement between the two stationary points in this background corresponding to
the round and the parallelized S7 solutions and the SO(8) and SO(7)~ stationary
points of the N =8 supergravity potential. As a consistency check we have de-
termined the cosmological constants for these solutions in terms of the mverse S’
radius on the basis of the d =4 theory and found the correct values A = —12m?
and A = —10m? that are known from the d = 11 solutions. Note that this result 1s
based on the comparison between the d= 11 and d =4 transformation rules, and
not as in [23] on knowledge of many of the massless ansitze and the d=11
lagrangian.

We believe that our results constitute a proof that the parallehzed solution of [14]
mdeed corresponds to the SO(7)~ invariant stationary point of the N = 8 potential
identified 1n [12,13]. Previously this equivalence had been conjectured on the basis
of the observation that the massless pseudoscalar fluctuations have the same
y-dependence as the parallehzing torsion [18,9]. However, this argument is not
completely rigorous because 1t 1s based on the analysis of small fluctuations only.
Now we understand that it 1s misleading, 1f not fallacious, for the following reason.
We have demonstrated in this paper that in order to achieve consistency the proper
identification of the d= 4 fields of N =38 supergravity involves a field-dependent
chiral SU(8) rotation. Such an SU(8) rotation inevitably mixes scalars and pseudo-
scalars such that the identification of the scalars with the zero-mass fluctuations of
the siebenbein and of the pseudoscalars with the zero-mass fluctuations of the field
strength F, . 15 only vald in an mfinitesimal neighbourhood of the round S’
background, and fails for any finite value of the (pseudo) scalar fields. To see this
more explicitly, we have also studied the transformation rules 1n a background where
F.,,, 15 no longer proportional to a Cartan-Schouten torsion, and satisfies

. 1
D,F,,,=smme

Fro (4.1)

mnpqrst

without further restrictions. Based on the knowledge of the small fluctuations, this
background would be viewed as one in which the pseudoscalar fields of N =18
supergravity have acquired a vacuum expectation value. However, this conclusion
must be false. We have attempted to achieve consistency by means of chiral SU(8)
rotations in this background; eq. (A.9) 1 the appendix gives the relevant SU(8)
transformation for this case. We have found that consistency can only be achieved if
also the siebenbein deviates from the round S’ background. Therefore the back-
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ground (4.1) with the standard S’ metric cannot have an mterpretation within the
context of pure N =8 supergravity, and must be interpreted as arsing from the
vacuum expectation values of both massless and masswe scalar and pseudoscalar
fields. It is only for the SO(7)™ invariant background where F, , , 1s proportional to
a Cartan-Schouten torsion that the scalar-pseudoscalar mixing does not play a role,
because the SO(7) ™ stability group of this background forbids a vacuum expectation
value for the scalar fields. This observation thus explains why the attempts of this
paper were successful.

Our results strongly indicate, although by no means prove, that gauged N =8
supergravity is indeed the effective d = 4 theory that is obtained by compactification
of d=11 supergravity on S’ and subsequent truncation to the zero-mass N =8
supermultiplet, if nonlinear modifications are properly taken mto account. This
seems to contradict the conclusions of [11], but we emphasize once more that in view
of the scalar-pseudoscalar mixing the purely geometrical framework adopted in [11]
is presumably madequate for a unified description of the scalars and pseudoscalars.
To see how this could be relevant we recall that the scalar fields in the ungauged
theory arise from antisymmetric tensors by duality transformations However, in the
gauged version these scalars may acquire vacuum expectation values. In that case
there 1s no simple local relation between these two descriptions just in the same way
as there 1s no simple relation between electric and magnetic phases in an ordinary
gauge theory. This line of argument indicates that the stationary points of the N =8
potential [12], for which so far no d = 11 counterparts have been found, may in fact
correspond to nonlocal solutions of the d=11 theory. Although such solutions
would still describe compactification to four dimensions, they would not be of the
conventional Freund-Rubin type [7], but rather resemble magnetic monopole config-
urations (yet dissimilar from the “black hole” solutions considered in [24]).

Another intriguing aspect of our findings 1s that an SU(8) structure naturally
emerges for the full d =11 supergravity theory. Gauged N = 8 supergravity in four
dimensions possesses a local SU(8) X SO(8) imnvariance, and the fields of that theory
can be assigned to representations of SU(8) X SO(8) [10]. Without making any
assumption on the y-dependence of the fields, we have been able to assign the
spmn-2, spin-3, spin-1 and spin-4 fields to representations of SU(8) which coincide
with those of gauged N = 9 supergravity in four dimensions. This suggests that local
SU(8) must also be relevant for the fields that describe the massive multiplets. In
fact, this is consistent with the structure of the massive multiplets that arise in the S’
compactification [3]; the helicity states all have the same structure as the massless
supermultiplet multiplied with an extra SO(8) representation correspondmg to the
harmonic modes on S”. Of course for the states one cannot make a distinction
between SU(8) and SO(8), but an SU(8) X SO(8) assignment of the associated fields
1s clearly possible. The locally SU(8) symmetric form of N = § supergravity also
points in this direction, because 1n that formulation supersymmetry implies SU(8)
invariance through the supersymmetry commutation relations.
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In view of the SU(8) structure of the transformation rules (2.10) and (2.13), we
may pursue the analogy with N = 8 supergravity even further, and conjecture that
the SU(8) group of the full 4 =11 theory may in fact be realized as a local symmetry
of the equations of motion for arbitrary compactifications to four dimensions (for an
early but somewhat different speculation regarding the SU(8) group, see [25]). The
SU(8) structure would then be a universal characteristic of any compactification,
whereas the 1sometry group depends on the specific properties of the manifold S’
on which d =11 supergravity happens to be compactified. Cremmer and Juha [15]
have suggested that the local SU(8) of ungauged N =8 supergravity becomes
dynamical at the quantum level and relevant for the physical spectrum. In [26,10],
the additional assumption was imtroduced that the local SO(8) group of gauged
N =8 supergravity provides the forces that bind the preons and lead to eternal
confinement. Extending this “preconfinement hypothesis” to the full d =11 super-
gravity theory leads to the conjecture that all physical states must now be singlets of
the 1sometry group. The philosophy underlying such a scenario 1s completely
opposite to the conventional Kaluza-Klein philosophy [6]. There one generally
assumes that 1t 1s the isometry group which 1s relevant for the physical spectrum,
whereas possible “hidden” symmetries are commonly 1gnored. Here we consider the
possibihity that 1t is the hidden symmetry group which becomes physically relevant
whereas, through dynamucal effects, the erstwhile physical symmetry group becomes
a hidden symmetry which 1s no longer manifest. The intriguing question 1s then what
the nature is of the physical ground state in connection with the large variety of
possible spontaneous compactifications of d = 11 supergravity to four dimensions.

We have benefitted from stimulating discussions with A. Casher and F. Englert.
We thank the Department of Theoretical Physics of the Université Libre de
Bruxelles for 1ts warm hospitahity.

Appendix

For the reader’s convenience, we here summarize our conventions for the d =7
Clifford algebra and list some important formulae needed 1n the main body of this
paper. We use hermitean 8 X 8 I'-matrices which satisfy

{(r=r"}y=26m, (m,n=1,---,7), (A1)

I'*mnpqrst - lnfemnpqrst, (AZ)

where #" = +1is an arbitrary duality phase. Antisymmetrized products of I-matrices
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are defined with strength one, i.e.

™ me=lmpm ... Pmud, (A_3)

In the context of the parallelized solution [14] and the associated stationary point of
the N =38 potential [12,13], the following combinations of I-matrices play an
important role

I:;zgc —_ — 2_’4,"/£abcdefg1"‘4d§fg , (A4)
l 2, C
Fllﬁll’;rc%] = ‘22"1 e dcfgr[deréi] s (A-5)

where we note the opposite duality phase in the indices a, b,... in (A.4) and (A.5).
The expression (A.S5) is furthermore selfdual in the indices [ 4BCD] with arbitrary
duality phase [15]; the corresponding expression I'; BF”CD], which is of opposite
duality in the indices [ ABCD], is not needed in this paper. The importance of (A.4)
and (A.5) resides in the fact that they provide the basic input in solving the
selfduality equation

D, F,,,=t0me,, 0 F™ (A.6)
in terms of covariantly constant spinors
(D,, +3mL,)n',=0. (A7)
Namely, (A.6) is solved by [8,9]
Fu(B)=i%"T,, . BY
= Y Ty, A L B UL (A8)

The tensors B” and B~ in (A.8) belong to inequivalent 35-dimensional represen-
tations of SO(8): B 1s symmetric and traceless in the indices I, J whereas B is
antisymmetric and (anti)selfdual in {IJKL]. To calculate the chiral SU(8) rotation
needed in sect. 3, one may in principle use either of these representations. For
practical purposes, it is, however, more convenient to work with the first representa-
tion. For arbitrary BY, the relevant exponential is given by

exp(3F, . (B)T?°) = htr(e™®7) + kT F,p (e ¥" —ftr(e %)) (A9)
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An SO(7)” invariant solution 1s obtained by specializing to

BY=1s . , (A.10)
B

which leads to the result (3.13) used 1 the text with F,., proportional to a
Cartan-Schouten torsion S, For this case the following indentities are also of

mnp:
interest
(S-TY=-252-36:8-T, (A.11)
S-IT,S-T'=36I,+6I,S -T+6S-IT,, (A.12)
S-IT,,S I'=36L,,~ 61%¢,mcaeS°°T% — T28S,,,,I"°, (A.13)
rs-rr,=-s-T, (A.14)

U(7)LU(7)=4e " (2cos4r +15ind7)I, + te "sm41S,, I"?, (A.15)

mnp
U(-7)LLU(7)=(1-isin’4r)T,, + 4smdrcosdr(I,S-T'-S-IT,)
— Yusm?4+(I,S-T+S-IT,), (A.16)

where U(7) 1s defined 1n (3.13).
We next list some of the formulae needed in sect. 3 to convert a d=7 vector
spinor ¢, , into a three-index spinor A 5~ by means of the definition [15]

Aapc= ’F[AB%C] (A-17)
The inverse relation is
‘Pac:%’{rfB}‘ABc“% Fan)CAFlgD)\ABD}' (A.18)

As m [15] formula (A.18) as well as other relations below are most easily checked
backwards. Inserting A ;5 = F[ABI’CD]eD, where X =g or [ab] and Y = ¢ or [cd] one
may calculate the corresponding expression for y,, through (A.18). This expression
can then be converted again by using (A.17). In that way one finds a useful identity

IsTep = Tep{ 4T I, IY = 4I'T,IX + LT, I°T*T,I'Y + LT, T°TYT, X
+3tr(I*1%)(8,, — $I,0,) Y + $tr(TYT)( 8, — $L,I,)T*} ¢1p-

(A.19)
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For 1nstance, choosing X = a,Y = [bc] and antisymmetrizing 1n [abc] we find
T 45°Tes = — 3T ¢, p (T2 — 68°T*) ¢ . (A.20)
Another useful 1dentity can be found by similar techniques
Ffz,fs‘scw =7 %F[CAB(Fcab - 45c[arb])cw- (A21)
In sect. 3 we also need
[AB(FS r-s-Ii, )C]D ﬁlsabc [AB(FaS r-s-rre )C]D
= (F[aABFCI"]CD - F[aAbBFCC]D)Sabw (A.22)

which can be derived by utilizing the properties of the Cartan-Schouten torsion (3.3),
34).
Finally we recall from [13] the following identity for Killing vectors

m,,pn’F"Pn’—zC”K’“ XT,m (A.23)
where CVXL is a constant antisymmetric selfdual tensor expressed by
CHXE=318™ P (p) A () L’ (1) 75 () L (3, (A.24)

where the torsion S,,,, and Killing spinors # are defined by (3.2)-(3.4) and (3.9),

mnp
respectively.
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