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After integration over the fermions in an SU(2) lattice gauge theory, the effective fermionic
action may be expressed as a sum over all possible closed gauge field loops with corresponding
weight factors. We approximate this sum and perform a Monte Carlo simulation of a coupled
fermion-gauge system on a 4* lattice. We compare our results for (S, ) and ($y) for different
values of the gauge field coupling B and fermion coupling x with the free fermion theory on a
lattice. (S ) turns out to be quite small for k < 4.

1. Introduction

In the last few years, Monte Carlo (MC) techniques have been developed to deal
with pure gauge theories on a euclidean lattice [1, 2). More recently, the problem of
incorporating fermions in this treatment has come into focus and has been discussed
by several authors [3, 4]. In order to evaluate expectation values, the MC algorithm
generates configurations of the field variables with statistical weight given by a
Boltzmann factor. In the case when fermions are included, this Boltzmann factor is

exP[So(U)'*‘SF(‘Z’-HP,U)], (1.1)

i.e., “Grassmann-valued” and not implementable on a computer. Since the action is
quadratic in the fermions, one may integrate out the fermions [5] and one arrives at
the well-known Matthews-Salam determinant [6]; this formalism is reviewed in sect.
2. Hence, (1.1) is replaced by the effective Boltzmann factor :

exp[ So(U) + S (U)], (1.2)

where S, (U) results from the Grassmann integration. As has been pointed out in
refs. [3, 4], the main difficulty resides in the numerical calculation of the Matthews-
Salam determinant which is obtained from a rather huge matrix; on the other hand,
this matrix has only very few off-diagonal elements, and this fact will be of crucial
importance in any calculation.
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In this paper, we propose a method to deal with this problem which is based on an
expansion of the logarithm of the fermionic determinant, i.e., the effective fermionic
action. Similar ideas have been independently developed in refs. [7, 8]. We will work
on a 4* lattice and approximate SU(2) by its largest subgroup: these and other
details are discussed in sect. 3. In addition to an outline of the general strategy, we
present some numerical results in sect. 4. The final section of this article is devoted
to a discussion of the possible implications of our results and possibie further
improvements of our method.

2. Review of Matthews-Salam formalism

To begin with, we briefly recall a few facts about the MS formalism [6]. In any
conventional gauge theory, the fermionic part of the action may be written as a
quadratic form,

Se(¥,¥ ) =¥y =Z4:Q,;¥;, 2.1)
5y

in the Grassmann variables ¢,. Here, the index i stands for the triple (x,a, A): x is
the configuration space (= lattice) index, a the Dirac index and A the index of the
gauge group. Flavour indices may of course be appended. Integrating out the
fermions [5] leads to the well-known formulae {6]

Javay exp[¥0y] = det,
Javav pexp[d0¥] = 05 det 0,

[avay b dwexplvoy] = (07'0a' — 030" )dete,  (22)
etc.

In a lattice gauge theory, the matrix Q depends on the link variables U, , and may be
taken as

QU = QxaA,yBB = 6x,vaquaAB - KanA,yﬁB’ (2-3)
with

anA,yBB E(l +‘Y”)aB(Uxu)A38x,y—ﬁ + (1 _Yu)aﬁ((]xtﬁ,#)Agsx,y-kfi‘ (24)
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Following Wilson [9] we have introduced an explicit chiral symmetry breaking
through the replacement of *y, by (1 +7,). It is a well-known problem that there
appears to be no chirality preserving lattice formulation which avoids the notorious
species doubling of Dirac fermions on the lattice [10]. In Wilson’s prescription, the
superfluous fermions decouple in the naive continuum limit a -0 where chiral
invariance is restored.

The effective fermionic action S, (U) is defined through*

expS.(U) =det(1 —xM), (2.5)

and the other quantity we are interested in is the fermionic propagator. Our MC
method is based on an expansion of these quantities in the parameter k according to
the formulae

Sa(U)= —-Tr}jl fziLfM(U)“, (2.6)
o \(U)=[1-xM(U)]™" =§OKLM(U)L. (2.7)

For their actual evaluation, we use the fact that, owing to the peculiar form of the
matrix M (2.4), S may be re-expressed as a sum of traces (Dirac + internal) along
all closed paths on the lattice, such that a factor (1 + y*)U is associated with a
positively oriented link and (1 — y*)U * with a negatively oriented one; in this way,
we exploit the circumstance that M is “almost diagonal” to our maximal advantage.
That is, we get

K2L
LA Y Y T(UPZL,y,,u), (2.8)
2 links € Py, (£)

M8

Seff(U) =-
L

where the sum runs over L, all links £ of the lattice and all positively oriented paths
P,,(?) of length 2L through a given link . T(U, v) denotes the trace**

T(Usz’YPzL) =Tl‘e H (1 + YE)UZ (29)

€Py;

along the path P,;. In the updating, we only need to know AS_, the change of the

* It can be shown that this determinant is strictly positive for 0 <x <j.
**Of course, y_, = —y,and U_,=U;".
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action under the change of the link variable Uj; this quantity is exactly given by

ASye = Seff(U') - Seff(U)

o0
i Ez 2"”},2(',) [(7(Vs,,.vs,,) — T(Us,,, ypu)], (2.10)
- 2L

where the gauge field configurations U’ and U differ only in the one-link variable U,
Note that we have taken into account that paths of length two do not contribute
because (1 + y*)(1 —y*) =0. The lowest order («*) term of AS,,, is proportional to
AS, and constitutes a renormalization of the gauge coupling constant. Similar
considerations apply to (2.7), and we are actually only interested in the (truncated)
expectation values of string operators which, for simplicity, we take as

SnE‘pxequ+ﬁ,u"'Ux+(n—l)ﬁ,ﬂ‘p)¢+"ﬁ' (2'11)

For the purposes of this article, we have computed the expectation values (S, ),
(Yo%) and (S,) as a function of the two parameters 8 and «. Using (2.2) and the
explicit form of M again, (2.11) leads once more to a sum completely analogous to
(2.8). The only difference is that now the sum ranges over all closed paths containing
the straight line from x to x + nji which is kept fixed, and that the Dirac trace is only
over that piece of the closed path which is the complement of the line x - x + nf.
There is no problem of principle in extending this analysis to more complicated
structures such as meson operators.

3. MC procedure: description and justification

Our MC procedure follows the usual lines [2, 11]: we use the modified Metropolis
method which has been widely applied before [12]. Instead of working with the full
gauge group SU(2), we approximate it by its largest subgroup, the icosahedral group
which has 120 elements. Except for the free case, where the gauge fields are frozen to
unity, we always stay below the critical value of the gauge coupling 8, = 6.05, where
the discrete group has a phase transition that is absent in the continuous group. It
has been demonstrated that below this value of 8 the results obtained from the full
group and its maximal discrete subgroup, respectively, are indistinguishable {12].

The pure gauge field action

S(U)=—1BSTr(1—Ug), B=4/g® (3.1)

(the sum is over all plaquettes and U, denotes the ordered product of link variables
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around the plaquette), is replaced by the full action
S(U)=8y(U) + 5(U) (3.2)

[with S, (U) as defined in (2.8)] in the updating. The crucial point here is that at
each MC step one needs to know only the change of the action AS that results from
a change of a certain link variable. For the effective fermion action, AS, is given in
(2.10) in terms of a sum over all closed paths through the given link, and we
emphasize again that this formula is exact.

The essential difficulty is now the numerical computation of AS,, and one must
resort to some approximation which, however, must be sufficiently reliable in order
not to play havoc with the updating procedure. In our scheme, there are three
approximations involved which we state below.

(i) We truncate the expansions (2.6) and (2.7) at order «'2, i.e., we consider only
paths of maximal length 12.

(ii) We evaluate only a limited number of paths (typically 20 per link update; i.e.,
5 per length) which are randomly selected with equal probability from a table of all
possible paths; the result is then scaled up by the corresponding factor. This
amounts to a MC integration over all paths.

(iif) We use a hybrid between periodic and free boundary conditions by treating
the gauge fields as periodic variables, but discarding all those paths which are closed
only due to periodicity (e.g., straight lines running through the lattice). This is the
least severe of our approximations and has the additional advantage of strongly
reducing “finite size” effects of the expectation values of fermionic quantities. For a
lattice of linear extension N there are no closed periodic paths of length 2L _, <AN.

Let us now discuss the possible range of validity of our approximations (i) and (ii).

(i) It is fairly obvious that on a four-dimensional lattice the number N,; of all
closed paths of length 2L will increase as 82L asymptotically. However, due to
1+ y*)1 —¥*)=0 all closed paths with spikes do not contribute as has also been
discussed by Stamatescu [7] and, therefore, the expected asymptotic growth of the
number N;,; of all closed paths without spikes is

N;, =exp(2Llog7 + O(log L)). (3.3)

In the free fermion theory (see sect. 4) all expansions converge up to k¥ = 3. Hence (to
leading order)

N2’L<Tr£[L(liy)>=O(l)-82L, (3.4)

where ( - - - ) here denotes the mean value of the Dirac traces. From(3.3) and (3.4)
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Fig. la. The number N, ; of closed paths of length 2 L through a given link and the number N, , of closed
paths with non-vanishing y traces.
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Fig. 1b. Negative average values of the y traces for non-vanishing paths and their standard deviation as a
measure of their fluctuation.
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we infer the asymptotic behavior of the y traces*
(el (1)) =0(0)- (5 (35)
2L

In fig. 1a, we compare the number of all closed paths N,; with those of non-vanishing
y trace N, ; fig. 1b shows the slow increase of —(Trllp, (1 £v)) and its standard
deviation.

Since the free theory corresponds to setting B8 = oo, the rate of convergence will
improve for decreasing 8 due to the expected perimeter decay of the Wilson loop

'<Tr£ILU>'<O(I)-c2L, (3.6)

with ¢ <1 for 8 < oo0. Furthermore, for §>4 and x =0, we know that the correla-
tion length is substantially larger than the extension of our 4* lattice [12, 13] and
contributions from paths with length greater than 4 will be spurious. We therefore
expect this approximation to be at least as good for <o as for §= oo in which
case it is certainly justified up to the critical value k, = ¢ as will be shown in sect. 4.

(ii) Taking only a comparatively small number of paths introduces an error that
decreases with the inverse square root of this number. We have checked that 5-10
paths per length are sufficient to obtain rather accurate results up to k =1 and even
beyond. Any approximation of AS, leads to a (quasi-) random error in the updating
procedure, and we have simulated this effect by considering a pure SU(2) gauge
theory and adding a small equidistributed error ¢ to AS; in the updating procedure.
Investigating the thermal cycles, we found no effect for values of || <0.1 ((&)=0).
This provides an additional justification for our approximation scheme since the
errors introduced here are typically much smaller for k<3}. One could further
improve the accuracy by selecting different numbers of paths for different lengths
according to their known weights x“‘]\?z 1, (“stratified sampling” [14]).

Finally, we mention a few technical details. In order to save computer time we
prefabricated tables of pseudo-random sequences of paths on mass storage coded
together with their y trace values. In the updating procedure and the evaluation of
averages, a set of path shapes was used for every 64 out of a total of 1024 links. As
the y trace depends only on the shape of the path, only the values of Trllp, U had to
be recalculated for each link. In our MC iterations each link variable was allowed six
subsequent changes; this number is optimal as has been discussed in refs. [2, 12]. On
a CDC7600 one MC iteration of the pure gauge field system takes about 50 ms;
taking into account 20 paths per link, the coupled fermion gauge field system
requires about 0.7 seconds per iteration.

* Among the “spikeless” paths there are still some with vanishing y-traces; thus, the actual number Nog
of non-vanishing paths is smaller than Nj; .
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4. Results

In this section, we present and discuss our numerical results, as well as some
purely theoretical arguments in their support. The two main quantities of physical
interest that we have computed by the MC simulation are the expectation value
(S.y of the effective fermionic action normalized per link, and, secondly, the
expectation value ({,y,) which is relevant for the question of spontaneous chiral
symmetry breaking [15]. We have also considered the expectation values (S,) of
string operators S, but refrain from a detailed discussion as our results permit no
clear-cut conclusions.

In fig. 2a, we display (S, ) as a function of « for several values of 8 and for the
free theory. The most striking feature of our computation is the somewhat unex-
pected smallness of (S, ) as compared to the average value of the gauge field action
per link: the effective fermionic action is almost irrelevant to the updating procedure
right up to the expected critical value k= g (for the free fermion theory). This result
is confirmed by a computation of {S,) in the presence of fermions where no marked
dependence on k is observed.

The smallness of (S, ) is less surprising in view of the diamagnetic inequality [16]
which states that, for antiperiodic fermionic boundary conditions*,

Seff("’U)sseff("’U: ]1)’ (41)

i.e., even before integrating over the gauge fields, and hence

(Seif(K)>B<Seff(K’U:n)' (4.2)

Next, we observe that in the expansion (2.6) all powers of M? appear with a minus
sign while, from fig. 1b**, the average value of the Dirac traces is also negative.
Moreover, for 0 < 8 < o0, the average (TrU ) varies between 0 and +2, and thus, we
may improve (4.2)

0= (S (k) <Ses(x,U=1) (4.2)

where the right inequality is rigorous and the left strongly supported by our
numerical evidence***. Consequently, we have quite stringent bounds on the
average effective fermionic action, and the smallness of {(S,;) follows from the
smallness of S, (U=1).

As a further check on these results, we have computed S, for the free case in two
entirely different ways: first by employing the approximation method described in

* The necessity of antiperiodic boundary conditions for fermions was first point out by Liischer [17].
** Up to the order considered.
*** There is another argument in favour of (S )= 0 in the MC procedure: all those configurations with
extremely negative fermionic action are strongly suppressed by the Boltzmann factor exp S,
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Fig. 2a. (S.¢) as a function of x for 8=1 (@), 2 (X), 3 (+), 5 (O) and oo (M, all gauge fields frozen to
unity). The full line depicts the exact solution on a 16* lattice with antiperiodic boundary conditions for
the free fermion lattice theory.

sect. 3 (boxes in fig. 2a), and, secondly, by using the exact expression on an N*
lattice (solid curve in fig. 2a)*

Seff(x,U=‘Il‘)=-—1-4— > log[(l — 8k +4k ), sinzfzﬁ +4k? Y sin’ p, |,
2N" p=1/2,.,N—1,2 b u
(4.3)

for N = 16. Notice that on account of the antiperiodic boundary conditions, the zero
modes never appear in (4.3). Although we are effectively using free boundary
conditions for the fermions in our first method, the two calculations are in excellent
agreement as is evident from fig. 2a.

* Up to 12th order, Syr(x,U= 1) =48x*+ 1408x° + 40 992x® + 1 228 800x'® + 37 538 81652,
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Fig. 2b. Coefficients C,, of the expansion in k2 for the free theory as determined by our MC method
(dots with error bars) in comparison with the exact values (vertical bars).

As a further indication of the efficiency of our method, we have plotted in fig. 2b
the exact values of the first five coefficients of k2~ in the expansion (2.6) for the free
theory versus the ones determined from our MC simulation. The latter were
obtained by applying the same procedure as before and setting U=1,, i.e., after
averaging over ten lattices (for the free theory, this procedure is, of course, redun-
dant; note also that the standard deviation increases in the coupled case due to the
fluctuations in (TrII,U,)).

From these curves, there seems to be no indication of a phase transition at k = §.
Yet, the free theory does have a phase transition at this value of x as may be seen
from the thermodynamic limit of (4.3):

1
2(27)*

Nl_{I:o et (K )

2
X d*plog (1 — 8k + 4k sinzfzﬁ +4k2 Y sin’p, | .
| pu| = n n

(4.4)

The integrand has a logarithmic branch point singularity at k = g which is, however,
softened by the four-dimensional integration*. The weakness of this singularity will

* In particular, all expansions converge in the closed interval 0 <k < L
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Fig. 3a. (Yop) as a function of « for different values of .

make it extremely difficult to detect by a numerical evaluation of (S ) alone even
in the free case. We expect this feature to persist for < o0, and indeed our curves
do not show any evidence of a phase transition. Other and hopefully more efficient
ways to determine the existence and location of a fermionic phase transition will be
discussed below.

From fig. 2b, it is obvious that the expected asymptotic behaviour sets in at much
higher values of 2 L. This is in accordance with the discussion of the entropy factors
for the closed paths in sect. 3. Nevertheless, the coefficients decrease sufficiently fast
to justify our approximation for S,;.

In fig. 3a, we have depicted the expectation value { lp—o%) as a function of x for
several values of 8 and, again, for the free theory. As the Wilson action explicitly
breaks chiral invariance, we have (¥, ) 0 even at ¥ =} which corresponds to the
massless case in the free lattice theory. Formally, chiral invariance is recovered for
free fermions in the continuum limit a — 0 by setting 1 — 8k = 2kam . and putting
m s = 0 afterwards [9). However, in configuration space, {Yoyj )t 18 ill-defined in
the continuum limit because of ultraviolet divergences. In fig. 3b, we have also
plotted the difference A(Yyy, »n=< Yoo 2« Yo¥o Viree @S a function of the variable

de%Tr Uexp[BTrU]
,31/2(13): ) (BI/Z(O)ZO’BI/Z(OO)Z 1), (4.5)
deexp[BTrU]

at k = 4. The difference vanishes for 8 — oo as was to be expected from the scaling
behaviour (we are grateful to J. Smit for a discussion on this point).

Finally, we have also considered the expectation values of string operators (S, ).
As before, there are no sizeable modifications in the interval 0 < k <}. Presumably,
the most suitable quantity which might signal a phase transition is log{s, , ;) /{(S,)
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which should be proportional to the inverse fermion correlation length and therefore
become zero on the phase transition point. We have indeed computed this quantity
for n =1 and 2, but in our present set-up with a 4* lattice, the available data do not
permit any definite conclusions because a larger lattice will be needed for precise
measurements of slowly decaying correlations.

5. Conclusions and outlook

The method proposed in this paper appears to be capable of incorporating
fermions in MC simulations. One of its main advantages is its simple physical
interpretation. For small «, only small loops are relevant; with increasing «, the
fermionic correlation length increases too, and larger loops become important. In
our first attempt on a 4* lattice, the truncation of paths of length = 14 seems quite
justified. An extension to larger lattices or more flavours is straightforward. The
necessary computer time is directly proportional to the lattice volume.

The free fermion lattice theory agrees remarkably well with our results for gauge
fields frozen to unity. (S, ) is rather small over the whole range 0 <k <} which
explains the almost negligible influence of the fermionic action on the updating of
the gauge field configuration. Our choice of “hybrid” boundary conditions effec-
tively reduces the finite size effects of the fermionic quantities.

On the other hand, our approximation did not allow reliable estimates on the
asymptotic behaviour of the different expansions in &k, which presumably sets in at
much higher orders of k. These contributions, however, will be strongly interwoven
with the finite size effects. In any approach, this will necessitate (maybe consider-
ably) larger lattices.
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For « >0, one expects asymptotic perimeter decay for the expectation value of the
Wilson loop. From (2.8) it is clear that the effective fermionic action favours the
ordering of rectangular Wilson loops for which the y traces give the biggest
contribution —22%7!, But in MC calculations, one is naturally restricted to finite
loops and can never really distinguish between asymptotic area or perimeter law.
The commonly adopted strategy is to look at the lower bound of quantities defined
for finite rectangular loops that would become the string tension asymptotically. We
expect that one has to go to quite large loops in order to find evidence for the
perimeter decay.

Thus, an improvement of the proposed method will require larger lattices and the
possibility of investigating larger loops. This would allow for a better understanding
of our approximation and its merits and limitations. For this purpose, it would be
attractive to have a reliable unbiased and fast random generator of closed path
shapes.

Another interesting avenue for future research would be the determination of the
gauge field expectation values of the coefficients of various fermionic quantities at
k=0 by means of our MC method. In this way, one would combine a MC
simulation for the pure gauge theory with a strong coupling expansion in k.

It is a pleasure to thank D. Amati, B. Berg, D. Foerster, E. Marinari and C. Rebbi
for many fruitful discussions.

Note added in proof

After submission of this paper we learnt of related work by A. and P. Hasenfratz
(Central Res. Inst. f. Physics Budapest preprint KFKI-1981-47). In the meantime
our results for S, have been confirmed up to sixth order in k by Z. Kunszt. We
want to thank both authors for stimulating discussions.
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