Energy Conservation as the Basis of Relativistic Mechanics. II*
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From the relativity principle and the conservation of energy in particle collisions we deduce
the form of the energy function, and the conservation of inertial mass and three-momentum.
We show that the arguments are parallel under Einsteinian and Galilean kinematics,

PAPER with the above title was recently

published in this Journal by two of the
authors.? In the present paper a medified argu-
ment is given which represents a significant im-
provement in brevity and precision. As the
argument now stands, it would appear to be the
simplest and pedagogically most satisfactory
approach to (Einsteinian) relativistic mechanics
suggested so far. For this reason, rather than
merely communicate the changes from the previ-
ous paper, we thought it best to make the
present account self-contained, especially since
the overlap is slight. At the same time we have
made brief mention of the parallel development
of Newtonian mechanics. For a historical intro-
duction and bibliography we still refer the reader
to the earlier paper.

Our notation is the following. (It differs
slightly from that of Ref. 1.) The magnitude of
the 3-velocity ur of a particle relative to an
inertial frame F is denoted by ur (the speed).
The 4-velocity corresponding to any u is denoted
by U, and U-V means the Minkowskian scalar
product UVEi— DV —[2V2— U313 of two 4-
vectors U= (U, U, U, U and V= (1,72, V3 79,
The internal state of a particle, comprising all
such properties as material constitution, spin,
electric charge, temperature, etc., which can be
measured in a rest frame of the particle, is indi-
cated by a collective symbol $. In order to
divest § of its directional properties, we define
scalar states .S as equivalence classes of states 8,
such that distinct 8 belong to the same S if they
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have the same description in suitably oriented
rest frames.—Greek superscripls distinguish the
states, velocities, etc., of different particles.

The mechanics to be discussed is that of
particle collisions. We assume that the particles
are “free,”’ i.e., that their motions are independ-
ent of each other except during collisions, and
that before and after collision each particle moves
uniformly in accordance with the law of inertia
(which is already incorporated into special rela-
tivity in the definition of inertial frames).

We make the following assumptions.

Assumpiron (I): There exists a real-valued
universal energy function E (%,S), where u ranges
over-all speeds and .S over-all scalar states, such
that in any collision the energy sum relative to
any inertial frame F is conserved:

n ntm

2 E(p,S)= 3 E(ur+,S% (1
a=1 a=n+1

(the particles numbered from 1 to # go into the
collision, and those numbered from #»-+1 to
n+4-m come out of it). For any fixed S, E(«,S)
is a continuous nonconstant function of .

The last property distinguishes an energy func-
tion from an ‘‘internal charge,” i.e., a function
of Salone whose sum is conserved in any collision.
Since such an internal charge can be added to
E without invalidating (1), it is clear that (1)
does not define E uniquely.

A change of scalar state which occurs in a free
particle without external influence can be con-
sidered as a one-into-one ‘“‘collision.”’” By the law
of inertia such a change does not affect %, and
by (1) it does not affect E. Hence, for the pur-
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poses of our analysis, such variable states can be
considered as single states.

Assumption (II): The sum of the energies of
two identical particles approaching each other
with equal speeds # along any straight line in
an inertial frame F is independent of this line,
even relative to any other frame F'.

This is the analog, for the simplest of all
2-particle systems, of the direction-independence
assumed for the energy of a single particle.
Although this assumption cannot be deduced
from Assumption (I), it is in accordance with
the general energy principle. For we may suppose
that the particles transfer their energy to a sym-
metric system at rest in F whose gain in energy
relative to F must be the same in all cases; thus
the gain relative to F/ must also be the same.

Assumptions (I) and (II) can be used in con-
junction with either Galilean or Einsteinian kine-
matics. We first consider the Einsteinian case.

For convenience, we introduce instead of « a
new variable, namely the Lorentz factor

v=7w)=(1—u?/ct)7}; 2)

and we temporarily write E(«,S)=E[v] when
only one scalar state is under discussion. We
recall that the 4-velocity associated with a 3-
velocity u is given by U=~ («)(u,c); hence the
4-velocity of an inertial observer relative to
his own rest-frame is V= (0,¢). Thus

v=VY.-U/c, 3)

i.e., the Lorentz factor of a particle relative to
any inertial observer is given by the scalar
product of the two corresponding 4-velocities
divided by ¢ And this product, being invariant,
can be evaluated in any inertial frame.

Now consider two particle systems as in As-
sumption (II), along the x and y axes, respec-
tively. The components of the four relevant 4-
velocities with respect to F are

y(%u,0,0,¢); v, £u,0,c);
Ly=v@w)] (4)

If F’ moves with speed »’ along the x axis of F,
its 4-velocity components with respect to F are

7I(u,10:0)c)’ ['Y,=’Y(u,):|' (5)
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Hence, the various Lorentz factors of the par-
ticles relative to F’ are given by the scalar
products (divided by ¢*) of (5) with the 4-
velocities in (4):

1=y (L+un'/c2), ya=vy' (1—uun'/c),
va=vs=vY =5 (v1t72). (6)

Equating the energies of the two systems in F’
in accordance with Assumption (II), we obtain
the functional equation

E[yi]+E[v2]=2E[3(v1F72) ], (M

valid for all values 1<y, y2< o since # and #’
can be varied independently. In words, this
equation reads: ‘‘the average of E at v; and
v¢ equals E at the average of v; and v,."”" In the
usual way (continued halving and appeal to the
continuity of E) it follows that E must be a
linear function of v

E= 62774’)"{‘9’ (8)

where m and ¢ are functions of S (the factor ¢*
being introduced for later convenience) and, be-
cause of the rider in Assumption (I},

m(S)=0 forany S. @ Q)

Now consider an arbitrary collision and let the
4-velocities of the particles involved be U« If
V is the 4-velocity of an arbitrary inertial frame
F (ie., its “time axis’’) then according to (8)
and (3) the energy sum relative to F can be
written as

V- mUatY g~ (10)
Since this expression is conserved for each 4-
velocity V it follows that 3 m=U= and 2. g are
separately conserved. [Take, for example, V as
in (5) and allow #’ to vary. Then the conserva-
tion of (10) implies that of ¥ mU*, 2 mU*, and
3 g; etc. ] Note that ¢ has therefore the character
of an internal charge and m U* that of an energy
function. We infer

Theorem (I): Under Einsteinian kinematics,
Assumptions (I) and (II) are equivalent to the
postulate that there exists a nonvanishing func-

2 It would be interesting to know what further assump-
tions are sufficient within a classxcal_ collision theory to
imply that m must have the same sign for all particles.
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tion m of S such that the 4-vector sum

2am U (11)

is conserved in all collisions.

We can now define the proper mass of a par-
ticle as the scalar m, and its 4-momentum as the
4-vector mU, provided that m is unique (up to
a universal factor corresponding to a change of
unit)., The conservation of 4-momentum, the
central law of relativistic collision mechanics,
would then be established.

Without attempting to give the most general
uniqueness argument for m, we only state one
simple assumption which is sufficient: Any two
particles P and P’ can be made either to collide
and stick together upon impact; or to collide so
that two particles again emerge and three of the
four 4-velocities involved are linearly independ-
ent; or a finite number of particles Py, Py, - - -,
P, can be found such that each of the pairs
P,Py; PyPs; --+; Pu P’ can undergo such a
collision. For in any such collision the (observa-
ble) 4-velocities determine the ratios of the m
uniquely. If there exist particles which can
participate only in more complicated (e.g., 5-
particle) collisions, the above assumption and
argument would have to be somewhat extended.

The 3-momentum of a particle relative to a
frame F can now be defined in the usual way as
myup and the inertial mass as my, and both of
these are conserved in any frame (the first being
the spatial component and the second 1/¢ times
the temporal component of the 4-momentum.)

Furthermore, E =c*my is seen to be an energy
function satisfying Assumptions (I) and (II).
This is evidently the most natural choice, since
the addition of a charge-like quantity ¢ as in (8)
produces a hybrid entity, ¢y transforming as
the last component of a 4-vector (¢mU) and ¢ as
a scalar. On the other hand, it appears to be out-
side the scope of special relativity to prove that
¢y is the available (as distinct from conven-
tional) energy of a mass m. If, for example, the
elementary particles were indestructible, the
available energy of a macroscopic particle would
be ¢*my4-q, where ¢ is —¢? times the sum of the
rest masses of the constituent elementary par-
ticles. However, in general relativity, a kind of
proof can be given by lowering—in imagination
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—a particle into the “Schwarzschild radius” of a
mass point.

The basis of special relativistic mechanics is
now established, and we need not discuss it
further.

We finally formulate briefly the corresponding
argument if Galilean kinematics is adopted. It
is then convenient to use u? as a new variable
instead of #; in place of (6) we obtain

ul=(u—u')?, ul=(u+u)?

up=ud=12+u" = (u+us)/2, (6")
and in place of (7),
Efud ]+ E[u?]=2E[5(ul+u?)]. (7))

Except for notation, this is identical with (7.
Hence

E=imu?+ E,, (8"
where m (#0) and E, are functions of S, and the
factor 1 is included so that (8) and (&) can
coincide in the limit of small velocities. Instead
of (10), the Galilean relativity principle leads to
the conservation of

S pme(ue w4 T Eor= ¥ (bmeus'+ o)

+u' Y meust-tu” Y me (107)

for each v’ and, consequently, to the conservation
of the quantities Y m=u® and 3 m*, separately.
A theorem analogous to Theorem (I) can there-
fore be formulated. It is also obvious that the
analog of the argument for the uniqueness of m
holds here.

The development (6”)-(10’) is essentially a
“limit” of the special relativistic case, for small
velocities. This becomes clear when it is remem-
bered that v (u) =1+3u2/2+0(1/c%).

Thus in the Galilean as well as in the Einstein-
ian case, an energy conservation law in conjunc-
tion with the relativity principle implies a
3-momentum conservation law and the law of
conservation of inertial mass. In the Einsteinian
case, however, the energy function possesses a
natural zero point whereas, since the two com-
ponents of E in (8’) are not separately conserved,
no such zero point exists in the Galilean case.
In this respect, which has a deep physical sig-
nificance, Einstein's theory is more determinate
than its predecessor.



