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Abstract: We study a subsector of the AdS4/CFT3 correspondence where a class of solu-

tions in the bulk and on the boundary can be explicitly compared. The bulk gravitational

theory contains a conformally coupled scalar field with a φ4 potential, and is holographi-

cally related to a massless scalar with a φ6 interaction in three dimensions. We consider

the scalar sector of the bulk theory and match bulk and boundary classical solutions of the

equations of motion. Of particular interest is the matching of the bulk and the boundary

instanton solutions which underlies the relationship between bulk and boundary vacua with

broken conformal invariance. Using a form of radial quantization we show that quantum

states in the bulk correspond to multiply-occupied single particle quantum states in the

boundary theory. This allows us to explicitly identify the boundary composite operator

which is dual to the bulk scalar, at the free theory level as well as in the instanton vacuum.

We conclude with a discussion of possible implications of our results.
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1. Introduction and motivation

The deep relationship between quantum field theory and gravity via holography has pro-

vided a very strong drive in the current research in string theory. In particular, classical

field dynamics in AdS spaces has enjoyed a large amount of attention over the last few

years and an enormous amount of work on classical supergravities in various dimensions

has found important applications in classical gravity, Standard Model phenomenology, and

Cosmology.

Progress, however, has been limitied by what is also one of the virtues of AdS/CFT [1 –

3], namely the fact that it is a weak/strong coupling duality. In practice this means that

the boundary field theories, being strongly coupled, are usually not under control. There

are very few examples where the holography of controlable quantum field theories can be

studied in perturbation theory. Higher-Spin gauge theories1 might be such an example as

it has been argued that they provide the holographic dual of free-field theories. On the

other hand, there are examples where the boundary field theory is basically unknown, such

as the holographic dual of the M2 brane.2 Both examples above involve the AdS4/CFT3

correspondence, which in many respects seems rather special.

The crucial observation that has sparked our investigation is the existence of classical

instanton solutions to the equations of motion both for the bulk and for the boundary

theories and that there is an apparent relationship between them: bulk instantons restricted

to the boundary are the square of boundary instantons. Remarkably, this toy model touches

upon both Higher-Spin gauge theories, which possess a conformally coupled scalar with a

quartic self-interaction, as well as the low-energy action of the M2 brane [6]. We hope that

our results might help shedding more light on the above two important problems.

One of the aims in this work is to present a simple toy-model of the AdS4/CFT3

correspondence where both the bulk and boundary theories are under control. This model,

already studied in [6], contains a conformally coupled scalar with φ4 interaction in the

bulk of AdS4, which is holographically related to a massless scalar with a φ6 interaction

in three dimensions. Despite the drastic simplification of the boundary theory to a single

scalar field, we find that it reproduces the bulk results remarkably well for a large class

of solutions. In particular, there are bulk instanton solutions that preserve AdS boundary

conditions and correspond to the expectation value of a composite operator of dimension

1 in the boundary theory, which is reproduced by a classical computation in the model

CFT. Since we will be interested in this single boundary operator, we restrict to the scalar

sector in the bulk. We further simplify the model by neglecting the back-reaction which is

partly justified in our linearized approximation since we expand around exact solutions of

the equations of motion whose improved stress-energy tensor is identically zero [23]. A full

holographic analysis, for example the discussion of the boundary two-point functions, does

require the inclusion of back-reaction of the fluctuations in the case of instanton solutions.

In the bulk, such effects can be introduced systematically and these results will be presented

in the followup paper [23].

1See [4] for a recent review and further references.
2See [5] for a recent discussion.
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Our model should be viewed as a subsector of the usual AdS4/CFT3 correspondence.

Issues such as the counting of the degrees of freedom or the stress-energy tensor of the

boundary theory should be analyzed in the coupled scalar-gravity system. The same is

true for the boundary theory, where a more refined definition may be needed in order to

compute more general observables. We will leave such issues for the future.

Since our goal is not to explore the microscopic boundary theory directly, which as

explained is very difficult in the case of AdS4/CFT3, we proceed by constructing an effective

theory on the boundary and showing that it reproduces the bulk results in the subsector

that is being studied. This theory will be a semi-classical theory, therefore both sides of

the duality should be under control. As we will explain, a key feature which makes this

possible is the existence of bulk and boundary instanton solutions with a large conformal

symmetry group. In order to distinguish this type of holography, where classical solutions

can be matched, from the usual one, where a classical theory for the strongly coupled fields

is not known, we will denote it conformal holography. Of course, conformal holography is

a particular case of classical holography where conformal invariance and the use instanton-

like solutions allow us to formulate a classical effective theory for the strongly coupled

fields. For the types of models under consideration, this way of doing holography may

bring us into a broken phase of the holographic boundary theory.

We now summarize our main set-up and results. We consider the φ4 scalar field the-

ory in the bulk, which is classically invariant under four-dimensional Euclidean conformal

transformations, O(5, 1). The way our solutions are constructed is by demanding that

they preserve a large symmetry group. It turns out that in the interacting theory the

only solution invariant under the full Poincare group is the trivial one. Thus we look for

solutions that preserve a subgroup of the symmetry group, namely O(4, 1). Notice that

the solution is unique once one demands which symmetry one wants it to preserve. Here it

is crucial that we are dealing with an interacting theory and not with a free theory, as it is

the interactions which determine the solution. The solution is the analytic continuation of

the well-known Fubini-Lipatov scalar field solution [7, 8]. Such solutions have finite action

and are subdominant at weak coupling, whereas at strong coupling they will plague the

vacuum. Although we cannot claim to have full control over interactions, nevertheless one

can argue that taking into account other effects like back-reaction shouldn’t drastically

change our picture.

The next question is whether there is a classical boundary theory whose solutions

reproduce the bulk instanton solution. When restricted to the boundary, we still have a

large symmetry group, O(3, 1), which is the (Euclidean and global) conformal group in two

dimensions. Here it becomes clear that the boundary theory we are looking for is not in

its normal vacuum, but in a broken one. It turns out that there is such a theory, namely

a massless scalar field theory with a φ6 interaction. We find it an encouraging sign that

we find precisely this theory, which has earlier been advocated as a possible candidate

for an effective theory on the boundary [6, 9]. It turns out that also this theory has a

unique instanton solution that preserves O(3, 1). As mentioned at the beginning, the bulk

instanton solution is the square of the boundary instanton.

After having discussed our vacuum state and found agreement between bulk and
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boundary, we set out to discuss fluctuations. At this point we no longer have exact so-

lutions, but this is irrelevant as we have already expanded around an exact vacuum and

all we are interested in is the fluctuations around it. In the interacting case we find once

more that the bulk solution is the square of the boundary solution, but it involves a mixing

of modes with different conformal dimensions. The reason for this is that the instanton

breaks dilatation invariance.

Having the classical correspondence between the bulk and boundary modes, we then

quantize them using radial quantization. In this way we are able to identify the composite

operator of dimension 1 in the boundary theory as the normal-ordered product of two

elementary operators of dimension 1/2:

Φhol = {ϕ(x)2} . (1.1)

Is is gratifying to also find that the classical bulk theory is automatically compared to a

renormalized operator

Finally, we discuss how the instanton can be seen as a tunneling solution between two

local vacua. The fluctuations around the instanton find themselves surrounded by a local

effective de Sitter geometry where they acquire tachyonic mass. These considerations may

add some cosmological interest to our model.

2. Classical holography

In this section we review the conventional holographic picture, where correlation functions

of composite CFT operators, and sources for these operators, are obtained from classical

computations in the bulk of AdS. We will describe the holography of instantons in our toy

model, and present our proposal for the boundary theory to which they can be explicitly

compared.

2.1 The model

Our toy model is a conformally coupled scalar field on a fixed AdS4 background with action

I =

∫

d4x
√

g

(

1

2
gµν∂µφ∂νφ − 1

L2
φ2 +

λ

4!
φ4

)

. (2.1)

We take the Poincare patch of Euclidean AdS4 with metric

ds2 = gµν dxµdxν =
L2

r2

(

dr2 + d~x2
)

, xµ = (r, ~x) , r > 0 . (2.2)

We rescale the metric and the scalar field as

gµν = Ω−2(x) ηµν , φ(x) = Ω(x)Φ(x) , Ω(x) =
r

L
, (2.3)

and the action becomes

Iε =
1

2

∫

d3~x
1

r
Φ2(x)

∣

∣

∣

∞

ε
+

∫

R
4
+,ε

d4x

(

1

2
ηµν∂µΦ ∂νΦ +

λ

4!
Φ4

)

, (2.4)
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where we have momentarily restricted the holographic variable to ε ≤ r < ∞. The first

term on the right-hand side of (2.4) is a boundary contribution and the second term is the

flat space action of a massless φ4 theory on the half-space R
4
+,ε with ε ≤ r < ∞. Notice

that for the conformally coupled scalar on a fixed AdS4 background the only remainder of

the bulk curvature is the first divergent term. This is not true for any other value of the

bulk mass.

We term Classical Holography the procedure of calculating the on-shell value of the

bulk action and its subsequent interpretation as the renormalized generating functional of

a boundary CFT [2]. In particular, one aims in obtaining a finite quantity when ε → 0 and

to achieve that in our case we subtract the first term on the right-hand side of (2.4):

Iren ≡ lim
ε→0

[

Iε −
1

2

∫

d3~x
1

r
Φ2(x)

∣

∣

∣

∞

ε

]

=

∫

R
4
+

d4x

(

1

2
ηµν∂µΦ ∂νΦ +

λ

4!
Φ4

)

. (2.5)

For the conformally coupled scalar, holographic renormalization with a single counterterm

is enough. This would no longer be true for any other value of the bulk mass [10].3 Hence,

Classical Holography of the conformally coupled scalar is a classical field theory problem

in a flat space with a boundary. The on-shell value of the action (2.5) is

Ion-shell
ren =

1

2

∫

d3~xΦ ∂rΦ
∣

∣

∣

∞

0
− λ

4!

∫

d4xΦ4 , (2.6)

where we need to solve the equation of motion
(

∂2
r + ~∂2

)

Φ(r, ~x) =
λ

3!
Φ3(r, ~x) , (2.7)

with Dirichlet boundary conditions at r = 0. Equation (2.7) can be solved perturbatively

in λ using the standard Green’s function for the Dirichlet problem in half space as

Φ(r, ~x) = Φ0(r, ~x) +
λ

3!

∫

d4y G(x, y)Φ3(y) , (2.8)

where
(

∂2
r + ~∂2

)

Φ0(r, ~x) = 0 ,
(

∂2
r + ~∂2

)

G(x, y) = δ4(x − y) , G(x, y)
∣

∣

∣

∂R4
+

= 0 . (2.9)

The asymptotic behavior of Φ0 near the boundary is

Φ0(r, ~x) = α(~x) + r β(~x) + · · · (2.10)

with α and β arbitrary functions and the dots standing for higher powers in r. Requiring

that the solution is regular at r = ∞ gives the textbook formula

Φ0(r, ~x) =
1

π2

∫

d3~y
r

[r2 + (~x − ~y)2]2
α(~y)

= α(~x) + r
1

π2

∫

d3~y
1

(~x − ~y)4
α(~y) + · · · , (2.11)

3See [11] for a review of holographic renormalization.

– 5 –



J
H
E
P
1
2
(
2
0
0
6
)
0
7
6

which determines essentially the relation between α and β and yields the boundary two-

point function. Using the above result we can expand the solution (2.8) in powers of

λ and substitute back into (2.6). This gives a functional of α which is identified with

minus the generating functional for connected correlation functions of a operator O2 in a

three-dimensional CFT that lives on R
3

−Ion-shell
ren [α] = Wren[α] =

1

2

∫

d3~xα(~x)β(~x) + O(λ) , (2.12)

eWren[α] =

∫

[Dφ] e−S[φ]+Sint[α,O2] , Sint[α,O2] =

∫

d3~xαO2 . (2.13)

In most examples of holography the boundary CFT is strongly coupled and the action S[φ]

is unknown. Then, one finds from (2.12) using (2.8)

δWren[α]

δα(x)
= β(~x) ≡ 〈O2(x)〉α =

∫

d3~x1 〈O2(~x)O2(~x1)〉α(~x1) + O(λ) ,

〈O2(~x1)O2(~x2)〉 =
1

π2(~x1 − ~x2)4
. (2.14)

The above show that the scalar operator O2 has dimension ∆ = 2.

Choosing α as the boundary source is not the only possibility for the conformally

coupled scalar. We could have chosen to express the boundary on-shell action in terms of

β and still get a consistent generating functional. The correct way to do that is to consider

the Legendre transform of Wren[α] as [12]

Wren[α] = Γ[A] +

∫

αA ,
δW [α]

δα(x)
= A(x) ,

δΓ[A]

δA(x)
= −α(x) . (2.15)

Setting A(~x) = β(~x) this will give the generating functional of the Dual boundary CFT as

Γ[β] ≡ W̃ren[β] =
1

2

∫

d3~xd3~y
C1

(~x − ~y)2
β(~x)β(~y) + O(λ) , C1 =

1

2π2
. (2.16)

The 1- and 2-pt functions of the Dual boundary CFT are

δW̃ren[β]

δβ(x)
≡ −α(~x) = 〈O1(x)〉β =

∫

d3~x1〈O1(~x)O1(~x1)〉β(~x1) + O(λ) ,

〈O1(~x1)O1(~x2)〉 =
1

2π2(~x1 − ~x2)2
. (2.17)

Therefore, the Dual boundary CFT has a scalar operator O1 with dimension ∆ = 1. This

is the operator we will consider in this paper and we will denote it hereafter by O ≡ O1.

2.2 Instantons and the vacuum structure of the boundary CFTs

The vacuum structure of the boundary CFTs is probed by the external sources. For

example, setting α(~x) = 0 we find that the standard boundary CFT is in its normal

vacuum where 〈O2〉 = 0. Equivalently, setting β(~x) = we see that 〈O〉 = 0 for the Dual

boundary CFT as well. Two other interesting boundary configurations are

Standard CFT : α(~x) = δ3(~x) ⇒ β(~x) ≡ C2

~x4
= 〈O2(~x)O2(0)〉 (2.18)

Dual CFT : β(~x) = δ3(~x) ⇒ α(~x) = −C1

~x2
= −〈O(~x)O(0)〉 (2.19)

– 6 –
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Notice that a delta function source for O in the Dual boundary CFT corresponds to negative

values of the field at the boundary.

The Legendre transform functional Γ[β], being an effective potential for the standard

boundary CFT, determines its vacuum structure. For example, in the absence of external

sources for O2 we have

〈O2(~x)〉α=0 = α0(~x) ,
δΓ[A]

δα(~x)

∣

∣

∣

α0

= 0 . (2.20)

For α0 = 0 we have the normal vacuum, for α0 6= 0 we have a broken vacuum. In the latter

case, the expectation value of O2(~x) is non-zero and in translationally invariant theories it

is a constant.

In the Dual boundary CFT the roles of Γ[β] and Wren[α] are interchanged. Now the

latter becomes the effective potential as is seen from

δΓ[β]

δβ(~x)
= −α(~x) = 〈O(~x)〉β ,

δWren[α]

δα(~x)
= β(~x) (2.21)

Then, β = 0 is the extremization condition for the effective potential of the Dual boundary

CFT and determines its vacuum structure.

〈O(~x)〉α=0 = −α0(~x) ,
δW [α]

δα(~x)

∣

∣

∣

α0

= 0 . (2.22)

Hence, the vacuum structure of the Dual boundary CFT can be found by extremizing

Wren[α].

The above discussion finds its application in our toy model. When λ < 0, a real

solution of (2.7) exists and is given by the Fubini-Lipatov instanton [7, 8]

Φ0(~x) =

√

48

−λ
‘

b

b2 + r2 + ~x2
. (2.23)

This depends on an arbitrary parameter b with dimensions of length, the instanton size.

The case λ > 0 will be discussed in section 5. The instanton action is independent of b and

is evaluated to

I0 = −8π2

λ
. (2.24)

We expand around the solution (2.23) as

Φ(~x) = Φ0(~x) + Φ̃(~x) , (2.25)

and obtain

Iren = I0 +

∫

d3~x Φ̃∂rΦ0

∣

∣

∣

∞

0
+

∫

R4
+

d4x

(

1

2
ηµν∂µ Φ̃∂νΦ̃ − 12b2

(b2 + r2 + ~x2)2
Φ̃2 + V (Φ̃)

)

,

(2.26)

where the potential V (Φ̃) contains cubic and higher terms in Φ̃. To calculate the on-shell

action we need to solve the equation of motion for the fluctuations Φ̃ . We restrict ourselves

to the linearized fluctuation equations
(

∂2
r + ~∂2 +

24b2

(b2 + r2 + ~x2)2

)

Φ̃(r, ~x) = 0 . (2.27)

– 7 –
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The general solution of (2.27) behaves near r = 0 as

Φ̃(r, ~x) ≈ Φ̃0(~x) + r Φ̃1(~x) + · · · . (2.28)

In Classical Holography we should solve (2.27) imposing Dirichlet boundary conditions at

r = 0 and regularity at r = ∞ as

Φ̃(0, ~x) = Φ0(~x) , Φ̃ (r = ∞, ~x) = 0 . (2.29)

This is done in appendix D. Then, the quadratic on-shell action as a functional of the

boundary conditions is

−Ion-shell
ren [α] ≡ Wren[α] =

8π2

λ
+

1

2

∫

d3x Φ̃(~x) Φ̃1(~x) (2.30)

where we have denoted

α(~x) = Φ0(~x) + Φ̃(~x) . (2.31)

Clearly, δα = δΦ̃ and we find

δWren[α]

δα(~x)
=

1

2
Φ̃1(~x) +

1

2

∫

d3y Φ̃(~y)
δΦ̃1(~y)

δΦ̃(~x)
(2.32)

In appendix D we show that setting Φ̃(~x) = 0 also gives Φ̃1(~x) = 0, therefore the boundary

effective action is minimized (recall that λ < 0), when

α(~x) = α0(~x) = Φ0(~x) . (2.33)

We define the Legendre transform functional Γ[A] as

Wren[α] = Γ[A] +

∫

d3x (Φ̃ + α0)A ,
δWren[α]

δα
= A ,

δΓ[A]

δA = −(α + α0) , (2.34)

and we interpret it as the generating functional for composite operators coupled to the

source A in the Dual boundary CFT. Then we see that the theory described by Γ[A] has a

vacuum state in which the operator coupled to A gets a non-zero expectation value, after

having switched off the external source, given by

δΓ[A]

δα(~x)

∣

∣

∣

A=0
≡ 〈O(~x)〉A=0 = −α0(~x) = −

√

48

−λ

b

b2 + ~x2
. (2.35)

2.3 The proposal for the dual boundary CFT

The dual boundary CFT of our toy model is a CFT which has a scalar operator with

dimension ∆ = 1. A natural candidate for this is provided by a massless scalar in three

dimensions. Indeed, the elementary scalar field ϕ (i.e. the one appearing in the Lagrangian)

in three dimensions has dimension ∆ = 1/2, hence one might consider the composite

operator ϕ2 as a candidate for the operator O. Clearly, this is is not a very strong argument

since as we discussed previously in Classical Holography O(~x) is just an arbitrary function.

Nevertheless, instantons provide more solid evidence for such correspondence. In this case,

– 8 –
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the value of O is fixed at the boundary to be (2.35). Can this value be related to the value

of ϕ2 in some boundary theory? The answer is, remarkably, positive.

Consider the massless scalar in three dimensions with a ϕ6 interaction

S =

∫

d3x [
1

2
(∂µϕ)2 +

g

6!
ϕ6] . (2.36)

When the dimensionless coupling constant g < 0, the equations of motion have the real

instanton solution [7]

ϕ0(~x) =

(

360

−g

)1/4 (

c

c2 + ~x2

)1/2

, (2.37)

where the instanton size c is an arbitraty parameter with dimensions of length. These

instantons have finite action, independent of c, which is

S0 =
3π2

2

√

10

−g
. (2.38)

The results (2.35) and (2.37) are consistent with the correspondence between O and ϕ2.

Since the bulk Hilbert space is a product of two boundary Hilbert spaces one expects that

the actions (2.24) and (2.38) are related as

I0 = 2S0 ⇒ 1

g
= −32

45

1

λ2
. (2.39)

Then we can identify the bulk instantons with the square of the boundary instantons after

a rescaling by a dimensionless paramater κ of their size and position as

c = κ b , ϕ2
0(κ~x) = −〈O(~x)〉 ⇒ κ2 =

16π2

3λ
. (2.40)

Therefore, qualitatively our proposal is that the bulk model (2.1) with negative values for λ

is holographically dual to the model (2.36) with negative coupling constant given by (2.39).

We should remark here that the holographic comparison of the finite part of the action is

subject to the usual renormalization scheme ambiguities. In the next few sections we will

add evidence to the above proposal.

For positive values of g, the theory (2.36) is only well defined in the context of some

large-N expansion [13]. We expect that the explicit form of the bulk/boundary correspon-

dence of our model (2.1) will involve some large-N expansion which, however, we shall not

try to identify here.

3. Conformal holography: free case

In the previous section we reviewed the standard holographic procedure, termed Classical

Holography, in which the on-shell bulk action is interpreted as the renormalized generating

functional of the boundary theory. In this section we show how in our toy model we can

go one step further and, after we match bulk and boundary classical field configurations,

upon quantization we can identify quantum modes in the bulk with quantum modes on

the boundary. This way we reproduce the results of section 2 for the expectation value of

the operator of dimension 1, but we also find a microscopic description of it in the bulk.

In this section we restrict ourselves to the free case, i.e. λ = 0.

– 9 –
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3.1 Geometric set-up for radial quantization

Four-dimensional Euclidean anti-de Sitter space is a hyperboloid in 5-dimensional

Minkowski space with metric ηAB = diag(−1, 1, 1, 1, 1) specified by the constraint

ηAB yAyB = −y2
0 + y2

4 + ~y2 = −L2 , (3.1)

where yA = (y0, ~y, y4) and ~y = (y1, y2, y3). Its isometry is group O(4, 1). Notice that this

space has two disconnected branches, y0 ≥ L and y0 ≤ −L.

We solve the above constraint by introducing the following set of global coordinates

u = y0 + y4 =
R

cos θ
,

v = y0 − y4 =
L2

R cos θ
,

~y = L tan θ ~Ω2 , (3.2)

where ~Ω2 as usual parametrizes the unit 2-sphere, with volume element dΩ2
2 = dψ2 +

sin2 ψ dω2. In these coordinates, the AdS4 metric takes the form

ds2 =
L2

R2 cos2 θ

(

dR2 + R2dΩ2
3

)

, (3.3)

where dΩ2
3 = dθ2 + sin2 θ dΩ2

2, and 0 ≤ θ ≤ π
2 . Defining R/L = eτ/L we also obtain

ds2 =
1

cos2 θ

(

dτ2 + L2 dΩ2
3

)

. (3.4)

The above is seen to be conformal to a “half-cylinder” R×S3
+ with S3

+ being half a 3-sphere.

The latter space has a boundary at θ = π/2, which is the conformal boundary of AdS4 .

Unlike the Lorentzian case where τ is a global coordinate, we see that here τ ∈ (−∞,∞)

only covers the region R > 0. Whereas the boundary of Lorentzian AdS4 is (S1 × S2)/Z2,

in the Euclidean case the boundary is non-compact and topologically (R × S2)/Z2. This

is easy to see; sending yA → ∞ (equivalently, θ → π/2) while preserving (3.1), we get the

constraint

ũṽ = ~̃y2 = 1 , (3.5)

where ~̃y are now coordinates on the boundary, obtained by a proper rescaling of the bulk

coordinates. We can solve this as

ỹ0 = cosh τ

ỹ4 = sinh τ

~̃y = ~Ω2 . (3.6)

τ is related to R as before. (R,ψ, ω) parametrize R × S2 on the boundary. However,

they do not solve the constraint (3.5) completely. We sill have to divide out the Z2 action

ỹA ∼ −ỹA, which is R ∼ −R, ~Ω2 ∼ −~Ω2. Thus, the boundary is topologically (R×S2)/Z2.
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For later convenience, we list here the two O(4, 1) discrete symmetries that we will use in

this paper:

T : y4 → −y4 ,
R

L
→ L

R

P : y0 → −y0 , R → −R and ~y → −~y , ~Ω2 → −~Ω2 (3.7)

T is the time reversal operation in Euclidean time τ , and generates inversions in R. It

will be an important ingredient of radial quantization. P is the parity operation, which

takes a point x = (R, θ, ~Ω2) to its antipode Px = (−R, θ,−~Ω2). When it acts on y0, it

interchanges the two disconnected branches of AdS4. The boundary of AdS4, as obtained

above, is R × S2 moded out by the action of P .

3.2 Classical correspondence

That a conformally coupled scalar φ in AdS4 is related to a massless scalar in three dimen-

sions can already be seen at the classical level. Considering for simplicity the free case,

using the metric (3.3) we find that the equation of motion for the rescaled bulk scalar

Φ(R,Ω3) = φ(R,Ω3)/R cos θ is just Laplace’s equation in radial coordinates

¤Φ =

(

∂2
R +

3

R
∂R +

1

R2
∆S3

+

)

Φ = 0 . (3.8)

Had we considered the full sphere S3, where 0 ≤ θ ≤ π the general solution of the above

would be given in terms of the hyperspherical harmonics Yjlm (see appendix A) as

Φ(R, θ, ψ, ϕ) =

∞
∑

j=0

j
∑

l=0

l
∑

m=−l

(

c(1)jlm Rj + c(2)jlm
1

Rj+2

)

Yjlm(θ, ψ, ϕ) , (3.9)

where c(1) and c(2) are arbitrary coefficients. However, on S3
+ we have 0 ≤ θ ≤ π/2 and

the hyperspherical harmonics with either j + l even or j + l odd, separately form complete

bases. This means that the general solution is still given by linear combination of terms of

the form (3.9) with even and odd j + l. This one-parameter family of solutions corresponds

to the freedom to choose the boundary conditions at θ = π/2 as we discuss below.

Notice that the equation of motion for the field Φ is invariant under O(5, 1). The

subgroup that preserves the background is of course only O(4, 1). Moroever, the action of

the P, T, operations on the classical field is determined by the coefficients c(1) and c(2). For

example, PT transforms a mode RjYjlm into (−)j+lR−jYjlm. In radial quantization these

operations are connected to Hermitian conjugation and we already see that j + l even or

odd would correspond to two different quantization schemes.

Classically the difference between the j + l even and odd emerges when one considers

the behavior of the field Φ near the boundary at θ = π/2 which is

Φ(R, θ, ψ, ϕ) ∼ Φ(0)(R,ψ,ϕ) + (cos θ)Φ(1)(R,ψ,ϕ) + · · · (3.10)

This is determined by the Yjlm’s. In particular, as θ → π/2 for j+l even the hyperspherical

harmonics reduce to the standard two-dimensional spherical harmonics

Yjlm

(

θ =
π

2
, ψ, ϕ

)

= ajl Ylm(ψ,ϕ) . (3.11)
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The constants ajl and some more details on the hyperspherical harmonics are given in

formula (B.7) in appendix B. For j + l odd, the hyperspherical harmonics go to zero

as cos θ. Of course, this discussion simply corresponds to the two quantization schemes

discussed in [14, 15], and agrees with the general analysis in [16]. Restricting j + l to be

even or odd amounts to making the walls reflective or transparent respectively. Hence, for

j + l even we have an operator with dimension 1 on the boundary, while for j + l odd the

boundary operator has dimension 2. For general integer values of j + l we have both an

operator and a source term on the boundary.

Consider the case when j + l is even. At θ = π/2 we get

Φhol(R,Ω2) =

∞
∑

j=0

Φhol
j (R,Ω2) =

∞
∑

j=0

j
∑

l=0

l
∑

m=−l

(

c(1)jlm Rj + c(2)jlm
1

Rj+2

)

Ylm(Ω2) ,

(3.12)

where we have reabsorbed the constants ajl in the definition of the coefficients c(0) and

c(1). Since the theory is scale invariant, R can be chosen to be dimensionless. Notice that

the above scalings ∆+ = j + 2, ∆− = −j follow from the holographic relationship ∆± =

d−1
2 ±

√

(d−1)2

4 + m2 applied for a set of scalar fields in d = 3 with masses m2 = j(j + 2).

The formula suggests that these scalar fields are dual to operators in a two-dimensional

CFT with dimensions ∆+ = j + 2.

We will now show that this agrees with the classical solutions of the equations of

motion of the three-dimensional boundary action (2.36)

¤ϕ = ∂2
Rϕ +

2

R
∂Rϕ +

1

R2
∆S2ϕ = 0 . (3.13)

Expanding ϕ in spherical harmonics we find the general solution of the above

ϕ(R,Ω2) =

∞
∑

`=0

∑̀

m=−`

(

ϕ(1)`m R` + ϕ(2)`m
1

R`+1

)

Y`m(Ω2) ,

=
∞

∑

`=0

(

ϕ+
` (R,Ω2) + ϕ−

` (R,Ω2)
)

, (3.14)

where ϕ(1) and ϕ(2) are arbitrary coefficients. It is then straightforward to establish the

classical relation

Φhol
j (R,Ω2) =

(

ϕ+
` (R,Ω2)

)2
+

(

ϕ−
` (R,Ω2)

)2
, j ≡ 2` . (3.15)

This is done using standard properties of spherical harmonics summarized in the ap-

pendix B as

(

ϕ+
` (R,Ω2)

)2
= R2`

∑

m1m2

ϕ(1)`m1
ϕ(1)`m2

2
∑̀

l=0

l
∑

m=−l

c``m1m2

lm Ylm(Ω2) ;

(

ϕ−
` (R,Ω2)

)2
=

1

R2`+2

∑

m1m2

ϕ(2)`m1
ϕ(2)`m2

2
∑̀

l=0

l
∑

m=−l

c``m1m2

lm Ylm(Ω2) . (3.16)

– 12 –



J
H
E
P
1
2
(
2
0
0
6
)
0
7
6

Matching this to the holographic bulk field (3.12) we find

c(1)jlm =

l
∑

m1,m2=−l

c``m1m2

lm ϕ(1)`m1
ϕ(1)`m2

c(2)jlm =

l
∑

m1,m2=−l

c``m1m2

lm ϕ(2)`m1
ϕ(2)`m2

, (3.17)

with j = 2`. Notice that the condition `+ `′ + l = even satisfied by the nonzero coefficients

c``′m1m2

lm given in the appendix is exactly the condition j + l = even that we have in the

bulk for the theory with an operator of dimension 1. Upon quantization, (3.17) will become

an operator relation between creation and annihilation operators in the bulk and on the

boundary and will determine the relationship between the bulk and boundary Hilbert

spaces.

A priori nothing stops us from comparing the full bulk and boundary fields, instead

of comparing single modes as in (3.15). So let us try to see whether we can compare Φhol

with ϕ2, including terms with ` 6= `′. For example, we can expand

ϕ+
` ϕ+

`′ = R`+`′
`+`′
∑

l=|`−`′|

l
∑

m=−l

ϕ(1)`m1
ϕ(1)`′m2

c``′m1m2

lm Ylm (3.18)

Comparing this to Φ+
hol, we have to turn the sum over j into a sum over `, `′. This is easy

to do:

Φ+
hol =

∞
∑

j=0

j
∑

l=0

l
∑

m=−l

c(1)jlm Rj Ylm

=

∞
∑

`,`′=0

`+`′
∑

l=0

l
∑

m=−l

1

` + `′ + 1
c(1)jlm R`+`′ Ylm . (3.19)

The factor of ` + `′ + 1 in the denominator is simply the multiplicity of terms contributing

to `+ `′ = j. In our earlier formula (3.17) there was no such factor — indeed, if we restrict

ourselves to the sector ` = `′ from the outset (and we will do this in the rest of the paper),

there is just one term contributing at each j.

There is an important difference when we compare (3.18) and (3.19). In the latter,

there are contributions from terms with 0 ≤ l ≤ |` − `′|, whereas these are absent from

(3.18).

The missing terms notwithstanding, we can still compare both sides for the individual

modes. We then get:

c(1)jlm = (` + `′ + 1)
∑

m1m2

c``′m1m2

lm ϕ(1)`m1
ϕ(1)`′m2

, (3.20)

where now j = ` + `′. In fact, this equation makes sense for any `, `′! The point is that

the left-hand side depends only on j = ` + `′ and not on their difference, but in fact so
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does the right-hand side. Indeed, using the definition of the coefficients c``′m1m2

lm given in

appendix B (see formula (B.9)), the right-hand side is easily seen to be symmetric in `, `′,

hence it is only a function of ` + `′. Thus at the level of single modes, we can get mixed

modes from the bulk using (3.20). Quantum mechanically, equation (3.20) becomes an

operator relation but we leave for the future its further exploration.

3.3 Radial quantization in the bulk

Having at hand the general solution (3.9) we may proceed with its quantization. The

expansion in (3.9) is in eigenmodes of the dilatation operator D̂ = R(∂/∂R), hence it

is natural to use radial quantization [17]. The arbitrary coefficients appearing in (3.9)

become creation and annihilation operators. Hermitian conjugation is the earlier discussed

PT operation. Since we are in the sector where j + l is even, we simply have [17]

[Φ(R,Ω3)]
† =

1

R2
Φ

(

1

R
,Ω3

)

(3.21)

In particular, this ensures that the field is real when we go back to Lorentzian signature.

Without loss of generality we require that the creation operators multiply the modes that

are regular at R = 0. The anihilation operators multiply the modes that are regular at

R = ∞. Loosely speaking, “in” states are created at R = 0 and “out” states at R = ∞.

Finally, the Hermitian field operator takes the form

Φ̂(R, θ, ψ, ω) =
∑

jlm

(

a+
jlm√
j + 1

Rj Y∗
jlm(Ω3) +

a−jlm√
j + 1

1

Rj+2
Yjlm(Ω3)

)

, (3.22)

where j + l is even.

The operators a
(+)
jlm and a

(−)
jlm satisfy

[a+
jlm]† = a−jlm , a−jlm|0〉 = 0 , 〈0|a(+)

jlm = 0 , [a−jlm, a+
j′l′m′ ] = δjj′δll′δmm′ (3.23)

while all other commutators vanish.

Now, our general holographic interpretation combined with the radial quantization

allows us to take the relationship (2.17) one step further and identify the operator (3.22),

when θ = π/2, with minus the composite operator O of dimension 1 in the Dual boundary

CFT

Φ̂
(

R,
π

2
, ψ, ω

)

≡ −O(~x) (3.24)

Using (3.22) we can then calculate the boundary one- and two-point functions of the

operator O. Choosing for simplicity R > R′ and the angles such that ω = ψ′ = ω′ = 0, we

obtain

〈n|O|n〉 = 0 (3.25)
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for all multiparticle states |n〉. This is an important property which we should maintain

when we try to construct O using boundary operators. We also get

〈0|O(R,Ω2)O(R′,Ω′
2)|0〉 =

∞
∑

j=0

j
∑

l=0

N2
jl

(

Γ(l + j + 2)

Γ(j − l + 1)Γ(2l + 2)

)2 2l + 1

4π

Pl(cos ψ)

j + 1

R′j

Rj+2

=
1

2π2

∞
∑

j=0

C1
j (cos ψ)

R′j

Rj+2
=

1

2π2

1

(~x − ~x′)2
(3.26)

This is a non-trivial result. The sum in the rhs of the first line in ) is split into two sums,

each one involving terms with either j, l both being even or j, l both being odd. These

sums are done using the “summation theorems” over even and odd integers for Gegenbauer

polynomials [18]. (3.26) coincides with the holographic result (2.17).

In the above computation, summing over all integer j’s gives the expected holographic

result. In the next section we will match the bulk and boundary Hilbert spaces for even

j’s. The odd-j sector can be included as well, but the analysis is more involved and we will

not do this in this paper. If one restricts the above sum to the even j’s, one gets instead:

〈0|O(~x)O(~x′)|0〉 =
1

4π2

1

(~x − ~x′)2
+

1

4π2

1

(~x + ~x′)2
, (3.27)

that is we get a sum of two images, which now diverge not only at coincident points but

also at antipodal points on the boundary.

3.4 Mapping of the Hilbert spaces

Having defined the quantized bulk field Φ and seen that it reproduces the 2-point function

of the composite operator O(x) we ask next whether we can identify this operator explicitly

in the boundary theory. The previous discussion points towards a relationship of the form

O(x) ∼ ϕ(x)2,, where ϕ is the boundary elementary scalar. We radially quantize the

boundary field (3.14) by promoting the coefficients to operators, as before

ϕ(R,Ω2) =
∑

`m

1√
2` + 1

(

b†`m R` Y ∗
`m(Ω2) + b`m

1

R`+1
Y`m(Ω2)

)

. (3.28)

Complex conjugation is defined as before, but with weight one: φ(R)† = 1
R φ(1/R). The

action of b`m and b†`m on one-particle states |n〉lm is defined as usual

blm|n〉lm =
√

n |n − 1〉lm
b†lm|n − 1〉lm =

√
n |n〉lm . (3.29)

In the present case, PT invariance requires ` to be integer.

We compute the two-point function of this field. Using

∑̀

m=−`

Y`m(Ω)Y`m(Ω′) =
2` + 1

4π
P`(cos θ) , (3.30)
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where θ is the angle between Ω and Ω′, we get

〈0|ϕ(R1,Ω2)ϕ(R2,Ω
′
2)|0〉 =

1

4π

∞
∑

`=0

R`
2

R`+1
1

P`(cos θ) , (3.31)

where R1 > R2. Using standard resummation formulas for the Legendre polynomials, we

get for the radially ordered product:

〈0|R
(

ϕ(x)ϕ(x′)
)

|0〉 =
1

4π|x − x′| , (3.32)

where x = (R,Ω2) and |x − x′| =
√

R2
1 + R2

2 − 2R1R2 cos θ. The above is of course the

Green’s function in three dimensions.

After having defined the two-point function of the elementary boundary field ϕ, we

proceed to define the composite field ϕ(x)2. This is subtle because of the obvious divergence

when the two elementary operators approach each other. We will use the standard normal

ordering prescription. Additionally, in order to compare to the bulk operator, we will

renormalize : ϕ(x)2 : such that it has zero expectation value on any state, as we will

explain presently.

We start with the normal-ordered operator product : ϕ(x)ϕ(x′) : and take the limit

x → x′. In the normal-ordered product we find four terms. Let us denote them as follows

: ϕ(x)ϕ(x′) := {ϕ(x)ϕ(x′)} + A1 + A2 (3.33)

where

{ϕ(x)ϕ(x′)} =

∞
∑

ll′

l+l′
∑

L=|l−l′|

L
∑

M=−L

∑

mm′

(

b†lmb†l′m′R
l
1R

l′
2 +

blmbl′m′

Rl+1
1 Rl′+1

2

)

×

× cll′mm′

LM
√

(2l + 1)(2l′ + 1)
YLM (Ω2)

A1 =
∑

ll′mm′

b†lmbl′m′

√

(2l + 1)(2l′ + 1)

Rl
1

Rl′+1
2

Y ∗
lm(Ω2)Yl′m′(Ω′

2)

A2 =
∑

ll′mm′

b†lmbl′m′

√

(2l + 1)(2l′ + 1)

Rl′
2

Rl+1
1

Y ∗
lm(Ω2)Yl′m′(Ω′

2) . (3.34)

Notice that A1 and A2 are normal ordered. In {ϕ(x)ϕ(x′)} we already took the limit

Ω2 = Ω′
2. The limit R1 = R2 is also harmless and sets A1 = A2, hence we take it and

define

{ϕ(x)2} =

∞
∑

ll′

l+l′
∑

L=|l−l′|

L
∑

M=−L

∑

mm′

(

b†lmb†l′m′R
l+l′ +

blmbl′m′

Rl+l′+2

)

cll′mm′

LM
√

(2l + 1)(2l′ + 1)
YLM (Ω2)

(3.35)

Next we discuss the explicit mapping of the bulk and boundary Hilbert spaces. This

is easiest to see in the Fock space picture. The bulk operator Φhol corresponds to the

composite operator {ϕ(x)2} which is quadratic in the b’s:

b†lmb†l′m′ |0〉 = |1〉lm ⊗ |1〉l′m′ . (3.36)

– 16 –



J
H
E
P
1
2
(
2
0
0
6
)
0
7
6

Therefore, the correspondence should in principle be between bulk one-particle states and

boundary two-particle states. However, the restriction (3.17) implies that from the set of

boundary multi-particle states, we restrict to the subset that involves particles with the

same quantum numbers ` and m. This amounts to restricting to the following class of

correlation functions:

lm〈n′| · · · |n〉lm (3.37)

where, crucially, l,m are the same on both sides.

It is on this subspace of the boundary Hilbert space that our boundary operators act.

Notice now that on this subspace the expectation value of A1 and A2 may not be zero. In

fact, A1 and A2 act are c-number operators. We get

A1 =
N

2L + 1

RL
1

RL+1
2

Y ∗
LM(Ω2)YLM (Ω′

2) × id

A2 =
N

2L + 1

RL
2

RL+1
1

YLM(Ω2)Y
∗
LM (Ω′

2) × id , (3.38)

for any state with non-zero occupation number. N is a number operator, and id is the

identity operator on the space L,M .

Subtracting A1 and A2 from the definition of the renormalized operator {ϕ2(x)}
amounts to requiring that the expectation value 〈n|O(x)|n〉 be zero not only in the vacuum

but also on any state |n〉`m of the reduced boundary Hilbert space. On the other hand,

〈m|O(x)|n〉 as well as any of the higher-point functions of O(x) are generically non-zero.

An operator with such properties can then be compared with the bulk field Φhol. This pre-

scription is in accordance with the usual AdS/CFT analysis where the boundary operator

is expanded into pure creation and pure annihilation operators (see for example [29, 30]).

There are no cross-terms in this expansion. This is possible if we make the following

identification:

ajlm =
∑

m1m2

c``m1m2

lm b`m1
b`m2

a†jlm =
∑

m1m2

c``m1m2

lm b†`m1
b†`m2

(3.39)

that holds when j = 2`.

Hence we conclude that on this Hilbert space, we indeed have

Φhol(x) = {ϕ(x)2} (3.40)

This is in fact the quantum mechanical counterpart of (3.15)! Thus, the absence of cross-

terms in that equation automatically ensures that the renormalized operator {ϕ(x)2} is

finite. This is in accordance with the general expectation that bulk quantities correspond

to renormalized boundary quantities. Quantum mechanically, the need to compare bulk

and boundary quantities mode by mode corresponds to the statement that the operator Φ

is evaluated on single-particle states.
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Having shown the equivalence of bulk and boundary at the level of operators, in the

sub-sector of single-particle states, it now follows that we can get any correlation function of

{ϕ2} from a quantum mechanical computation in the bulk. In summary, we have identified

the operator of dimension 1 in the boundary theory

Φhol = −O(x) = {ϕ(x)2} (3.41)

Having studied the normal vacuum |0〉`m and the excited one-particle states |n〉`m,

we can ask whether we can compute the one-point function of O(x) in the presence of a

source. It is now clear how to do this: this corresponds to computing the expectation value

of O(x) in some other vacuum |0̃〉`m under which the expectation value of the dual operator

is not zero. Which vacuum this is will depend on the details of the source we add, but it

could for example be a coherent state. Whether the expectation value of O(x) is finite in

that case will depend on the details of the source. When we study the interacting case,

we will naturally encounter states under which O(x) has a non-zero expectation value.

The above map between the bulk and boundary Hilbert spaces also allows us to compute

holographically any higher-point function of O(x) from the bulk.

4. Instantons and conformal holography

In section 2 we studied the standard holographic picture for the φ4 bulk theory, which is

perturbative in the coupling constant. In section 3 we saw that for the free theory there

is another holographic picture, which we called Conformal Holography, where one can

compare bulk and boundary quantities exactly. In this section we show how this picture

persists in the interacting theory if we expand around the right vacuum.

We will discuss an exact solution of the equations of motion [7] with special properties.

It is the unique non-trivial solution wich preserves a large symmetry group. We first briefly

recall some of its properties. For more details see [7].

Written in cylinder coordinates (3.2), the solution of the equation of motion

¤φ − λ

3!
φ3 = 0 (4.1)

takes the form

φ(x) =

√

48

−λ

b

b2 + R2
. (4.2)

Our application of this solution will be different from the original one. The idea in [7] was to

start with a conformal theory in flat space and break conformal invariance spontaneously.

The vacuum should preserve a subgroup of the conformal group, but in particular it should

break dilatations. Such a vacuum is given by the expectation value of the scalar field as

above. The equation of motion for the scalar field in flat space preserves the full conformal

symmetry in four dimensions, namely O(5, 1).

It is easy to see that there are no solutions that are invariant under the full conformal

group. One can look for solutions that are invariant under its largest possible subgroup.

In flat space, it would be reasonable to demand that this subgroup is the Poincare group
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in four dimensions. This would require φ to be a constant. But in the presence of interac-

tions (4.1), constant solutions do not exist, and the only Poincare invariant solution is the

trivial one! Now instead of demanding invariance under the Poincare group, the next best

thing is to demand that the solutions are invariant under a twisted subgroup of O(5, 1);

namely, it is possible to find a solution invariant under the six four-dimensional Lorentz

rotations and four “modified translations” which are transformations generated by a linear

combination of four-dimensional translations and the special conformal generators. The

resulting symmetry group is then O(4, 1), which should not be confused with the AdS4

group. Notice that in the original conformal group O(5, 1) inversions, although not a part

of its connected part, play a very special role [19] since they connect translations with

special conformal transformations. Those same inversions continue to play an important

role also in the smaller symmetry group O(4, 1) since they map “modified translations” to

themselves. In particular, they coincide with the inversions of the AdS background if the

scale introduced in [7] is identified with the AdS radius, i.e. b = L. We should mention

the fact that the original group that one starts with is higher-dimensional, O(5, 1). This

suggests that these theories might have a natural realization in five or six dimensions.

4.1 Fluctuations around the bulk instanton

The linearized fluctuations around the instanton solution satisfy the equation

(

¤ +
24b2

(b2 + x2)2

)

Φ(r, x) = 0 , (4.3)

where the ¤ is in flat 4d-space metric, and x2 = r2 + ~x2. Crucially, this equation is

independent of the bulk coupling λ. We can follow the standard holographic recipe and

solve (4.3) perturbatively in r to obtain the 2-point function on the boundary. This will

be SO(3, 1) invariant since that is the symmetry preserved by the boundary theory. We

do this in the appendix. Notice, however, that it is convenient to go to polar coordinates

R =
√

r2 + ~x2 , Ω3 = (θ, φ, ω). In terms of these, the above equation becomes

(

∂2
R +

3

R
∂R +

1

R2
∆S3 +

24b2

(b2 + R2)2

)

Φ(R, θ, ψ, ϕ) = 0 . (4.4)

In order to solve this equation, it is easiest to rescale the field by an overall factor of R,

and go back to the Euclidean time coordinate R/b = eτ . We can then separate variables

as before

Φ =
b

R

∑

jlm

cjlm(τ)Yjlm(Ω3) . (4.5)

We find the following radial equation for cjlm which is reminiscent of the Schrödinger

equation for a Posch-Teller potential with energy levels Ej = ±(j + 1)

c′′jlm(τ) +
6

cosh2 τ
cjlm(τ) − E2

j cjlm(τ) = 0 . (4.6)

In order to solve (4.6), it is easiest to notice that a further coordinate transformation

z = tanh τ brings this equation to the associated Legendre equation [18] with coefficients
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µ = ±(j + 1), ν = 2. We give the details in appendix C. We find the following general

solution

cjlm(R) = c(1)jlm P̄ j+1
2 (z) + c(2)jlm Qj+1

2 (z) , z =
R2 − b2

R2 + b2
. (4.7)

Qµ
ν is the usual associated Legendre polynomial, and P̄µ

ν is a modified associated Legendre

polynomial defined in formula (C.1) of appendix C.

Let us now discuss the symmetries of the solutions (4.7). The associated Legendre

equation has an obvious symmetry z → −z. In equation (4.6), this corresponds to the

inversion symmetry R2/b2 → b2/R2. Therefore this equation is invariant under both

R/b → ±b/R, which are the two O(4, 1) inversion symmetries we discussed in section 3.1.

We now notice that the associated Legendre functions have the following properties:

P̄ j+1
2 (−z) = (−1)j+1 P̄ j+1

2 (z)

Qj+1
2 (−z) = (−)j Qj+1

2 (z) . (4.8)

We see that some modes are even under R2/b2 → b2/R2 and some modes are odd, de-

pending on j. Of course, this is as in the case of an expansion in sines and cosines, where

the sines are odd under parity whereas the cosines are even. If we want the solution to

have a definite parity, we keep only half of the modes. Of course, combined Ω2 → −Ω2,

this corresponds precisely to the classification under parity discussed in section 3.1. This

is the interacting version of the two quantization schemes discussed in [14] for the free field

theory. The above will become crucial when we discuss quantization of these solutions

later.

4.2 Fluctuations around the boundary instanton

We now go to the classical boundary theory. As in the bulk case, we expand around the

instanton solution

ϕ → ϕ0 + ϕ

ϕ0(x) =

(

360

−g

)1/4 (

b

b2 + x2

)1/2

, (4.9)

where we have identified the arbitrary bulk and boundary instanton sizes. We find the

following linear equation for ϕ

¤ϕ +
15b2

(b2 + x2)2
ϕ = 0 , (4.10)

which also does not depend on the boundary coupling g. We will solve this equation again

in cylinder coordinates restricted to the boundary. We set R =
√

x2 + y2 + z2. Doing

similar manipulations as in the bulk case, we finally find

ϕ(R,Ω2) =

√

b

R

∑

lm

(

ϕ(1)lm P
l+ 1

2

3/2 (z) + ϕ(2)lm Q
l+ 1

2

3/2 (z)

)

Ylm(Ω2) , z =
R2 − b2

R2 + b2
. (4.11)

Again, ϕ(1) and ϕ(2) are arbitrary coefficients.
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4.3 The bulk-boundary correspondence

In this section we compare the classical solutions of the fluctuation equations around the

instanton in AdS4 with the classical fluctuations around the boundary instanton. In the

free case, comparison between the bulk and the boundary was relatively straightforward.

We obtained the relation

Φhol = ϕ2 (4.12)

as a relation between bulk and boundary modes. In the interacting case, this relation

seems to survive, but it is much more involved to establish. The reason is that dilatations

R → λR have been broken on both sides. Therefore, one cannot expect one single bulk

mode to correspond to a mode on the boundary with the same energy. There will be some

mixing. Since the analysis is rather involved, we have carried it out explicitly only for half

of the solutions, namely the P ’s. We will show this explicitly.

Thus, we are set to compare the bulk solutions to the square of the boundary solutions.

To start doing that we write the P -Legendre part of the bulk solutions (4.5) in terms of

the P̃ modified associated Legendre as

Φ+
hol(R,Ω2) =

b

R

∞
∑

j=0

j
∑

l=0

l
∑

m=−l

P̃ j+1
2 cjlm Ylm , (4.13)

We wish to compare that to the square of

ϕ+(R,Ω2) =

√

b

R

∞
∑

`=0

∑̀

m=−`

P
`+ 1

2

3/2 ϕ(1)`m Y`m . (4.14)

P̃ j+1
2 (z) is a linear combination of P

−(j+1)
2 (z) and P

−(j+1)
2 (−z). The superscript + reminds

us of the fact that we are dealing with half of the modes, and not with the full solution.

We will get back to this when we discuss quantization. It is easy to see that the R = 0

and R = ∞ limits agree (this is true for the Q’s also). Namely, for j ≥ 2 P̃ j+1
2 and Qj+1

2

diverge like ∼ 1/Rj+1 at R = 0, and as ∼ Rj+1 at R = ∞. For details, see formula (C.8)

in appendix C.

However, we seek an exact relation. We first consider generic modes j ≥ 2, ` ≥ 2. The

following relation holds

P
`+ 1

2

3/2 (z)P
`′+ 1

2

3/2 (z) =

`+`′
∑

j=2

dj``′ P̃
j+1
2 (z) , (4.15)

where P̃ is defined in (C.1) of appendix B, and dj``′ are constants which are completely

fixed by the above relation. Using mathematica, we have checked the above relation and

computed dj``′ for values of `, `′ up to ` + `′ = 10, and up to 2` = 16 in the diagonal

case ` = `′. Equation (4.15) is a non-trivial statement about associated Legendre functions

which has not appeared in the literature. An analytic proof of it based on properties of

the hypergeometric function will be given in appendix E by Tom Koornwinder. We also

notice here that (P3/2)
2 and P2 have the same behavior at z = ±1 (which corresponds
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to R = 0,∞), and their only other singularities in the complex plane are a branch cut

at Im z ≤ 1 and a pole at z = ∞. Recalling that in the original coordinates z = y4/y0,

analyzing the singularity structure at z → ∞ means going beyond |y0| > L, i.e. it amounts

to analyzing the singularity structure in the embedding Minkowski space-time.

It is easy to understand why in (4.15) only terms with j ≤ `+`′ appear and not higher.

Whereas we have broken dilatation invariance R → λR, the two fixed points of dilatations,

R = 0 and R = ∞, are still preserved by the solutions. In fact, they are related by an

inversion. This implies that the leading divergence comes from j = ` + `′.

Having established the relation between the bulk and the boundary for the radial

dependence, the important point now is to match the coefficients. We proceed as in the

free case, by squaring the full field (4.13). Using (B.8), we get

(ϕ+(R,Ω2))
2 =

∞
∑

`,`′=0

ϕ+
` ϕ+

`′ , (4.16)

and the bilinears are

ϕ+
` ϕ+

`′ =
1

R

∑

mm′

P
`+ 1

2

3/2 P
`′+ 1

2

3/2 ϕ(1)`mϕ(1)`′m′ Y`mY`′m′

=
1

R

∑

mm′

P
`+ 1

2

3/2 P
`′+ 1

2

3/2 ϕ(1)`mϕ(1)`m′

`+`′
∑

L=|`−`′|

L
∑

M=−L

c``′mm′

LM YLM

=
1

R
P

`+ 1

2

3/2 P
`′+ 1

2

3/2

`+`′
∑

L=|`−`′|

M
∑

M=−L

c``′
LMYLM , (4.17)

where c``′

LM =
∑

mm′ ϕ(1)`mϕ(1)`′m′c``′mm′

LM . As in the free case, they vanish if ` + `′ + L is

not even. So, we finally compare the square of the boundary field

(ϕ+(z))2 =

∞
∑

`,`′=0

ϕ+
` ϕ+

`′ =
1

R

∞
∑

`,`′=0

`+`′
∑

j=0

P̃ j+1
2 dj``′

`+`′
∑

L=|`−`′|

L
∑

M=−L

c``′
LMYLM (4.18)

to the bulk result

Φhol =
1

R

∞
∑

j=0

j
∑

l=0

l
∑

m=−l

P̃ j+1
2 cjlmYlm . (4.19)

Using orthogonality of the Ylm’s, we can integrate them out. Then we can compare the

P2’s mode by mode. We are left with the following relation:

∞
∑

`,`′=0

dj``′ c
``′

lm = cjlm (4.20)

where the sum runs over j ≤ ` + `′. Also, from the boundary we get the restriction

L ≥ |` − `′|, otherwise the left-hand side is zero. Therefore the cjLM should be chosen to

be zero if this condition is not satisfied. Thus, we get

∞
∑

`,`′=0

dj``′
∑

m1m2

c``′m1m2

lm ϕ(1)`m1
ϕ(1)`′m2

= cjlm . (4.21)
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As before, let us now restrict to the single-particle states ` = `′, leaving for the future the

correspondence for the non-diagonal states. We get:

cjlm =
∞
∑

`=j/2

dj``

∑

m1m2

c``m1m2

lm ϕ(1)`m1
ϕ(1)`m2

, (4.22)

where as usual j is even. Here, we have used the fact that the boundary sum is restricted

by j ≤ 2`, as we see from (4.18). This is an important relation that we will quantize later.

We note here that we can invert (4.15) and express the bulk j’s as linear combinations of

boundary `’s. The bulk-boundary relation (4.22) will be inverted as well: pairs of boundary

states with energy ` will be expressed in linear combinations of the bulk states.

In the left-hand side of equation (4.22) we have the bulk constraint l ≤ j, which does

not have an obvious parallel on the boundary. Apparently, we can only compare modes

with total angular momentum less than j. However, for the spherically symmetric states

l = 0 we can compare all the modes, and it is for these modes that we have full access to

the boundary from the above bulk computation. Notice that this does not mean that the

boundary field is spherically symmetric, but only that the total angular momentum is zero.

For the remaining, non-spherical modes, the bulk result is reproduced from the boundary

provided that we restrict l ≤ j.

It would be interesting to see whether this constraint can be relaxed.

Since the bulk-boundary correspondence is most naturally interpreted at the quantum

level, we will discuss the meaning of (4.22) after we discuss quantization in the next section.

Of course, we recover the free case when we replace the associated Legendre functions

by monomials. This corresponds to setting dj`` = δj/2,` above. In that case the above sum

collapses to just the first term.

We notice here that a similar comparison for the Q’s is more subtle, due to the ap-

pearance of logarithms in the boundary computation. In the bulk though we also have

logarithmic terms for j = 0, 1. It seems likely that both logarithmic terms can be related

to each other. We have not looked at this interesting problem, which we will leave for the

future.

4.4 Quantization

Quantization will proceed very close to the free case. It is clear that we will promote the

arbitrary coefficients c(1)jlm and c(2)jlm to operators that create and annihilate states with

quantum numbers jlm. However, we need to decide which one is the creation and which

one is the annihilation operator. In fact, the discussion proceeds as in the free case. The

coefficient that multiplies a mode Rj that is regular at R = 0 will create a state of energy j.

Indeed, this corresponds to a mode ejτ in the time coordinate, which after Wick rotation

becomes eijt and is the mode associated with a creation operator. This means that the

modes that are regular at R = 0 will couple to creation operators, and the ones that are

regular at R = ∞ will couple to annihilation operators.
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We will now impose these regularity conditions. Recall that we had the solution

Φjlm(R,Ω3) =
b

R

(

c(1)jlm P̄ j+1
2 (R) + c(2)jlm Qj+1

2 (R)
)

Yjlm

= Φ+
jlm(R,Ω3) + Φ−

jlm(R,Ω3) , (4.23)

where Φ+ is the part of the field that is regular at R = 0, and Φ− the one regular at R = ∞.

Using the asymptotics of the associated Legendre functions worked out in appendix C, we

find

Φ+
jlm(R,Ω3) = (−)j+1 1

R

(

P̄ j+1
2 (R) +

2

(j − 2)!(j + 3)!
Qj+1

2 (R)

)

Y∗
jlm

Φ−
jlm(R,Ω3) =

1

R

(

P̄ j+1
2 (R) − 2

(j − 2)!(j + 3)!
Qj+1

2 (R)

)

Yjlm . (4.24)

By construction, and using the fact that j + l is even, these coefficients satisfy

(

Φ+
jlm(R,Ω3)

)†
= Φ−

jlm(R,Ω3)

(

Φ−
jlm(R,Ω3)

)†
= Φ+

jlm(R,Ω3) , (4.25)

where hermitean conjugation is the inversion property discussed earlier: φ(R)†= 1
R2 φ(1/R).

Thus, we finally get

Φ(R,Ω3) =
∑

jlm

(

aj Φ−
jlm(R)Yjlm(Ω3) + a†j Φ+

jlm(R)Y∗
jlm(Ω3)

)

, (4.26)

Quantization is now standard and proceeds as in the free case. Also, quantization of the

boundary theory proceeds analogously, by replacing the arbitrary coefficients in (4.11) by

operators. In that case, the Hermitian conjuation operation has weight one: φ(R)† =
1
R φ(1/R).

The key element in comparing the bulk and boundary results is the relation (4.15)

between the classical solutions, and the relation (4.22) between the free coefficients which

is derived from it. The latter becomes an operator relation. As explained earlier, in this

paper we quantize the case ` = `′ so we have

ajlm =
∞

∑

`=j/2

dj``

∑

m1m2

c``m1m2

lm b`m1
b`m2

a†jlm =

∞
∑

`=j/2

dj``

∑

m1m2

c``m1m2

lm b†`m1
b†`m2

. (4.27)

This is the exact modification of the relation (3.39) when we include interactions.

Let us now discuss the physical picture that emerges from the bulk-boundary relation.

Clearly, creating a particle in the bulk is like creating a pair of particles on the boundary.

More precisely, in the sector ` = `′ under consideration, an excitation of energy j in the

bulk corresponds to a pair of indistinguishable bosonic excitations with energy j/2 on the
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boundary. Another way to say this is that the bulk Hilbert space is in the tensor product

of two copies of the boundary Hilbert space.

As is familiar from AdS/CFT, the energies are given by eigenvalues of the dilatation

operator. This picture however gets modified when we include the instanton. The instan-

ton breaks dilatations, and indeed what we find is that every energy level is contributed

by different eigenvalues of the dilatation operator. Stated differently, every energy state

contributes to an infinite number of dilatation eigenvalues. This is true in the boundary

theory as well, and that is in fact the meaning of (4.27). A state of energy j in the bulk

corresponds to a superposition of boundary states with any j/2 and higher. Although

the infinite summation range in (4.27) maybe somewhat unexpected, this is really nothing

but the statement that states with energy ` on the boundary have non-zero intersection

with any state in the bulk with energy up to 2`. We should remark here that (4.15) and

therefore also our final result (4.27) for the operators can be inverted — we then express

the boundary states of energy 2` as superpositions of bulk states of different energies. This

bulk-boundary map is therefore somewhat non-local, if very explicit.

4.5 Quantization of the special modes

The discussion in the previous section was not entirely complete, for various reasons. In this

section we discuss some additional subtleties that appear in the quantization procedure.

In the interacting case there is a special phenomenon concerning normalizability of the

modes. As discussed earlier, in Euclidean quantization we associate operators that create

particles with positive frequencies to modes that are regular at R = 0, and operators

that annihilate particles with positive frequencies to modes that are regular at R = ∞.

This procedure therefore clearly distinguishes modes that vanish at R = 0 and blow up at

infinity, from the ones that do the opposite. The relevant linear combinations are listed in

(4.24). For j = 0, 1, however, something special happens, because in that case the P2’s are

normalizable (in fact, they go to zero) both at R = 0 and R = ∞. They are self-dual under

R → 1/R. The Q’s, on the other hand, blow up at both ends. So, any solution that is

regular at one end will be regular at the other end as well. This means that it is impossible

to separates modes that create particles from modes that annihilate them. If we quantize

such modes, the field Φ will always have a non-zero expectation value in the vacuum. Since

we are comparing only the even j modes with the boundary, this means that the j = 0

mode has a special meaning in the boundary theory and corresponds to coupling the system

to a background that sources non-zero expectation values of the composite operator.

There is a mirror of this story on the boundary. The modes ` = 0, 1 are again special

because they are normalizable at both ends. They acquire an expectation value whenever

we try to quantize them. Explicitly, we have

(P
−1/2
3/2 (z))2 = a z P 1

2 (z)

(P
−3/2
3/2 (z))2 = a1/z P 1

2 (z)P 2
2 (z)

(P
1/2
3/2 (z))2 = a2 z P 1

2 (z) + a3 (z2 − 1)Q3
2(z)

(P
3/2
3/2 (z))2 = a4 z

(

P−3
2 (z) − P−3

2 (−z)
)

+ a5 z P 1
2 (z) + a6 z2 Q3

2(z) (4.28)
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What we called “special” here are only the first two modes, which are indeed written in

terms of the special j = 0, 1 bulk modes. The last two modes are special in that their

expansion differs from the general expression (4.15), but are otherwise non-normalizable

at both ends and should not be quantized.

Thus, the square of P
−1/2
3/2 corresponds to the j = 0 bulk mode, as expected. For these

modes, the above interpretation applies. On the other hand, the square of P
−3/2
3/2 is itself

quadratic in the bulk j = 0 and j = 1 modes. This seems to violate the condition j = 2`

and we do not have any explanation for this fact.

The discussion in section 4.4 was also limited for the following reason. We established

the quadratic relation (4.15) between the bulk and the boundary modes only for the P ’s.

On the right-hand side of (4.15), only P̃ j+1
2 ’s appear, which have a definite symmetry under

R → 1/R (z → −z; see the definition (C.1)). That makes them non-normalizable both at

R = 0 and at R = ∞. This means that they are associated to linear combinations of cre-

ation and annihilation operators. In order to get a linear combination that is normalizable

at one of the two ends, we need to do as in (4.24), which also involves the Q’s. Keeping

only the P ’s is like doing quantum field theory with only half of the modes, the sines or

the cosines. A composite operator built from only half of the modes will again have a non-

zero expectation value in the vacuum. Thus, to complete the discussion of quantization, it

would be essential to construct the map between P
−(`+ 1

2
)

3/2 (or Q
`+ 1

2

3/2 ) and Qj+1
2 .

Finally, we should comment on the possibility of adding classical sources. By this we

mean sources on top of the instanton solution which already acts as a source and gives O(x)

non-zero expectation value. Classical sources are arbitrary, and in particular they can be

given by any of the non-normalizable modes of the fluctuation equation. A particularly

interesting case is that of ` half-integer, which is allowed in a classical theory where we

violate PT invariance. It seems that much of the bulk-boundary analysis should go through

for such modes, and it would be interesting to understand this in detail.

5. Instanton decay and de Sitter space

Our focus in this paper has been the construction of the exact holographic map between

the φ4 theory in the bulk and the boundary φ6 theory. The use of instantons was motivated

by the fact that they can be regarded as non-perturbative vacua of the theory. Of course,

their physical interest is that they describe tunneling from one solution to another. In

this section we explain what may be the relevance of these solutions to tunneling between

solutions, leaving a more detailed analysis for the future.

The best way to think of the fluctuation equation in terms of an unstable solution is

to notice that it is the equation for a massive scalar field in Euclidean de Sitter space (in

other words, a sphere). Indeed, both in the bulk and boundary theories, the equations of

motion for the fluctuations around the instanton, equations (4.6) and (4.10), are those of

a tachyon on a 3- or 4-dimensional sphere, respectively, of the radius of the instanton size

(which in the bulk is the scale of AdS). Both in the bulk and in the boundary theories,

we can have a rough picture of an effective expanding bubble inside which the scalar field

behaves as a tachyon. We stress the word “effective” here, because this is a description of
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the fluctuations of the scalar field only. Let us see how this comes about. We write the

D-dimensional sphere in the following coordinates

ds2 =
4b2

Ω2

(

dR2 + R2dΩ2
D−1

)

(5.1)

where Ω = b2 + R2. Consider now a massive scalar field on this sphere:

(

¤ − m2
)

φ = 0 . (5.2)

Redefining φ = (R/b)1/2 Φ and R = b eτ , we get the equation of motion:

Φ′′(τ) + (∆S3 − 1) Φ(τ) +
2 − m2b2

cosh2 τ
Φ(τ) = 0 (5.3)

if D = 4, and

Φ′′(τ) +

(

∆S2 − 1

4

)

Φ(τ) +
3 − 4m2b2

4 cosh2 y
Φ(τ) = 0 (5.4)

if D = 3. Comparing this to the instanton fluctuation equations (4.4) and (4.10), we get

the following tachyonic values of the mass

m2 = − 4

b2
if D = 4

m2 = − 3

b2
if D = 3 . (5.5)

It is possible to take λ to be positive. In this case, in order to obtain a real solution

we also need to analytically continue b → i b. The solution then looks like:

φ =

√

48

λ

b

b2 − R2
. (5.6)

This solution has very interesting properties. Again, there is a boundary solution that is

the square root of the above. The fluctuation equations can be studied the same way in

this case, and in fact they correspond to the equations of motion of a scalar field in anti-de

Sitter space. Now the solutions of the fluctuation equations where λ > 0 can be obtained

from the ones with λ < 0 by replacing z by z′ = 1/z. Thus, we get the bulk solutions

P
−(j+1)
2 (z′) and Qj+1

2 (z′). The boundary solutions are P
`+ 1

2

3/2 (z′) and P
−(`+ 1

2
)

3/2 (z′). Again,

they are related by the squaring relation.

The seemingly innocent transformation z′ = 1/z has dramatic consequences. In the

case λ < 0, the singular points z = ±1 corresponded to the fixed points of dilatations,

that is to future and past infinity. The singularity at z = ∞ was a point in 5-dimensional

Minkowski space outside the AdS hyperboloid. When λ > 0, the singularity occurs at a

real value of R, R = b, which is where the boundary of the new (effective) anti-de Sitter

space is.
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6. Discussion and outlook

In this paper we have studied a toy model which, despite its simplicity, seems to capture

many interesting physical properties that deserve further study. Apparently, in this model

we are able to probe both sides of the AdS/CFT duality semi-classically and get exact

agreement. We found that, already in the free theory with no potential, classical bulk

fields are given by the square of the boundary fields. This picture persists if we include the

potential. The bulk instanton solution is the square of the boundary instanton solution.

Then we considered fluctuations around the instanton background, and again found exact

agreement for the bulk and boundary P -modes. In this case there is a mixing of modes

with different conformal dimensions, due to the fact that the instanton breaks dilatation

invariance.

The bulk-boundary correspondence appears to be much more natural upon quantiza-

tion of the solutions in the bulk and in the boundary theories. Using radial quantization

in the bulk, we reproduced the two-point function of the dual composite operator O(x) on

the boundary. But since we have agreement between the bulk and the boundary mode by

mode, we were able to go one step further and identify the composite boundary operator

O(x) as a normal-ordered product of the elementary boundary field ϕ(x), which in turn

gets holographically related to the quantized bulk field Φhol. This was done for any state in

the Hilbert space of one-particle states on the boundary. We found that the bulk Hilbert

space is the tensor product of two copies of the boundary Hilbert space, projected onto

a diagonal subspace of observables. It is a very interesting open problem to identify the

multi-particle states from the bulk, and we gave some indications of how this might work.

Having the explicit map, one may expect to be able in principle to match also higher-point

correlation functions in this one-particle subsector. Moreover, the fact that the quantized

bulk field gets identified with the renormalized boundary composite operator explains the

absence of certain mixing terms in the comparison of the classical solutions. We gave the

explicit definition of this renormalized field.

We also discussed the physical effect of the instanton background on the fluctuations.

We found that the instanton cloaks the fluctuations to find themselves surrounded by an

effective de Sitter space. The masses of the fluctuations are tachyonic, which points to the

fact that the model describes a decay effect. Indeed, when continued back to Lorentzian

signature, the solution is time-dependent. For a full discussion of this issue and its physical

implications, the back-reaction of the fluctuations should be taken into account. We note

though that the solution itself is an exact solution of Einstein’s equations in AdS [23].

This toy model seems to be giving us some insight in a special class of theories where

both sides of AdS/CFT might be under better control. In our view, this is intimately con-

nected to classical conformal invariance in the bulk and the existence of instanton solutions.

Bulk conformal invariance guarantees that normalizable modes can reach the boundary.

As is well known, massless particles in AdS can reach the boundary in finite time, whereas

massive particles are bound to oscillate in the bulk. It is therefore conceivable that there

exists an effective theory for the massless modes constructed by a simple rearrangement of

the bulk degrees of freedom reduced to the boundary. This is indeed what we find in this
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paper. The second important point is that the model has instanton solutions. So we are

able to find exact vacua of the theory in the interacting case and expand around them.

Let us note here that bulk conformal invariance is a fundamental property of Higher-

Spin gauge theories in the frame-like formulation of Vasiliev [4]. These theories may also

contain instanton-like solutions similar to the the ones considered here [20]. We believe that

the type of holography described in our paper is the appropriate one for the holography of

Higher-Spin gauge theories.

A natural extension of our work would be to explicitly compute the 2-point function

of the operator O(x) in the instanton background and compare it with the boundary

theory, as we did in the free case. Another interesting continuation of our work would

be the study of the standard gauge theory instantons in AdS4 and their holography (see

e.g. [21, 22]). As in the case of standard gauge theory instantons, the Fubini instanton

has no back-reaction on the background [23]. The fluctuations of course do, however the

effects of back-reaction can be incorporated systematically in the linearized approximation.

At the linearized level, back-reaction introduces a source term on the right-hand side of

the fluctuation equation (4.3). Therefore, the simple form of the holographic dual we have

studied in this paper seems to contain information about the solution of the homogeneous

equation only. This points to the fact that, in the instanton vacuum, the CFT couples to a

source. This situation is then somewhat reminiscent to the discussion in [24] where similar

effects were found. Notice that in the trivial vacuum φ = 0 discussed in section 3, this

effect is absent and at the linearized level the back-reaction can be neglected altogether,

its effects appearing only at second order. We are currently investigating such issues.

It would be very interesting to see whether a simple relation between classical solutions

exists for other operators in the boundary theory — for the stress-tensor, say. This would

already be quite interesting even in the absence of the scalar field. Whereas we do not

know the answer to this question, one would expect that, if such a relation exists, it will

hold for a restricted class of bulk solutions. In this context it would be interesting to study

bulk gravitational instantons.

As is well known, the case of λ < 0 is an approximate solution of N = 8 supergravity in

four dimensions [6]. Here we pointed out another form of the solution where the potential

is bounded and λ > 0. Using the results of [25], this model can be lifted to M-theory,

where the value of λ is completely determined by the geometric set-up [23].

While this paper was being finished, [26] appeared, which discusses closely related

issues in a different set-up.
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A. Conventions and coordinate systems

Here we give the explicit coordinate transformation from Poincare coordinates (r, ~x), where

the metric takes the form

ds2 =
`2

r2

(

dr2 + d~x2
)

, (A.1)

to embedding coordinates (y0, . . . , y4) and cylinder coordinates (R, θ, ψ, ω). We have

u = r +
~x2

r

v =
`2

r

~y =
`

r
~x (A.2)

and

x = R sin θ sin ψ sin ω

y = R sin θ sin ψ cos ω

z = R sin θ cos ψ

r = R cos θ . (A.3)

The range of the angles is 0 ≤ θ ≤ π/2, 0 ≤ ψ ≤ π, 0 ≤ ω ≤ 2π.

B. Hyperspherical harmonics and holography in cylinder coordinates

The hyperspherical harmonics Yjlm’s satisfy

∆S3Yjlm = −j(j + 2)Yjlm , j = 0, 1, 2 . . . (B.1)
∫

S3

dΩ2Y∗
jlm(Ω3)Yj′l′m′(Ω3) = δjj′δll′δmm′ (B.2)

l
∑

m=−l

Y∗
jlm(Ω3)Yjlm(Ω′

3) =
2l + 1

4π
N2

jl (sin θ sin θ′)l × (B.3)

× C l+1
j−l (cos θ)C l+1

j−l (cos θ′)Pl(cos(φ − φ′)) (B.4)

Yjlm(Ω3) = Njl(sin θ)lC l+1
j−l (cos θ)Ylm(Ω2) (B.5)

Njl = 2lΓ(l + 1)

(

2(j + 1)

π

)
1

2
(

Γ(j − l + 1)

Γ(j + l + 2)

)
1

2

(B.6)

where Ylm(Ω2) are the standard two-dimensional spherical harmonics, Cn
m(t) are Gegen-

bauer polynomials and Pl(t) are Legendre functions.

When reduced to the boundary, the hyperspherical harmonics reduce to the spherical

harmonics as in (3.11). The proportionality constants are given by

ajl = Njl
( j+l

2 + 1)!

( j−l
2 )!

(−)
j−l

2 (B.7)
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if j + l is even, and zero otherwise.

Recall the multiplication property of spherical harmonics

Yj1m1
(Ω2)Yj2m2

(Ω2) =

j1+j2
∑

L=|j1−j2|

M
∑

M=−L

cj1j2m1m2

LM YLM (Ω2) . (B.8)

The cll′mm′

LM ’s are given by [27]

cll′mm′

LM = (−)M
√

(2l + 1)(2l′ + 1)(2L + 1)

4π

(

l l′L

000

)(

l l′ L

mm′ − M

)

(

abc

000

)

= (−)p
√

∆(abc)
p!

(p − a)!(p − b)!(p − c)!

∆(abc) =
(a + b − c)!(b + c − a)!(c + a − b)!

(a + b + c + 1)!

p =
l + l′ + L

2
. (B.9)

The coefficients vanish unless j1 + j2 + L is even, a property that will be crucial when

comparing with the bulk.

Expanding in hyperspherical harmonics captures the normalizable bulk modes. In

AdS/CFT one also considers non-normalizable modes, which correspond to classical sources

on the boundary. We now provide the relevant analysis in cylinder coordinates (for the

standard Poincare analysis, see section D). This analysis is also relevant to the theory with

an operator of dimension 2. The idea is to solve the second order differential equation for

the holographic coordinate θ. To that end we write the Laplacian on the three-sphere as a

circle fibration over the the S2. Thus we solve the differential equation

1

sin2 θ
∂θ

(

sin2 θ ∂θ Φj,`

)

− `(` + 1)

sin2 θ
Φj,` = −j(j + 2)Φj,` . (B.10)

Rescaling Φ, and performing a coordinate transformation z = cos θ, we get the associated

Legendre equation (C.2) in appendix C with ν = j + 1
2 , µ = ` + 1

2 . The general solution is

Φj,`(θ) =
1√
sin θ

(

d(1) P
`+ 1

2

j+ 1

2

(cos θ) + d(2) P
−(`+ 1

2
)

j+ 1

2

(cos θ)

)

. (B.11)

As expected, the behavior at θ → π/2 distinguishes two cases: j + ` even or odd. In the

even case, the asymptotics as θ → π/2 is

P
`+ 1

2

j+ 1

2

(cos θ) ∼ cos θ

P
−(`+ 1

2
)

j+ 1

2

(cos θ) ∼ 1 , (B.12)

whereas in the odd case these two get interchanged. Taking into account the fact that Φ has

been rescaled by r = R cos θ, the mode that goes asymptotically to a constant corresponds

to the expectation value of an operator of dimension 1, and the one that vanishes as cos θ is
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the operator of dimension 2. Alternately, we can think of a single theory with an operator

and a source.

Imposing regularity at θ = 0 rules out the P
`+ 1

2

j+ 1

2

modes in both cases. We are left with

the mode
1√
sin θ

P
−(`+ 1

2
)

j+ 1

2

(cos θ) =

√

2

π

2``!(j − `)!

(j + ` + 1)!
(sin θ)` C`+1

j−` (cos θ) , (B.13)

and we of course recover the hyperspherical harmonics (B.5). In conclusion, if we are in

the theory with the operator of dimension 1, then j + ` has to be even.

C. Solutions in the interacting case

We first define two sets of associated Legendre polynomials used in the main text:

P̄ j+1
2 (z) = P

−(j+1)
2 (z) + (−1)j+1P

−(j+1)
2 (−z)

P̃ j+1
2 (z) = P

−(j+1)
2 (z) + (−1)jP

−(j+1)
2 (−z) (C.1)

for j ≥ 2. For j = 0, 1, P̄ j+1
2 = P̃ j+1

2 = P j+1
2 .

Next we find the solutions of (4.6). Performing a coordinate transformation z =

tanh τ/b, we can bring the radial equation to the following form

d

dz
(1 − z2)

d

dz
ϕ +

(

ν(ν + 1) − µ2

1 − z2

)

ϕ = 0 (C.2)

where ν = 2 and µ = ±(j +1). This is the associated Legendre equation with solutions Pµ
ν

and Qµ
ν . Since ν and µ are integral, we have to distinguish the cases j = 0, 1 and j > 1 [18].

j = 0,1 We discuss this case first. We have the two independent solutions

P j+1
2 (z) , Qj+1(z) . (C.3)

In particular,

P 1
2 (R) = −6bR

R2 − b2

(R2 + b2)2
, P 2

2 (R) =
12b2R2

(R2 + b2)2
, (C.4)

which was used in the main text.

It is easy to see that under parity symmetry z ↔ −z, we have

P j+1
2 (−z) = (−)j+1P j+1

2 (z) , Qj+1
2 (−z) = (−)jQj+1

2 (z) (C.5)

j ≥ 2 The independent set of solutions is now

P
−(j+1)
2 (z) , Qj+1(z) . (C.6)

However, P−µ
ν (z) does not have any definite symmetry under z → −z. We can

construct a solution with the desired symmetry by taking a linear combination of

P−µ
ν (z) and P−µ

ν (−z). Thus, we replace the P ’s by either of the two sets P̄ j+1, P̃ j+1
2 ,

defined in (C.1). Which one one decides to use is a matter of convention. In the

rest of the appendix we will consider P̄ . Thus, our set of independent solutions is

P̃ j+1
2 (z), Qj+1

2 (z) for any j. By construction, they satisfy

P̄ j+1
2 (−z) = (−)j+1 P̄ j+1

2 (z) , Qj+1
2 (−z) = (−)j Qj+1

2 (z) . (C.7)
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Asymptotics of the solutions. Here we list the asymptotics of the Legendre functions,

which we used in deriving the regularity conditions (4.24)

P
−(j+1)
2 (R) =

j(j − 1)

(j + 3)!

1

Rj+1
, R → 0

P
−(j+1)
2 (R) =

1

(j + 1)!

1

Rj+1
, R → ∞

P̄ j+1
2 (R) =

j(j − 1)

(j + 3)!

1

Rj+1
, R → 0

P̄ j+1
2 (R) = (−)j+1 j(j − 1)

(j + 3)!
Rj+1 , R → ∞

Qj+1
2 (R) = −j!

2

1

Rj+1
, R → 0

Qj+1
2 (R) = (−)j+1 j!

2
Rj+1 , R → ∞ , (C.8)

for any j ≥ 2, and as usual we defined Pµ
ν (R) ≡ Pµ

ν (z) with z = R2−1
R2+1

. Of course, taking

into account the rescaling of Φ with an overall 1/R, we recover exactly the behavior in the

free case, (3.9).

It is now easy to see why we needed to introduce the P̃ ’s. P has the same behavior at

zero and at infinity: it falls off with the same power at both ends, so it is regular at zero

and it vanishes at infinity. Q, on the other hand, falls off with different powers, and in

fact it diverges both at zero and at infinity. Now the most general solution of the equation

consists of two modes. If we want to separate the mode that is regular at zero and diverges

at infinity from the one that diverges at zero and is regular at infinity, we need to replace

P by P̃ . Now both modes diverge at both ends, and the linear combinations (4.24) have

the desired regularity properties.

In the special cases j = 0, 1, since P by itself was regular at both ends but Q diverges,

there is no way to construct a general solution that is regular at either end but to drop Q

for j = 0, 1. The asymptotics of P at R → 0 is

P 1
2 (R) = a0R

P 2
2 (R) = a1R

2 (C.9)

and at R → ∞,

P 1
2 (R) = −a0

R

P 2
2 (R) =

a1

R2
, (C.10)

with a0 = 6, a1 = 12.

Translating the above for the regularized modes Φ+
jlm(R) and Φ−

jlm(R) of (4.23), we

find the asymptotic behavior at R = 0

Φ+
jlm(R) =

2

(j + 1)!
Rj

Φ−
jlm(R) = (−)j+1 2j(j − 1)

(j + 3)!

1

Rj+2
(C.11)
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At R = ∞, we have

Φ+
jlm(R) = (−)j+1 2j(j − 1)

(j + 3)!
Rj

Φ−
jlm(R) =

2

(j + 1)!

1

Rj+2
. (C.12)

Of course, the parity properties imply that their boundary values are related.

D. Fluctuation equation in Poincare coordinates

In this appendix we solve the fluctuation equation in the standard Poincare form, which

we use to prove the claim that if we impose the regularity condition Φ̃(r = ∞, ~x) = 0 and

at the same time set Φ̃(~x) = 0, then also Φ̃1(~x) = 0, made in section 2.2. For notational

simplicity we drop the tildes.

The general solution of the fluctuation equation in Poincare coordinates (2.27) is ob-

tained as usual [10]:

Φ(r, x) = Φ(0)(x) + r Φ(1)(x) + r2 Φ(2)(x) + . . . . (D.1)

We get:

2Φ(2)(x) + ¤Φ(0)(x) +
24b2

(b2 + x2)2
Φ(0)(x) = 0

6Φ(3)(x) + ¤Φ(1)(x) +
24b2

(b2 + x2)2
Φ(1)(x) = 0

12Φ(4)(x) + ¤Φ(2)(x) +
24b2

(b2 + x2)2
Φ(2)(x) − 2

(b2 + x2)3
Φ(0)(x) = 0 . (D.2)

These equations should be viewed as determining Φ(2) and Φ(3), etc., once Φ(0) and Φ(1)

are provided, as usual. So Φ(0) and Φ(1) have the interpretations as source/operator in the

instanton background. Notice that, if we set Φ(0) = 0, we get an expansion in odd powers

of r, whereas the expansion is even if Φ(1) = 0. In fact, we can solve the equations to all

orders:

Φ(r, x) =
∞
∑

n=0

rn Φ(n)(x) . (D.3)

We get the following solution:

(n + 1)(n + 2)Φ(n+2)(x)+¤Φ(n)(x)+
24b2

(b2+x2)2

∑

mk

(−1)mm!

k!(m−k)!

2k

(b2+x2)2m−k
Φ(n+2k−4m) =0

(D.4)

where the sum runs over k = 0, . . . ,m, and n + 2k − 4m ≥ 0. This simplifies to:

Φ(n+2)(x) = − 1

(n + 1)(n + 2)

[

¤Φ(n)(x) + 24b2
∑

p

2−pcp

(b2 + x2)p+2
Φ(n−2p)(x)

]

(D.5)
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with cp =
∑

m≤p
(−1)mm!22m

(2m−p)!(p−m)! , and the sum again is such that n − 2p ≥ 0.

In the absence of the instanton, we can in fact resum the series. We get:

Φ(r, x) = cos(r
√

¤)Φ(0)(x) +
1√
¤

sin(r
√

¤)Φ(1)(x) , (D.6)

which is the Fourier transform of the usual sinh and cosh solutions that correspond to

Dirichlet and Neumann boundary conditions.

The proof of the claim in section 2.2 now straightforwardly follows from the decoupling

of the even and odd r-powers. To analyze the behavior at r = ∞ now, it is convenient

to use the Euclidean time coordinate τ in (4.6). At τ = ∞, we can neglect the potential

of the fluctuation equation, and we get a free wave equation with solution: Φ = Aejτ +

B e−(j+2)τ . Regularity imposes A = 0. Now going back to the coordinate r, we write

eτ/b = r/b
√

1 + ~x2/r2. Thus, for odd values of j, the expansion will contain both even

and odd powers of r. But this cannot happen if we set Φ(0) = 0, therefore setting Φ(0) = 0

also requires B = 0, hence Φ = 0.

E. Proof of formula (4.15) (by Tom Koornwinder4)

Recall the Pochhammer symbol (a)k := a(a+ 1) . . . (a+ k− 1) = Γ(a+ k)/Γ(a) (k nonneg-

ative integer), the Gauss hypergeometric series

2F1

(

a, b

c
; z

)

:=
∞

∑

k=0

(a)k (b)k
(c)k k!

zk (|z| < 1),

its transformation formula

2F1

(

a, b

c
; z

)

= (1 − z)c−a−b
2F1

(

c − a, c − b

c
; z

)

, (E.1)

and Gegenbauer polynomials expressed in terms of hypergeometric series:

Cλ
n(x) =

(2λ)n
n!

2F1

(−n, n + 2λ

λ + 1
2

; 1
2(1 − x)

)

. (E.2)

See formulas 9.100, 9.131-1 and 8.932-1 in [18].

We will express the associated Legendre functions occurring on both sides of (4.15)

in terms of Gegenbauer polynomials. First we deal with the associated Legendre function

P
l+ 1

2

3/2 (z) on the left-hand side of (4.15). Formula 8.723-1 in [18] writes Pµ
ν (z) for large

positive z as a linear combination of two hypergeometric functions of argument 1
2 − 1

2z(z2−
1)−

1

2 , but the second term vanishes if µ− ν − 1 is a nonnegative integer because of a factor

4University of Amsterdam, e-mail: thk@science.uva.nl
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1/Γ(ν − µ + 1) in its coefficient. Thus we obtain for integer l ≥ 2 and for large positive z:

P ν+l−1
ν (z) =

Γ(−1
2−ν)

(2π)
1

2 Γ(−2ν−l+1)

(z−
√

z2−1)ν+ 1

2

(z2−1)
1

4

2F1

(

ν+l− 1
2 ,−ν−l+ 3

2

ν+l+ 1
2

; 1
2

(

1− z√
z2−1

))

=
Γ(−1

2−ν)

21+νπ
1

2 Γ(−2ν−l−1)
(z2−1)−

1

2
ν−1

2 2F1

(−l+2, 2ν+l
3
2 +ν

; 1
2

(

1− z√
z2−1

))

=
2ν+1(−1)l(l−2)!

Γ(−ν)
(z2−1)−

1

2
ν−1

2 Cν+1
l−2

(

z√
z2−1

)

.

Here we used (E.1) in the second equality, and (E.2) together with the duplication formula

of the gamma function in the third equality. Now put ν := 3/2:

P
l+ 1

2

3/2
(z) = 3

√

2

π
(−1)l(l − 2)! (z2 − 1)−

5

4 C
5/2
l−2

(

z√
z2 − 1

)

. (E.3)

Next we deal with the function P̃ j+1
2 (z) on the right-hand side of (4.15). Consider

8.723-1 in [18] for ν = 2 and µ = j − 1 (j integer ≥ 2) and apply (E.1) to both hypergeo-

metric series occurring on the right-hand side. We obtain for large positive z:

P−j−1
2 (z) = − (z2 − 1)−3/2

15 (j − 2)!
2F1

(−j + 2, j + 4

7/2
; 1

2

(

1 − z√
z2 − 1

))

+
3 (z2 − 1)

(j + 3)!
2F1

(−j − 3, j − 1

−3/2
; 1

2

(

1 − z√
z2 − 1

))

. (E.4)

By (E.2) the first hypergeometric function in (E.4) is proportional to the Gegenbauer

polynomial C3
j−2

(

z(z2 − 1)−
1

2

)

and the second to C−2
j+3

(

z(z2 − 1)−
1

2

)

(except that the

normalization in (E.2) would introduce an artificial singularity in this second case). We

know that Cλ
n(x) is even or odd in x, of the same parity as the degree n. Hence the first

term on the right-hand side of (E.4) has the same parity in z as j − 2, and the second term

has the same parity in z as j + 3. Hence, by (C.1) and by (E.2) we obtain from (E.4) for

integer j ≥ 2:

P̃ j+1
2 (z) = − 16 (z2 − 1)−3/2

(j + 3)!
C3

j−2

(

z√
z2 − 1

)

, (E.5)

P
j+1
2 (z) =

6 (z2 − 1)

(j + 3)!
2F1

(−j − 3, j − 1

−3/2
; 1

2

(

1 − z√
z2 − 1

))

. (E.6)

Now substitute (E.3) and (E.5) in the conjectured identity (4.15). Then we see that

this identity indeed holds with summation only over j = 2, . . . , l + l′ with l + l′ − j even

and with the coefficients dj,l,l′ uniquely determined by the expansion

9
8 (−1)l+l′−1(l − 2)! (l′ − 2)! (x2 − 1)C

5/2
l−2(x)C

5/2
l′−2(x) =

∑

j=2,...,l+l′

l+l′−j even

dj,l,l′

(j + 3)!
C3

j−2(x). (E.7)

Indeed, on the left we have a polynomial of degree l + l′ − 2 in x, even or odd according to

whether l + l′ is even or odd.
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In principle, the coefficients dj,l,l′ can be computed from the known analytic expressions

for the coefficients in Dougall’s linearization formula

Cλ
m(x)Cλ

l (x) =

min(m,l)
∑

k=0

aλ(k, l,m)Cλ
l+m−2k(x) (E.8)

(see [28, Theorem 6.8.2]), in Gegenbauer’s connection formula

Cλ
n(x) =

[ 1
2
n]

∑

k=0

bλ,µ(n, k)Cµ
n−2k(x) (E.9)

(see [28, Theorem 7.1.4’]), and in the recurrence relation

x2Cµ
n(x) = cµ(n, n + 2)Cµ

n+2(x) + cµ(n, n)Cµ
n(x) + cµ(n, n − 2)Cµ

n−2(x) (E.10)

(iterate the recurrence relation [28, (6.4.16)]). However, it seems improbable that the

resulting expression for the coefficients dj,l,l′ can be reduced to an analytic expression not

involving a sum.
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