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Comment on “Late-time tails of a self-gravitating scalar field revisited” by

Bizoń et al: The leading order asymptotics
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Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Golm, Germany

(Dated: July 29, 2009)

In arXiv:0812.4333v2 Bizoń et al discuss the power-law tail in the long-time evolution of a
spherically symmetric self-gravitating massless scalar field in odd spatial dimensions. They
derive explicit expressions for the leading order asymptotics for solutions with small initial
data by using formal series expansions. Unfortunately, this approach lacks insight into the
very origin of the leading asymptotics and misses an interesting observation that the final
decay rate results from very special cancellations in the nonlinear terms. Here, we show that
one can avoid tedious manipulations of series and calculate the leading asymptotics more
directly by recognizing the special structure and cancellations already on the level of the
wave equation.

Since the works of John [1] and Asakura [2] who studied nonlinear wave equations with power
nonlinearities it is known that the late-time asymptotics can be ruled by the nonlinearity even for
solutions starting from small initial data (for which one might naively want to ignore the nonlinear
terms as causing only “higher order” corrections). For wave equations with nonlinearities containing
first derivatives the asymptotics may even depend on the particular linear combination of the terms.
Christodoulou [3] and Klainerman [4] discovored special null structures, which lead to a faster than
generic decay or decide about a global existence of solutions. The underlying mechanism is based
on asymptotic cancellations of the leading order terms in these special nonlinear structures (cf. [5]
for a detailed analysis of such cancellations). The purpose of this Comment is to demonstrate that
the same phenomenon occurs here, in the wave equation for the scalar field, and make use of it to
simplify the calculation of the leading asymptotics at late-times.

In the commented Article, later referred to as BCR, evolution of a self-gravitating real massless
scalar field φ is considered. The Einstein equations for a d + 1-dimensional metric with odd d ≥ 3
restricted to spherical symmetry

ds2 = e2α(t,r)
(

−e2β(t,r)dt2 + dr2
)

+ r2dΩ2
d−1 , (1)

are analyzed, where dΩ2
d−1 is the round metric on the unit (d− 1)–dimensional sphere. The scalar

field satisfies a (quasilinear) wave equation with smooth, and compactly supported initial data
(φ, φ̇)t=0 = (εf, εg) where ε is a small number. The functions φ, β and m = (1 − e−2α)rd−2 are
formally expanded in the Taylor series in ε about Minkowski spacetime m0 = β0 = φ0 = 0 and
substituted into the field equations. This gives an infinite hierarchy of equations on φi, βi,mi,
i = 1, 2, 3, ... which can be solved recursively.

At the first order m1 = β1 = 0 while

�φ1 = 0, (φ1, φ̇1)t=0 = (f, g) (2)

can be solved explicitly. At the second order φ2 = 0 and

m′

2 = κ rd−1
(

φ̇2
1 + φ′2

1

)

, (3)

ṁ2 = 2κ rd−1φ̇1φ
′

1 , (4)

β′

2 =
(d − 2)m2

rd−1
(5)
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where κ =
8π

d − 1
. And at the third order

�φ3 = 2β2φ̈1 + β̇2φ̇1 + β′

2φ
′

1. (6)

In BCR it is claimed that the late-time asymptotics of φ is dominated by that of φ3. In order
to calculate it some of the functions φi, βi,mi must additionally be expanded in powers of r−1

and then inserted into (6). Here, cancellations of the leading terms occur since this equation has
a very special structure of the nonlinear terms originating from the wave equation for φ. Hence,
next-to-leading order terms become important in the asymptotics.

Below, we present a method which makes use of these cancellations already at the level of
the wave equation (cancellation of terms before their evaluation) and thus reduces the amount of
necessary asymptotic information about the source functions on the right-hand side. In Section I we
regroup the nonlinear terms, eliminate the subdominant ones and calculate the leading asymptotics
for φ3 by solely evaluating the dominant nonlinear term. In Section II we prove estimates which
give a rigorous background for the term selection in Section I.

I. ANALYSIS OF THE LEADING ORDER ASYMPTOTICS

A. 3+1 dimensions

For d = 3 the solution of the free wave equation (2) can be written as (cf. (13)-(14) of BCR
with l = 0)

φ1(t, r) =
a(u) − a(v)

r
. (7)

where u = t − r, v = t + r and the function a is determined by f and g and has compact support
in [−R,+R]. The most obvious way of calculating the asymptotics of φ is to substitute the above
function into (3)-(5), calculate φ̇1, φ

′
1, φ̈1, φ

′′
1 , β̇2, β

′
2 and insert into (6) to obtain the desired decay

in time for φ3, as was done in Section III of BCR. However, as follows from the rough estimates
(cf. those obtained in Section II), the right-hand side of (6) is a function supported in the vicinity
of the lightcone t = r and decaying like 1/r3. It suggests that φ3 should decay in time like 1/t2.
As the section III of BCR shows, the true decay is by one power faster. Indeed, there happens a
cancellation of leading terms in the asymptotic expansion. Here, we want to explain the cancellation
mechanism already on the level of the differential equation by regrouping terms to form special
structures. This transformation also allows for a considerable simplification of the calculations.

By introducing null derivatives ∂± := 1
2(∂t ± ∂r) and rearranging terms the equation (6) can be

rewritten as

�φ3 = −
1

r
β2∂−φ1 + 2∂+β2∂+φ1 +

2

r
∂−(rβ2∂−φ1) +

2

r
β2∂

2
+(rφ1). (8)

The last term is identically zero for t > R because there φ1 is a purely outgoing wave (7). The
second last term, in the process of inversion of � = 1

r
∂−∂+(r·), will turn out to be a complete

derivative in the ingoing direction u. Since rβ2∂−φ1 has compact support in u this term will
vanish after integration. The second term of the above expression, as is explained in Section II,
has faster decay in r (by at least one power) than any other combination of null derivatives and
together with the compact support in u (localization near to the lightcone) leads to a faster decay
in time for φ3. Hence, it is the first term that will determine the asymptotic behavior of φ3 at late
times (see Section II for proof). We denote it symbolically

�φ3
∼= −

1

r
β2∂−φ1. (9)
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Hence, all we need to calculate is the leading order behavior of β2. Substituting (7) into (3) we
first find

m2(u, r)
r+u>R

= 4π



2

∞
∫

u

a′2(x) dx −
a2(u)

r




∼= 8πF (u) + O(r−1), (10)

where F (u) := I0
1 (u) is defined in (28) of BCR. Next, integrating equation (5) and using F (u) = 0

for u > R we get for r > t − R

β2(u, r)
r+u>R
∼= 8π

R
∫

u

1

(t − u′)2
[F (u′) + O(r−1)] du′

∼=
8π

t2

∞
∫

u

F (u′) du′ + O(r−1t−2) + O(t−3) =
8π

t2
G(u) + O(t−3)

(11)

where G(u) := I1
1 (u), otherwise β2(t, r) = 0. Substituting this and (7) into (9) and using (21) of

BCR (with l = 0) we get

φ3(t, r) = −
24π

r

+∞
∫

−∞

dη

t+r
∫

t−r

dξ

(ξ − η)(ξ + η)2

[

G(η)a′(η)+O

(

1

(ξ + η)

)]

. (12)

Elementary integration over ξ and by parts over η yields the asymptotic result (34) of BCR

φ3(t, r) =
Γ0

t3
+ O

(

1

t4

)

, Γ0 := −25π

+∞
∫

−∞

F (u)a(u) du (13)

for late times (t ≫ r). The cited formula (34) does not really give asymptotics at future null
infinity (t + r → ∞, t − r = const, called also scri) as is claimed, since it heavily relies on the
relation t ≫ r implying t−r → ∞. This way of taking limits defines in fact a line only approaching
scri asymptotically on the way to timelike infinity. Without further analysis it is unclear whether
the asymptotic behavior of φ3 along this line agrees with asymptotics calculated along scri.

B. Higher dimensions

At present we cannot rigorously prove the leading order asymptotics due to a lack of an optimal
decay estimate for the wave equation in d+1 dimensions, but analogously to the the 3+1 case,
we are able to regroup and estimate the right-hand side terms of the wave equation for φ3 and so
determine the leading order source term (see Section II).

We can rearrange the nonlinear terms in the equation (6) to write them as

�φ3 =
2

rd−1
∂−

(

rd−1β2∂−φ1

)

+
2

rd−1
∂+

(

rd−1β2∂+φ1

)

(14)

The second source term of the above expression, as is explained in Section II, has faster decay in
r (by at least one power) than any other combination of null derivatives and together with the
compact support in u leads to a faster decay in time for φ3. Hence, it is the first term that will
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determine the asymptotic behavior of φ3 at late times. See Section II for a quantitative analysis.
We denote it symbolically

�φ3
∼=

2

rd−1
∂−

(

rd−1β2∂−φ1

)

. (15)

Using (21) of BCR we get

φ3(t, r) =
1

2l+2rl+1

∫ t+r

t−r

dξ

∫ +∞

−∞

dη
Pl(µ)

(ξ − η)l+1
∂η

[

(ξ − η)2l+2β2∂ηφ1

]

(16)

where l = (d−3)/2. The inner integral over η can be integrated by parts (it produces no boundary
terms since the integrand has compact support in η)

φ3(t, r) = −
1

2l+2rl+1

∫ t+r

t−r

dξ

∫ +∞

−∞

dη ∂η

[

Pl(µ)

(ξ − η)l+1

]

(ξ − η)2l+2β2∂ηφ1. (17)

Now we only need to find the asymptotic form of the expression β2∂−φ1. According to (13)-(14)
of BCR we have

φ1(t, r) ∼=
a(l)(u)

r1+l
+ O(r−2−l), φ̇1(t, r) ∼=

a(l+1)(u)

r1+l
+ O(r−2−l), φ′

1(t, r)
∼= −

a(l+1)(u)

r1+l
+ O(r−2−l),

(18)

and

m2(u, r)
r+u>R
∼= 2κ

∞
∫

u

[a(l+1)(x)]2 dx + O(r−1) =: 2κFl(u) + O(r−1), (19)

where Fl(u) := I1
l+1(u). Next, integrating equation (5) and using Fl(u) = 0 for u > R we get for

r > t − R

β2(u, r)
r+u>R
∼= (d − 2)2κ

R
∫

u

1

(t − u′)2+2l
[Fl(u

′) + O(r−1)] du′

∼=
(2l + 1)

(2l + 2)

16π

t2+2l

∞
∫

u

Fl(u
′) du′ + O(r−1t−2−2l) + O(t−3−2l) =

(2l + 1)

(2l + 2)

16π

t2+2l
Gl(u) + O(t−3−2l)

(20)

where Gl(u) := I1
l+1(u), otherwise β2(t, r) = 0. Substituting this and (18) into (17) we obtain

φ3(t, r) = −
(2l + 1)

(2l + 2)

22l+5π

rl+1

∫ t+r

t−r

dξ

∫ +∞

−∞

dη ∂η

[

Pl(µ)

(ξ − η)l+1

]

(ξ − η)l+1

(ξ + η)2+2l
Gl(η)a(l+1)(η). (21)

Analogously to (22) or BCR it holds

t+r
∫

t−r

dξ ∂η

[

Pl(µ)

(ξ − η)l+1

]

(ξ − η)l+1

(ξ + η)2+2l
∼= (−1)l2l (2l + 2)

(2l + 1)

rl+1

t3+3l

[

1 + O

(

1

t

)]

, (22)

which applied to the above integral yields the asymptotic result (44) of BCR

φ3(t, r) =
Γl

t3l+3
+ O

(

1

t3l+4

)

, Γl := (−1)l+123l+5π

+∞
∫

−∞

Fl(η)a(l)(η) dη, (23)

for late times (t ≫ r), where in Γl we integrated by parts over η.
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II. ESTIMATES

A. 3+1 dimensions

In this section we will prove decay estimates for m2, β2 and φ3. They will lose information about
the exact amplitudes but will be helpful in separating the leading asymptotics from the subleading
corrections decaying faster.

From (7) we know that φ1 is supported in the strip 0 < t − R ≤ r ≤ t + R and can estimate
there its derivatives

|φ1(t, r)|, |φ̇1(t, r)|, |φ
′

1(t, r)| .
1

〈r〉
, |φ̇1 + φ′

1| .
1

〈r〉2
, (24)

where 〈x〉 := 1+ |x| and “.” means “less or equal than” up to some multiplicative constant which
we skip for brevity. Observe that for functions supported in the strip |t−r| < R estimates by powers
of 〈r〉 and 〈t〉 are equivalent, since there exist constants C1, C2 such that C1〈t〉 ≤ 〈r〉 ≤ C2〈t〉.

From (3) we have m2(t, r) = 0 for r < t − R and for 0 < t − R ≤ r ≤ t + R we estimate

|m2(t, r)| ≤

∫ r

0
r′

2
(

|φ̇1|
2 + |φ′

1|
2
)

dr′ .

∫ r

t−R

r′2

〈r′〉2
dr′ ≤ C (25)

where C depends only on R. Actually, there is a universal bound |m2(t, r)| ≤ M where M is the
total energy (“ADM mass”) of φ1. Moreover, for small r, say r < 1, we immediately see that
|m2(t, r)| . r3. These two facts can be put together to give

|m2(t, r)| .
r3

〈r〉3
(26)

Next, from (5) we get β2(t, r) = 0 for r < t − R and for 0 < t − R ≤ r ≤ t + R we again estimate

|β2(t, r)| ≤

∫ r

0

m2(t, r
′)

r′2
dr′ .

∫ t+R

t−R

1

〈r′〉2
dr′ ≤

2R

〈t − R〉〈t + R〉
.

1

〈t〉2
(27)

We will also need a similar estimate for the outgoing derivative of β2. Therefore we combine the
equations (3)-(5) to get the identity

∂+β2 = β̇2 + β′

2 =

∫ r

0

(

φ̇1 + φ′

1

)2
dr′ − 2

∫ r

0

m2

r′3
dr′. (28)

Using the above estimates on φ̇1 + φ′
1 and m2 we find

|∂+β2| .

∫ t+R

t−R

1

〈r′〉4
dr′ +

∫ t+R

t−R

1

〈r′〉3
dr′ .

1

〈t〉3
(29)

for 0 < t − R ≤ r ≤ t + R as well as ∂+β2(t, r) = 0 for r < t − R.
Finally, we analyze the various source terms in the wave equation (6). Let us split the solution

into four components introduced in (8)

�φ3A = −
1

r
β2∂−φ1, �φ3B = 2∂+β2∂+φ1, (30)

�φ3C =
2

r
∂−(rβ2∂−φ1), �φ3D =

2

r
β2∂

2
+(rφ1), (31)
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with φ3 = φ3A + φ3B + φ3C + φ3D. All terms on the right hand side are supported in |t − r| < R.
By the above bounds we can estimate the first two components

∣

∣

∣

∣

1

r
β2∂−φ1

∣

∣

∣

∣

.
1

r〈r〉〈t〉2
.

1

r〈r〉3
, |∂+β2∂+φ1| .

1

〈t〉3〈r〉2
.

1

〈r〉5
(32)

Now, e.g. from [6], we find

|φ3A(t, r)| .
1

〈t + r〉〈t − r〉2
, |φ3B(t, r)| .

1

〈t + r〉〈t − r〉3
, (33)

so we see that φ3B becomes subdominant to φ3A regarding the late time asymptotics.
Next, in spherical symmetry �φ3C ≡ 4

r
∂−∂+(rφ3C) and hence

φ3C(t, r) =
1

4r

∫ t+r

t−r

du

∫ t−r

−(t+r)
dv ∂v(rβ2∂vφ1). (34)

The inner integral is an integral of a total derivative of a compactly supported function of v. The
integration range is bigger than its support [−R,R] so the integral vanishes. This gives φ3C = 0
for t > r + R.

The last component φ3D = 0 for t > r + R because the source vanishes identically in the
integration region when inverting the wave operator as we did above.

Finally, for late times, in the region t > r + R,

|φ3(t, r)| ∼= |φ3A(t, r)| .
1

〈t + r〉〈t − r〉2
(35)

and other components of φ can be a priori estimated to be subdominant. Therefore, in the asymp-
totic analysis, concerned solely with the leading order behavior, it is sufficient to keep only the first
source term in (8).

B. Higher dimensions

Here, we want to show that the second source term in (14) is asymptotically subdominant with
respect to the first one. In dimension d+1, the estimates for φ1,m2 and β2 and their derivatives
can be obtained analogously to the 3+1 case and read for 0 < t − R ≤ r ≤ t + R

|φ1(t, r)|, |φ̇1(t, r)|, |φ
′

1(t, r)| .
1

〈r〉1+l
, |∂k

+φ1| .
1

〈r〉1+l+k
, |∂k

−φ1| .
1

〈r〉1+l
, (36)

|m2(t, r)| . C
rd

〈r〉d
, |β2(t, r)| .

1

〈t〉d−1
, |∂+β2| .

1

〈t〉d
, |∂−β2| .

1

〈t〉d−1
(37)

while all these functions vanish for r < t − R. It allows us to control both source terms in (14)
∣

∣

∣

∣

1

rd−1
∂−

(

rd−1β2∂−φ1

)

∣

∣

∣

∣

≤ |∂−β2∂−φ1| +
∣

∣β2∂
2
−φ1

∣

∣ +

∣

∣

∣

∣

(d − 1)

r
β2∂−φ1

∣

∣

∣

∣

(38)

.
1

〈t〉d−1〈r〉1+l
+

1

〈t〉d−1〈r〉1+l
. +

1

r〈t〉d−1〈r〉1+l
.

1

〈r〉3+3l

∣

∣

∣

∣

1

rd−1
∂+

(

rd−1β2∂+φ1

)

∣

∣

∣

∣

≤ |∂+β2∂+φ1| +
∣

∣β2∂
2
+φ1

∣

∣ +

∣

∣

∣

∣

(d − 1)

r
β2∂+φ1

∣

∣

∣

∣

(39)

.
1

〈t〉d〈r〉2+l
+

1

〈t〉d−1〈r〉3+l
. +

1

r〈t〉d−1〈r〉2+l
.

1

〈r〉5+3l
.
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Both estimates are optimal (c.f. the explicit asymptotic expressions in Section IV of BCR), hence
the second therm is indeed subdominant what justifies neglecting it in the leading order calculations.

However, there is a problem in d+1 dimensions which is absent in 3+1. We lack an optimal
decay estimate for the wave equation in d+1 dimensions, given a source with prescribed decay.
The presently best known estimates (c.f. [7, 8]) lose l powers in the late-time decay relative to
what is optimal. Therefore, for the above sources we are able to show rigorously only the decay

|φ3(t, r)| .
1

〈t + r〉〈t − r〉2+2l
, (40)

while 1/t3+3l is optimal for late times. However, it does not change the fact that in the asymptotic
analysis it is the first source term in (14) that dominates the asymptotics of φ3 at late times.
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