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Conservation Laws for Fourth
Order Systems in Four Dimensions

TOBIAS LAMM AND TRISTAN RIVIÈRE

Departement Mathematik, ETH Zürich, Zürich, Switzerland

Following an approach of the second author (Rivière, 2007) for conformally
invariant variational problems in two dimensions, we show in four dimensions
the existence of a conservation law for fourth order systems, which includes both
intrinsic and extrinsic biharmonic maps. With the help of this conservation law
we prove the continuity of weak solutions of this system. Moreover we use the
conservation law to derive the existence of a unique global weak solution of the
extrinsic biharmonic map flow in the energy space.

Keywords Biharmonic map heat flow; Conservation laws; Fourth order elliptic
systems; Lorentz spaces; Wente inequality.

Mathematics Subject Classification 35D10; 35J60; 58E20; 58J35.

1. Introduction

In Rivière (2007) the second author found a procedure to rewrite second order
elliptic systems of the form

−�u = � · �u (1.1)

in divergence form. Here u is a map into �m and � = �k �xk is a vectorfield tensored
with m×m-anti-symmetric matrices. The procedure consists of finding a map A
which takes values in the space of m×m-invertible matrices and a two-vectorfield
tensored with m×m-matrices B = Bkl�xk ∧ �xl satisfying

�A− A�+ curl B = 0 (1.2)

where curl B is the matrix valued vector field �
∑

k �xkBkl��xl . Once the existence of
“regular enough” A and B satisfying (1.2) has been established, one observes that
the system (1.1) is equivalent to the following conservation law

div�A�u+ B · �u� = 0 (1.3)
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246 Lamm and Rivière

where the latter equation means in coordinates �xk�A�xku+ Bkl�xlu� = 0 with implicit
summation convention. It was shown inRivière (2007) that the above procedure works
successfully in two dimensions for solutions u ∈ W 1�2 and for � ∈ L2. Writing the
equation in the form (1.3) permits to prove, without many additional efforts, results
such as the continuity of W 1�2 solutions to (1.1) in two dimensions for a connection
field � ∈ L2 or the sequentially weak compactness in W 1�2 of these solutions, etc. It
was also observed in Rivière (2007) that every Euler–Lagrange equation of an elliptic
conformally invariant Lagrangian with quadratic growth in two dimensions can be
written in the form (1.1). In Rivière and Struwe (2006), Struwe and the second author
used the existence of an “almost” conservation law, which was motivated by the
conservation law (1.3), to give a new proof for the partial regularity of harmonic maps,
and generalizations thereof, in higher dimensions.

Working now in four dimensions and replacing the Laplacian by the Bilaplacian
it is then natural to ask how far the previous results can be extended to this new
setting. We shall use the following notation: L2 ·W 1�2�B4�M�m�� denotes the space
of linear combination of products of an L2 map with an W 1�2 map from B4 into the
space of m×m-matrices M�m�. Our main result in this work is the following.

Theorem 1.1. Let u ∈ W 2�2�B4��m� satisfy the equation

�2u = ��V · �u�+ div�w�u�+W · �u� (1.4)

where the “potentials” V and w are in W 1�2�B4�M�m�⊗∧1�4� respectively
L2�B4�M�m�� and the potential W ∈ W−1�2�B4�M�m�⊗∧1�4� can be decomposed
in the following way: there exists � ∈ L2�B4� so�m�� and F ∈ L2 ·W 1�2�B4�M�m�⊗
∧1�4� such that

W = ��+ F	 (1.5)

Then u is continuous in B4.

Remark 1.2. The theorem remains true if we only assume that F ∈
L

4
3 �1�B4�M�m�⊗∧1�4� (for a definition of the Lorentz space L

4
3 �1 see Section 2.2.1).

As in Rivière (2007) for solutions to (1.1), the previous result is based on the
discovery of a conservation law satisfied by solutions of (1.4). Precisely we establish
in the present work the following theorem.

Theorem 1.3. Let V and w be in W 1�2�B4�M�m�⊗∧1�4� respectively L2�B4�M�m��
and let W ∈ W−1�2�B4�M�m�⊗∧1�4� satisfy (1.5) for F ∈ L2 ·W 1�2�B4�M�m�⊗
∧1�4�. Let A ∈ L� ∩W 2�2�B4�Gl�m�� and B ∈ L2�B4�M�m�⊗∧2�4� satisfy the
linear equation

��A+ �AV − �Aw + AW = curl B� (1.6)

where curl B 
= ∑
l �xlBlk�xk . Then u solves the equation (1.4) if and only if it satisfies

the conservation law

div���A�u�− 2�A�u+ �A�u− Aw�u+ �A�V · �u�− A��V · �u�− B · �u� = 0�
(1.7)

where we use the notation B · �u 
= Bkl�xlu�xk .
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Conservation Laws 247

Remark 1.4. We expect similar theorems to remain true for general even order
elliptic systems of the type (1.4).

Theorem 1.1 will be a consequence of the previous result and the following
existence result for A and B.

Theorem 1.5. There exists 
�m� > 0 such that the following holds: Let V and w
respectively be in W 1�2�B4

2�M�m�⊗∧1�4� and in L2�B4
2�M�m�� and let W = ��+

F ∈ W−1�2�B4
2�M�m�⊗∧1�4� satisfy (1.5) for F ∈ L2 ·W 1�2�B4

2�M�m�⊗∧1�4�.
Assume that

�V�W 1�2 + �w�L2 + ���L2 + �F�L2·W 1�2 < 
�m�� (1.8)

then there exist A ∈ L� ∩W 2�2�B4�Gl�m�� and B ∈ W 1�4/3�B4�M�m�⊗∧2�4�
satisfying (1.6) on B4 with the following estimate

�A�W 2�2 + �dist�A� SO�m���L� + �B�W 1�4/3 ≤ C��V�W 1�2 + �w�L2 + ���L2 + �F�L2·W 1�2�	
(1.9)

The previous theorems apply to classical critical fourth order non-linear elliptic
systems in four dimensions such as intrinsic and the extrinsic biharmonic maps into
Riemannian manifolds.

Theorem 1.6. Let Nn be a closed submanifold of �m. Let u in W 2�2�B4� Nn� be a
critical point in W 2�2�B4� Nn� of the functional

�ext�u� =
∫
B4
��u�2 dx� (1.10)

or of the functional

�int�u� =
∫
B4
���u�T �2 dx� (1.11)

where ��u�T is the tension field of u : the projection of �u on the tangent space Tu�x�N
to N at u�x�. Then u satisfies an equation of the form (1.4) where V , w and W satisfy
the assumptions of Theorem 1.1.

Remark 1.7. Another example of equations which can be written in the form (1.4)
is given by

�2u = ��V · �u�+ div�w�u�+Q�x� u�Du�� (1.12)

where V and w are as in Theorem 1.1 and Q satisfies

�Q�x� z� p�� ≤ c�p�4 ∀ �x� z� p� ∈ �×�n ×�4n	 (1.13)

In contrast to the corresponding two dimensional problem (see Frehse, 1973) this
implies in particular that a quartic nonlinearity in the gradient is not critical for
fourth order systems in four dimensions. The regularity of solutions of special cases
of (1.12) was first studied by Wang (2004a).
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248 Lamm and Rivière

Therefore, Theorems 1.3 and 1.5 permit to write the extrinsic and intrinsic
biharmonic map equation into arbitrary target manifolds in divergence form and
this yields a new and simple proof of the regularity of these maps in four dimensions
(for previous results see Chang et al., 1999; Strzelecki, 2003; Wang, 2004a,c). The
illustration of the above result by giving the explicit values of V�w�W�A and B in
the particular case where Nn is the unit sphere Sn of �n+1 is instructive: a classical
computation (see Chang et al., 1999; Strzelecki, 2003; Wang, 2004c) tells us that u
is an extrinsic biharmonic map (i.e., a W 2�2 critical point of (1.10) for perturbations
in W 2�2�B4� Sn�) if and only if it satisfies (1.4) for V , w and W given by

V ij = ui�uj − uj�ui

wij = div V ij − 2��u�2�ij
W ij = ��div V ij�+ 2��ui�uj − �uj�ui�

(1.14)

Observe that divW = 0. This implies that there exists B ∈ L2�B4�M�m�⊗∧2�4�
such that W = curl B. Then u satisfies (1.7) with{

A = Im

B s.t. W = curl B	
(1.15)

This conservation law was known in the particular case where the target Nn is the
standard round sphere Sn ↪→ �n. The main contribution of the present work is
to show that this conservation law is stable and keeps existing while changing the
target to an arbitrary one. Similarly u is an intrinsic biharmonic map (i.e., a W 2�2

critical point of (1.11) for perturbations in W 2�2�B4� Sn�) if and only if it satisfies
(1.4) for V , w, and W given by

V ij = ui�uj − uj�ui

wij = div V ij

W ij = ��div V ij�+ 2��ui�uj − �uj�ui + ��u�2�ui�uj − uj�ui��

(1.16)

Observe that in this case also divW = 0. Again there exists B ∈ L2�B4�M�m�⊗
∧2�4� such that W = curl B. Then u satisfies (1.7) with{

A = Im

B s.t. W = curl B
(1.17)

In the second part of the paper we use the conservation law (1.7) to show the global
existence of a unique weak solution of the extrinsic biharmonic map flow (i.e., the
gradient flow for the energy �ext) in four dimensions in the energy space. More
precisely we consider a smooth, compact, four-dimensional Riemannian manifold
M without boundary and we study the parabolic system,

�tu = −�2u− ��V · �u�− div�w�u�−W · �u in �′�M × �0� T���

u�·� 0� = u0�
(1.18)
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Conservation Laws 249

where V , w, and W are as in (2.25) and u0 ∈ W 2�2�M�N�. As mentioned above we
prove the following.

Theorem 1.8. For all u0 ∈ W 2�2�M�N� there exists a unique global weak solution u ∈
H1��0� T�� L2�M�N�� ∩ L2��0� T��W 2�2�M�N�� of (1.18) with non-increasing energy�ext.

In Lamm (2004) the first author proved the longtime existence of a smooth
solution of (1.18) assuming a smallness condition on the initial energy. Gastel
(2006) and Wang (2007) proved the existence of a unique global weak solution
(which is smooth away from finitely many time slices) of (1.18) and higher order
generalisations of this flow.

The corresponding theorem for the harmonic map flow was proved by Freire
(1995a,b, 1996) following previous work of the second author (Rivière, 1993).
Global existence of solutions of the gradient flow for �int has been shown by
the first author (Lamm, 2005) in the case of a target manifold with non-positive
sectional curvature.

2. Proof of Theorems 1.1–1.6

2.1. Proof of Theorem 1.3

Theorem 1.3 is proved by a direct computation. More precisely we have for general
A, B, u, V , w, W in the spaces given in the statement of the theorem that

div���A�u�− 2�A�u+ �A�u− Aw�u+ �A�V · �u�− A��V · �u��
= A��2u− ��V · �u�− div�w�u�−W · �u�
+ ���A+ �AV − �Aw + AW� · �u (2.1)

Combining this equation with the fact that

div�B · �u� = �xk�Bkl�xlu� = �xkBkl�xlu = curl B · �u

(we are using the fact that B takes values in M�m�⊗∧2�4 and thus: Bkl = −Blk) we
deduce that (1.7) holds if and only if u is a solution of equation (1.4). This proves
Theorem 1.3.

2.2. Proof of Theorem 1.5

2.2.1. Some Results on Lorentz Spaces. The Lorentz spaces will play an important
role in the proof of Theorem 1.5 and we recall some classical facts about these
spaces which where proved in O’Neil (1963), Peetre (1963), Poornima (1983) and
also exposed in Hélein (2002), Hunt (1966), Stein and Weiss (1971), and Tartar
(1998). Let f be a measurable function on � a domain in �k and denote by f ∗�t� the
equimeasurable decreasing rearrangement of f which is a function on �+ satisfying

�x ∈ �� �f ��x� > �� = �t ∈ �+� f
∗�t� > ��
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250 Lamm and Rivière

For f measurable in � we introduce

f ∗∗�t� = 1
t

∫ t

0
f ∗�s�ds

and, for every 1 ≤ p ≤ � and 1 ≤ q ≤ �, we define the following functional which
happens to be a norm on the set of measurable functions for which it is finite

�f�Lp�q =


(∫ �

0
�t1/pf ∗∗�t��q

dt

t

)1/q

if 1 ≤ q < �

sup
t>0

t1/pf ∗∗�t� if q = �	

The set of functions f for which �f�Lp�q is finite is a Banach space for this norm and
it is called Lorentz Lp�q space. It happens that Lp�p is the standard Lp space, that, if
� is bounded, Lp�q��� embeds into Lp′�q′��� if and only if p > p′ or q′ ≥ q in the
case that p = p′. We shall use the following classical results on Lorentz spaces: first
of all Lp�q · Lp′�q′ embeds continuously into Lr�s if 1

p
+ 1

p′ ≤ 1 for

1
r
= 1

p
+ 1

p′ and
1
s
= 1

q
+ 1

q′ �

and

�fg�Lr�s ≤ C�f�Lp�q�g�Lp′ �q′ 	

Moreover we will use the fact that Calderon–Zygmund operator maps continuously
Lp�q into Lp�q for 1 < p < +� and that the dual space of L2�1 is L2��. Finally, the
Lorentz–Sobolev-space Wm�p�q��� of functions whose first m derivatives are in Lp�q

embeds into Lp∗�q where 1/p∗ = 1/p−m/k. We shall use the previous results in the
following situations: W 1�2�B4� embeds into L4�2�B4�, the product of two functions
in L4�2 is in L2�1, the product of a function in L2 with a function in W 1�2 is in
L4/3�1, a function whose Laplacian is in L2�1�B4� is continuous (see also the proof of
Theorem 1.1), etc.

2.2.2. Proof of Theorem 1.5. Let V and w be in W 1�2�B4
2�M�m�⊗∧1�4� respectively

L2�B4
2�M�m�� and let W = ��+ F ∈ W−1�2�B4

2�M�m�⊗∧1�4� satisfy (1.5) for F ∈
L2 ·W 1�2�B4

2�M�m�⊗∧1�4�. Assume that

� = �V�W 1�2 + �w�L2 + ���L2 + �F�L2·W 1�2 < 
�m�� (2.2)

where 
�m� will be chosen small enough later. Using standard elliptic theory we get
the existence of � ∈ W 1�2�B4

2� so�m�⊗∧1�4� satisfying{
div��� = −� in B4

2

���W 1�2 ≤ c���L2 ≤ c
�m�
(2.3)

Then for 
�m� small enough we can apply Theorem A.5 in order to get a Coulomb
gauge: a 2-vectorfield � = �kl�xk ∧ �xl ∈ W 2�2�B4

2� so�m�⊗∧2�4� (i.e., �kl = ��
ij
kl�ij ∈
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Conservation Laws 251

so�m� and we have �
ij
kl = −�

ji
kl and �

ij
kl = −�

ij
lk� and a map U ∈ W 2�2�B4

2� so�m�� such
that 

� = P�P−1 + Pcurl �P−1

P 
= exp�U�

�U�W 2�2�B4
2�
+ ���W 2�2�B4

2�
≤ c���L2�B4

2�
	

(2.4)

We calculate

W = ��+ F

= −�div�+ F

= −���P · �P−1 + P�P−1 + div�Pcurl �P−1��+ F

= −P��P−1 + K1	 (2.5)

Using the fact that

div�Pcurl �P−1� = �P · curl �P−1 + Pcurl � · �P−1�

(2.4) and the properties of Lorentz spaces we mentioned in the previous subsection,
we have

�K1�L4/3�1 ≤ c���2L2 + c�F�L2·W 1�2 	 (2.6)

We now proceed with some a-priori computations (before having the existence of
A and B). Consider an element A ∈ W 2�2 ∩ L��B4

2�Gl�m�� and an element P as in
(2.4). Denoting Ã 
= AP we then have

��Ã− ���Ã P−1�P = −Ã��P−1P − �Ã�P−1P − �Ã�P−1P − 2���Ã · �P−1�P	
(2.7)

Combining this with (1.6) and (2.5) we get

��Ã = −��ÃP−1�VP + ��ÃP−1�wP − Ã�−��P−1 + P−1K1�P + �curl B�P

− Ã��P−1P − �Ã�P−1P − �Ã�P−1P − 2���Ã · �P−1�P

= −�ÃK2 − �2ÃK3 + �ÃK4 − ÃK5 + �curl B�P� (2.8)

where we have the estimate

�K2�W 1�2 + �K3�W 1�2 + �K4�L2 + �K5�L 4
3 �1

≤ c�	 (2.9)

Instead of aiming to solve (2.8) we use a cut-off function � ∈ C�
0 �B

4
2�, with � = 1 in

B4 and ��l�� ≤ c for all l ∈ �, to get new maps V = �V , w = �w, F = �F , � = ��,
U = �U , and P = eU . These maps agree with the original maps on B4 and are zero
on �B4

2. Another feature of these new maps is that their various Sobolev or Lorentz
norms are estimated by the corresponding norms of the original maps. With the
help of the equations (1.5), (2.4), (2.5), and (2.8) we get new maps �, �, and Ki,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
x
 
P
l
a
n
c
k
 
I
n
s
t
 
&
 
R
e
s
e
a
r
c
h
 
G
r
o
u
p
s
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
3
:
0
3
 
2
6
 
A
u
g
u
s
t
 
2
0
0
8



252 Lamm and Rivière

i ∈ �1� 	 	 	 � 5� from all these modified functions. By these considerations we see that
instead of solving (1.6) we can also solve the equation

��A+ �A K2 + �2A K3 − �A K4 + A K5 = �curl B�P� (2.10)

for A and B. First we want to solve the system

�2Â = �curl B� · �P − div��ÂK2 + �2ÂK3 − �ÂK4 + ÂK5 + K5��

curl�curl B� = curl
(
���Â�+ �ÂK2 + �2ÂK3 + �ÂK4 + ÂK5 + K5�P

−1)
�

dB = 0�
(2.11)

Â = ��Â

��
= 0 on �B4

2�

B · � = 0 on �B4
2�∫

B4
2

�Â = 0�

where we use the notation:
If B = Bkl�xk ∧ �xl is a two-vectorfield, then

dB = ∑
i�k�l

�Bkl

�xi
�xi ∧ �xk ∧ �xl �

B · � = ∑
k�l

Bkl�l�xk

(2.12)

and for a (one-)vectorfield C = Ck�xk we define

curl C = ∑
k�l

(
�Ck

�xl
− �Cl

�xk

)
�xk ∧ �xl 	 (2.13)

Using Lemma A.3 and the above remarks we get

�Â�L� + �Â�W 2�2 + ���Â�
L

4
3 �1

≤ c�dB�
L

4
3 �1
��P−1�L4�2 + c���Â�W 2�2 + �Â�L��+ c�	

(2.14)

Furthermore from Lemma A.1 we get

�dB�
L

4
3 �1

≤ c���Â�
L

4
3 �1

+ c���Â�W 2�2 + �Â�L��+ c�	 (2.15)

By a standard fixed-point argument we get the existence of solutions Â and B. The
maps A∗ = Â+ id and B then satisfy �dist�A�� SO�n���L� ≤ c
 and

��A∗ + �A∗K2 + �2A∗K3 − �A∗K4 + A∗K5 − �curl B�P = curl C� (2.16)

where C ∈ W 1� 43 �1�B4
2�M�m�⊗∧2�4�. From this we see that

curl�curl CP
−1
� = 0 in B4

2�

C · � = 0 on B4
2	

(2.17)
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By Lemma A.2 we get that C is identically zero and therefore we get our desired
solution A and B of equation (1.6) in B4.

2.3. Proof of Theorem 1.1

From Theorems 1.3 and 1.5 we see that

��A�u� = divK� (2.18)

in B 1
2
, where K ∈ L2 ·W 1�2�B 1

2
� ⊂ L

4
3 �1�B 1

2
�. Using Lp-theory in Lorentz spaces we

get A�u ∈ L2�1
loc�B 1

4
� and therefore �u ∈ L2�1

loc�B 1
4
�. Let us first assume that u is

smooth. Then we extend u�B 1
4

to all of �4 with compact support such that the

extension ũ satisfies

��ũ�L2�1��4� + �ũ�W 1�2��4� ≤ c
(
��u�L2�1�B 1

4
� + �u�W 1�2�B 1

4
�

)
≤ c	 (2.19)

In the following we let G�x� = clog�x� be the fundamental solution of �2 on �4.
Since ��G� = O� 1

�x�2 � ∈ L2����4� we conclude that for all y ∈ B 1
8

�u�y�� = �ũ�y�� =
∣∣∣ ∫

�4
�2G�y − z�ũ�z�dz

∣∣∣
=

∣∣∣ ∫
�4

�G�y − z��ũ�z�dz
∣∣∣ ≤ c��ũ�L2�1��4�

≤ c
(
��u�L2�1�B 1

4
� + �u�W 1�2�B 1

4
�

)
	 (2.20)

Using the density of smooth maps in
{
v ∈ W 2�2�B 1

4
����v�L2�1�B 1

4
� + �v�W 1�2�B 1

4
� < �}

we see that u ∈ C0�B 1
8
�. This proves Theorem 1.1.

2.4. Proof of Theorem 1.6

Smooth extrinsic biharmonic maps satisfy the equation (see for example Lamm,
2004)

−�2u =
m∑

i=n+1

����u� �d�i � u��u� + � · ��u� �d�i � u��u� + ���u� �d�i � u��u���i � u�
(2.21)

where ��i�
m
i=n+1 is an orthonormal frame of the normal space of N near u�x� for all

x ∈ M . Now we rewrite this equation term by term.

���u� �d�i � u��u��i � u = �uk��uj���i � u�s�dk�i � u�j − ��i � u�k�ds�i � u�j� (2.22)

For the second term we have

� · ��u� �d�i � u��u��i � u
= � · ��uk�uj���i � u�s�dk�i � u�j�− �uk�uj�dk�i � u�j���i � u�s	 (2.23)
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254 Lamm and Rivière

Finally we calculate

���u� �d�i � u��u��i � u = ���uk�uj���i � u�s�dk�i � u�j�
− 2� · ��uk�uj�dk�i � u�j���i � u�s�
+ �uk�uj�dk�i � u�j���i � u�s	 (2.24)

Therefore the claim follows by defining

W = ��uj
(
��i � u�s�dk�i � u�j − ��i � u�k�ds�i � u�j

)
+ �uj�dk�i � u�j���i � u�s − �uj�dk�i � u�j���i � u�s�

w = �uj��i � u�s�dk�i � u�j − 2�uj�dk�i � u�j���i � u�s�
V = �uj

(
��i � u�s�dk�i � u�j − ��i � u�k�ds�i � u�j

)
� (2.25)

� = �uj
(
��i � u�s�dk�i � u�j − ��i � u�k�ds�i � u�j

)
�

F = −�uj�
(
��i � u�s�dk�i � u�j − ��i � u�k�ds�i � u�j

)
+ �uj�dk�i � u�j���i � u�s − �uj�dk�i � u�j���i � u�s	

In the general case (when we cannot localize in the target to find a local orthonormal
frame of the normal space) we use the following equivalent equation for extrinsic
biharmonic maps

�2u = ��A�u���u� �u��+ � · ����P�u��� �u��+ ���P�u��� ��u�� (2.26)

which was first derived by Wang (2004b), and where A is the second fundamental
form of the embedding N ↪→ �m and P�y� 
 �m → TyN is the orthogonal projection
on the tangent space of N at the point y. With the help of this equation we see that
we can always rewrite extrinsic biharmonic maps in the desired form.

In the case of intrinsic biharmonic maps we note that we have the relation

�int�u� = �ext�u�−
∫
B4
�A�u���u� �u��2dx	 (2.27)

This implies that the Euler–Lagrange equation of �int differs from the Euler–
Lagrange equation of �ext only by the term coming from the variation of∫
B4 �A�u���u� �u��2dx. It is easy to see that this term is of the form

� · �g2�u�+ g1�u� (2.28)

where g2 ∈ L2 and g1 ∈ L2 ·W 1�2 (for details see Wang, 2004b). This proves the
claim.

3. Proof of Theorem 1.8

In this section we apply the conservation law obtained in Section 2 to study the
existence of a unique global weak solution of the extrinsic biharmonic map flow in
the energy space. Before proving Theorem 1.8 we need a regularity result for L2-
perturbations of extrinsic biharmonic maps.
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Lemma 3.1. Let f ∈ L2�M��m� and let u ∈ W 2�2�M�N� be a weak solution of

�2u = ��V · �u�+ div�w�u�+W · �u+ f in M� (3.1)

where V , w, and W are as in (2.25). There exists 
 > 0 and C > 0 such that if

��u�R� 
=
∫
B32R�x�

(
��2u�2 + 1

R2
��u�2

)
< 
� (3.2)

for some R > 0 and x ∈ M , then u ∈ W 4�2�BR�x�� N� and we have the estimate∫
BR�x�

��4u�2 ≤ c��u�R�

R4
+ c

∫
B32R�x�

�f �2	 (3.3)

Proof. Let 
 be as in Theorem 1.5. By Theorems 1.3 and 1.5 we know
that there exists A ∈ L� ∩W 2�2�B16R�x��Gl�m�� with ��A ∈ L

4
3 �B16R�x��M�m��,

�dist�A� SO�m���L� ≤ c
 and B ∈ W 1� 43 �B16R�x��M�m�⊗∧2�4� such that

Af = ��A�u�− div�2�A�u− �A�u− Aw�u− �A�V · �u�+ A��V · �u�+ B · �u�	
(3.4)

Arguing as in the proof of Lemma A.3 we get that �u ∈ W 1� 43 �B8R�x���
m�. Next we

choose a smooth cut-off function � ∈ C�
0 �B8R�x�� with compact support such that

� ≡ 1 in B4R�x� and ��j��L� ≤ c
Rj for 0 ≤ j ≤ 4. From this it is easy to see that

v 
= �u solves

�Af + g = ��A�v�− div
(
2�A�v− �A�v− Aw�v− �A�V · �v�

+ A��V · �v�+ B · �v)� (3.5)

where

g = ��Adiv�u����− div
(
2�Adiv�u���− �Au��− Awu��− �A�V · u���
+ A��V · u���+ B · u��)

∈ L
4
3 �B8R�x��	 (3.6)

Now we define ṽ = A�v and we claim that for 
 small enough and all 4
3 ≤ p < 2 the

operator

� 
 W 1�p�B8R�x���
m� → W 1�p�B8R�x���

m��

� �ṽ� = ṽ− �−1div
(
2�A�v− �A�v− Aw�v− �A�V · �v�
+ A��V · �v�+ B · �v) (3.7)

is a bijection. First we consider the case 4
3 < p < 2. We note that by the Sobolev

embedding the assumption ṽ ∈ W 1�p�B8R�x���
m�, 4

3 < p < 2, implies that �2v ∈
Lq�B8R�x���

m� with 1
q
+ 1

4 = 1
p
and �v ∈ Lr�B8R�x���

m� with 1
r
+ 1

2 = 1
p
. Moreover

we have the estimate

���v�Lp + ��2v�Lq + ��v�Lr ≤ c�ṽ�W 1�p 	 (3.8)
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256 Lamm and Rivière

We estimate

�div(2�A�v− �A�v− Aw�v− �A�V · �v�+ A��V · �v�+ B · �v)�W−1�p

≤ c�(2�A�v− �A�v− Aw�v− �A�V · �v�+ A��V · �v�+ B · �v)�Lp

≤ c��A�L4���2v�Lq + �V�L4��v�Lr �+ c�B�L2��v�Lr

+ c��2A�L2��v�Lr + c�w�L2��v�Lr + c�V�L4��2v�Lq + c��V�L2��v�Lr

≤ c
�ṽ�W 1�p � (3.9)

where we used the estimates of Theorem 1.5, (2.25) and (3.8) in the last step. Since
�−1 is a continuous map from W−1�p�B8R�x���

m� into W
1�p
0 �B8R�x���

m�, this shows
that � 
 W 1�p�B8R�x���

m� → W 1�p�B8R�x���
m� is a bijection for every 4

3 < p < 2
and 
 small enough.

Arguing as in the proof of Lemma A.3 it is easy to see that the same is true
in the case p = 4

3 . This implies in particular that ṽ = A�v ∈ W
1�p
0 �B8R�x���

m�, for
every p < 2, which then implies that u ∈ W 3�p�B4R�x���

m� for every p < 2. Next we
use (3.1) iteratively to get first u ∈ W 4�p�B2R�x���

m� for every p < 2 and then u ∈
W 4�2�BR�x���

m�.
To prove (3.3) we use the interpolation inequality∫

M
�4���u�8 + ��2u�4 + ��3u� 83 � ≤ c��u�R�

∫
M
�4��4u�2 + c��u�R�

R4
� (3.10)

see Lamm (2004), where � is a cut-off function as above. From this and the explicit
form of the equation (2.25) the claim follows. �

Now we are able to prove Theorem 1.8.

Proof of Theorem 1.8. By previous results of Gastel (2006) and Wang (2007) we
know that for every u0 ∈ W 2�2�M�N� there exists a unique weak solution of (1.18)
which is smooth away from finitely many times and for which the energy �ext is
monotonically decreasing. Let us denote the first singular time of the solution by
T = T�u0� and let us denote the unique smooth solution by v ∈ C��M × �0� T�� N�.
As in the work of Freire (1995a) on the harmonic map flow we realize that
it only remains to prove that u = v in M × �0� T�, where u ∈ H1��0� T�� L2�M�� ∩
L2��0� T��W 2�2�M�� is a solution of the flow in the energy space. The uniqueness then
implies that u is smooth on M × �0� T� and we can iterate the argument.

In the following we let U = u− v. By Lemma 3.1 we know that U�t� ∈
W 4�2�M�N� for almost every t ∈ �0� T�. Covering M by balls BRt

�xi� such that at most
finitely many of the balls B32Rt

�xi� intersect and that we have

K�t� Rt� 
= ��u�t�� Rt� =



2
� (3.11)

where 
 is as in Lemma 3.1. A consequence of Gastel (2006) and Lamm (2004) is
that T is characterized by the fact that Rt → 0 as t → T . Using the finite covering
property and the estimate (3.3) we get∫

M
��4u�2 ≤ cK�t� Rt�

R4
t

+ c
∫
M
��tu�2 ≤ c (3.12)
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for almost every t ∈ �0� T�. Therefore we can directly follow the uniqueness proof of
Gastel (2006) for the smooth situation to conclude that U ≡ 0 and this finishes our
proof. �

A. Appendix

In the appendix we collect certain existence results and estimates for second and
fourth order systems which we need in Sections 2 and 3. Instead of proving these
results for vectorfields we prove them for forms. The two-vectorfield B = Bkl�xk ∧ �xl
can be identified with the two-form B = Bkl dxk ∧ dxl. The differential operator curl
for two-vectorfields is the same as � for two-forms and the operator d for two-
vectorfields is the same as the exterior derivative d for two-forms. Moreover the
operator curl for one-vectorfields C = Ck�xk is the same as d for the corresponding
one-form C = Ck dxk. With the help of these identifications one easily sees that
the Theorems below imply the results which were needed in the proofs of the
Theorems 1.1.–1.5.

Lemma A.1. Let f ∈ L
4
3 �1�B4�M�m�⊗∧1�4� and let B ∈ W 1� 43 �1�B4�M�m�⊗∧2�4�

be a solution of

d�B = df in B4�

dB = 0 in B4 and (A.1)

i��B4��B� = 0

then we have

�dB�
L

4
3 �1�B4�

≤ c�f�
L

4
3 �1�B4�

	 (A.2)

Proof. Using the Hodge decomposition (see Iwaniec and Martin, 2001,
Corollary 10.5.1) and an interpolation argument (see Hunt, 1966) we can write

f = d�+ ���

where � ∈ W 1� 43 �1�B4�M�m�� and � ∈ W 1� 43 �1�B4�M�m�⊗∧2�4� satisfy

���
W

1� 43 �1�B4�
+ ���

W
1� 43 �1�B4�

≤ c�f�
L

4
3 �1�B4�

	 (A.3)

Moreover we have i�
�B4���� = 0 and � can be written as � = d�̃, where �̃ ∈

W 1� 43 �1�B4�M�m�⊗∧1�4�. Defining B = � we see that B solves (A.1) and the
estimate (A.2) follows from (A.3). From the fact that the homogeneous problem
corresponding to (A.1) has only the trivial solution we get the desired result. �

Lemma A.2. There exists 
 > 0 such that for every P ∈ W 1�4�B4� SO�m�� satisfying

�dP�L4�B4� + �dP−1�L4�B4� ≤ 
� (A.4)
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258 Lamm and Rivière

the only solution C ∈ W 1� 43 �B4�M�m�⊗∧2�4� of

d��CP−1� = 0�

i�
�B4��C� = 0

(A.5)

is C = 0.

Proof. First of all we claim that we can without loss of generality assume that
C = d� for some � ∈ W 1� 43 �B4�M�m�⊗∧1�4�. If this is not the case we use the
Hodge decomposition for �C (see Iwaniec and Martin, 2001) to get

�C = d�+ ���

i��B4���� = 0 and (A.6)

� = d�	

From this we see that d� is harmonic and i�
�B4d� = 0 which yields d� = 0. Therefore

replacing C with � proves the claim. This implies that additional to (A.5) we can
assume dC = 0.

Since d��CP−1� = 0 we get the existence of f ∈ W 1� 43 �B4�M�m�� such that

�CP−1 = df	 (A.7)

This implies that

�f = ��d��C� ∧ dP−1� in B4�

f = const	 on �B4	
(A.8)

By subtracting the constant we can assume that f is zero on the boundary. Using
the results of Coifman et al. (1993) gives

�df�
L

4
3 �B4�

≤ c�dP−1�L4�B4��dC�L 4
3 �B4�

	 (A.9)

On the other hand with the remarks from above we have that

d�C = d�dfP��

dC = 0� (A.10)

i��B4��C� = 0	

Using Lemma A.1 (without the interpolation argument to get estimates in Lorentz
spaces) we get

�dC�
L

4
3 �B4�

≤ c�df�
L

4
3 �B4�

	 (A.11)

Combining this with (A.9) we get that d��C� = 0. Using (A.10) this implies that �C
is harmonic and with the help of i�

�B4��C� = 0 we conclude that �C ≡ 0. �
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In the next lemma we prove a version of Wente’s inequality for fourth order
systems. The proof of this lemma relies on the fact that the fundamental solution G
of �2 on �4 is a multiple of log r.

Lemma A.3. Let u ∈ W 2�2�B4��m� be a solution of

−�2u = ��dv ∧ dw�+ div f in B4�

u = �

��
�u = 0 on �B4 and (A.12)∫

�
�u = 0�

where v ∈ W 1�p�B4��m ⊗∧2�4�, w ∈ W 1�q�B4��m� ( 1
p
+ 1

q
= 1) and f ∈

L
4
3 �1�B4��4m�. Then we have

�u�L� + �u�W 2�2 + ��u�L2�1 + ���u�
L

4
3 �1

≤ c�dv�Lp�dw�Lq + c�f�
L

4
3 �1
	 (A.13)

Proof. First we consider a solution u1 of

−�2u1 = ��dv ∧ dw� in B4�

u1 =
�

��
�u1 = 0 on �B4 and (A.14)∫

�
�u1 = 0	

Due to the above mentioned fact that G�x� = clog�x� we can follow the proof of the
Wente inequality for the two-dimensional case word by word (see for example Brezis
and Coron, 1984, or Hélein, 2002) and get the desired estimate for u1. The L

4
3 �1-

estimate for ��u1 and the L2�1-estimate for �u1 follow from the work of Coifman
et al. (1993) applied to ���u1� and the embeddings W 1�1 ↪→ L

4
3 �1 and W 2�1 ↪→ L2�1

in four dimensions (see Poornima, 1983).
Next we consider the solution u2 of

−�2u2 = div f in B4�

u2 =
�

��
�u2 = 0 on �B4 and (A.15)∫

�
�u2 = 0	

By classical Lp-theory and interpolation (see Hunt, 1966) we obtain u2 ∈ W 2�2 and
��u2 ∈ L

4
3 �1 with the desired estimate. To derive the L�-bound of u2 we assume

first that u2 ∈ C��B4��m�. Then we extend u2 to all of �4 with compact support
and we let û2 denote this extension. Moreover, by interpolation, we can assume
that ���û2�L 4

3 �1
≤ c����u2�L 4

3 �1
+ �u2�W 2�2�. Due to the fact that �G ∈ L4�� we can

estimate

�û2�x�� =
∣∣∣∣ ∫

�4
�2G�y − x�û2�y�dy

∣∣∣∣
=

∣∣∣∣ ∫
�4

�G�y − x���û2�y�dy

∣∣∣∣
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260 Lamm and Rivière

≤ c���û2�L 4
3 �1

≤ c����u2�L 4
3 �1

+ �u2�W 2�2�	 (A.16)

By density the L�-bound of u2 follows. Finally the L2�1-bound for �u follows from

the embedding W
4
3 �1
1 ↪→ L2�1. Altogether this gives the desired estimates for u. �

Remark A.4. A special situation of the above result is the case f ∈
W 1�1�B4��m� ↪→ L

4
3 �1�B4��m�.

Next we prove the gauge transformation result which we need for the proof of
Theorem 1.5.

Theorem A.5. There exists 
 > 0 and c > 0 such that for every � ∈ W 1�2�B4� so�m�⊗
∧1�4� satisfying

∫
B4
����2 +

( ∫
B4
���4

) 1
2
< 
� (A.17)

there exists � ∈ W 2�2�B4� so�m�⊗∧2�4� and U ∈ W 2�2�B4� so�m�� such that

� = e−UdeU + e−Ud��eU �

d�i��B4 � �� = 0� (A.18)

�U�W 2�2�B4� + ���W 2�2�B4� ≤ c�����L2�B4� + ���L4�B4��	

Proof. The result follows by a compactness argument from the following
Lemma A.6. �

Lemma A.6. There exists 
 > 0 and c > 0 such that for every � > 0 and every � ∈
W 1�2+��B4� so�m�⊗∧1�4� satisfying

∫
B4
����2 +

( ∫
B4
���4

) 1
2
< 
� (A.19)

there exists � ∈ W 2�2+��B4� so�m�⊗∧2�4� and U ∈ W 2�2+��B4� so�m�� such that

� = e−UdeU + e−Ud��eU � (A.20)

d�i�
�B4 � �� = 0� (A.21)

�U�W 2�2�B4� + ���W 2�2�B4� ≤ c�����L2�B4� + ���L4�B4�� and (A.22)

�U�W 2�2+��B4� + ���W 2�2+��B4� ≤ c�����L2+��B4� + ���L4+2��B4��	 (A.23)

Proof. Since the proof of this result follows closely the arguments given in Rivière
(2007), Rivière and Struwe (2006), and Uhlenbeck (1982) we only sketch the main
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ideas here. For � > 0 we introduce the set

��

�C 
=

{
� ∈ W 1�2+��B4� so�m�⊗∧1�4� �

∫
B4
����2 +

( ∫
B4
���4

) 1
2

< 


and there exist P and � satisfying (A.20)–(A.23)
}
	

Since � ≡ 0 ∈ ��

�C it remains to show that, for 
 > 0 small enough and C large

enough, the set ��

�C is both open and closed in the path-connected set

� �

 
=

{
� ∈ W 1�2+��B4� so�m�⊗∧1�4��

∫
B4
����2 +

( ∫
B4
���4

) 1
2

< 


}
	

The proof of the closedness relies on the fact that we have the embedding
W 2�2+��B4� ↪→ C0���B4�, for some � > 0. This allows to pass to the limit in
(A.20). The openness follows as in Rivière (2007), Rivière and Struwe (2006), and
Uhlenbeck (1982). �
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