
ar
X

iv
:g

r-
qc

/9
50

30
14

v1
  8

 M
ar

 1
99

5
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 15 January 2008 (MN LATEX style file v1.4)

A new numerical approach to the oscillation modes of

relativistic stars

Nils Andersson1, Kostas D. Kokkotas2 and Bernard F. Schutz1

1 Department of Physics and Astronomy, University of Wales College of Cardiff, PO Box 913, Cardiff CF2 3YB, United Kingdom
2 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece

Accepted 1995 (?). Received 1994 (?); in original form 1994

ABSTRACT
The oscillation modes of a simple polytropic stellar model are studied. Using a new
numerical approach (based on integration for complex coordinates) to the problem
for the stellar exterior we have computed the eigenfrequencies of the highly damped
w-modes. The results obtained agree well with recent ones of Leins, Nollert and Sof-
fel [Phys. Rev. D 48 3467 (1993)]. Specifically, we are able to explain why several
modes in this regime of the complex frequency plane could not be identified within
the WKB approach of Kokkotas and Schutz [Mon. Not. R. astr. Soc. 255 119 (1992)].
Furthermore, we have established that the “kink” that was a prominent feature of
the spectra of Kokkotas and Schutz, but did not appear in the results of Leins et al.,
was a numerical artefact. Using our new numerical code we are also able to compute,
for the first time, several of the slowly damped (p) modes for the considered stellar
models. For very compact stars we find, somewhat surprisingly, that the damping
of these modes does not decrease monotonically as one proceeds to higher oscillation
frequencies. The existence of low-order modes that damp away much faster than antic-
ipated may have implications for questions regarding stellar stability and the lifetime
of gravitational-wave sources. The present results illustrate the accuracy and reliabil-
ity of the complex-coordinate method and indicate that the method could prove to
be of great use also in problems involving rotating stars. There is no apparent reason
why the complex-coordinate approach should not extend to rotating stars, whereas it
is accepted that all previous methods will fail to do so.
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1 INTRODUCTION

In the concluding remarks of their pioneering paper on non-
radial oscillations of neutron stars Thorne and Campollataro
(1967) described it as “just a modest introduction to a story

which promises to be long, complicated and fascinating”. The
story has undoubtedly proved to be intriguing, and many
authors have contributed to our present understanding of
the pulsations of neutron stars. Of special interest are the
attempts to calculate the eigenfrequencies of the so-called
quasinormal modes of a stellar system. These are solutions
to the perturbation equations which agree with the neces-
sary boundary conditions at the centre and at the surface
of the star, and at the same time behave as purely outgoing
waves at spatial infinity. In general relativity pulsations of
the stellar fluid will normally be damped due to the emis-
sion of gravitational radiation. Hence, the characteristic fre-
quencies of the system will have complex values. The real
parts correspond to physical oscillation frequencies, while

the imaginary parts describe the damping rate of each os-
cillation mode.

The first attempts to compute outgoing-wave modes for
relativistic stars concerned modes that have an analogue
in Newtonian theory. It was believed (and verified by the
early calculations for nonrotating stars) that the Newtonian
modes of oscillation are shifted only slightly because of the
coupling to gravitational radiation: Each characteristic fre-
quency adopts a very small imaginary part. In practice, it
is not straightforward to determine these modes with great
accuracy. This difficulty became obvious with the first nu-
merical calculations (Thorne 1969). An approach based on a
variational principle devised by Detweiler and Ipser (1973)
also suffers from this problem (Detweiler 1975). The diffi-
culty of determining small imaginary parts with some ac-
curacy was not overcome until much later when Lindblom
and Detweiler (1983) combined numerical integration of the
equations for the interior with a numerically integrated so-
lution for the exterior. Using this technique they computed
the fundamental (f) mode frequency for many realistic neu-
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tron star equations of state. However, they later realized that
the fourth-order system of equations they had used for the
stellar interior could become singular. Consequently, they
suggested that a different choice of dependent variables be
made (Detweiler & Lindblom 1985). Also worth mentioning
in this context is a paper by Balbinski et al. (1985) where re-
sults obtained by the Lindblom-Detweiler scheme were found
to be in satisfactory agreement with the predictions of the
standard quadrupole formula.

The last few years have seen several important contribu-
tions to this field. In an impressive series of papers, Chan-
drasekhar and Ferrari have reformulated the problem. In
their final system of equations all fluid perturbations have
been eliminated (Chandrasekhar & Ferrari 1991a). This has
the advantage that one can view the problem of gravitational
waves being scattered by a star in a way similar to that
used for black holes (Chandrasekhar 1983). In the second
paper of the series, Chandrasekhar and Ferrari show that
odd-parity (axial) modes can be excited by the even-parity
(polar) modes in the slow rotation limit (Chandrasekhar &
Ferrari 1991b). The coupling is due to the Lense-Thirring
effect. In the following papers, they demonstrate that their
algorithm for computing eigenfrequencies can be trusted so
long as the imaginary part is considerably smaller than the
real part (Chandrasekhar et al. 1991), that the odd-parity
(axial) modes can be of importance for extremely compact
stars (Chandrasekhar & Ferrari 1991c) and that the idea of
a complex angular momentum can be useful in astrophysi-
cal situations (Chandrasekhar & Ferrari 1992). A summary
of their work has been written by Ferrari (1992). Another
recent reformulation of the equations governing a perturbed
stellar model was proposed by Ipser and Price (1991). They
discuss the relation between the Regge-Wheeler gauge (and
the resulting equations) and the diagonal gauge used by
Chandrasekhar and Ferrari (Price & Ipser 1991). In fact,
they reformulate the stellar perturbation equations in such a
way that all fluid perturbations can be eliminated also in the
Regge-Wheeler gauge. An interesting question is whether
these new formulations of the pulsation problem will make
computation of mode-frequencies any easier. We will not ap-
proach that issue here, but feel that an investigation of that
kind is of great importance and should be encouraged.

Another chapter of the story begins with the study of
a very simple toy model. Kokkotas and Schutz (1986) sug-
gested that a plausible model for a stellar system would be a
finite string – representing the fluid of the star – coupled by
means of a spring to a semi-infinite string – the dynamical
spacetime. They found that such systems could accommo-
date a new family of oscillation modes. These would be asso-
ciated with the gravitational degrees of freedom, rather than
the pulsations of the fluid, and would be strongly damped.
Recently, a slightly more realistic toy model led Baumgarte
and Schmidt (1993) to much the same conclusions. Yet an-
other toy model, suggested by Kokkotas (1985), shows a lot
of similarities with the axial (odd parity) modes discussed
by Chandrasekhar and Ferrari (1991) and has recently led
to the discovery of a branch of strongly damped axial modes
(Kokkotas 1994).

A computation of highly damped modes for a realis-
tic stellar model is not trivial, however. The main difficulty
involves numerically separating the ingoing and outgoing-
wave solutions at spatial infinity: The ingoing solution dies

exponentially as r → ∞ while the outgoing one grows. This
problem is well-known from studies of quasinormal modes
for black holes (see Andersson et al. (1993) for a detailed dis-
cussion). It seems reasonable to assume that methods that
have proved useful in studies of the black-hole problem can
be adapted to the stellar situation. A series expansion ap-
proach based on a four-term recurrence relation – similar to
that developed by Leaver for black holes (Leaver 1985) – was
used by Kojima (1988) to verify that the strongly damped
modes (referred to as w-modes because of their connection
to the gravitational waves) indeed do exist for realistic stel-
lar models. Kokkotas and Schutz (1992) used a WKB ap-
proach (essentially a geometrical optics assumption of no
reflection of waves in the exterior vacuum) in their calcula-
tions of w-mode spectra for several models. Their main re-
sults have recently been verified by Leins, Nollert and Soffel
(1993). In their calculations, Leins et al. employed two dif-
ferent approaches for the exterior: Leaver’s continued frac-
tion approach (Leaver 1985) and a Wronskian technique that
has proved extremely powerful for Schwarzschild black holes
(Nollert & Schmidt 1992).

Although the results obtained by Leins et al. generally
agree with those of Kokkotas and Schutz there are some
differences. Leins et al. found new modes with considerably
smaller oscillation frequencies and also higher damping than
those that had been found by the WKB-technique. Their
calculations also suggest that a “kink” that was apparent
in the spectra of Kokkotas and Schutz does not exist. At
first sight, one would be tempted to believe that the cal-
culations of Leins et al. are the most reliable since the two
approaches they used to deal with the exterior do not, in
principle, involve any approximations. This, however, does
not explain why the WKB approach becomes less reliable as
the oscillation frequency increases. In fact, this is contrary
to all expectations: The geometrical optics argument should
be valid for high frequencies.

In this paper we attempt to settle these matters. We
will combine a numerical phase-amplitude approach (simi-
lar to that used by Andersson (1992) for black holes) to the
exterior problem with the Lindblom-Detweiler (Detweiler &
Lindblom 1985) scheme for the inside. The key idea is to sep-
arate ingoing and outgoing solutions by numerically calcu-
lating their analytic continuations to a place in the complex-
coordinate plane where they have comparabe amplitudes.
This is a new approach that could prove to be of great im-
portance, especially for problems involving rotating stars. In
such problems the exterior spacetime is not known analyt-
ically and previous methods (such as the WKB method of
Kokkotas and Schutz (1992) and the two methods employed
by Leins et al. (1993)) will consequently fail. But it seems
likely that a method based on complexifying the coordinates
will work even if the spacetime itself can only be approxi-
mated. In fact, the method proposed here may well prove to
be the only one that remains useful for the strongly damped
modes of rotating stars. The present approach also has the
advantage that, although based on numerical integration –
and in that sense it provides an arbitrarily high numerical
precision – it solves for quantities that are directly compa-
rable to those used in the WKB scheme of Kokkotas and
Schutz. Hence, in this first application of the new method,
we hope to understand the reason for the discrepancies be-
tween the results of Kokkotas and Schutz (1992) and Leins et
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al. (1993) and thus contribute further to the understanding
of the oscillation modes of nonrotating relativistic stars.

2 NONRADIAL PULSATIONS OF A
RELATIVISTIC STAR

In Regge-Wheeler gauge the perturbed metric for a rela-
tivistic stellar model takes the form (Detweiler & Lindblom
1985)

ds2 = −eν
(

1 + rℓH0e
iωtYℓm

)

dt2 −

2iωrℓ+1H1e
iωtYℓmdtdr +

eλ
(

1 − rℓH0e
iωtYℓm

)

dr2 +

r2
(

1 − rℓKeiωtYℓm

) (

dθ2 + sin2 θdφ2
)

, (1)

where H0, H1 and K are functions of r only, since we have
assumed a harmonic dependence on time. We also have the
standard definition of M(r):

e−λ = 1 −
2M

r
, (2)

which plays the role of an effective mass inside radius r.
As is well-known, a stellar model in equilibrium is de-

scribed by the Tolman-Oppenheimer-Volkov equations [see
for example equations (A3)-(A5) of Lindblom and Detweiler
(1983)]. These are a system of three coupled first order dif-
ferential equations that determine the mass M , the metric
quantity ν and the pressure p. Their solution requires that
an equation of state ρ = ρ(p) for the energy density is spec-
ified. In the present investigation we will assume a simple
polytropic equation of state

p = κρ2 , (3)

where κ = 100km2 and we are using units in which c = G =
1 throughout this paper. This choice of equation of state
may not be very realistic, but it simplifies the calculations
somewhat. It also enables us to compare our results directly
to those of Balbinski et al. (1985), Kojima (1988), Kokkotas
and Schutz (1992) and Leins et al. (1993).

Inside the star, the perturbed fluid is described by a
Lagrangian displacement ξa, where

ξr = rℓ−1e−λ/2WeiωtYℓm , (4)

ξθ = −rℓ−2V eiωt ∂

∂θ
Yℓm , (5)

ξφ = −
rℓ−2

sin2 θ
V eiωt ∂

∂φ
Yℓm . (6)

On general grounds one would think that perturbations
of a spherical star have four degrees of freedom. Two of these
are associated with the fluid and the remaining two corre-
spond to the gravitational waves. This means that the five
functions H0, H1, K, W and V should not be independent.
As was shown by Detweiler and Lindblom (1985) a system
of equations that is free from singularities can be obtained
by defining

X = ω2(ρ+ p)e−ν/2V − r−1p′e(ν−λ)/2W +

1

2
(ρ+ p)eν/2H0 , (7)

where a prime denotes a derivative with respect to r. (A
misprint in equation (6) of Detweiler and Lindblom (1985)

has been corrected here.) Then it follows, as a consequence
of Einstein’s equations, that

(2M + nr +Q)H0 = 8πr3e−ν/2X −
[

(n+ 1)Q− ω2r3e−(ν+λ)
]

H1 +
[

nr − ω2r3e−ν −
eλ

r
Q(2M − r +Q)

]

K , (8)

where

Q = M + 4πr3p , (9)

and

n =
1

2
(ℓ+ 2)(ℓ− 1) . (10)

The interior problem now reduces to a system of four
first order differential equations for H1, K, W and X [equa-
tions (8)-(11) in Detweiler & Lindblom (1985)]. Only two
of the four linearly independent solutions to this system are
well-behaved at the centre of the star (at r = 0). Further-
more, the perturbed pressure must vanish at the surface
(r = R), which implies that X(R) = 0. These conditions
specify a single acceptable solution for each frequency ω.
Physically, this solution describes the response of the star
when gravitational waves of the given frequency are inci-
dent upon it.

In the exterior of the star the fluid perturbations van-
ish, and the two metric perturbations H1 and K can be
combined in such a way [see for example Fackerell (1971)]
that one obtains a single second-order differential equation
known as the Zerilli equation. This equation can be written
[

d2

dr2∗
+ ω2 − VZ(r)

]

Z = 0 , (11)

with the effective potential VZ given by

VZ(r) = 2
(

1 −
2M

r

)

×

n2(n+ 1)r3 + 3n2Mr2 + 9nM2r + 9M3

r3(nr + 3M)2
. (12)

The tortoise coordinate r∗ is defined by

d

dr∗
=

(

1 −
2M

r

)

d

dr
. (13)

Clearly, this equation allows two linearly independent solu-
tions. Far away from the star one of these can be identified
as an outgoing wave, whereas the other describes an ingo-
ing wave. For a general frequency, the physically acceptable
solution for the interior of the star leads to a mixture of
out- and ingoing waves at spatial infinity. The quasinormal
modes of the system are those special frequencies for which
no waves come in from infinity. In a sense, these are the
frequencies at which the star can be expected to radiate
“spontaneously”.

3 THE PHASE-AMPLITUDE APPROACH

In any numerical approach it is imperative that the quan-
tities under consideration are smooth and nicely behaving.
If that is not the case, an integration scheme may require
ridiculously small steps in order to achieve the desired ac-
curacy. One standard way to avoid this difficulty when one
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has to solve for (say) an oscillating function – such as the
wave-like solutions in the stellar problem – is to appeal to
general properties of the solutions and express them in terms
of slowly varying functions. In the following we adopt this
approach to deal with the exterior problem for stars.

Although the tortoise coordinate r∗ appears naturally
[cf. (11)] in a formal description of the perturbation equa-
tions it may obscure a numerical solution of the problem,
especially as we plan to use complex coordinates. In order
to avoid any difficulties we introduce a new dependent vari-
able Ψ according to

Z =
(

1 −
2M

r

)−1/2

Ψ . (14)

Then we get a new differential equation (Andersson et al.

1993)
[

d2

dr2
+ U(r)

]

Ψ = 0, (15)

where

U(r) =
(

1 −
2M

r

)−2
[

ω2 − VZ(r) +
2M

r3
−

3M2

r4

]

. (16)

One of the important properties of an equation such as
(15) is that the Wronskian of any two linearly independent
solutions must be a constant. This means that the general
solution can always be constructed as a combination of two
basic solutions that has the form

ψ± = q−1/2 exp

[

±i

∫

qdr

]

, (17)

where the function q(r) is a solution to the nonlinear equa-
tion

1

2q

d2q

dr2
−

3

4q2

(

dq

dr

)2

+ q2 − U = 0 . (18)

At first sight, it may seem as if we have replaced the
relatively simple second-order differential equation (15) with
a more complicated equation. In principle that may be true,
but it should be quite obvious that the function q – as de-
termined from (18) – may be slowly varying even when the
solution to (15) oscillates wildly.

Moreover, it is easy to make a connection to the WKB
approximation here. Whenever U is a slowly varying func-
tion of r one can neglect the two derivatives in (18). That
is, one can use q ≈ U1/2. Since that is the case for large r,
we shall use this approximation to generate initial values for
the integration of (18) far away from the star. This is done
in such a way that q → ω as r → +∞, i.e., the function ψ+

represents an ingoing wave whereas ψ− is outgoing.

4 STOKES PHENOMENON - WHY THE WKB
APPROACH BREAKS DOWN

The purpose of this section is to study to what extent a
WKB approximation of the Zerilli function at the surface of
the star can be trusted. Specifically, we want to investigate
whether a geometrical optics argument that the waves un-
dergo no reflection in the exterior spacetime [as was assumed
by Kokkotas and Schutz (1992)] can be used in this prob-
lem. If that is the case, one can simply express the exterior

solution at the surface in terms of U1/2(R). In general, one
would expect this kind of argument to be valid for high fre-
quencies. In the case of really low frequencies, however, the
situation becomes more obscure. Then waves can possibly
be backscattered by the curvature of spacetime.

These qualitative expectations agree with the results of
Leins et al. (1993) who found a few highly damped modes
with a very small real part that Kokkotas and Schutz were
unable to find. On the other hand, Leins et al. did not con-
firm the ”kink” that occurred for relatively high frequencies
in the WKB spectra. They suggested that this indicates that
the WKB approach becomes less reliable as the oscillation
frequency increases. This seems unreasonable: If the WKB
argument is at all valid, the approximation should become
more accurate as the oscillation frequency increases.

It is clear that the exact phase-amplitude approach out-
lined in the previous section provides us with the means
to test the WKB assumption quantitatively. By comparing
the numerically determined function q to the approximation
U1/2 we can assess the reliability of the method used by
Kokkotas and Schutz. (It should be noted that this approx-
imation is not exactly that used by Kokkotas and Schutz
(1992) where the Zerilli equation was approached directly.
Nevertheless, a study such as the present one will provide
results relevant also for that approximation.)

In approaching the problem for the stellar exterior nu-
merically we must first devise a scheme that avoids a prob-
lem that arises for rapidly damped modes. The desired
outgoing-wave solution to (15) will grow exponentially as
r → +∞. This means that it is difficult to resolve the in-
going solution (that is exponentially small) given a finite
numerical precision. This problem is well-known from stud-
ies of black-hole normal modes, and can be avoided by let-
ting r assume complex values [see Andersson (1992)]. Since
ψ− ∼ exp(−iωr) as r → +∞ it is clear that the exponential
divergence can be suppressed along a path in the complex r-
plane. For large ‖r‖ the preferred path is a straight line with
slope given by −Im ω/Re ω. Such paths are parallell to the
so-called anti-Stokes lines that play a crucial role in a com-
plex WKB analysis (Andersson et al. 1993). The anti-Stokes
lines are curves along which

∫

U1/2dr is a real quantity. In
order to deal with the present problem we will integrate (18)
along a straight line (with the prescribed slope) from a point
in the asymptotic regime towards the stellar surface. One
can show, either using an analytic continuation argument or
a WKB analysis such as that of Araújo et al. (Araújo et al.

1993), that asymptotic conditions introduced for complex
values of r in the way described above are, in fact, identical
to the desired outgoing-wave boundary condition on the real
r-axis.

In a complex-coordinate WKB approach to (15) the
so-called Stokes lines also play an important role [see the
discussion by Andersson et al. (1993)]. These correspond to
∫

U1/2dr being purely imaginary. From each of the, possibly

complex, zeros of U1/2 – the transition points of the problem
– emanate three such contours. When an approximate solu-
tion to (15) is continued across a Stokes line the character of
the solution changes. This is called the Stokes phenomenon.
Specifically it means that, if a certain linear combination of
ψ+ and ψ− (with q replaced by U1/2 ) represents the desired
solution to (15) on one side of the Stokes line, another linear
combination should probably be used on the opposite side.
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Figure 1. Top: Comparing the numerically determined function q

(solid line) to the WKB approximation U1/2 (dashed line). Only
the real parts of the manifestly complex functions are shown,
but the result is similar for the imaginary parts. This example
is for model 4 (see the beginning of section 6.1 for particulars)
and ωM = 0.35 + 0.84i. The WKB approach of Kokkotas and
Schutz cannot be trusted in this case. The numerical calculation

towards the surface of the star is performed along a straight line
at an angle of roughly -67 degrees from the real coordinate axis.
This corresponds to the asymptotic direction of the so-called anti-
Stokes lines. The Stokes phenomenon gives rise to oscillations in
q as one gets close to the surface. Bottom: For comparison we
show results of a similar study on the real r-axis. It should be
emphasized that the case shown here is one of the most difficult,
and that the agreement between the exact and the approximate
function is generally good when Re ω > Im ω.

Moreover, it is straightforward to show [see the Appendix
in Andersson (1993)] that this effect is important also for
numerical integration. If the integration of (18) is continued
across a Stokes line the function q may become oscillatory.

We thus have a simple diagnostic of the “no-reflection”
assumption used by Kokkotas and Schutz (1992): If a Stokes
line (emanating from one of the complex zeros of U1/2)
crosses the real r-axis between r = R and r = +∞ we should
have reflection. For the stellar models considered here we
find that this does indeed happen for the new modes discov-
ered by Leins et al. (1993). For small oscillation frequencies
a Stokes line crosses the real r-axis in the relevant inter-
val and the Stokes phenomenon should be accounted for in
an approximate analysis. It is, of course, possible that this
would give rise to a very small correction. To test whether
this is the case, we have compared q as numerically deter-
mined from (18) to U1/2 for several frequencies. A typical
example – for one of the new modes that were identified
by Leins et al. (1993) – is displayed in Figure 1. From this
Figure it follows that the WKB method used by Kokkotas
and Schutz (1992) cannot be trusted for modes with a very
small real part and a relatively large imaginary part.

In order to illustrate the difficulties involved in numeri-
cal integration along the real r-axis – and thus the advantage
of using complex coordinates – we also show results of a real-
r calculation in Figure 1. This specific example corresponds
to the worst possible situation. The numerically computed
function q has a singularity close to the real r-axis. That
this can be expected if one fails to account for the Stokes
phenomenon is clear from the equations given in the Ap-
pendix of Andersson (1993). Note also that the magnitude
of q drops dramatically immediately after passing close to
this singularity. When the surface of the star is reached |q|
has decreased more than ten orders of magnitude.

Our study shows that the WKB technique should be
reliable for modes with large real parts. This conclusion
would mean that the “kink” in the spectrum of Kokkotas

and Schutz cannot yet be dismissed. However, we can pro-
ceed one step further and use the numerically determined
function q in the necessary matching at the stellar surface.
This should provide an accurate way of dealing with the ex-
terior problem, and it will hopefully enable us to conclude
whether the “kink” is real or not.

5 AN ACCURATE CONDITION FOR
NORMAL MODES

In principle, it is a simple task to derive a normal-mode
condition based on the phase-amplitude approach. We want
to match the numerical solution to the inside problem to
the solution for the exterior at the surface of the star. That
is, we require that the Zerilli function and its derivative be
continuous at the surface R. Then we can use (14) and

dZ

dr∗
=

(

1 −
2M

r

)1/2 dΨ

dr
−
M

r2

(

1 −
2M

r

)−1/2

Ψ , (19)

which follows immediately from (13).
Let us first assume that the physically acceptable solu-

tion for the interior of the star corresponds to a mixture of
out- and ingoing waves at spatial infinity. Then we have

Ψ = Ainψ
+ + Aoutψ

− , (20)

outside the star, and we get from (17)

dΨ

dr
= Ainψ

+

[

iq −
1

2q

dq

dr

]

−Aoutψ
−

[

iq +
1

2q

dq

dr

]

. (21)

The next step is to solve (18) for a particular value of ω
from a point far away from the star in the way described in
the previous section. This means that the above expressions
for Ψ and its derivative in terms of ψ± will remain valid.
Moreover, if we take the lower limit of integration in (17) to
be the surface R of the star (where we do the matching) we
get

ψ±(R) = q−1/2(R) , (22)

which means that we need only determine q and its deriva-
tive.

It should be pointed out that the amplitudes Ain and
Aout as defined by (20) differ slightly from those that follow
from the asymptotic behaviour of the Zerilli function;

Z ∼ Bine
iωr∗ +Boute

−iωr∗ . (23)

The difference is essentially a phase-factor and is of no im-
portance for a search for mode-frequencies. With our defi-
nition the amplitudes of the functions that asymptotically
represent out- and ingoing waves are equal at the surface of
the star [see (22)].

Straightforward algebra leads to

Ain = −
i

2
√

q(R)

(

1 −
2M

R

)−1/2

×

{

ZS

[

(

1 −
2M

R

)

(

iq +
1

2q

dq

dr

)

r=R

+
M

R2

]

+ Z′
S

}

,

(24)

and

Aout =
i

2
√

q(R)

(

1 −
2M

R

)−1/2

×
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6 Nils Andersson, Kostas D. Kokkotas and Bernard F. Schutz

{

ZS

[

(

1 −
2M

R

)

(

−iq +
1

2q

dq

dr

)

r=R

+
M

R2

]

+ Z′
S

}

,

(25)

where ZS represents the interior solution at the surface of
the star, and a prime denotes a derivative with respect to
r∗. However, since the solution is only determined up to a
constant factor by the physical conditions it makes more
sense to study

Aout

Ain
=
ZS

[(

1 − 2M
R

) (

iq − 1
2q

dq
dr

)

− M
R2

]

− Z′
S

ZS

[(

1 − 2M
R

) (

iq + 1
2q

dq
dr

)

+ M
R2

]

+ Z′
S

. (26)

A quasinormal mode of the stellar system corresponds to a
singularity of this ratio as a function of ω.

It may be worthwhile to clarify the meaning of dq/dr in
the above equations, since we are assuming that r is com-
plex in the exterior. In principle, one could simply interpret
(letting z represent the complex r) dq/dr as dq/dz but this
may not be very practical. As mentioned previously, we in-
tegrate for the exterior solution along a straight line in the
complex z-plane. This line is parametrized by the real dis-
tance ρ (from the surface of the star) with constant phase
angle θ. Then dz/dρ = eiθ and dq/dρ is the derivative of q
with respect to the real parameter. Thus we get

dq

dr
=
dq

dz
= e−iθ dq

dρ
(27)

which is easily implemented numerically.

6 DISCUSSION OF NUMERICAL RESULTS

The main purpose of the present study is to understand the
discrepancies between the results of Kokkotas and Schutz
(1992) and those of Leins et al. (1993). Specifically, we want
to find the “new” modes that seem to exist for very small os-
cillation frequencies and large damping (Leins et al. 1993).
We want to see if our ad hoc explanation for why those
modes could not be found when a WKB approach to the ex-
terior problem was used (see section 4) is correct, i.e., that
one must account for Stokes phenomenon for frequencies
close to the imaginary ω-axis. We also feel that it is impera-
tive that we check the possible existence of the “kink” that
Kokkotas and Schutz (1992) found in their spectra, espe-
cially since this feature was not found by Leins et al. (1993).

6.1 Highly damped (w) modes

We have performed detailed calculations for the four models
studied by Kokkotas and Schutz (1992). A sample of the
numerical results for model 4 (that has characteristics: ρc =
1016 g/cm3, R = 6.465 km and M = 1.3M⊙, i.e., 2M/R =
0.594) can be found in Table 1.

We set out on this investigation to verify the existence of
modes with large damping and small oscillation frequencies
that had been found by Leins et al. (1993), and also to find
whether there is a “kink” in the w-mode spectrum or not.
The first of these questions was readily answered as soon
as we had combined the numerical integration approach for
the exterior vacuum (see sections 3–5) with the numerical
code that Kokkotas and Schutz had used for the interior
problem. The modes found by Leins et al. (1993) do, indeed,

Table 1. A sample of characteristic frequencies for stellar modes
associated with model 4 of Kokkotas and Schutz (1992). The
highly damped (w) modes are compared to the slowly damped
(p) modes. The results for w-modes are in good agreement with
those of Leins et al. (1993) The frequencies found for the f-mode
and the first of the p-modes are in perfect agreement with those
obtained by Kojima (1988). The “new” w-modes found by Leins
et al. are indicated by † (the imaginary part of the one in paren-
thesis is too large for our program to provide truly reliable re-
sults, but there does seem to be a mode there). The same data
is shown in Figure 2. All entries are given in units of M−1. The
given damping rates for the slowly damped modes are accurate
to a few parts in 107.

Highly damped modes Slowly damped modes
Re ω Im ω Re ω Im ω

(0.142 1.286) †
0.171 6.21 × 10−5 (f)

0.353 0.838 † 0.344 2.2 × 10−6 (p1)
0.471 0.056 0.502 4.05 × 10−5

0.559 0.384 †
0.654 0.164 0.658 3.3 × 10−6

0.892 0.227 0.810 5 × 10−7

0.960 4 × 10−7

1.128 0.262 1.100 5 × 10−7

1.363 0.287
1.599 0.307
1.836 0.324
2.073 0.339
2.310 0.353
2.549 0.365
2.788 0.375

exist. In view of our understanding of the failure of the WKB
approach for these frequencies this makes sense. As is clear
from Figure 1, the WKB approach does break down when
the real part of the frequency is small.

Leins et al. (1993) assumed that the “kink” in the spec-
tra of Kokkotas and Schutz (1992) was evidence that the
WKB method fails also as Re ω increases. We have found
that this is not the case. Our first calculations gave results
in good agreement with those of Kokkotas and Schutz for
high frequencies, with a pronounced “kink’ in all spectra,
and it was clear that the WKB method is reliable for high
oscillation frequencies. Leins et al. (1993) argue that their
approach to the exterior problem did not involve approx-
imations and should therefore be considered as more reli-
able than the WKB approximation. Still, we found that our
new numerical scheme gave results that did not agree well
with those of Leins et al.. At the same time, both meth-
ods have proved to be reliable and providing results of high
accuracy in the case of black holes. Hence, it seemed likely
that they should both be trusted, and that any discrepan-
cies, eg., the “kink”, were due to differences in the approach
to the interior problem. Unfortunately, this meant that we
faced a rather difficult situation. The approach of Detweiler
and Lindblom (1985) has been used in all studies of highly
damped oscillations of relativistic stars. Hence, any differ-
ences would be in the numerical codes and rather difficult
to find.

With this in mind we scrutinized our code for the in-
terior problem, and found points where it could be im-
proved. The amended code is much more reliable, and nu-
merically accurate, than the original one used by Kokkotas
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and Schutz. It also runs considerably faster. It turns out
that most of the improvements have a minor effect on the
numerical results, however. (The results quoted in Table 1
were, obviously, computed with the final version.) After test-
ing the code we have a much clearer idea of its restrictions.
Most importantly, we have found that the “kink” is inti-
mately related to the choice of point close to the centre
of the star where power series expansions are used to ini-
tiate the numerical integration. When choosing a starting
point one introduces an artificial length-scale in the prob-
lem, and this scale is reflected by the oscillation frequency
at which the “kink” occurs. This can easily be illustrated
if one considers the eigenfunctions: As the oscillation fre-
quency increases the number of nodes in each eigenfunction
increases. One will eventually reach a frequency where nodes
should occur for smaller radii than the one where the numer-
ical integration is initiated. The failure of the power-series
solutions to account for this feature of the physical solu-
tions leads to the “kink” in the spectrum. By initiating the
integration sufficiently close to the centre of the star one
can ensure that this “kink” does not occur in the frequency
regime of interest. In the calculations discussed here we ini-
tiated the integration at a point roughly corresponding to
2.5% of R. It seems likely that Leins et al. (1993) initiated
their integration at a point closer to the centre than we did
originally, and had they continued their calculation to higher
oscillation frequencies they would have found a “kink” sim-
ilar to that of Kokkotas and Schutz (1992). The “kinks” are
numerical artefacts.

We also find that it is extremely difficult to avoid nu-
merical noise in the eigenfunctions. This is mainly due to
the fact that the eigenfunction X decreases rapidly towards
the surface of the star (where it should vanish). When solv-
ing for the interior of the star one matches a solution from
the centre (that satisfies the physical condition of regular-
ity) to one from the surface of the star at some intermediate
point. In order to get a reliable result it is imperative that
this matching is not done at too large a radius. We find
that the interior matching should be performed for radii
smaller than something like 0.25R. Furthermore, the calcu-
lation gets more difficult as Im ω increases. This is due to
the fact that ‖X‖ is then many magnitudes smaller than
any of the other three eigenfunctions K,H1 and W . Thus it
is difficult to compute X with acceptable accuracy. For this
reason the calculation is more difficult for less relativistic
stellar models: The damping of the w-modes generally in-
creases as the model gets less relativistic. Interestingly, this
explains why the results of Kokkotas and Schutz (1992) for
model 1 were not as good as for the other three models. In
view of this fact we decided to restrict our detailed study
to models 2–4 of Kokkotas and Schutz (1992), and also not
to attempt a search for modes with Im ωM > 1. We feel
that the interior problem must be reformulated if a reliable
search for modes with very large damping is to be made. In
this context a study based on the alternative formulations
of Chandrasekhar and Ferrari (1991a), or Ipser and Price
(1991), may provide interesting results. However, this does
not mean that our results should not be taken seriously. We
believe that the present study is the most accurate one to
date within the range of validity that we have indicated.

Figure 2. The p- and w-mode spectra for model 4, cf. Table 1.
Note the absence of a “kink” for high oscillation frequencies in
the w-mode spectrum, and that the damping does not decrease
monotonically as one proceeds up the p-mode spectrum.

6.2 Slowly damped (p) modes

An interesting effect of the improvements that we made to
our code for the interior problem is that it is now consid-
erably more accurate for modes with very slow damping.
Hence, it is not at all difficult to compute the f-mode for
the various models. Furthermore, we are able to iterate for
several of the first p-modes. As far as we know noone has
attempted to compute these modes before, and the results
that we obtain are somewhat surprising. The damping of
the p-modes does not necessarily, as has been generally pre-
sumed, decrease rapidly as one proceeds to higher oscillation
frequencies. In fact, for the most compact of our models
(model 4) we find an intriguing behaviour. There is a low-
order mode that damps away much faster than expected (see
Table 1). This more rapidly damped mode occurs only for
the most compact of our stellar models.

This is an interesting result that could be of potential
importance for many of our astrophysical expectations, such
as the life-time of gravitational-wave sources. Furthermore,
methods used by other authors to study f-modes could be
used to test its correctness. For model 4 the ratio of real
to imaginary part for the relevant mode is not considerably
different from that for the f-mode. Therefore, it seems likely
that the program used by Detweiler and Lindblom (1985),
or that of Kojima (1988), could be used to test our results.
In fact, Dr Kojima and Dr Lindblom have both very kindly
performed this calculation. The results they obtain for the
p-modes of model 4 are in good agreement with those listed
in our Table 1.

It may be worthwhile to comment on the difficulty of
finding p-modes here. It is clear that a numerical code must
be very robust and accurate if iteration for these slowly
damped modes is to be at all possible. The imaginary part
is typically at least six orders of magnitude smaller than
the real part, and if one requires single-digit precision in the
imaginary part one must therefore achieve at least six digits
in the real part. Our amended code should be reliable for
imaginary parts larger than 10−7.

In cases when the imaginary part of the mode-frequency
is so small that iteration is not possible, one can always
attempt to infer the real part from a graphical approach.
We know that the modes correspond to the zeros of the
asymptotic amplitude Ain (or the singularities of the ra-
tio Aout/Ain). If such a zero is situated close to the real
ω-axis it should, in principle, be easy to distinguish in a
plot of log ‖Ain‖. This idea was recently exploited by, for
example, Ferrari and Germano (1994). That it works nicely
is illustrated in Figure 3. When generating this figure we
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Figure 3. Illustration of the graphic approach for finding p-
modes. We show log10 ‖Ain‖ as a function of real ωM for model
4. A slowly damped mode corresponds to a narrow singularity,
and all the p-modes listed in Table 1 can easily be distinguished.
Peaks in this figure indicate the existence of the w-modes. The
real parts of the w and p-modes are shown as vertical lines at the
top and bottom of the figure, respectively.

normalised the perturbed quantities in such a way that the
radial displacement W is equal to 1 at the surface of the
star for all frequencies. The slowly damped p-modes give
rise to very narrow singularities that are easy to distinguish
although the data in the figure correspond to ∆ωM = 10−3.
It is not very time consuming to create a figure with this
kind of resolution, and it is certainly worthwhile. In fact,
we can not only pin down all the p-modes given in Table
1, but also guess at which oscillation frequencies there will
be a w-mode. It seems as if a peak in log ‖Ain‖ is an indi-
cation of a w-mode higher up in the complex ω-plane. We
did not expect to find this feature in this kind of graph and
the exact origin of these peaks is something of a mystery.
Interestingly the peaks do not show up in similar graphs
generated by the numerical code of Lindblom (private com-
munication). It thus seems that the difference between the
two approaches, i.e. between (i) matching the interior solu-
tion to the exterior one at the surface of the star and (ii)
using the value of the Zerilli function at the surface as ini-
tial data for integration towards infinity where the solution
is matched to an asymptotic form, is crucial. We believe
that the information contained in this sort of graph is im-
portant to our understanding of the stellar pulsations and
are presently investigating this issue further. Although we do
not yet have the a clearcut explanation of the phenomenon
it is worthwhile to make one final point. It is easy to show
that the peaks in Figure 3 originate from the interior solu-
tion and not the exterior one. Remembering that the Zerilli
function is generated from the two spacetime perturbations
K and H1, this agrees well with the notion that the space-
time perturbations dominate the fluid ones (which set the
normalisation for the figure) at the w-mode frequencies.

6.3 Are there different families of highly damped
modes?

Leins et al. (1993) argued that they had found a new family
of highly damped modes. Given the present evidence we have
to assess whether that is the case or not. We have shown why
Kokkotas and Schutz (1992) could not find modes with high
damping and small oscillation frequencies with the WKB
scheme they used. But surely, that in itself does not imply
that any modes they could not find belongs to a new family?
Different families of modes must be distinguished for clear
physical reasons. The difference between the two families (p-
and g-modes) of slowly damped modes is well established,

and the w-modes are certainly distinct. But given the knowl-
edge available at the moment it is not at all clear that a sim-
ilar split of the highly damped modes into different classes
makes sense.

Leins et al. (1993) put forward two arguments for why
their new modes belong to a different family. The first relates
to the number of nodes of the eigenfunctions corresponding
to the various modes. They find that the number of nodes
increase systematically as one progresses up the w-mode se-
quence, but that the situation is not that clear for the new
modes. In doing this they claim to be studying the “am-
plitude” of the eigenfunctions. What they actually study is
the number of nodes in the real part of each eigenfunction.
An argument solely based on the real part of a manifestly
complex eigenfunction clearly does not make much sense.
From, for example, (1) it is evident that both the real and
the imaginary part will be relevant. Hence, the nodes in the
imaginary part of the eigenfunction must also be studied.
When that is done the conclusion regarding the higher oscil-
lation frequencies remains the same, but for the new modes
the situation is somewhat clearer. The imaginary part of
each eigenfunction may have a node even if the real part
does not, and vice versa. However, although it may provide
a useful diagnostic, the number of nodes in the eigenfunc-
tions is not a very good measure for distinguishing different
families of modes. It is well known [see for example chap-
ter 17 in Cox (1980)] that different p-modes may have an
identical number of nodes in the eigenfunctions, and there
is no reason why that could not be the case also for highly
damped modes.

However, Leins et al. (1993) argue that their new modes
are different from the ones of Kokkotas and Schutz (1992)
because of other features of the eigenfunctions. For the new
modes the eigenfunctions die out towards the centre of the
star, whereas the amplitude stay roughly constant for all
values of r for the old modes. This difference is similar to
that between g- and p-modes (Cox 1980). For the g-modes
– which correspond to oscillation frequencies smaller than
that of the f-mode – the eigenfunctions are known to die
out towards the centre of the star, whereas this is not the
case for the p-mode eigenfunctions. Could it be that the
perturbations generally die out towards the centre of the
star for very small oscillation frequencies? If so, a distinction
of different w-mode families based on this feature would not
be satisfactory.

At the present time, it seems premature to divide the w-
modes of relativistic stars into different “families”. If such a
classification is to make sense it must be based on clear phys-
ical principles, and our understanding of the highly damped
stellar oscillations is still far from satisfactory. The issue
could probably be resolved by further detailed studies of
different families of stellar models (Leins et al. 1993). A vi-
tal piece of information that is still missing from the puzzle
regards the possible existence of modes with very large imag-
inary parts. As mentioned previously we have found that
the present approach to the interior problem suffers from
numerical difficulties when Im ωM > 1 or so. This is not
to be taken as an indication that modes with larger imagi-
nary parts do not exist. On the contrary, such modes may
well exist and a mode survey that covers the entire complex
frequency plane could produce interesting results.
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7 CONCLUDING REMARKS

In order to understand the discrepancies between results ob-
tained by Kokkotas and Schutz (1992) and Leins, Nollert
and Soffel (1993), we have computed highly damped modes
for relativistic stars. The stellar models considered are sim-
ple polytropes used in several previous investigations. We
have outlined a new numerical approach to the problem for
the exterior of the star. This new scheme is based on numeri-
cal integration for complex coordinates, and is similar to one
that has proved extremely reliable for black-hole problems
(Andersson 1992).

With this new approach to the stellar exterior we are
able to find modes that were not identified by Kokkotas and
Schutz (1992). These modes, that are highly damped and sit-
uated close to the imaginary frequency-axis, agree perfectly
with modes found by Leins et al. (1993). That the WKB
method employed by Kokkotas and Schutz failed to distin-
guish these modes can be understood if the so-called Stokes
phenomenon (familiar from WKB theory) is accounted for.

We have managed to explain the occurence of a “kink”
in the spectra of Kokkotas and Schutz: It is a numerical
artefact due to the choice of point close to the centre of the
star where power-series expansions are used to initiate the
numerical integration. This conclusion was drawn after we
had scrutinized the way that we dealt with the stellar in-
terior. We also found other points where our original code
could be improved. Although none of those changes affected
the numerical results significantly, the program is now more
robust and runs considerably faster. That it allows us to do
accurate calculations is illustrated by the fact that we could
iterate for several of the very slowly damped p-modes. This
led to a rather surprising result: For the most compact of
our stellar models (corresponding to 2M/R = 0.594) the
damping of the p-modes does not decrease monotonically
as one proceeds to higher oscillation frequencies. There is a
low-order mode that damps away at least ten times faster
than anticipated. This result may significantly affect our ex-
pectations regarding, for example, stellar stability and the
lifetime of gravitational-wave sources. Hence, it is of some
importance that it be studied in more detail.

The new complex-coordinate method that we have em-
ployed in the present study seems promising also for rotat-
ing stars, i.e., when the exterior spacetime is only known
approximately. Since all previously suggested methods will
surely fail to handle that difficulty this new approach could
turn out to be of considerable importance. The anomalous
p-mode damping that we have discovered here would be es-
pecially interesting if it exists for rotating star f-modes, be-
cause these limit stability. Such issues are, however, beyond
the scope of the present investigation and we will return to
them in the future.
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