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Abstract. Spin foam models are an attempt at a covariant or path integral
formulation of canonical loop quantum gravity. The construction of such models
usually relies on the Plebanski formulation of general relativity as a constrained
BF theory and is based on the discretization of the action on a simplicial
triangulation, which may be viewed as an ultraviolet regulator. The triangulation
dependence can be removed by means of group field theory techniques, which
allows one to sum over all triangulations. The main tasks for these models are
the correct quantum implementation of the Plebanski constraints, the existence of
a semiclassical sector implementing additional ‘Regge-like’ constraints arising
from simplicial triangulations and the definition of the physical inner product of
loop quantum gravity via group field theory. Here we propose a new approach to
tackle these issues stemming directly from the Holst action for general relativity,
which is also a proper starting point for canonical loop quantum gravity. The
discretization is performed by means of a ‘cubulation’ of the manifold rather
than a triangulation. We give a direct interpretation of the resulting spin foam
model as a generating functional for the n-point functions on the physical Hilbert
space at finite regulator. This paper focuses on ideas and tasks to be performed
before the model can be taken seriously. However, our analysis reveals some
interesting features of this model: firstly, the structure of its amplitudes differs
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from the standard spin foam models. Secondly, the tetrad n-point functions admit
a ‘Wick-like’ structure. Thirdly, the restriction to simple representations does
not automatically occur—unless one makes use of the time gauge, just as in the
classical theory.
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1. Introduction

Spin foam models (SFM) [1] are an attempt at a covariant or path integral formulation of
canonical loop quantum gravity (LQG) [2—4]. In their current formulation (e.g [5-9]), SFM
exploit the Plebanski formulation [10] of pure general relativity (GR) as a constrained BF
theory. This approach is well motivated because one can view the Plebanski action as a kind
of perturbation of the BF action (albeit the perturbation parameter is a Lagrange multiplier field
which one needs to integrate over in a path integral). The path integral for BF theory, however,
is under good control [11] so that one may hope to obtain a valid path integral formulation for
GR by functional current derivation methods [12] familiar from ordinary quantum field theory
(QFT).

As we will try to explain in the next section (see also [3]), the quantum implementation
of the so-called simplicity constraints of the Plebanski theory, to the best knowledge of the
authors, has not yet been achieved to full satisfaction from first principles in these models. They
are called simplicity constraints because they enforce the B field of BF theory to be simple, that
is, to originate from a tetrad. Clearly, unless the simplicity constraints are properly implemented,
the resulting theory has little to do with quantum gravity. An issue to keep in mind is that the
solutions to the classical simplicity constraint consist of five sectors, of which two give rise to
= times the Palatini action, two give rise to &+ times a topological action and one is a degenerate
sector. All these sectors are a priori included in a sum over Plebanski histories which may or
may not be what one wants”.

4 For a recent proposal to tackle this issue, see [13].

New Journal of Physics 14 (2012) 103054 (http://www.njp.org/)


http://www.njp.org/

3 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

It is appropriate to also mention further constraints in SFM at this point. The construction
of these models relies on a simplicial triangulation 7 of the differential four-manifold as well as
a dual graph t*. A recent analysis has shown [14] that freely specifying geometrical data (areas
or fluxes) on the faces of t tends to lead to inconsistent values of the lengths of the edges of
7 unless the so-called Regge constraints are imposed, in addition to the simplicity constraints.
These constraints are important to be taken care of if one wants to relate SFM to the established
theory of Regge calculus [15] and in order to capture the correct semiclassical limit’: in fact,
Regge calculus is formulated directly in terms of edge lengths, while in SFM one rather works
with electrical fluxes or areas; but a typical simplicial triangulation has far more faces than
edges in T so that assigning a length to an edge from given area values may be ambiguous
and/or inconsistent. Note that in our approach, on the other hand, since the path integral is
explicitly based on the Holst action, there is no necessity to relate it to the Regge action—which
for Plebanski’s theory is, of course, a challenge.

In fact, one possibility to make progress on the common issues of the standard formulation
of SFM is based on a very simple idea which, to the best knowledge of the authors, occurs
for the first time in [16]: namely, simply try to formulate the path integral in terms of the
Holst action [17] rather than the Plebanski action. Not only is the Holst action a valid starting
point for canonical LQG, but also the simplicity constraints are explicitly solved in that one
works entirely with tetrads from the beginning. More precisely, the Holst action uses a specific
quadratic expression in the tetrads for the B field of BF theory which also depends on the
Immirzi parameter [18]. Hence, the Holst action depends on a specific, non-degenerate linear
combination of the four non-degenerate solutions of the simplicity constraints (see the next
section for details) and is thus at the same time more general and more restricted because the
Holst path integral will not sum over the afore-mentioned five sectors of Plebanski’s theory.
As already mentioned, it is at present debated how the fact that one actually takes a sum over
all histories with a mixture of positive and negative Palatini and topological actions affects the
semiclassical properties of the Plebanski path integral.

As observed in [16], since the Holst action is quadratic in the tetrads, one can, in principle,
integrate out the tetrad in the resulting Gaussian integral. This has been sketched in [16];
however, the expressions given there are far from rigorous. Here we will give a rigorous
expression. Also, we will include the correct measure factor [19] resulting from the second
class constraints involved in the Holst action and making sure that the path integral qualifies
as a reduced phase space quantization of the theory, as has been stressed in [20]. A similar
analysis has been carried out for the Plebanski theory in [21]; however, the resulting measure
factor is widely ignored in the SFM literature®. The result of the Gaussian integral is an
interesting determinant that displays the full nonlinearity of Einstein’s theory. When translating

3> Note, however, that there is no reason to require such additional constraints to be implemented in the strict
context of canonical LQG, where the holonomy, flux, area, triad or length operators labelled by curves or surfaces
have no direct physical meaning (only their occurrence in compound operators assembled from them and which
are Dirac observables or constraint operators). Moreover, in general, these curves and surfaces do not even relate
to any simplicial structure, so there is no triangulation with respect to which one would be interested in relating the
lengths of the edges of its one-skeleton to the areas of its surfaces (in fact in order to establish the relation between
LQG and SFM it would seem that one needs to include spin network states on all possible boundary graphs in
the SFM analysis—except if one follows the philosophy of [26]). Therefore, Regge-like constraints never occur in
LQG.

6 For a recent review of the relation between SFM and canonical quantization, see [22].
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the remaining integral over the connection in the partition function into SFM language, that is,
sums over vertex, edge and face representations, one sees that our model differs drastically from
all current models.

Of course, we also need to introduce an infrared (IR) and ultraviolet (UV) regulator in
the form of a finite cell decomposition. Two observations lead us to depart from the usual
SEFM approach where one works with simplicial cell complexes. The first one is the result [23]
which demonstrates that current semiclassical states used in LQG do not assign good classical
behaviour to the volume operator [24] of LQG unless the underlying graph has cubic topology
(see also [25, 26]). Since the volume operator plays a pivotal role in LQG as it defines triad
operators and hence the dynamics, this is a first motivation to consider cubic triangulations of
the four manifold, which we coin ‘cubulations’ (see, e.g., [27] and references therein). Note
that the result of [23] implies that current SFM based on simplicial cell complexes do not admit
the semiclassical states [28] as boundary states, which could mean that current models may
have to be extended to more general triangulations. The second observation is that the original
motivation for considering simplicial cell complexes in current SFM comes from their closeness
to BF theory. BF theory is a topological quantum field theory (TQFT) and therefore one would
like to keep triangulation independence of the BF SFM amplitude. That this is actually true is
a celebrated result in BF theory. In particular, in order to keep triangulation independence it is
necessary to integrate the B field over the triangles ¢ of the tringulation and the F field over
the faces f bounding the loops in a dual graph [27]. However, GR is not a TQFT and therefore
the requirement to have triangulation independence is somewhat unclear. Of course, it is natural
if one wants to exploit the properties of BF theory but not if one takes a different route as we
tend to do here. Hence, if we drop that requirement, then it is much more natural to refrain
from considering the dual graph in addition to the triangulation. Working with cubulations
also greatly simplifies the realization of gauge invariance in discrete models. In fact, gauge
invariance is related to the closure constraint in SFM which is a subtle issue, as we will see
in the next section. If one works just with a triangulation and drops the dual graph, then such
issues are easy to take care of. Finally, the use of cubulations also fits nicely with the framework
of algebraic quantum gravity [26], which in its minimal version is also formulated in terms of
algebraic graphs of cubic topology only.

The architecture of this paper is as follows. In section 2, we give a non-technical review
of current SFM. We sketch their derivation from the classical Plebanski action focusing on the
points where a first-principles argument is missing. These issues will be the motivation for our
different route.

In section 3, we derive the Holst spin foam model using cubulations as a UV regulator
as motivated above. As this is an exploratory paper only, we will not worry about conver-
gence issues, which will be properly addressed in subsequent works. More precisely, what
we compute are tetrad n-point functions. These should contain sufficient information to
compute anything of interest in LQG such as graviton scattering amplitudes as in [29] via
Lehmann-Zimmermann—Symanzik-like formulae as in ordinary QFT [30], which allows us
to reconstruct the S-matrix from symmetric vacuum n-point functions. Of course, how these
n-point functions are related to true observables in a diffeomorphism invariant theory is a
subtle issue that will be clarified in a separate paper [36]. Here we only give a summary.
The n-point functions can be computed in closed form up to a remaining functional integral
over the connections. This can be done for either signature of the spacetime metric. At this
point, one could invoke SFM techniques and expand the integral using harmonic analysis on
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the gauge group. The resulting intertwiner displays a much more complicated structure than in
any current SFM. In particular, pictorially speaking one basic building block is an octagon
diagram, an analytic expression for which could be called the 96 j symbol in the case of
G =S0O(4). However, the n-point functions display a certain Wick-like structure as if they
came from a Gaussian integral. What makes the theory interacting and obstructs the tetrads
from being a generalized free field’ is the additional functional integral over the connection.
In background-dependent QFT, the moments of a Gaussian measure depend on a background-
dependent covariance (usually depending on the Laplacian (in the Euclidean setting) and the
mass). Our theory behaves similarly, just that due to background independence the covariance
itself is a field that must be integrated over. This is similar in spirit to what happens in
three dimensions (3D) [31] when coupling GR to point particles: there, when integrating over
the gravitational degrees of freedom one ends up with particles moving on a non-commutative
geometry. Here, instead of a non-commutative geometry, we obtain an interacting theory of
tetrad fields.

In section 4, we conclude and outline the missing tasks that need to be performed
before our model can be taken seriously. An interesting result of our analysis is that in the
present formulation, which lacks the simplicity constraints of Plebanski’s theory, the irreducible
representations of Spin(p, 4 — p) are not forced to be simple. Simple representations, which
basically reduce Spin(p,4 — p) to an SU(2) subgroup, can only arise if we impose the
time gauge which in the classical theory is used in order to reduce the Holst connection to
the Ashtekar—Barbero—Immirzi connection, which is a necessary ingredient of the canonical
quantization programme. Gauge fixing conditions, of course, naturally arise in any attempt to
make formal path integral expressions better behaved and the situation here is similar.

Two appendices treat some simple technical aspects of this work.

Most parts of this paper do not depend on whether the spacetime signature is Lorentzian or
Euclidean.

2. Outline of current spin foam models

In this section, we intend to give a brief summary of the developments in SFM with a focus on
the derivation of current models from the Plebanski action and the gaps in that derivation. This
serves as motivation for the present paper.

To begin with, it is worth mentioning that the classical solutions to the simplicity con-
straints actually comprise altogether five sectors, namely two topological sectors B = +e A e,
two Palatini sectors B = xe A e (where % denotes the Hodge map with respect to the internal
Minkowski or Euclidean metric) and one degenerate sector. In a path integral, a sum over all
these sectors will occur while one would expect that one should only include one of the Palatini
sectors or maybe a Holst sector B = *xe A e+ %e Ae [17] in order to have a path integral for
Einstein’s theory. Here y is the Immirzi parameter of LQG [18].

We now sketch the usual ‘derivation’ of SFM from the Plebanski action:

The Plebanski action is of the form

S:/ Tr(B A F(A)+® - B A B), 2.1)

7 Roughly, a generalized free scalar field is such that all its n-point functions are already determined by its two-
point function.
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where @ is a scalar Lagrange multiplier field with values in the tensor product of two copies of
so(1, 3) or so(4) depending on the signature and F is the curvature of the connection A. In a
formal path integral formulation, one integrates exp(iS) over A, B, ®. Integrating first over ®
we are left with a partition function of the form

Z :/ [dA][dB] §(C(B)) exp (1/ Tr(B A F)) , (2.2)

where C(B) denotes the collection of the simplicity constraints on B. If one were to solve the
delta distribution by integration over B, one would obtain the afore-mentioned sum over the five
sectors and integral over the tetrad fields. However, this would result in a complicated expression
which does not exploit the relation of Plebanski’s formulation to BF theory. Thus, rather than
doing that, one notes that roughly speaking

B exp (1[ Tr(BAF)):%giFexp (1f Tr(B/\F)>. (2.3)

Denoting the functional derivative by X one can now formally pull the § distribution out of the
B integral and perform the integration over B, resulting in

Z:/ [dA] 6(C(X))-8(F). (2.4)

Without the ‘operator’ 6 (C (X)) this would be the formal partition function of BF theory. Thus,
one has achieved the goal to preserve the closeness of the theory to BF theory. One should now
expand §(F) in terms of eigenfunctions of the collection of operators C(X) and keep only the
zero eigenfunctions multiplied by §(0).

In order to give meaning to those formal expressions, one has to introduce a UV and IR
cutoff as is customary in constructive QFT. That is, one considers finite simplicial triangulations
7 of the (possibly compact) differential four manifold and dual graphs t*. The two forms B are
now approximated by integrals B(¢) of B over triangles ¢ of t, while the curvatures F are
approximated by holonomies A(df) around the loops df of the faces f dual to the triangles 7.
One writes f(¢) for the face dual to . The BF action is then discretized by

> Te(AQS (1)) B(1). (2.5)

tetr

The reason to work with both 7 and t* is that, in fact,

f Te(BAF) =) Tr(F(f(1)B(1) (2.6)
M tet

is an exact identity [27] where F'( f) denotes the integral of F' over f. This is very convenient,
in particular for pure BF theory. The only approximation thus consists in replacing F'(f) by
AQf) — 1g.

Likewise, the functional derivatives X must be approximated by ordinary derivatives X,
with respect to the variables F(t) := A(df(t)) — A(3f (¢))T. Note that when defined like that,
the X, are mutually commuting®. However, this is not what is done in current models. Rather
one replaces X; by Y;; the right invariant vector field on the copy of G associated with the
variable A(df (¢)). Upon spin foam quantization, the discrete B variables thus become explicitly

8 See [32] for the exploration of the model with this definition of X;,.
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non-commutative’. The reason for doing this replacement is that the ¥, have a simpler action on
the delta distribution

3(F):=[ [da(AGf 1)) 2.7)
tet

It is usually justified by saying that § (F) has support on A(df) = 15 and that Y;, X, differ by
multiplication with holonomies which should be supported at 15. However, this argument is
certainly not rigorous because the support of the § distribution can drastically change when
acting with differential operators. Moreover, as already mentioned, this substitution comes with
a price: while the simplicity constraints in terms of X, are mutually commuting, those in terms
of Y, are not. In addition, one does not impose all the simplicity constraints but only a subset of
them: there are three types: constraints involving (i) the same triangle, (ii) two triangles sharing
an edge and (iii) two triangles sharing a vertex. The latter constraint is implied by the so-called
closure constraint on tetrahedra T’

Z Y, =0 (2.8)

teT

(but not vice versa). This constraint looks as if it would be automatically satisfied because it
looks like a gauge invariance condition. However, the product of § distributions (2.7) in A(F’)
is not annihilated by the closure constraint (2.8)! This is obvious from the fact that the product
of § distributions involves products of the form

[ Tx=acar . (2.9)

teT
where 7w denotes an irreducible representation of G and yx, its character. However, there is no
gauge invariant intertwiner among the loops df(¢), t € T. One usually argues that the closure
constraint is taken into account because after integrating over A one is only left with gauge
invariant intertwiners, but strictly this is wrong before integrating'’. In fact, since integration
with the Haar measure always projects out the gauge invariant part, anything can be made gauge
invariant this way. We feel that neglecting the third kind of simplicity constraint (implied by
taking the closure constraint for granted) makes the model too local. The effect of truly taking
the closure constraint into account is also explored in [32].

As already mentioned, even the simplicity constraints of the first two types are anomalous
as they imply vanishing volume [3, 10] and fix the above-mentioned intertwiner to be unique
(the model has not enough degrees of freedom). This and other investigations have ruled
out!' the Barrett—Crane model [11], which, however, was an important step in the research on
SFM because it triggered the development of model-independent mathematical tools. Recent
activities in SFM therefore focused on trying to implement the simplicity constraints of the
first two types differently. Thus, for instance, the work [5] uses the Master Constraint type
of techniques which were developed in a different context [38] in order to treat second class
constraints via a Gupta—Bleuer quantization procedure. In [6], one refrains from imposing the
simplicity constraints as operator conditions altogether but rather imposes them semiclassically

9 In fact, as shown in recent work [8, 33, 34], SFM defined as constrained BF models take the form of non-
commutative discrete path integrals making use of a star product on functionals of the B variables. It can also be
shown that the generating group field theories are just a particular class of non-commutative field theories [35].

10 See, however, [8, 33, 37] for discussions of this point.

1 See, however, [33] for a recent critical review of the various arguments raised against the Barrett—Crane model.
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by expanding spin foam amplitudes in terms of group coherent states [7] developed by
Perelomov [39] and then uses the simplicity condition on the classical bivectors on which the
semiclassical amplitudes depend. More recently, the work [9] exploits a spinorial representation
of spin network states to implement a Gupta—Bleuer quantization of the simplicity constraints,
shown to be solved exactly by coherent states with appropriate labels. Finally, Baratin and Oriti
[8, 35] exploit a non-commutative metric representation of spin network states and a non-
commutative simplicial path integral representation of quantum BF theory to implement the
simplicity constraints as strong constraints on the discrete (and non-commutative) B variables.

Some of these methods give rise to models with better semiclassical properties [40] and to
better ways to disentangle the topological from the Palatini sector. However, in our opinion a
satisfactory derivation from first principles is still missing. By this we mean that one should be
able to arrive at those models starting from the Plebanski action, another classically equivalent
action or the Hamiltonian formulation and then carry out integrations and imposition of
constraints without intermediate approximations or ad hoc substitutions as those listed above'2,
This is precisely the motivation of the present paper.

3. Derivation of the model

This is the main section of the paper. It is subdivided into five parts. In the first, we motivate
the use of cubulations from different perspectives and discuss some of their properties. In the
second, we sketch the relation between path integral n-point functions and physical (observable)
correlators in terms of the physical inner product of the theory. More details on that issue
are given in [36]. This crucially works via a choice of gauge fixing or clock system. In the
third part, we apply our machinery to n-point tetrad functions or equivalently to a generating
function of a (complex, regulated) measure. This measure displays a Gaussian-like structure
and we can accordingly integrate out half of the degrees of freedom under some assumptions
about the choice of gauge fixing. In the fourth part, we discuss the properties of the resulting
integral over the remaining degrees of freedom, its Wick-like structure and the structure of the
vertex amplitude of the corresponding spin foam model obtained upon harmonic analysis on
the gauge group. Finally, in the fifth part we discuss how these n-point functions are related
to the physical inner product and the kinematical Hilbert space of LQG, in particular how
the covariant connection of the Holst path integral reduces to the Ashtekar—Barbero—Immirzi
connection of the canonical theory in physical amplitudes.

3.1. Cubulations

In contrast to the standard way to discretize the theory using simplicial triangulations, our
approach will be based on cubulations of the underlying manifold. The advantages of these,
spelled out below, are:

e to facilitate gauge invariant discretization of the classical theory;
e to ensure the existence of a semi-classical sector within the boundary Hilbert space [23].

12 There has been recent work [8, 32, 41] in this direction, where simplicity constraints are clearly implemented
in the measure of a path integral. The novelty of the present approach, however, is to start directly from the Holst
gravity action, which avoids having to deal with simplicity constraints to begin with.
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But the main advantage is a practical one:

e To permit a discretization of the action in terms of a Gaussian with block diagonal kernel,
which allows explicit computation of the Gaussian integrals in the partition function.

3.1.1. Gauge invariance. Let us look more closely at the issue of gauge invariance for BF
theory which also makes use of a dual graph. Here gauge invariance is not preserved locally
(i.e. triangle-wise) in the formula f Te(BAF) =), Te(B(t) F(f(¢)) if both B and F transform
locally in the adjoint representation. In order to make the gauge transformations more local, one
could discretize them. To see how this can be achieved, recall that by the definition of a cell
dual to a simplex'? in a simplicial complex t, the face f(¢) is a union of triangles [, T, 6]
subject to the condition t C 9T, T C do. Here (T) denotes the barycentre [27] of a simplex
and 7, o denote tetrahedra and four simplices in t, respectively. So we see that both ¢ and
f(t) contain the barycentre 7 in their intersection and we could define a disjoint action of
the gauge group on both B(t), F(f(t)) at . However, this is no longer possible when using
the approximation ), Tr(B(t)A(df (t))) because now the only natural action of the gauge
group on the loop holonomy is by adjoint action at a starting point on df(¢). Now df(¢) is
a composition of the half-edges [T, 6] where t C 9T, T C do but the fundamental degrees of
freedom are the holonomies along the edges e = [&, c;/] for c N’ =T,t C dT. Obviously,
the only natural starting point of the loops is then at the vertices 6 which are disjoint from the
triangles ¢. But the triangles are also disjoint from the half-edges as a simple calculation reveals.
To maintain gauge invariance, one has to come up with a more complicated discretized action
(e.g in terms of wedge variables related to each other by additional holonomy variables [40]).
Such complications come from the fact that one is dealing simultaneously with a (simplicial)
complex and its dual cell complex; we take this as a further piece of motivation to work only
with the triangulation.

3.1.2. Cubulations versus simplicial triangulations. The previous considerations do not
specify the type of triangulations to be considered. As already mentioned, the first piece of
information why to use cubulations rather than simplicial triangulations is because the boundary
graphs must contain cubical ones in order to make sure that the corresponding boundary Hilbert
space contains enough semiclassical states [23]. However, there is an additional, more practical
motivation for doing so which we discuss now.

Recall that the Holst action is given by

1 1
S:——f Tr(G[A]/\e/\e):—/ Gi/[Alne ne’. (3.1)
K Jm K Jm
Here « denotes Newton’s constant,
1
G[A]=2 (*F[A] + —F[A]) , (3.2)
14

where F;; =dA;;+Ax A Af denotes the curvature of the connection A, y is the Immirzi
parameter, * denotes the internal Hodge dual, that is,

Ty 1= %GIJKLnKMnLNTMN» (3.3)

13 As usual [27], an n-simplex is denoted by [po, .. ., p,] Where the points p; denote its corners.
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where I, J, K, ...=0, ..., 3 and 7 is the Minkowski or Euclidian metric for the structure group
G = S0(1, 3) or G = SO(4), respectively. As motivated in the introduction, we plan to keep the
co-tetrad one forms e’ rather than introducing a B field and thus the simplicity constraints are
manifestly solved. Moreover, the issue raised in [14] is circumvented as co-tetrads are labelled
by curves and not by (overcomplete) surfaces.

In order to give meaning to a path integral formulation, we consider a UV cutoff in terms
of a triangulation T of M which we choose to be finite, thereby introducing an IR regulator as
well. Let us denote the two-dimensional faces of t by f and the one-dimensional edges of T by
[. We want to discretize (3.1) in a manifestly (and locally) gauge invariant way, just using edges
and faces. To do so, we equip all edges with an orientation once and for all. Given an edge /,
consider

e ::/[A(l(x))]’ se’ (x). (3.4)
l

Here I(x) for x €l denotes the segment of / that starts at the starting point of / and ends at
x and [A(p))'J denotes the G valued holonomy of A along a path p. Evidently, under local
gauge transformations g : M — G, (3.4) transforms as ell — g§ (b(l))e,’ where b(/) denotes the
beginning point of /.

To avoid confusion, here g € G means the following: the fundamental objects are the
matrices g}. Set g, :=n;x g¥ ;. Then g € G iff g;xg;.n*" =n;;. This is equivalent to
(g™H!' ; =n'tgX  nk,. In other words,

(gH=@" (3.5)

If g' ; = [exp(F)]" ; for some generator F' ;, then (3.5) means that F;;+F;; =0.In an abuse

of notation, one usually uses the same symbols g, F and g, F, respectively, but unless we are in
the Euclidian regime we should pay attention to the index position.

Clearly, the curvature F must be discretized in terms of the holonomy of A along the closed

loops df where we have also equipped the faces f with an orientation once and for all. We have

—_~ T

1
Fry(f) = 5([A(3f)]11 —[(A@N 1)

{ - ——

= STAGNL —[(AGN 1)

=A@

A / Fry(x), (30
f

where we have used the non-Abelian Stokes theorem for ‘small’ loops, that is,

A(0f) ~ exp (/ F) (3.7)
f

and we have written F; 7(x) := F;;(x). We may now define the antisymmetric matrix

1
Gu(f)= (*F(f))u+;Fu(f)- (3.8)

Imagine now that we were to use a simplicial triangulation. Hence M is a disjoint (up to
common tetrahedra) union of four simplices o = [po(0), ..., ps(o)]. For each p;(o) label
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the four boundary edges of o starting at p;(o) by llﬂ(a) and let the face (triangle) of o
spanned by [/ (o), I](0') be denoted by f/ (o) with the convention f/ (o) = — f/ (o). Now
the orientation of / ;14 (o) either coincides with the given orientation of the corresponding edge

in o or it does not. In the former case define e// (o) := ¢/, : while in the latter we define

(o
e,/ (0) :==[A(l}(0)) "¢} ,]". Then we have

KSz—Z/Tr(G/\e/\e)

oet V9

1 ! A A .
~ < DD G (f(0)el (0) & (o)

oetr j=0

=Y G e e, (3.9)

LI
where we have averaged over the corners of a four-simplex. For any simplicial triangulation,
the (symmetric in the compound index (7, /)) matrix GZ,I/J is difficult to present explicitly due to
bookkeeping problems even if we refrain from averaging over the five corners of a four-simplex.
Moreover, as we intend to perform a Gaussian integral over the e/, we need the determinant of
that matrix which is impossible to compute explicitly unless it is block diagonal in some sense.

The latter observation points to a possible solution. First of all, any manifold admits a
cubulation, that is, a triangulation by embedded hypercubes!* [42]. We assume that M has a
countable cover by open sets O,. Consider a stratification by four-dimensional (4D) regions S,
subordinate to it. Then S, admits a regular cubulation, that is, the one-skeleton of the cubulation
of M restricted to S, can be chosen to be a regular cubic lattice. Non-trivial departures from
the regular cubulation only appear at the boundaries of the S,. We restrict our attention to
those M admitting a cubulation such that in every compact submanifold the ratio of the number
of cubes involved in the non-regular regions divided by the number of cubes involved in the
regular regions converges to zero as we take the cubulation to the continuum. For those M, up
to corrections which vanish in the continuum limit we can treat M as if it would admit a global,
regular cubulation.

Given aregular cubulation 7, consider its set of vertices. In 4D, each vertex v is eight-valent
and there are four pairs of edges such that the members of each pair are analytic continuations
of each other while the tangents at v of four members from mutually different pairs are linearly
independent of each other. It is therefore possible to assign to each edge a direction u =0, 1,2, 3
and an orientation such that adjacent edges in the same direction have a common analytic
continuation and agree in their orientation. We label the edges starting at v in the u direction
by [, (v). Note that this labelling exhausts all possible edges and unambiguously assigns an
orientation to all of them. The discretized co-tetrad is then given by

e, (v)i=¢j . (3.10)

14 An easy proof uses the fact that every manifold can be triangulated by simplices. Given a D-simplex, consider
the barycentre of each of its (g :ll) sub-p-simplices for p =0, ..., D. Connect the barycentre of any p + 1-simplex
with the barycentres of the p-simplices in its boundary. It is not difficult to see that this defines a cubulation of the
D-simplex and that all p-cubes thus defined are the same ones in common g-simplices of the original simplicial

complex. In other words, every simplicial complex has a cubulated refinement.
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Note that the hypercubic lattice that results solves all our bookkeeping problems since we may
now label each vertex by a point in Z*.

Next, given a vertex v we denote by v £ /i the next-neighbour vertex in the u direction.
We define the plaquette loop in the u, v plane at v by

fun(v) :=1,(w)ol,(w+)ol,(v+D) " ol,(v)7, (3.11)

so that 9f,,(v) = [0 f,w(v)]‘l. Note that again this labelling exhausts all minimal loops in one
skeleton of t. The discretized ‘curvature’ is therefore

G () :=€""7G 1 (fpo (V). (3.12)

Denoting by o the 4D hypercubes in T we note that there is a one-to-one correspondence
between the vertices v in the 0-skeleton of T and the hypercubes given by assigning to o that

corner v = (2o, ..., z3) of o with the smallest values of all z, ..., z3 € Z. We then find that
kS = / Giynel ne’
;  Gu
~ YD Gl e elw). (3.13)
v I,J,u,v

The crucial observation is now the following: assemble pairs of indices into a joint index
A= (I, ), B=(J,v), etc and let e*(v):=e/ (v), Gap(v) := G, (v), etc. Note that by
construction G 43(v) = G p4(v) for all v. Then (3.13) can be written as

KS A Z e’ (v) G(v) e(v). (3.14)

This means that using (regular) cubulations, indeed the matrix G’,lj becomes block diagonal
where each block is labelled by a vertex and corresponds to the symmetric 16 x 16 matrix G (v).
This is what makes the computation of the determinant of the huge matrix with entries G,
practically possible. As we will see, the matrices G (v) have a number of intriguing symmetries,
which makes the computation of their determinant an interesting task.

Interesting questions that arise in algebraic topology and which we intend to address in
future publications are:

1. Given any D-cubulation, does there exist a cubulated refinement such that one can
consistently assign to every D cube o a vertex v and to all edges an orientation such that
there are precisely D edges outgoing from v? We call the cubulations for which this is
possible regular. If that were the case, we could generalize our discretization from regular
hypercubic lattices to arbitrary cubic ones and thus would not have to make any error at the
boundaries of the stratified regions mentioned above.

2. If the answer to 1. is negative, can one choose maximally regular cubulations so as to
minimize the error in our assumption of globally regular cubulations? In 3D some results
on that issue seem to exist [42].

3. Given maximally regular cubulations, can one make an error estimate resulting from the
neglect of the non-trivial topology?
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3.2. Notes on n-point functions

In the spin foam literature the first task that one addresses is the computation of the partition
function. However, the partition function itself has no obvious physical meaning even if one
imposes boundary conditions on the paths (spin foams) to be integrated (summed) over. The
hope is that SFM provide a formula for the physical inner product of the underlying constrained
canonical theory which starts from some kinematical Hilbert space . The purpose of this
section is to sketch the connection between path integrals and n-point functions for a general
constrained theory. We will use reduced phase space quantization as our starting point. The
connection with operator constraint quantization and group averaging [43] and more details can
be found in [36].

We assume that we are given a classical theory with first class constraints {F} and
possibly second class constraints {S}. We turn the system into a purely second class system by
supplementing { F'} with suitable gauge fixing conditions {G}. The canonical Hamiltonian H. is
a linear combination of the primary constraints plus a piece H; non-vanishing on the constraint
surface of the primary constraints (it could be identically zero). It can also be written as a first
class piece Hjy and (some of) the first class constraints F'. The gauge fixing conditions fix the
Lagrange multipliers involved in the canonical Hamiltonian. One may split the complete set of
canonical pairs (g, p) on the full phase space into two sets (¢, ), (Q, P) such that one can
solve the system S = F = G = 0 which defines the constraint surface for (¢, 7) = f(Q, P) in
terms of Q, P. The Q, P are coordinates on the reduced phase space which is equipped with the
pull-back symplectic structure'® induced by the embedding of the constraint surface specified
by f. The gauge fixing conditions also induce a reduced Hamiltonian H; which only depends on
Q, P and which arises by computing the equations of motion for Q, P with respect to H. and
then restricting them to the gauge fixed values of the Lagrange multipliers and to the constraint
surface. Then H, is defined as the function of Q, P only'® which generates these same equations
of motion. We are now in the situation of an ordinary Hamiltonian system equipped with a true
Hamiltonian H,. We quantize a suitable subalgebra of the reduced Poisson algebra as a * algebra
2l and represent it on a Hilbert space H. This Hilbert space is to be identified with the physical
Hilbert space arising from reduced phase space quantization. Its relation with Dirac’s constraint
quantization is spelled out in [36]. Let t — U (¢) be the unitary evolution induced by H,. Then
the object of interest is the transition amplitude or n-point function

<1/ff’ U(tf - z‘n)anlj(l‘n - tnfl)anfb . *U(IZ - tl)alU(tl - ti)wi> (315)
between initial and final states 1, ¥y at initial and final times #, #;, respectively, with
intermediate measurements of the operators aj, ...,a, €A att; <t <--- <t,.

Preferably one would like to be in a situation in which there is a cyclic vector 2 for 2,
which is also a ground state for H,. The existence of a cyclic vector is no restriction because
representations of 2 are always direct sums of cyclic representations. In this case A<2 is dense
in H and we may therefore restrict attention to ¥; = ¥y = 2 by choosing appropriate aj, ..., a,
in (3.15). The existence of a vacuum state for H, means that zero is in the point spectrum of H,.
Let us make this assumption for simplicity.

Let us abbreviate the Heisenberg time evolution as a;(t) := U (t)"'a, U (¢). In principle, it
would be sufficient to restrict the a; to be configuration operators Q because their time evolution

15 This symplectic structure coincides with the pull-back of the degenerate symplectic structure on the full phase
space corresponding to the Dirac bracket induced by the system {S, F, G} [44].
16 For simplicity, we are assuming a gauge fixing which leads to a conservative reduced Hamiltonian.
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contains sufficient information about P as well. However, we will stick to the more general case
for reasons that will become clear later. This leads us the n-point function

St 1) = (2, U(tr)an(t,) . . -al(tl)U(_ti)Q>’ (3.16)

(Q, Ut —1)S2)

where we have properly normalized so as to give the zero-point function the value unity. This has
the advantage that certain infinities that would otherwise arise in the following can be absorbed.
Note that since €2 is a ground state, the U (#) and U (t;) as well as the denominator could be
dropped in (3.16).

Now a combination of well-known heuristic arguments [44, 45] reviewed in [36] reveals the
following: consider any initial and final configuration g;, g; on the full phase space and denote
by P((;, q;), (. g¢)) the set of paths'” in full configuration space between (g;, g;) at times £, t,
respectively. Consider

Z1j: gigr] = _lim [Dg Dp D DpISIG]| detl{F, GYl|p ehSerul ¢ 4ira

IO Jp((1,q1). (11.41))

(3.17)

Here j is a current in the fibre bundle dual to that of g, S[q, p, A, ] is the canonical action
after performing the singular Legendre transform from the Lagrangian to the Hamiltonian
formulation'® and p is a local function of g, p which is usually related to the Dirac bracket
determinant det[{S, S}] [45].

Now the primary constraints are always of the form = = f(Q, P, ¢) where we have split
again the canonical pairs into two groups. Thus, S[g, p, A, u] is linear in those momenta 7 and
we can integrate them out yielding § distributions of the form §[A — (.)]8[ — (.)], which can be
solved by integrating over A, w. If we assume that the dependence of the remaining action on P
is only quadratic and that G and | det[{F, G}]| are independent of P then we can integrate also
over P which yields in general a Jacobian / coming from the Legendre transform. We can then
write (3.17) as

Zlj; i, gel = lim [Dq]8[G] | det[{F, G| p I ehSal e 409 (3.18)
IRy (CRARCUNTS)

where proper substitutions of m from solving the primary constraints and of P from the

Legendre transformation are understood. Here S[q] is the original (covariant) Lagrangian

action.

Defining [ ] := 2. 441

= Zi0 g ai the covariant or path integral n-point functions

8" x[J1 ]
8] (11) ... 8j (1) ] ;g
have the canonical or physical interpretation of

(@, T(a1(t1) ... an(1,))K2), (3.20)

where T is the time ordering symbol, €2 is the afore-mentioned cyclic vacuum vector defined by
the physical (or reduced) Hamiltonian H, induced by the gauge fixing G, a,(t) is the Heisenberg

Sy, ..., 1) :=|: (3.19)

17 This should be a suitable measurable space but we leave it unspecified.
18 The Lagrange multipliers A, u of the primary first and second class constraints, respectively, play the role of the
velocities that one could not solve for in terms of the momenta in the process of the Legendre transform.
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operator at time ¢ (evolved with respect to H;) corresponding to a;, and a; itself classically
corresponds to a component of ¢ evaluated on the constraint surface S = F = G = 0. The scalar
product corresponds to a quantization on the reduced phase space defined by G. Note how the
gauge fixing condition G (or choice of clocks) prominently finds its way both into the canonical
theory and into the path integral formula (3.18). In particular, note that the seemingly similar
expression

Zj; g gl = _lim [Dg]eisel ¢ &7 (3.21)
RS (CRANUN)!
does not have any obvious physical interpretation and in addition lacks the important measure
factors p, 1.
Remarks:

1. One may be puzzled by the following: from ordinary gauge theories on background

spacetimes such as the Yang-Mills theory on Minkowski space, the path integral or
more precisely the generating functional of the Schwinger functions (in the Euclidian
formulation) does not require any gauge fixing in order to give the path integral a physical
interpretation. One needs it only in order to divide out the gauge volume in a systematic
way (Fadeev—Popov identity) while the generating functional is independent of the gauge
fixing. The gauge fixing also does not enter the construction of gauge invariant functions
(such as Wilson loops). In our case, however, the gauge fixing condition is actually needed
in order to formulate the physical time evolution and the preferred choice of gauge invariant
functions on phase space.
The resolution is as follows: the difference between the Yang—Mills theory and generally
covariant systems such as GR that we are interested in here is indeed that the
canonical Hamiltonian is, in fact, the generator of gauge transformations (spacetime
diffeomorphisms) rather than physical time evolution. It is even constrained to vanish. In
contrast, in the Yang—Mills theory there is a preferred and gauge invariant Hamiltonian
which is not constrained to vanish. In order to equip the theory with a notion of time, we
have used the relational framework discovered in [46] which consists in choosing fields as
clocks and rods with respect to which other fields evolve. Mathematically, this is equivalent
to a choice of gauge fixing. Hence, in our case the gauge fixing plays a dual role: firstly,
to render the generating functional less singular, and secondly, to define physical time
evolution.

2. The appearance of the § distributions and functional (Fadeev—Popov) determinants
in (3.17) indicates that we are not dealing with an ordinary Hamiltonian system but rather
with a constrained system. One can, in fact, get rid of the gauge fixing condition involved if
one pays a price. The price is that if one considers instead of ¢ its gauge invariant extension
q off the surface G =0 [44, 47], then, since we consider the quotient Z[j]/Z[0] which
leads to connected n-point functions, by the usual Fadeev—Popov identity that exploits
gauge invariance, we may replace [36] (3.17) by

Z1j, i arl = / [Dg Dp D3 Du] perSia-rul gl 41040, (3.22)
P((ti,q1), (tr,q1))

However, (3.22) is not very useful unless g (g, p) is easy to calculate which is typically not

the case. Hence, we will refrain from doing so. Nevertheless, no matter whether one deals

with (3.17) or (3.22), the correlation functions depend on the gauge fixing G or in other
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words on the choice of the clocks [47, 48] with respect to which one defines a physical
reference system.

. The correspondence between (3.19) and (3.20) also allows us to reconstruct the physical

inner product from the n-point functions: given arbitrary states r, ' € H we finda,a’ € 2
such that |[[aQ2 — /||, ||a’2 — ¢'|| are arbitrarily small. Now pick any #; < 1y < t;, then

a,d' Q) =(Q,a" dQ), (3.23)

By assumption, the operator a’a’ can be written as a finite linear combination of monomials
of homogeneous degree in the components of the operator ¢ which we write, suppressing
indices for the components as ¢". Then

(©2,¢"Q2) = lim (€, q()...q(t)R2), (3.24)

..., ty—>103tp>>11

which can be expressed via (3.19). The existence of this coincidence limit of n-
point functions is often problematic in background-dependent Wightman QFT [30], but
their existence is actually the starting point of canonical quantization of background-
independent non-Wightman QFT as one can see from the identity (3.24).

3.3. The generating functional of tetrad n-point functions

We now want to apply the general framework of the previous section to GR in the Holst
formulation. Classically, it is clear that without fermions all the geometry is encoded in the
co-tetrad fields el’L because then the spacetime connection is just the spin connection defined
by the co-tetrad (on shell). If fermions are coupled, the same is still true in the second-order
formulation so that there is no torsion. But even in the first-order formulation with torsion one
can attribute the torsion to the fermionic degrees of freedom. Hence we want to consider as a
complete list of configuration fields the co-tetrad.

We will now make two assumptions about the choice of gauge fixing and the matter content

of our system:

L.

IL

The local measure factors p, I depend on the co-tetrad only analytically. This is actually
true for the Holst action [19], see also [21].

The gauge fixing condition G is independent of the co-tetrad and the Fadeev—Popov
determinant det({F, G}) depends only analytically on the co-tetrad. With respect to the
first class Hamiltonian and spatial diffeomorphism constraint, this can always be achieved
by choosing suitable matter as a reference system, see, e.g., [49]. However, in addition
there is the Gauss-law first class constraint. Here it is customary to impose the time gauge
condition [17] which asks that certain components of the tetrad vanish. This will also
enable one to make the connection with canonical LQG where one works in the time gauge
in order to arrive at an SU(2) rather than G connection. Fortunately, in this case it is possible
to explicitly construct a complete set of G-invariant functions of the tetrad, namely the four
metric'” g, = e}, e]n;,, and if we only consider correlators of those, then we can get rid of
the time gauge condition as indicated in the previous section (Fadeev—Popov identity). In
section 3.5, we will come back to this issue, however, in trying to make the connection of
the SFM obtained with canonical LQG for which the time gauge is unavoidable. We will
then sketch how to possibly relax the assumptions made under II.

19 In the presence of fermions there are additional gauge invariant functions also involving the fermions.
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Under the assumptions made we consider the generating functional x(j,J):=
Z1j, J1/Z[0, 0] where

Z[j,J]:= /[D¢ DA]S[G[A, ] et /u TUA®

X /[De] ple. A, @] Ile, A, §]|det[{F, G}l|[e, A, §] ef Scle-AFSnleAdDei [y Trtine)

(3.25)

Here ¢ denotes the matter configuration variable. We have split the total action into the geometry
(Holst) part S, and a matter part S, which typically depends non-trivially but analytically on e.
Also the total current was split into pieces J, j, respectively, taking values in the bundles dual
to those of ¢, e, respectively.

A confusing and peculiar feature of first-order actions such as the Holst or Palatini action
is that, from a Lagrangian point of view, both fields e, A must be considered as configuration
variables. In performing the Legendre transform [19], one discovers that there are primary
constraints which relate certain combinations of e to the momenta conjugate to A. One can
solve these constraints and then (A, e) appear as momentum and configuration coordinates of
this partly reduced phase space. This is the reason why we consider only correlations with
respect to e. The idea is now as is usual in path integral theory: we set

ole, A, ] :=ple, A, ¢] I[e, A, ¢] | det[{F, G}]|[e, A, ] erSnle-A-2] (3.26)
and write (3.25) as

Z1j, J] = /[qu DA]S[G[A, $]] elfu TV [% A, ¢] {f [De] eiSeleAlgifu Tr(jAe)} _
10]
(3.27)

Of course, €™ must be power-expanded in a perturbation series in order to carry out the
functional derivations with respect to j. Indeed, if we consider just the functional integration
with respect to e and think of A, ¢ as external fields, then the piece S, being quadratic in e is
like a free part, while S, being only analytic in e is like an interaction part of the action as
far as the co-tetrad is concerned. Of course, in the computation of the physical tetrad n-point
functions all the functional derivatives involved in (3.27) are eventually evaluated at j = 0.

It follows that the object of ultimate interest is the Gaussian integral

iSm

—t [, Te(GAene+ts jre)

z[j; Al :Zf[De]e r , (3.28)

which is computable exactly. Of course, it is not a standard Gaussian, firstly because the
exponent is purely imaginary and secondly because the ‘metric’ G’ ;(A) is indefinite so that
z[j; A] would be ill-defined if the exponent was real®’. In the appendix, we recall how to
integrate such non-standard Gaussians. In order to carry out this integral we must make the

20 As is usual this prevents a ‘Euclidian’ version of GR. Here Euclidian stands for Euclidian field theory with an
analytic continuation of the imaginary axis of the real time variable involved (Wick rotation), which leads to a real
exponent. This has nothing to do with Lorentzian or Euclidian signature GR. In fact, most metrics do not have
an analytic section so that Wick rotation is ill-defined and thus the connection between the real and the Euclidian
theory is unclear.
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technical assumption that configurations A for which G is singular have measure zero with
respect to DA. We will come back to this assumption later.

It is at this point where we must regularize the path integral in order to perform the
Gaussian integration®' and we write the discretized version on a cubulation of M as motivated
in section 3.1; that is, we replace (3.28) by the discretized version

2lj; Ali= / [T del vy e =P Osa@m a0l (3.29)
v,l,u
The results of appendices A and B now reveal that

e Find(G(v)

zlj; Al:= 1:[ JTdet(G )|

where we dropped a factor /7 "N for a cubulation with N vertices because it is cancelled by
the same factor coming from the denominator in x (j, J), see (3.25).

2

e~ LulCT @I ;@) (3.30)

3.4. Wick structure, graviton propagator and spin foam model vertex structure

3.4.1. Wick structure. Formula (3.30) explicitly displays the main result of our investigation:
the full j dependence of the generating functional written as (3.27) rests in (3.30). We are
interested in the nth functional derivatives of (3.30) at j = 0. Now similarly to free field theories,
the corresponding n-point functions vanish for n odd. However, in contrast to free field theories,
for n even, the n-point functions cannot be written in terms of polynomials of the two-point
function. The reason is that the ‘covariance’ G~![A] of the Gaussian is not a background
structure but rather depends on the quantum field A itself that one has to integrate over. This
renders the co-tetrad theory a non-quasi-free, that is, interacting theory. Nevertheless, it is true
that all Wick identities that have been derived for free field theories still hold also for the n-point
tetrad functions albeit in the sense of expectation values or means with respect to A.

3.4.2. Graviton propagator. To illustrate this, consider a fictive theory in which
o(e, A, ¢), G(A, ¢) are both independent of both A, e. This is not a very physical assumption
but serves to make some observations of general validity in a simplified context. This means
that we can drop the ¢ dependence because the generating functional factorizes. Thus in our
fictive theory, we are looking at the generating functional x[j] = z[j]/z[0], where

Zind(G(v))

e i, L ey 1317
1= [ [DA]zlj; Al = dun(A(l, (v ELAI P VN AOFHONCROI
z[Jj] /[ 1zlj; Al /1,_#[ 1 (A, (v)) U | det(G (v))|

(3.31)
where g is the?? Haar measure on G. Now let
§"x[Jj]
i el () = . 3.32
<elt|(v1) e/tn(v )> |:in8jllfl(vl)...3j[lfl(vl):|jzo ( )

21 Actually, we can formally solve the Gaussian integral w/o specifying the triangulation, i.e. we can compute it in
the continuum. However, then one must regularize the resulting determinant which amounts to the same problem.
22 In the case of non-compact G the Haar measure is unique up to a normalization constant which drops out
in x(j). To choose the Haar measure instead of the Lebesgue measure makes sense in the continuum limit of
infinitely ‘short’ edges as usual.
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It is immediately clear that
(ef! (v1) el (1)) =0 (3.33)

unless v; = v,. This is reassuring because as we said above, physically it only makes sense to
consider correlators of G-invariant objects such as the metric. The simplest n-point function of
interest is therefore the four-point function

(8w (V1) 8o (V2)) = (e (V1) €] (V)€ (v2) €2(v2)) N1y N (3.34)
If we are interested in something like a graviton propagator, we are interested in v; # v, and

obtain
2

) 4
(8111 (V1) i, (V2)) = [EP] (G )™ G 22), (3.35)

where for F' = F[A]

e%’ind(c(u))

S T, dus(AQ(v)) [Hv W] FlA]

((F)) = (3.36)

eilind(G(U))
J Tl din(AQ () {HU W]

Note that G(v)~" does not share the symmetries of G(v), so [G™'(v)]{]> does not vanish
automatically. We see that we are basically interested in correlators of the inverse matrix G (v)~!
with respect to the joint Haar measure. Whether these have the correct behaviour in a situation
where, instead of vacuum boundary states, one chooses coherent states peaked on a classical

background metric as suggested in [25, 29] is currently under investigation.

3.4.3. Spin foam vertex structure. Finally, in order to translate (3.36) into spin foam language,
we should perform harmonic analysis on G and write the integrand of the Haar measure in terms
of irreducible representations of G. In particular, the vertex structure of a spin foam is encoded
in z[0] so that we are interested in harmonic analysis of the function

e Find(G(v)

Vdet(G)[

To derive its graph theoretical structure it is enough to find which F(v) depend on a given
holonomy A(/). Recall that F(v) is a function cylindrical over the graph y (v) = U, .,0f,,(v),
which is the union of its respective plaquette loops. Consider a fixed edge [ =1/, (v). It is
contained in y (v') if and only if it is contained in one of the plaquette loops df,,,(v") or df,, (V")
with 0 < v or v < u, respectively. In the first case it must coincide either with /,(v’) or with
[, (v"+ ). In the second case it must coincide either with /, (v’ + D) or with [, (v’) as well. Thus
in either case we must have either v’ =vorv' =v—1, v # u.

For our illustration purposes, let us consider for simplicity that G is compact, the non-
compact case has the same spin foam vertex structure but the harmonic analysis is slightly
more complicated. Then each function F'(v) can be formally expanded into SO(4) (or rather the
universal cover SU(2) x SU(2)) irreducible representations>® with respect to the six plaquette
holonomies A(df,,(v)), u < v. These representations 7 are labelled by pairs of half-integral

F() := (3.37)

23 This expansion would be rigorous if we knew that F(v) is an L, function that is currently under investigation.
We assume here that in any case we may use the Peter and Weyl theorem in a distributional sense.
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spin quantum numbers but we will not need this for what follows. Thus F(v) admits an
expansion of the form

FO) =t ) - [®ue MA@ @))], (3.38)

{ﬂ;w}

where L/{”W} is a gauge invariant intertwiner for the sextuple of irreducible representations
{7,v},.<v Which is independent of v, the only v dependence rests in the holonomies. It depends
on the specific algebraic form of F(v) which derives from the Holst action.

Let us define 7, :=m,, for u < v. By writing the six plaquette holonomies in terms of
four edge holonomies, it is not difficult to see that F'(v) can also be written in the form

F(v)= Z Lot [M %é Tuw(Al,(V))) @ mu Al (v+ \3)):| , (3.39)
{7} 7Y
which displays explicitly the 16 variables A(/,,(v)), A(l,(v+7), v # u involved and consists
of 24 =6 x 4 tensor product factors. In order to arrive at (3.39) we had to rearrange the
contraction indices which induces the change from ¢’ to « and we have made use of T (A(l)~!) =
7T(A(l)) for G = SO(4).
We may now carry out explicitly the integrals over edge holonomies in z[0] by inserting
the expansion (3.39). We write symbolically**

z[0] = f [ duna@.) [T Fo)

= [Tt f [ ] dun(Ad.))) [, 8 Tin(AG W) @ i (Al (v +D)]
v v,

{m)} -

= [T s / [ dun(A@.))) [ ® 7" (A, ()) ® 7! (Al ()]
{mp,} L v _ v, o

= [ | ® [ / dun(@) [® 7,(8) ® n;;f(g)]. (3.40)
) Lo ) vu |LJG UFV

Here in the second step we have shifted the vertex label in one of the tensor product factors in
order to bring out the dependence on the A(/,,(v)). It follows that the end result of the integration
is that for each edge / = 1,,(v) there is a gauge invariant intertwiner®

L [ fG dun(g) [ 7,,(8) ® ﬂ,ﬁv‘ﬁ(g)] : (3.41)

which intertwines six representations rather than four as in (constrained) BF theory on simplicial
triangulations. The origin of this discrepancy is, of course, that we are using cubulations rather
than simplicial triangulations. These six representations involved for edge [/, (v) correspond

24 We rearrange the tensor products as if they were scalars but this can be corrected by performing corresponding
rearrangements in the contraction structure of the intertwiners. We assume this to be done without explicitly
keeping track of it because it does not change the vertex structure.

25 We do not bother to expand it into a recoupling scheme and thus to label the intertwiner itself by three irreducible
representations.
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ly l§

Iy 1

/ :

lo I
Figure 1. The octagon diagram associated with vertex v. The eight corners
correspond to the eight edges [ =17 (v) =1[,(v+ %,&), o =+ adjacent to v.
The line between corners labelled by l;(v), l;’/(v) for pu # v corresponds to
the face f = flfv”/(v) = f,w(v+”T_1,&+%f)). We should colour corners by
intertwiners p; and lines by representations 7 s but refrain from doing so in order

not to clutter the diagram. Altogether 48 irreducible representations of Spin(4)
(or 96 of SU(2)) are involved.

precisely to the six plaquette loops df,,(v), df.,(v— 1), v # p of which /,(v) is a segment.
Therefore, if we associate with each face f = f,,(v) an irreducible representation 7y = 7, and
denote by {r} the collection of all the 7 ¢, then the basic building block (3.41) can be written in
the more compact form

pil{m}] = f dun(g) ® mr(g). (3.42)
G Icof

Likewise, if we denote ¢,[{7}] := Ly, ) then

2[0]=)" []‘[ u[{n}]} ® pillr}l, (3.43)

{m}
which, of course, hides the precise tensor product and contraction structure but is sufficient for
our purposes.

Formula (3.43) is precisely the general structure of an SFM. Moreover, the
intertwiner (3.42) is the direct analogue of the intertwiner in BF theory which there defines
the pentagon diagram [11]. If we were to try and draw a corresponding picture for our model,
then for each vertex v we would draw eight points, one for each edge / incident at v. These
edges are labelled by the intertwiner p;. Given two points corresponding to edges /, [’ consider
the unique face f that has /, !’ in its boundary. Draw a line between each such points and label
it by 7. The result is the octagon diagram, see figure 1. Concretely, the edges adjacent to v are

New Journal of Physics 14 (2012) 103054 (http://www.njp.org/)


http://www.njp.org/

22 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

l,(), l,(v—p), ©=0,1,2,3. For n # v, the face spanned by [/, (v), [, (v) is f,,(v), the face
spanned by [/, (v), I,(v—") is f,,(v— D), the face spanned by [, (v — i), [,(v) is f.(v — (1)
and finally the face spanned by [/, (v — ), I,(v—"7) is f,,(v— @ — D). The corresponding
labels on the lines are thus 7, 7 b, rr;iv_’l, rrl'jv_’l_f’, respectively. Thus the octagon diagram
has eight points and 6 x 4 = 24 lines (each line connects two points). These correspond to the
24 plaquettes that have a corner in v; namely for each p < v these are f,,(v), fu.,(v— L),
fuw(@—"), fuw(v—a— ). In the case of G =SO(4) each irreducible representation is
labelled by two spin quantum numbers. The intertwiner freedom is labelled by three irreducible
representations of SO(4) and there is one irreducible representation corresponding to a face.
Thus the octagon diagram depends on 3 x 8 +24 =48 irreps of SO(4) or 96 spin quantum
numbers. Since each intertwiner (3.42) factorizes into two intertwiners [3] (one for the
starting point and one for the beginning point of the edge but both depending on the same
representations) we may actually collect those eight intertwiners associated with the same
vertex. The collection of those eight factors is actually the analytic expression corresponding
to the octagon diagram which therefore may be called the 96 j symbol.

The decisive difference between (constrained) BF theory and our model is however that in
(constrained) BF theory the analogue of the function F'(v) is a product of § distributions, one for
each face holonomy. The simplicity constraints just impose restrictions on the representations
and intertwiners, but this cannot change the fact that there is factorization in the face
dependence. In our model, the face dependence does not factorize; hence, in this sense it is
less local or more interacting.

To sum up this section: we have explicitly described the analytical expression for the vertex
amplitude of this SFM in (3.40)—(3.43), which leads to the octagon diagram described. Using
harmonic analysis on SO(4) = SU(2) x SU(2)/Z,, one can easily describe everything in terms
of spin representations of SU(2). As the resulting expression is not very illuminating, we refrain
from displaying it here.

3.5. Relation between covariant and canonical connection

Another striking feature of our model is the following: constrained BF theory, that is, the
Plebanski theory, should be a candidate for quantum gravity. Our Holst model should be
equivalent to that theory at least semiclassically because morally speaking, the only difference
between them lies in the technical implementation of the simplicity constraints, modulo the
caveats mentioned in section 2. Now one of the most important properties of the implementation
of the simplicity constraints in some of the most popular SFM is that the irreducible Spin(4)
representations that one sums over are the simple ones?®. In our model we do not see any sign
of that?’. This is an important issue because the restriction to simple representations means that
the underlying gauge theory is roughly SU(2) rather than Spin(4), which looks correct if the
SFM is to arise from canonical LQG, which indeed is a SU(2) gauge theory. Thus, in usual
SEM the simplicity constraints seem to already imply the gauge fixing of the ‘boost’ part of
the Spin(4) Gauss constraint that is necessary at the classical level in order to pass from the
Holst connection to the Ashtekar—Barbero—Immirzi connection [17]. Strictly speaking, that has

26 If we label an irrep of Spin(4) by a pair (j,, j_), then a simple irrep is one for which j, = j_ [11]. There is a
similar restriction if one works with an arbitrary Immirzi parameter [5].

27 Also the models proposed in [8, 9, 32] do not restrict to simple representations. The amplitudes are however
peaked on these, although with a non-trivial width.
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not yet been established as pointed out in [50], where it is shown that the connection used in
SFM is actually the spin connection and not the Holst connection. But apart from that, in the
considerations of the previous section we do not see any simplicity restrictions on the type of
group representations.

However, note that what we did in the previous section was incomplete because in order to
properly define the n-point functions we must gauge fix the generating functional with respect
to the G Gauss constraints. Formally, this is not necessary if we only consider correlators of
G invariant functions such as the metric because the infinite gauge group volume formally
cancels out in the fraction z[j]/z[0]. However, details matter: the formal arguments cannot
be substantiated by hard proofs in this case. Specifically, if we consider G = SO(1, 3), there
is no measure known for gauge theories for non-compact groups (see [51] for the occurring
complications) and thus we are forced to gauge fix at least the boost part of the Gauss constraint.
This is the same reason why one uses the time gauge in the canonical theory. We expect that
implementing the time gauge fixing [17] in a way similar to the implementation of the simplicity
constraints in usual BF theory will effectively reduce the gauge group to SU(2).

Details will appear elsewhere, but roughly speaking the idea is the following: the time
gauge is a set of constraints C[e] on the co-tetrad e. By the usual manipulations we can pull the
corresponding § distribution out of the co-tetrad fuctional integral and formally obtain

xasilj1=[8[C[8/8]1] xnowsl ], (3.44)

where xpoic 1S the generating functional of the previous section and xap; stands for the
Ashtekar—Barbero—Immirzi path integral.

Whether this really works in a rigorous fashion remains to be seen. However, we find it
puzzling that the simplicity constraints in usual SFM, which classically have nothing to do
with the time gauge, should automatically yield the correct boundary Hilbert space. It seems
intuitively clear that the time gauge must be imposed in the quantum theory in addition to the
simplicity constraints, just like in the classical theory, as we suggest. Without imposing it, we
do not see any sign of a restriction from G to SU(2) in our model where we solve the simplicity
constraints differently. We expect this to be related to the work [52]. This observation indicates
that usual SFM and our formulation are rather different from each other.

4. Conclusions and future work

In this paper we have proposed a different strategy to construct SFM for GR. Rather than the
Plebanski action we take the Holst action as our starting point. This means that the simplicity
constraints of the Plebanski formulation have been correctly taken care of. The price to pay is
that the connection to BF theory is lost. The motivation behind our strategy is that BF theory
is a TQFT and therefore quite different from GR which has an infinite number of physical
degrees of freedom. Hence the usual triangulation-independent methods developed for TQFT
and employed in current SFM are possibly less powerful in the context of GR. In particular, the
fact that it is difficult to deal with the simplicity constraints in current SFM might be a sign of
that. Another problem with the Plebanski formulation that we have not mentioned yet is that it
is difficult to couple matter because matter directly couples to the co-tetrad rather than the B
field. In principle, one can express e via B modulo simplicity constraints but the corresponding
formulae are even more involved than those for e. Note that one must couple matter to BF theory
in order to get a realistic model. For 3D gravity, coupling matter is straightforward [53] because
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there the B field and e coincide, while in 4D this has not yet been done except for non-standard
model fermions which just couple to the connection [54, 55] or membranes coupled to pure BF
theory [56].

The method we propose in this paper might be called a brute force and textbook strategy.
Dropping the insistence on triangulation independence right from the beginning, we proposed a
Wilson action-like naive discretization of the Holst action. We carefully studied the connection
of the Holst path integral with the canonical LQG correlation or n-point functions and used
relational techniques to make the connection with the physical Hilbert space and observables.
In principle, none of these ingredients are new; they have been successfully employed in other
contexts. Of course, the appealing elegance of (constrained) BF theory has disappeared in
our formulation, the integrals to be computed are rather challenging (but not impossible) and
the gauge fixing conditions for spatial diffeomorphism and Hamiltonian constraints as well
as a local measure factor without which the connection to observation is lost complicate the
formalism. However, we feel that the resulting structure, while far from being worked out
in detail, has some interesting features such as the Wick-like structure of the physical tetrad
correlators and less local structure. In particular, we have shown that imposing the time gauge
also in the quantum theory comes out as a necessary and natural condition in our model in order
to make contact with the LQG Hilbert space.

As already mentioned in the introduction, this paper is exploratory in nature. It focuses
more on ideas rather than analysis and there are many open issues that need to be settled
before the present model can be taken seriously. Apart from the topological issues mentioned
in section 3.1, the convergence and measure theoretic issues discussed in section 3.3 and finally
the issues with the imposition of the time gauge outlined in section 3.5, there are further points
that need to be addressed.

One of the most serious ones is the continuum limit: the fact that we are working with
cubulations suggests a naive but natural notion of continuum limit, which consists in studying
the behaviour of the correlation functions under barycentric refinement of the hypercubes at a
fixed IR regulator (boundary surface). The last couple of years has seen the resurgence of a
coarse graining programme in SFM (see, e.g., [57]); and it would be very interesting to see how
the application of the procedure to our discretization compares with the standard models. Of
course, in the spirit of the AQG framework [26], one could also say that the continuum limit
has already been taken provided that one works with infinite cubulations. This requires then, in
a separate step, to remove the IR regulator.

A more practical but still important problem is the following: even at a finite UV and IR
regulator, it is already hard enough to compute the determinant of the covariance matrix of the
co-tetrad Gaussian and to determine its index (which may vanish automatically, see appendix B).
But since these covariances are highly correlated, practical computation of the n-point functions
at least in the macroscopic regime will be possible only if the corresponding non-trivial measure
has some kind of cluster property [58].

All these issues are left for future work.
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Appendix A. Non-standard Gaussian integrals

Let G be a real valued, symmetric and non-singular matrix on the real vector space V = R" and
let j € V. We are interested in the non-standard Gaussian integral

I:= f d"x etz ¥ G, (A1)
v
Using the translation x = y — G~'j, we can simplify this to
[ =e 2067 / dy e2?" oy, (A.2)
4
There exists an element S € GL(n, R) such that G = STDS, where D is a regular diagonal
n x n matrix which is possibly indefinite. Denote by d,, ...,d, € R —{0} the entries of D.
Then the change of coordinates y = Sz reveals
~i3j7G67j i
| G A— / 'z et e, (A3)
|det($)] Jv
Now consider the basic integral
= / dg 142 (Ad)
R

for d € R — {0}. For d = ik, k > 0 we know the value of (A.4); however, that formula involves
a square root and thus analytic continuation of /; in d is ambiguous. Hence we must determine
the value of (A.4) by an independent means.

The integrand in (A.4) is entirely analytic in z without poles. For d >0 or d <0,
respectively, the integral over the arc 0 < arg(z) < m/2 or 0 > arg(z) > —m/2, respectively,
vanishes at infinite radius. Hence, using a Cauchy integral argument, we may rotate the integral
from z € R to z € e @D7T/4R 5o that with 7 = e5&"@D7/4; ¢ € R, we obtain

Id — eisgn(d)n/4 / dt e—|d|t2/2 — /27T/|d| eisgn(d)n/4- (AS)
R

Given a symmetric matrix G with signature p, g (i.e. p positive, g negative and n — p — g zero
eigenvalues) we define its index ind(G) := p — g. Then, combining (A.3) and (A.5) we obtain
m” e—i%jTG“j elind(G)r /4

I = [36t(G)| . (A.6)

Appendix B. On the index of special matrices

While determinants may be tedious to calculate, it is always analytically possible. However,
the index of a matrix is harder to obtain. While there exist algorithms to obtain it just from
its characteristic polynomial (rather than from its spectrum, which would be impossible to
determine analytically for general large matrices) for concrete matrices such as the Déscartes
sign rule [59], for general matrices of a given restricted structure there are no such algorithms
available except for a few cases.
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Our situation is the following: consider the 16 x 16 matrix G with entries
Gun.wn = GYj. Since Gy, =-G}, =—-G'; =G| it is symmetric. Let us also write
! We consider the lexicographic ordering of the compound index (ul) as
(00), ..., (03), (10), ..., (13), (20), ..., (23), (30), ..., (33). Consider the antisymmetric
4 x 4 matrix G*¥ with 0 < u < v <3 given by (G"");; := G’;}) Then the 16 x 16 matrix G
has the following block structure:

0 GO] GOZ G03
_G()l 0 G12 G13
G= _G"2 _gn» 0 3 |- (B.1)
_G03 _G13 _G23 0

This leads us to the following conjecture.

et =¢

Conjecture B.1. Let A, B, C, D, E, F be antisymmetric, real valued 4 x 4 matrices and let G
be the symmetric 16 x 16 matrix

0O A B C
A 0 D E

“=|_3 -p 0 F (B.2)
—C —E —F 0

Then ind(G) = 0.

It turns out to be extremely hard to prove this conjecture although it is rather plausible. For
example, it is easy to show that the conjecture is correct when the matrices A, B, C, D, E and
F are 2 x 2 antisymmetric matrices. It is also true when the matrices A, B, C, D, E and F are
linearly dependent. We leave the proof (or disproof) of this conjecture to future publications.

If the conjecture were true and G is non singular, then we will know that G has eight
positive and eight negative eigenvalues. Hence we will know that det(G) > 0. In order to
compute det(G) we make use of the following basic factorization property for an arbitrary
block matrix with blocks A, B, C, D with invertible A

A B\ (A 0\ (1 A~'B B3
(c D>_<C 1) (0 D—CA“B>' ®-3)

det(G) = det(A) det(D — CA™'B). (B.4)

In our situation, by means of (B.4) we can iteratively downsize the size of the matrix of which
we have to compute the determinant from rank 16 to 8 and then to 4. At rank 4 we may use
Cayley’s theorem [59] in order to express det(G) directly in terms of polynomials of the traces
of products of the G*¥ and thus in terms of traces of products of the plaquette loops.

It follows that
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