English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Active control does not eliminate motion-induced illusory displacement

MPS-Authors
/persons/resource/persons83846

Caniard,  F
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Caniard, F., Bülthoff, H., Mamassian, P., Lee, S.-W., & Thornton, I. (2011). Active control does not eliminate motion-induced illusory displacement. In 8th Symposium on Applied Perception in Graphics and Visualization (APGV 2011) (pp. 101-108). New York, NY, USA: ACM Press.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BACA-0
Abstract
When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current paper, we explored whether active control of the physical position of the patch can overcome such motion induced illusory displacement. We created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. Specifically, when the grating drifted to the right, participants adjusted the global position of the patch to the left of the target line, and when it drifted to the left, errors were to the right of the line. The magnitude of the errors was consistent with previously reported perceptual judgements for centrally presented items, and scaled systematically with the speed of local drift. Importantly, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target. The current findings could have important implications for interface design, suggesting that local dynamic components of a display could affect perception and action within the more global application environment.