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Abstract. We evaluate the simulated global biogeochemical patterns

Terrestrial biosphere models typically abstract the im-against a variety of field and satellite-based observations fol-
mense diversity of vegetation forms and functioning into alowing a protocol established by the Carbon-Land Model In-
relatively small set of predefined semi-empirical plant func- tercomparison Project. The land surface fluxes and vegeta-
tional types (PFTs). There is growing evidence, however.tion structural properties are reasonably well simulated by
from the field ecology community as well as from modelling JeDi-DGVM, and compare favourably with other state-of-
studies that current PFT schemes may not adequately repréhe-art global vegetation models. We also evaluate the simu-
sent the observed variations in plant functional traits and theilated patterns of functional diversity and the sensitivity of the
effect on ecosystem functioning. In this paper, we introduceleDi-DGVM modelling approach to the number of sampled
the Jena Diversity-Dynamic Global Vegetation Model (JeDi- strategies. Altogether, the results demonstrate the parsimo-
DGVM) as a new approach to terrestrial biosphere modellingnious and flexible nature of a functional trade-off approach
with a richer representation of functional diversity than tra- to global vegetation modelling, i.e. it can provide more types
ditional modelling approaches based on a small number obf testable outputs than standard PFT-based approaches and
fixed PFTs. with fewer inputs.

JeDi-DGVM simulates the performance of a large number The approach implemented here in JeDi-DGVM sets the
of randomly generated plant growth strategies, each defineébundation for future applications that will explore the im-
by a set of 15 trait parameters which characterize various aspacts of explicitly resolving diverse plant communities, al-
pects of plant functioning including carbon allocation, eco- lowing for a more flexible temporal and spatial representa-
physiology and phenology. Each trait parameter is involvedtion of the structure and function of the terrestrial biosphere.
in one or more functional trade-offs. These trade-offs ulti-
mately determine whether a strategy is able to survive under
the climatic conditions in a given model grid cell and its per-
formance relative to the other strategies. The biogeochemical
fluxes and land surface properties of the individual strate-
gies are aggregated to the grid-cell scale using a mass-based
weighting scheme.
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1 Introduction PFTs, and that for several important traits there is greater
variation within PFTs than between PFT@/right et al,
Human activities are altering the terrestrial biosphere at &2005 Reich et al. 2007 Kattge et al.2011). This trait vari-
large scale and an alarming radillennium Ecosystem As-  ation may play an important role for many ecosystem func-
sessment2005. The risks associated with these activities tions (Diaz and Cabida2001; Westoby et a].2002 Ackerly
have led to the development of terrestrial biosphere modeland Cornwell 2007 and for ecosystem resilience to envi-
(TBMs; e.g.Foley et al, 1996 Friend et al.1997 Woodward = ronmental changeXiaz et al, 2006. Recent model-data as-
et al, 1998 Cox, 2003, Sitch et al, 2003. These mechanis- similation studies using eddy covariance flux@sdenendijk
tic, process-based, numerical models simulate the large-scakt al, 2011) as well as other field and satellite-based obser-
dynamics of terrestrial ecosystems and have proven usefulations @Alton, 2011) provide confirmation that current PFT
for testing hypotheses and making predictions regarding theschemes are insufficient for representing the full variability
responses of ecosystem structure and functioning to past anaf vegetation parameters necessary to accurately represent
future environmental change®Juillet et al, 2010. TBMs carbon cycle processes. A more theoretical studyKlsi-
have also been embedded within comprehensive earth systedon et al.(2007) demonstrated that using a small number of
models (ESMs) to capture biogeochemical and biogeophysidiscrete vegetation classes in a coupled climate—vegetation
cal feedbacks between the terrestrial biosphere and the physaodel can lead to potentially unrealistic multiple steady-
ical climate systeml(evis, 2010. Intercomparison studies states when compared with a more continuous representa-
(Friedlingstein et a).2006 Sitch et al, 2008, however, have tion of vegetation. Others have contended that DGVMs may
revealed considerable divergence among the results of theswverestimate the negative effects of climate change by not
models with respect to the fate of the terrestrial biosphere an@ccounting for potential shifts in ecosystem compositions to-
its function as a driver of the global carbon cycle under pro-wards species with traits more suited to the new conditions
jected scenarios of climate change. This divergence may bgPurves and Pacal2008 Tilman et al, 2006§. For exam-
at least in part, due to their coarse and differing treatment ople, some coupled climate—vegetation models @ax et al,
plant functional diversity $itch et al, 2008 Harrison et al. 2000 project an alarming dieback of the Amazon rainforest
2010 R. Fisher et a.2010. under plausible scenarios of continuing anthropogenic green-
For reasons of computational efficiency as well as a lackhouse gas emissions. The coarse representation of functional
of sufficient data and theory, TBMs typically abstract the im- diversity in these models provided by current PFT schemes
mense functional diversity of the over 300 000 documentedcould be leading to an overestimation of the strength and
plant species to a small number (typically between 4 andabruptness of this respondge. FFisher et a).2010. Likewise,
20) of discrete plant functional types (PFT&attge et al, DGVMs might underestimate the positive effects of environ-
2011 which are defined a priori before any simulations are mental changes on ecosystem performance, e.g. by ignor-
run. In the context of TBMs, PFTs represent broad bio-ing warm-adapted species in typically temperature-limited
geographical, morphological, and phenological aggregationsegions [oehlg 1998. Therefore, while PFTs have been and
(e.g. tropical broadleaf evergreen forest or boreal needleleafvill likely continue to be useful for many modelling applica-
deciduous forest) within which parameter values are heldions, going forward we will need new approaches that allow
spatially and temporally constant and responses to physicdbr a richer representation of functional diversity in DGVMs.
and biotic factors are assumed to be simiRrentice et al. Many approaches have been proposed to meet the chal-
2007. They have typically been classified subjectively us-lenge of improving the representation of functional diver-
ing expert knowledge, and their occurrence within a givensity in DGVMs (e.g.Wright et al, 2005 Reich et al. 2007,
model grid cell is based, either directly or indirectly, on semi- Kattge et al. 2009 Harrison et al. 201Q Verheijen et al.
empirical bioclimatic limits, such as minimum or maximum 2012. However, so far, most of these have applied empir-
annual temperature (e.Box, 1996 Bonan et al.2002 Sitch ical relationships between observed plant traits and envi-
et al, 2003. Inductive approaches have also been proposedonmental (primarily climatic) factors. The utility of such
wherein PFTs are objectively classified by applying statisti-correlational approaches for predicting the effects of global
cal techniques to large datasets of vegetation traits and cliehange on the terrestrial biosphere may be limited, as cli-
matic variables (e.gChapin et al. 1996 Wang and Price  mate model projections point towards the possibility of novel
2007. Some TBMs known as dynamic global vegetation climates without modern or palaeo-analogugsckson and
models (DGVMSs) allow the distribution of PFTs to evolve Williams, 2004 Williams and Jacksqn2007). Other mod-
dynamically in response to changes in climate. Regardlesgllers have introduced schemes in which PFT parameters
of approach, the PFT schemes used by current TBMs, anddapt to environmental conditions, e.g. with adaptive param-
in particular those used by DGVMs, have been criticized aseters related to leaf nitroge#@dehle and Frien®010, allo-
ad hoc and as ignoring much of our growing knowledge of cation §riedlingstein et aJ.1999 and phenology%cheiter
comparative plant ecology@rrison et al.2010. and Higgins 2009. However, despite some interesting pro-
In fact, the field ecology community has shown that for posals (e.gFalster et al.201Q Van Bodegom et al2017),
many plant traits there is a large amount of variation within so far no DGVM has sought to mechanistically represent the
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full range of functional trait diversity within plant commu- land surface properties associated with many plant growth
nities (i.e. at the subgrid scale) using a trait-based trade-oftrategies are aggregated to the ecosystem scale. More de-
approach. Such approaches have enabled significant progre&sled descriptions of the model equations and parameters are
in modelling the biogeographical and biogeochemical pat-provided in Appendices A—C. Then, we evaluate the simu-
terns of global marine ecosystenBBriiggeman and Kooi- lated patterns of terrestrial biogeochemical fluxes and asso-
jman 2007 Litchman et al. 2007 Follows et al, 2007, ciated land surface properties against a variety of field and
Dutkiewicz et al, 2009 Follows and Dutkiewicz2011). satellite-based observations. To highlight the unique capabil-

Here, we introduce our prototype for a new class of vege-ities of JeDi-DGVM, we also evaluate the simulated patterns
tation models that mechanistically resolve subgrid-scale traibf functional diversity and the sensitivity of the mechanis-
variability using functional trade-offs, the Jena Diversity- tic trait-filtering approach to the number of sampled plant
DGVM (hereafter JeDi-DGVM). Just as the first generation growth strategies. Finally, we discuss the current limitations
of PFT-based DGVMs were built upon earlier PFT-basedof the JeDi-DGVM, as well as some potential improvements
equilibrium biogeography models, JeDi-DGVM builds upon and applications, before we close with a summary and con-
an equilibrium biogeography modefigidon and Mooney  clusion.
200Q hereafter KM2000) based on the concept of func-
tional trade-offs and environmental filtering. JeDi-DGVM
and KM2000 were inspired by the hypothesis “Everything 2 The Jena Diversity-Dynamic Global Vegetation
is everywhere, but the environment selecBaés-Becking Model
1934 O’Malley, 2007). This nearly century-old idea from
marine microbiology postulates that all species (or in theJeDi-DGVM consists of a plant growth module that is tightly
case of JeDi-DGVM, combinations of trait parameter val- coupled to a land surface module. Both components contain
ues) are, at least latently, present in all places, and that thparameterizations of ecophysiological and land surface pro-
relative abundances of those species are determined by thgsses that are common to many current global vegetation
local environment based on selection pressures. Rather thaind land surface models. The main novelties in the vegetation
simulating a handful of PFTs, JeDi-DGVM simulates the component are (i) an explicit representation of trade-offs that
performance of a large number of plant growth strategiesare associated with a diverse set of plant growth strategies,
which are defined by a vector of 15 functional trait param- (i) the inclusion of the whole trait space for testing their rel-
eters. The trait parameter values determine plant behavioustive fitness, and (iii) the aggregation of properties and fluxes
in terms of carbon allocation, ecophysiology, and phenol-from the individual growth strategies to grid-scale structure
ogy and are randomly selected from their complete theoretiand function based based on their relative abundances. The
cal or observed ranges. JeDi-DGVM is constructed such thafollowing overview of the model focuses on describing the
each trait parameter is involved in one or more functionalnovel combination of these components and how they are
trade-offs Bloom et al, 1985 Smith and Hustoj1989 Hall  implemented in the model, while the full description with
et al, 1992 Westoby and Wright2006. These trade-offs  the detailed parameterizations is provided in Appendices A—
ultimately determine which growth strategies are able to sur-C. A schematic diagram of the JeDi-DGVM modelling ap-
vive under the climatic conditions in a given grid cell, as well proach is shown in FigL.
as their relative biomasses.

KM2000 demonstrated that this bottom-up plant func- 2.1 Representation of trade-offs
tional trade-off approach is capable of reproducing the broad
geographic distribution of plant species richness. More re-When we speak of terrestrial vegetation, we speak of a large
cently, their trade-off approach has provided mechanistic in-number of plants of different species that differ to some
sight into other biogeographical phenomena including theextent in how they grow and respond to the environment.
global patterns of present-day biomdge( et al. 2010, In fact, in a given environment there are potentially many
community evenness and relative abundance distributionslifferent strategies by which individual plant species could
(Kleidon et al, 2009, as well as possible mechanisms for grow and cope with the environment, with some ways be-
biome shifts and biodiversity changes under scenarios ofng more beneficial to growth and reproductive success than
global warming Reu et al.2011). JeDi-DGVM extends the other ways. Some plant species, for instance, grow and re-
KM2000 modelling approach to a population-based modelproduce rapidly, such as grasses, while others, such as trees,
capable of representing the large-scale dynamics of terregrow slowly and it takes them a long time to reproduce.
trial vegetation and associated biogeochemical fluxes by agSome species allocate a greater fraction of their assimilates to
gregating the fluxes from the many individual growth strate- leaves, enhancing their ability to capture incoming sunlight,
gies following the “biomass-ratio” hypothesiSiime, 1998. while others allocate more to root growth, increasing their ac-

In the following section, we describe the novel featurescess to soil moisture. Some species react quickly to changes
of the JeDi-DGVM including mechanistic trait filtering via in environmental conditions, thereby potentially exploiting
environmental selection and how the resulting fluxes andmore of the beneficial conditions for growth, while others
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Fig. 1. Schematic diagram of the JeDi-DGVM modelling approach. The model generates a large number of hypothetical plant growth
strategies, each defined by 15 functional trait parameters that characterize plant behaviour with regards to carbon allocation, phenology, anc
ecophysiology. The trait parameter values are randomly sampled from their full observed or theoretical ranges. The plant growth module
simulates the development of the plant growth strategies (independently and in parallel) based on fundamental ecophysiological processe:
(e.g. photosynthesis, respiration, allocation, phenology, and turnover). The environmental conditions of each strategy are provided by the
land surface module, which simulates canopy interception, infiltration, evaporation, root water uptake, and runoff using daily meteorological
forcings of downwelling shortwave and longwave radiation, air temperature and precipitation. Land surface parameters (e.g. leaf area index,
surface albedo, and rooting depth) derived from the carbon pools and trait parameters of each plant growth strategy affect its simulated land
surface hydrology and, consequently, its net primary productivity (NPP), i.e. its supply of assimilates. Functional trade-offs and the climatic
conditions in each grid cell constrain the range and relative fitness of the surviving growth strategies (i.e. those that are able to maintain a
positive balance of stored assimilates). The fluxes and properties of the surviving plant growth strategies are averaged, weighted by their
relative biomasses, at each time step and grid cell to produce aggregated ecosystem-scale output variables. The aggregated litter fluxes for
the input for an additional module (not shown) for simulating soil carbon dynamics and heterotrophic respiration.

are more conservative, thereby potentially avoiding damagesoil moisture from the rooting zone. Both of these examples
by a turn to less favourable conditions. have functional consequences: more absorbed radiation en-
To represent this flexibility of how to grow and repro- hances the supply of energy for photosynthesis and evapo-
duce in the model, many different plant growth strategiestranspiration, and the amount of extracted soil water deter-
are simulated simultaneously using the same ecophysiologmines the water status of the plant and the supply of mois-
ical parameterizations under the same atmospheric forcingure for evapotranspiration. This coupled plant-land surface
The only part in which the plant growth strategies differ is in model is therefore capable of simulating the interaction be-
their values for fifteen functional trait parametess (. ., t15; tween development of a plant growth strategy and land sur-
Table C2). These parameters control the amount of carbonface functioning in a process-based manner.
allocated from photosynthesis and storage to six plant car- Each trait parameter is associated with costs and benefits,
bon pools, the response times to changes in environmentdéading to functional trade-offs because no trait value (or set
conditions and turnover times of the various carbon poolsof trait values) can be optimal for plant fitness in all environ-
(i.e. phenology), and other aspects of ecophysiological funciments. For example, a particular growth strategy may allo-
tioning (e.g. leaf nitrogen concentration, which determinescate a relatively high fraction of carbon to fine roots, enhanc-
the balance between photosynthesis and respiration). ing the rate at which it can extract moisture from the soil
Each growth strategy is represented by six carbon poolsnatrix. This may be beneficial in terms of higher productiv-
representing leaves, fine roots, aboveground and belowity. However, it also comes with both real and opportunity
ground wood (stems and coarse roots), storage, and repra@osts. That growth strategy would incur the real metabolic
duction (“seeds”). These compartments are linked to thecosts of growth and maintenance respiration for the addi-
physical functioning of the land surface which is simulated tional fine root biomass. A higher fractional allocation to
by the land surface module. For instance, leaf biomass idine roots also necessarily results in a lower fractional allo-
linked to the amount of absorbed solar radiation, and finecation to the other carbon pools (e.g. a lower allocation to
root biomass to the capability of a growth strategy to extractthe aboveground pools and thus a decreased opportunity to
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capture light). In a given environment, there will be some op-averages across fractional coverages of PFTs. Of those mod-
timum allocation strategy that maximizes productivity. How- els, the competition between PFTs for fractional area in a
ever, in environments with plentiful sunlight and soil mois- grid cell is typically computed implicitly based on moving
ture, a wide range of allocation strategies will perform closeaverages of bioclimatic limitsArora and Boer2006. This

to the optimum. As the climate becomes harsher, the rangapproach is not suitable for JeDi-DGVM because its trade-

of well-performing strategies will decrease. off-based framework does not rely on a priori bioclimatic
limits. A few DGVMs (e.g.Cox, 2001, Arora and Boer
2.2 Environmental selection 2009 calculate PFT fractional coverages using a form of the

Lotka—\Volterra equations, in which the colonization rate of

In order to implement the notion that “Everything is ev- each ofN PFTs is linked through &-by-N matrix of com-
erywhere, but the environment selects”, we test essentiallypetition coefficients. For JeDi-DGVM, this Lotka—Volterra
the complete range of potential values for each of the 15approach quickly becomes computationally burdensome as
trait parameters. For some trait parameters, we sample vathe size of the necessary competition matrix increases with
ues from the full mathematically possible range. For exam-the square of the potentially large number of tested growth
ple, the trait parameters controlling the fractional allocationstrategies. The necessary competition coefficients are also
of carbon to the different plant carbon pools are only con-difficult to determine theoreticallyMcGill et al., 2006.
strained such that together they sum to one. For other trait Instead, JeDi-DGVM aggregates vegetation fluxes and
parameters (e.g. leaf nitrogen concentration), we sample valproperties to the grid-cell scale following the “biomass-ratio”
ues from observed ranges taken from literature. To effechypothesis Grime, 1998, which postulates that the imme-
tively implement environmental selection, the model gener-diate effects of the functional traits of a species are closely
ates a large number of plant growth strategies using a quasproportional to the relative contribution of that species to the
random Latin hypercube sampling algorithMdKay et al, total biomass of the community. Recent work (e3arnier
1979. A 15-dimensional hypervolume representing the po-et al, 2004 Vile et al, 2006 Kazakou et al. 2006 Diaz
tential trait space is first divided into many equal subvolumes.et al, 2007 Quetier et al. 2007 supporting the “biomass-
A random point defining a plant growth strategy is then se-ratio” hypothesis has shown strong statistical links between
lected from each subvolume. community-aggregated functional traits (i.e. the mean trait

Each grid cell is seeded with a small amount of initial seedvalues of all species in a community, weighted by their mass-
biomass for each plant growth strategy. The model mechbased relative abundances) and observed ecosystem func-
anistically simulates the development of the plant growthtions (e.g. aboveground net primary productivity and lit-
strategies and their interactions with the coupled land surfacéer decomposition). Others have combined the concept of
module. Growth strategies which are able to maintain a posecommunity-aggregated functional traits with the maximum
itive balance of stored assimilates survive, passing througlentropy (MaxEnt) formalism from statistical mechanics to
what Webb et al.(2010 refers to as a “mechanistic per- successfully make predictions, in the other direction, about
formance filter”. As environmental conditions change, dif- the relative abundances of individual species within commu-
ferent strategies will respond in different ways; some maynities (e.gShipley et al.2006h Sonnier et a.201Q Laugh-
become more productive, others may no longer be able tdin et al,, 2011).
cope with new conditions and die out. Strategies which were Here, rather than weighting the plant functional traits,
previously filtered out will again be given small amounts of JeDi-DGVM calculates ecosystem-scale variables by di-
seed carbon and may persist under the new conditions. Thigectly averaging the fluxes and ecosystem properties across
process allows the composition of the plant communities inall surviving growth strategies, weighting the contribution
each grid cell to adapt through time, without relying on a pri- of each strategy by its current biomass relative to the to-
ori bioclimatic limits relating the presence or absence of atal biomass of all strategies within that grid cell. We refer
growth strategy to environmental variables. This mechanisto these grid-cell-scale variables as community-aggregated
tic trial-and-error approach seems potentially better suited tdluxes (or properties). As an example, the net primary pro-
simulate the response of the biosphere to climates withoutluctivity (NPP) of each growth strategyat a grid cellj,
present-day analogues because even under new conditioPR;, is a function of its trait parameter valu@s and the
fundamental functional trade-offs that all plants face are un-environmental forcing variableX ; at that grid cell. The

likely to change. community-aggregated NPP(NPPJ-), for that grid cell is
the sum of the NPP fluxes of all growth strategieat that
2.3 Aggregation to ecosystem scale grid cell, weighting the contribution of each growth strategy

Some mechanism is needed to aggregate the biogeochemical
fluxes and vegetation properties of the potentially many sur-
viving growth strategies within each grid cell. Most current  1\we adopt chevron notation (e/NPP;)) to denote community-
DGVMs calculate grid-cell fluxes and properties as weightedaggregated fluxes and properties.
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by its mass-based relative abundapge outputs with fewer a priori inputs than PFT-based models. Fi-
¢ : nally, in Sect. 3.3, we describe a series of simulation ensem-
bles performed to test the sensitivity of the biogeochemical
(NPFy) = Zpi’f NPR; = Zpij f(TiXj). @ and biodiversity evaluation results to the number of sampled
=t =t plant growth strategies.
The relative abundangs; of each surviving growth strategy
i in a given grid cellj is proportional to its living biomass 3.1 Evaluation of biogeochemical patterns
BM;; atthat grid cell relative to the sum of the living biomass
of all surviving growth strategies in that grid cell: JeDi-DGVM was run with 2000 randomly sampled plant
BM. growth strategies on a global grid at a spatial resolution
- 4 (2) of approximately 2.8x 2.8°, covering all land areas ex-
Z;le BMy; cept Antarctica. The model was forced at a daily time step
with downward shortwave and longwave radiation, precip-

. ; jtation, and near-surface air temperature from an improved
its leaf, fine root, aboveground and belowground wood, an b P

. ' . 'NCEP/NCAR atmospheric reanalysis dataggetaf et al,
storage carbon pools. Thus, the relative abundances within 3006 We looped the first 25yr of the reanalysis dataset
plant community range between zero and one and the su .

. . . (1948-1972) with a fixed, preindustrial atmosphericCO
of the abundances is one. More details on the aggregatio ; . . .
. : concentration until the vegetation and soil carbon pools
scheme are provided in Appendh®.

The resulting community-aggregated fluxes are for thereached a quasi-steady state3500yr). After this spin-up

. . ) imulation, a transient simulation was run for years 1798—
most part diagnostic and do not influence the developmen 004 using prescribed global atmospheric C@ncentra-
of the individual growth strategies or their environmental gp 9 P

o ; . tions from the C4AMIP reconstruction &ftiedlingstein et al.
conditions. However, the community-aggregated litter fluxes . . . : .
: : ’ : (2006. This transient simulation was forced by the same cli-
do form the input for a relatively simple soil carbon mod-

. . ; : . mate forcing as the spin-up run for years 1798-1947 and b
ule, which then provides simulated estimates of heterotrophl%he full rean?’:llysis datgset fgr years 1yg 48-2004. We ran an ag-
respiration (see AppendiA10). This implementation of .

the “biomass-ratio” hypothesis assumes that interactions beq“tIonal experiment to compare the response of JeDi-DGVM

tween plants, both competitive and facilitative, are weak andt oa sudde_n increase in atmospherlcgjmth_results from
o . . . the Free-Air CQ Enrichment (FACE) experimentNorby
do not significantly alter plant survival or relative fitness.

L . . : t al, 2005. This FACE experiment simulation was similar
The potential implications of this assumption are dISCUSSGCf . . . . .
in Sect5.3 o the transient simulation described above but with the atmo-

spheric CQ concentration set to 550 ppm for years 1997—

2004. We deviated from the C-LAMP experimental proto-
3  Methods col by allowing the vegetation to evolve dynamically through

the simulations, rather than prescribing the preindustrial land
The Jena Diversity-DGVM described in this paper presentscover dataset. The aspects of the C-LAMP protocol related
a new approach to terrestrial biogeochemical modelling, into N deposition were not considered, as a nitrogen cycle has
which the functional properties of the vegetation emerge asot yet been implemented in JeDi-DGVM.
a result of mechanistic trait filtering via environmental selec- We evaluate the modelled biogeochemical patterns from
tion. This contrasts with the standard approach to global vegthe transient simulation against multiple observational
etation modelling which utilizes a small set of PFTs whose datasets using a set of systematic metrics. As computed, each
predetermined properties are specified by parameter valueS-LAMP metric falls somewhere between zero and one and
often determined from databases of observed plant trait valis then scaled by a numerical weight to produce a score. The
ues. In an effort to understand if this more diverse represenweights are based on subjective estimates of a metric’s un-
tation of the terrestrial biosphere can reasonably capture obeertainty, considering both the measurement precision of the
served biogeochemical patterns, we contrast the performanaabservations and the scaling mismatch between the model
of the less constrained JeDi-DGVM approach with the per-and observations. Further details about each metric and the
formance of two previously evaluated land surface modelgustifications behind their particular numerical weighting are
based on the PFT paradigm. To do this, we followed an ex-described irRanderson et a{2009. More information about
isting systematic protocol established by the Carbon-Landhe datasets and scoring methods used in the C-LAMP eval-
Model Intercomparison Project (C-LAMRanderson et al.  uation is also provided in Appendi®. The metrics, their
2009. The implementation of this protocol here is described weights, along with the resulting scores for JeDi-DGVM are
below in the following subsection. In Sect. 2.2, we describesummarized in Tablé.
the evaluation of the simulated biodiversity patterns. This The scores for two terrestrial biosphere models based on
biodiversity evaluation serves to highlight the parsimoniousthe PFT concept, CLM-CNIthornton et al.2007) and CLM-
nature of JeDi-DGVM, i.e. the model produces more testableCASA’ (Fung et al. 2005 Doney et al. 2006, are also

Pij

The living biomass of a growth strategy being the sum of

Biogeosciences, 10, 4137477, 2013 www.biogeosciences.net/10/4137/2013/
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Table 1. Summary of the evaluation metrics and scores. Each metric (column 1) is associated with a possible score (column 3) based on a
subjective assessment of its level of uncertainty and model-data scale mismatch. Each metric is broken into metric components (column 2)
with associated subscores (column 4). Scores are presented for JeDi-DGVM (this paper) and, for comparison, CLM-CN and CLM-CASA
(previouly evaluated ifRanderson et gl2009. The total score for each model (out of a possible score of 100) is presented at the bottom.
MODIS, MODerate Resolution Imaging Spectroradiometer; EMDI, Ecosystem Model-Data Intercomparison.

Metric Metric components Score Subscore JeDi-DGVM CLM-CASACLM-CN
Leaf area index 15 13.4 13.5 12.0
MODIS phase 6 5.0 5.1 4.2
MODIS maximum 5 4.7 4.6 4.3
MODIS mean 4 3.7 3.8 35
Net primary productivity 10 8.4 8.0 8.2
EMDI observations 2 1.5 1.5 1.6
EMDI histogram 4 3.4 3.0 34
MODIS spatial pattern 2 1.6 1.6 1.4
MODIS zonal means 2 1.9 1.9 1.8
CO, seasonal cycle 15 11.8 104 7.7
comparison with GLOBALVIEW  60-90N 6 4.9 4.1 2.8
phase and amplitude 30-60l 6 4.5 4.2 3.2
0-3C¢° N 3 25 2.1 1.7
Carbon and energy 30 18.3 17.2 16.6
fluxes from Ameriflux Net ecosystem exchange 6 2.6 25 2.1
Gross primary productivity 6 3.5 3.4 3.5
Latent heat 9 6.6 6.4 6.4
Sensible heat 9 5.6 4.9 4.7
Carbon stocks 30 16.3 16.7 13.8
and transient dynamics Aboveground biomass 10 6.7 5.3 5.0
in the Amazon Basin
NPP stimulation 10 6.9 7.9 4.1
from elevated CQ
Interannual variability 5 2.7 3.6 3.0
of terrestrial carbon fluxes
Fire variability 5 0.0 0.0 1.7
Total 100 68.2 65.7 58.4

shown for comparison (both were previously evaluated inmalized by the maximum number of surviving growth strate-
Randerson et al2009. Unlike JeDi-DGVM, these two mod- gies in any of the grid cells. Survival for a growth strategy
els were not run with dynamic vegetation, i.e. they were runis defined as maintaining a positive balance of stored assim-
with static predefined PFT maps throughout the C-LAMP ilates. Thus, FR varies between zero for grid cells with no
simulations. However, as the simulations for all three mod-surviving strategies and one at the grid cell (or grid cells)
els were run with the same climatic forcing dataset andwith the maximum number of growth strategies. Following
only evaluated for present-day conditions, comparing theirKleidon et al.(2009, we evaluated the simulated FR against

C-LAMP metric scores is still valid. a map of plant species richness derived from observations
(Kreft and Jetz2007) using a simple linear regression.
3.2 Evaluation of biodiversity patterns Functional evenness (FE) at each grid cell is calculated

following the Pielou indexRieloy 1966, which is the Shan-
In contrast to standard DGVMs, its broad sampling across d10n entropy of the relative abundancegsof the S surviv-
multidimensional trait space allows JeDi-DGVM to provide iNg growth strategies within that grid cell, normalized by the
insight into potential plant biodiversity through an examina- Mmaximum possible Shannon entropy for that community:
tion of the simulated functional richness and evenness. S5 pilnp:
Here, we define functional richness (FR) as simply theFE= ’=|1 ; . (3)
number of surviving growth strategies at each grid cell nor- :
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FE approaches one when all growth strategies are nearlthe community-aggregated fluxes described earlier:
equal in abundance. FE approaches zero as more and more

plant biomass is found in only one or a few growth strate- 5

gies. FE is set to zero when there is one or no surviving'™/’ = Zpi-/ lijks

growth strategies. The Shannon entropy of a given commu-
nity is basically a measure of uncertainty in predicting the wherey;; is the value of traik for growth strategy at grid
relative abundances of the growth strategies that composeell j, and p;; is the relative abundance of that particular
the relative abundance vectp= (p1, p2, ..., ps). While no growth in that grid cell.

global dataset of plant functional evenness is available, we

are able to contrast the simulated patterns of FE with quali-

tative trends from literature. To do this, relative abundance? Results

distributions are averaged over all grid points falling into . . ) o
four classes of functional richness: grid points with low FR 1he results of the biogeochemical evaluation, the biodiver-

(Q1: 0< FR < 0.25), medium (Q2: @5 < FR < 0.50), high sity evaluation, and the sensitivity ensembles are described
(Q3: 050 < FR < 0.75), and very high FR (Q4.85 < FR < in Sects. 4.1, 4.2, and 4.3, respectively.
1.00).

4

i=1

4.1 Results of the biogeochemical evaluation

3.3 Evaluating the sensitivity to the number of sampled  gyerall, JeDi-DGVM received a score of 68.2 out of 100 pos-
growth strategies sible points in the evaluation of the simulated biogeochem-
) ) ) ) ) ical patterns following the C-LAMP protocol. This exceeds
The primary underlying hypothesis behind the JeDi-DGVM 4 scores of the two PFT-based models (CLM-CA%S.7,

is that given a sufficiently large number of randomly as- 5nq cLM-CN, 58.4) evaluated iRanderson et a(2009.
sembled growth strategies, its mechanistic trait filtering ap'Despite having fewer a priori inputs (e.g. no predefined PFT

proach will produce reasonable biogeochemical and biodiy,55) jeDi-DGVM matched or exceeded the performance of
versity patterns. The questions remains what is a sufficiently; |east one of the other models on almost every metric. The
large number of growth strategies. To test this, we performeds e for the individual metrics are summarized in Tdble

a set of ensemble simulations to explore the sensitivity of thee gescribe the evaluation results for the individual metrics
biogeochemical and biodiversity results to the number of rany, more detail below in Sect.1.1through Sect4.1.10

domly sampled growth strategies. We ran 8 diversity ensem-

bles with differing numbers of sampled strategi#s (0,20, 4.1.1 Phenology

50, 100, 200, 500, 1000, and 2000). Each ensemble contains

20 members. Each ensemble member was initialized withFigure2 shows a comparison between the simulated month
different random numbers when sampling the growth strat-of maximum leaf area index (LAI) and remote sensing obser-
egy trait parameters from their full ranges. The only differ- vations (Myneni et al., 2002; Zhao et al., 2005) of the same.
ence between the various ensemble simulations is the numbdte simulated timing of peak LAI matched observations

and identity of their growth strategies. The underlying model quite well in the moisture-limited grassland and savannah re-
equations and all other parameter values are constant acroggons of South America, Africa, and Australia. Elsewhere,

simulations. there were two clear patterns of bias. First, JeDi-DGVM sim-

Ideally, we would have run these ensemble simulationsulated maximum LAI occurring about one month later than
following the C-LAMP simulation protocol. We could have the observations across much of the Northern Hemisphere.
then compared the mean C-LAMP metric scores across enSecond, in the observation dataset, leaf area follows the sea-
sembles. Due to the number of simulations involved andsonality of incident solar radiation across large parts of the
length of the spin-up period, this was not computationally Amazon Basin, peaking during the early to mid part of the
feasible. Instead, we ran the ensemble simulations for onlydry season when radiation levels are high and deep-rooted
400 yr, using the temporal mean values from the last 100 yivegetation still has access to sufficient moistulkéyrieni
for analysis. We focus our analysis on the convergence of thet al, 2007). JeDi-DGVM did not capture this opportunistic
patterns of NPP and functional richness as examples of biobehaviour; simulated peak LAl in the tropical moist forests
geochemical and biodiversity output variables. We hypothe-of Amazonia, central Africa, and Southeast Asia occurs dur-
size that diversity ensembles with higher numbers of sampledng the rainy season. However, the issue of whether or not
growth strategies will show less variation in these variablestropical forests green-up during dry periods is still not set-
between their ensemble members. tled (Samanta et gl201Q Asner and Alencar2010.

To provide insight into the mechanisms driving this con- Comparisons of simulated and observed maximum and
vergence, we also analysed the global patterns of severahean LAI are shown in Figs. S1 and S2. Overall, JeDi-
community-weighted mean (CWM) trait parameters. TheseDGVM matched the observed values reasonably well. The
CWM trait parameters are calculated in a similar fashion assimulated mean LAI values were generally low relative to
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uptake, i.e. the construction and maintenance costs of coarse
(a) MODIS MOD15A2 (2000-2004) and fine roots

Month of maximum LAI
90N 1 1 1 1

AR SRR SR T S Overall, the performance of JeDi-DGVM in capturing ob-

I served global phenological patterns shows great promise for
less constrained modelling approaches that allow the dynam-
ics of the land surface to emerge from climatic constraints.

=
60N —

30N —

4.1.2 Global carbon stocks

30S —

) . ' i JeDi-DGVM simulated global stocks of vegetation, soil, and
60 S B L B O AL A S litter carbon of 637 Pg C, 1904 Pg C, and 208 Pg C, respec-

R cEmmme | tively. These values are averages over the simulation pe-
123 456 7 8 9101112 riod 1980-2004. The vegetation carbon stock simulated by
(b) JeDi JeDi-DGVM falls within the range of reported values from
90N

Monthof maximum LAl several PFT-based DGVM studies (500-950 P@Camer
; - - i et al, 200% Sitch et al, 2003 Krinner et al, 2005 Za-
ehle et al. 2010 and estimates from global carbon in-
ventories (385—650 Pg GJoughton et al.2009. Likewise,
the modelled estimate for litter carbon is close to the es-
timate based on carbon inventories (300 PgC) reported in
Houghton et al(2009. The simulated soil carbon stock also
. . ' i falls within the range of previous inventory-based estimates
o8 T T T T T T T T T T T (1200-3000 Pg GHoughton et al.2009.

180 150w 120W 90W 60w 30w 0 30E 60E 90E 120E 150E 180

S
60N —

30N —

30S —

12 3 45 6 7 8 9 10 11 12 4.1.3 Gross primary productivity

(c) JeDi - MODIS MOD15A2
Months between occurrence of maximum LAI JeDi-DGVM simulated a mean global terrestrial gross pri-
mary productivity (GPP) of 138 Pg Cyt, which is higher
than the empirical model estimate of 128 Pg C yr! from
Beer et al. (2010, but within the range of uncertainty
(118+ 26 PgCyrl) of a recent estimate from a process-
based model forced with remote sensing observatiBysi (
et al, 2011). The zonally averaged simulated GPP shows
close agreement{ = 0.89) with the median estimate from
Beer et al.(2010, falling within or near the range of un-
certainty across most latitudes (Figp). JeDi-DGVM per-
6 -5-43=2-101223425 6 formed comparably with five PFT-based terrestrial biosphere
models evaluated in that study in reproducing the latitudi-
Fig. 2. Mean month of maximum leaf area index for years 2000 nal pattern of GPP. Averaging zonally hides some offsetting
2004 from(a) MODIS MOD15A2 Collection 4 LAI productily- regional biases, however. For instance, simulated productiv-
neni et al, 2002 Zhao et al. 2005, (b) as simulated by JeDi- ity in Amazonia is about 25 % lower than data-driven esti-
DGVM, and(c) the lag in months between the occurrence of max- mates, but productivity is overestimated throughout most of
imum LAl in the MODIS observations and the JeDi-DGVM model the Asian tropics (Fig. S3). Overall though, the broad spatial
output. pattern of GPP is reasonably well captured by JeDi-DGVM
(r? = 0.85) when compared to the map of data-driven esti-
mates fronBeer et al(2010.

90N

R <
60N —

30N —

30S -

60S
180 150w 120W 90W 60w 30w 0 30E 60E 90E 120E 150E 180

the observations across the boreal forest region. Also, botd 1.4 Net primary productivity

the simulated mean and maximum LAl were higher than

observed values in several regions, particularly southeasleDi-DGVM simulated a mean global terrestrial NPP of
Brazil, northeast India, the central United States, much of79 PgCyr?!, which is more than one standard deviation
Europe, and eastern China. This may simply be due to thgreater than the mean estimate from a recent meta-analysis
fact that human land use was not accounted for in the simuef global NPP studies (56 14 Pg Cyr?; Ito, 2011). We hy-
lation set-up and these regions are used extensively for agripothesize that this overestimation stems, in part, from the
cultural purposes. These disparities may also indicate a neeldck of nitrogen limitation within the model. Global analyses
to re-evaluate the trade-off costs associated with root wateof nutrient limitation studiesElser et al. 2007 LeBauer and
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Fig. 3. Comparison of mean annual zonally averaged fluxes as simu- 8 1 . E I
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lated by JeDi-DGVM with(a) data-driven model estimates of gross E | ° ° E I
primary productivity Beer et al.2010, (b) net primary productiv- 9 1T |
ity from the MODIS MOD17A3 Collection 4.5 producHginsch E o * ]
et al, 2006 Zhao et al.2005 2006, and(c) data-driven model es- g 6007 B
timates of evapotranspiratiodyng et al.2010. The blue-shaded | * - I
region in(a) represents the median absolute deviation of the five di- | . -4 |
agnostic models used in producing the data-driven model estimate. 800 1 ] B
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0.0 1.0 2.0 3.0 4.0
Treseder2008 suggest that soil nitrogen availability and the Precipitation (m/year)

energetic cost of nitrogen fixation and active ion uptake limit

terrestrial productivity by about 20 %. Adding a mechanistic Fig- 4. Comparison of net primary productivity between JeDi-
representation of plant nitrogen acquisition based on planPGVM model output (mean over years 1975-2000) and 933 site
energetic trade-offs (e.gl. Fisher et al2010 to future ver- observations from the Ecosystem Model-Data Intercomparison

. - : " o . (EMDI) initiative class B datasetQlson et al. 2001). Shown as
sions of JeDi-DGVM s critical, as it is thought that nitro- (a) scatter plot where the red dots represent matched pairs of model

ggn availability will “ke'}’ Constr.ain the capacity of terres- grid cells and observation sites and the black line is:4 line,
trial ecosystems to continue taking up a large part of anthroyng (p) the same but normalized by precipitation (binned into 400
pogenic carbon emissionR¢ich et al.200§. mm yr-! increments).

In a site-by-site comparison (Figa), JeDi-DGVM per-
formed relatively well in capturing the variability in NPP
across the field-based EMDI observation netwofdspn  at the driest sites{ 400 mmyr 1) and overestimated NPP at
et al, 2007). Although, the model tends to overestimate NPP, wetter sites.
particularly at intermediately productive sites. JeDi-DGVM A comparison with remote sensing NPP estimates
also performed reasonably well and comparably with PFT-(MODIS MOD17A3; Myneni et al., 2002; Zhao et al., 2005)
based models when the simulated NPP was binned by prereveals that JeDi-DGVM is able to capture the broad spa-
cipitation class (Fig4b). JeDi-DGVM underestimated NPP tial patterns of NPP (Fig. S4). JeDi-DGVM prominently
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overestimates productivity, though, in the grassland regions N R R ER N SR B
of South America and the Sahel as well as the forested re- :
gions of the eastern United States, eastern China, and north-

ern Eurasia. This high bias also emerges in the comparison~
with the zonally averaged MODIS NPP (Figh).

UL LR AN LAAS ad LARI AR

3

4.1.5 Evapotranspiration

JeDi-DGVM simulated a mean global terrestrial evapotran-
spiration (ET) flux of 82 108 km3yr—1, which is higher
than the data-driven model estimate of63x 10° km3yr—1

of Jung et al.(2010 but within the range of process-
based model estimates (60-8%0° km3yr—1) from the Wa-

ter Model Intercomparison Project (WaterMIFaddeland

et al, 201J). Figure S5 shows a spatial comparison of simu-
lated mean annual ET and the data-driven estimatdsirg

et al. (2010. Overall, the model performed reasonably well
(> =0.78) in reproducing the global pattern of ET. The
zonal averages, however, show a strong positive bias in the
equatorial tropics (Fig3c; 2 = 0.80). Further analysis re-
vealed that some of this model bias is attributable to an
overestimation of canopy interception, especially in tropical

L Ry R

Detrended CO2 mixing ratio (ppm

Month
forests. Adjusting the parameterizations related to canopy in- ~ ____. GLOBALVIEW JeDi-DGVM +

terception and canopy storage capacity has improved model TRANSCOM
performance for other terrestrial biosphere mod&sn@an Fig. 5. Mean seasonal cycle of atmospheric £@t (a) Bar-

and Levis 2006 Liang and Xie 2008. row, Alaska (72 N), (b) Niwot Ridge, Colorado (40N), and(c)
) Mauna Loa, Hawaii (20 N), for years 1991-2000. The dashed blue
4.1.6 Seasonal cycle of atmospheric GO lines represent the observations from the GLOBALVIEW dataset

i (Masarie and Tansl999. The JeDi-DGVM estimates were ob-
JeDi-DGVM captured the general temporal pattern=(  tained by combining the simulated net ecosystem exchange (NEE)
0.84+0.04, 083+ 0.08, 080+ 0.15) of a spring drawdown  fluxes with the monthly impulse response functioBsi(ney et al.
of atmospheric C@in the Northern Hemisphere followed 2004 of the 13 TRANSCOM atmospheric tracer transport models.
by an autumnal rise. However, there is a phase offset afhe red line represents the mean of the model estimates. The light
many locations with the simulated spring drawdown occur-red shaded region represents one standard deviation around the mul-
ring about one to two months later than observations. Thigimodel mean.
offset may be due to the late leaf expansion mentioned above
(Fig. 2) or to limitations stemming from the simple nature _
of the heterotrophic respiration scheme. JeDi-DGVM over-4-1.7  Net terrestrial carbon exchange

estimated the seasonal amplitude of atmospherig i@&he ] ) ) ) )
Northern Hemisphere, particularly in the middle and high The net terrestrial carbon sink simulated by JeDi-DGVM is

latitude bands. The ratios of simulated to observed ampli-cOmpPatible with decadal budgets of the global carbon cy-

tudes were 23+ 0.08. 133+ 0.26. and 110+ 0.16 forthe  Cle given the uncertainties regarding the oceanic and an-

high, middle, and equatorial latitude bands, respectively. Thidhropogenic fluxes. For the 1980s, JeDi-DGVM simulated

B 1 .
overestimation in seasonal amplitude is directly attributable? 9l0bal terrestrial carbon flux 6£2.89 Pg Cyr= (negative

to the overestimation of NPP in those regions. Figiie values indicate a net uptake of carbon by the terrestrial bio-

lustrates the reasonably good agreement between the simgPhere), which lies within the range of uncertainty from the

1.
lated seasonal C{rycle and GLOBALVIEW measurements IPCC (_,3'8 10 0.3 Pg Cyr~; Denman et aJ.?OO?). In agree-
(Masarie and Tansl995 at a high-latitude (Point Barrow, ment with the IPCC carbon budgets, JeDi-DGVM simulated

. . 1 .
Alaska, United States), a mid-latitude (Niwot Ridge, Col- & larger carbon sink in the 1990s§.35Pg Cyr~), which

ias withi 1
orado, United States), and a low-latitude station (Mauna Loa@!SC lies within the IPCC range 6t4.3 to ~1.0PgCyr

Hawaii, United States). The results for all GLOBALVIEW (Penman et a).2007. The model estimates presented here

stations considered here are summarized in a Taylor diagrari"99€st a stronger land carbon sink than previous DGVM
(Taylor, 2003 in Fig. S6. studies (1.2-2.75 Pg Gitch et al, 2008 Randerson et al.

2009.
JeDi-DGVM captured the magnitude of interannual vari-
ability of terrestrial net ecosystem exchange (NEE) quite
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well (0 =0.94PgCyrl; Fig. 6) when compared to the R R | ! !

3.0

TRANSCOM-derived estimatesr€1.04PgCyrl; Baker  ~ ] —*—TRANSCOM
et al, 2009 for the period 1988-2004. The model results ¢ 2° —S—JeDi
are also moderately correlated=€ 0.42; p < 0.05) with the €04
year-to-year TRANSCOM anomalies. The simulated anoma-‘_§ ]
lies fell within one standard deviation of the multimodel & 00_5
TRANSCOM mean in 12 of the 17 yr. 2 1.0

JeDi-DGVM captured the strong positive anomaly asso- & 20 E
ciated with the 1998 El Nio event, but not the similarly 2 ™ 3
strong anomaly in 1997. The rapid growth rate of atmo- 30 +———7F————7 T T 1
spheric CQ in 1997 has been linked with large peat and 1989 1992 1995 1998 2001 2004
forest fires in the Asian tropicage et a).2002 van der Years

Werf et al, 2008. Incorporating mechanistic representations gy g comparison of the interannual variability in the global
of fire (e.g.Thonicke et al. 2008 and peat dynamics (€.g. |and net ecosystem exchange fluxes from the JeDi-DGVM to the
Kleinen et al, 2011 in JeDi-DGVM may improve perfor- TRANSCOM atmospheric model inversion estimatBaker et al,
mance on this metric. 2006 for years 1988-2004. The red line represents the JeDi-
JeDi-DGVM was also not able to capture the negative DGVM flux anomalies from the long-term mean. The blue line
anomaly in 1992-1993. This drawdown has been associatepresents the mean of the 13 models from the TRANSCOM ex-
with climate impacts of elevated stratospheric aerosols fol-Periment after removing the seasonal cycle and the long-term mean
lowing the Mount Pinatubo eruption. Some authors (€. for (_aa_ch model. The light blue shaded region represents 1 standard
et al, 2003 Mercado et al.2009 have linked this anomaly deviation around the TRANSCOM multimodel mean.
with an increase in NPP due to enhanced diffuse radia-
tion. In this case, a more detailed canopy rgdiation transfetjcated treatment of the canopy energy balance @rgwry
model (e.g.Drewry et al, 2010 may be required to to ap- ¢ al, 2010.
propriately capture the effects of diffuse light on vegetation
productivity. Angert et al.(2004, however, argues that the 4.1.9 Carbon stocks and flows in Amazonia
1992-1993 C@ drawdown can be better explained by un-
usually strong oceanic uptake, reduced heterotrophic respideDi-DGVM performed reasonably well in matching the spa-
ration due to a cooling and drying of the upper soil layers, tial pattern of aboveground living biomass density in South
and a reduction in biomass burning, in which case a mechaAmerica (Fig. S7,r =0.83). Within the Amazon Basin,
nistic representation of fire and more sophisticated soil carJeDi-DGVM simulated a total aboveground biomass of
bon scheme (e.dgraakhekke et al.2011) may be neces- 59 PgC, slightly lower than the total of 897 Pg C estimated
sary. When the two years strongly affected by the Pinatubdrom observations b$§aatchi et al(2007). We attribute some
eruption (1992-1993) are excluded, the model time series i®f the overestimation of biomass around the perimeter of the
highly correlated { = 0.63; p < 0.01) with the interannual Amazon Basin and further south in the PaxdBasin to a
TRANSCOM anomalies. lack of human land use and fire as model processes/drivers.
The underestimation of aboveground biomass in the central
4.1.8 Comparison with eddy covariance measurements Amazon Basin may be related to the lack of competitive in-
teractions between plant growth strategies. More specifically,
JeDi-DGVM performed reasonably well overall in a compar- the direct competition for light, if incorporated in the model,
ison with eddy covariance observations of terrestrial carbormight favour plant growth strategies that invest proportion-
and energy fluxesHalge et al.2002 Heinsch et al.2006 ally more carbon towards growing woody stems. The impli-
Stoeckli et al. 2008. Seasonal variation in NEE was of- cations of the current “biomass-ratio” aggregation scheme
ten lower in the JeDi-DGVM results than in the flux tower and the current lack of resource competition within JeDi-
observations. And, although not always present, many site®GVM are discussed further in Seét3.
showed a phase offset of one to two months delay. This is The simulated Amazonian biomass pattern exhibits bet-
consistent with the model biases described above for the seder agreement with a newer datas8gaétchi et a).20117),
sonal CQ cycle and phenology. At many of the temper- which has lower biomass values in the central Amazon Basin
ate forest sites, JeDi-DGVM overestimated the length of theand higher biomass values in the western parts of the basin
growing season (i.e. GPP was higher than observed in thalong the Andes. Here, however, we show only the compar-
spring and autumn) and underestimated GPP during the sunison results withSaatchi et al(2007) to maintain consis-
mer peak. JeDi-DGVM captured the seasonal pattern of latency with the C-LAMP evaluation protocol. Future studies
tent heat fluxes more accurately than that of sensible heat. Iwill evaluate JeDi-DGVM against newer datasets, e.g. as part
fact, the model significantly overestimated the sensible heabf the the International Land Model Benchmarking project
fluxes at many sites, indicating the need for a more sophis{l-LAMB; Luo et al, 2012).
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The carbon allocation and storage scheme in JeDihia. These fractions of surviving growth strategies are much
DGVM provides a basis for contrasting model estimateshigher than those reported by KM2000. This is likely at-
of carbon pools against carbon budget observations fromributable to the difference in the survival criterion. In the ear-
three mature forest ecosystems in Amazonia synthesizetier model of KM2000, the criterion for survival was whether
by Malhi et al. (2009. This comparison is summarized or not a growth strategy was able to produce more “seed”
in Fig. 7. Despite differences between GPP simulatedcarbon over its lifetime than its initial amount of seed car-
by JeDi-DGVM (2474gC m?yr—1) and observed values bon. Here, the criterion for survival was simply whether or
(33304 420 g C nT2yr—1; Figueira et al.2008 Malhi et al, not a growth strategy was able to maintain a positive carbon
2009, we find that JeDi-DGVM performs well when con- balance. Nonetheless, JeDi-DGVM is still able to reproduce
trasting Amazon carbon pool and allocation flux estimatesithe observed broad global pattern of plant diversity through
The simulated ratio of autotrophic respiration to GPP (52 %)mechanistic environmental filtering due to functional trade-
was slightly less than the range of the observationsH{65 offs, and without invoking historical, competitive, or other
10%). The fractions of NPP allocated to each plant car-factors.
bon pool correspond quite well with the observed allocation The mean relative abundance distributions for four rich-
patterns. The simulated turnover times for the woody poolsness classes (Figa) are similar in shape to left-skewed
(37 yr) closely match the mean of the observationst{4§r) log-normal distributions commonly observed throughout na-
from Malhi et al. (2009. Other studies, however, have sug- ture McGill et al., 2007). The left-skewness means that rare
gested much longer wood turnover times90 yr) (Vieira strategies (species) are greater in number than abundant ones,
et al, 2004 Figueira et al.2008. The simulated stock of another commonly observed attribute, especially in tropical
coarse woody debris (2373gCH) closely matches the rainforests Kubbell 1997). With increasing levels of func-
range of observed values (2425609 C nt2). The mean tional richness, the mean as well as the variance of the rela-
simulated soil carbon stock (23460 g Cf for this region  tive abundance distribution shifts successively to lower val-
is significantly greater than the mean of the observations taes. We also see that there is not necessarily one optimal
2 mdepth (14 2682728 g C nT2; Malhi et al, 2009. How- combination of trait parameters for obtaining high biomass
ever, Quesada et a201]) presents evidence for substan- in an environment, but often many differing growth strate-
tial carbon storage below that depth, including a soil carbongies can reach similarly high levels of fithess (dfarks and

stock of 22 000 g C m? to 3 m depth at the Tapag site. Lechowicz 2006 Marks 2007). As the climate becomes
less constraining, in terms of increasing availability of light
4.1.10 Sensitivity to elevated atmospheric C® and precipitation, the range of feasible plant growth strate-

gies increases. The ranked abundances of growth strategies
Globally, simulated NPP increased by 18 % during the first(Fig. 9b) clearly show that the simulated relative abundances
five years of simulated Cf£enrichment at 550 ppm, exhibit- become increasingly even with higher richness. This pat-
ing a large step change in the first year. Not surprisingly,tern is also evident when visually comparing the maps of
simulated net terrestrial carbon uptake also quickly rose tesimulated function richness (Fi§a) and community even-
15.03 Pg C yr?! during that time. These values are similar to ness (Fig8b). This simulated trend towards greater evenness
those exhibited by the PFT-based model CLM-CASE % in more productive regions qualitatively reproduces the ob-
and 12.5PgCyrl). During the same time period (1997— served trend in rank-abundance plots of forests, which show
2001), mean NPP increased by4#3 % at the model grid a much steeper decline in abundance in boreal forests than in
cells corresponding to the four temperate forest FACE expertropical rainforestsfubbell 1979 1997).
iments reported ilNorby et al.(2005. The observed increase
at those sites was higher, 222 %. The geographic variation 4.3 Sensitivity to the number of sampled strategies
of NPP enhancement (Fig. S8) is broadly similar to the pat-
tern simulated by the global vegetation model LPJ-GUESSIn Fig. 10, we show that the simulated pattern of func-
(Hickler et al, 2008, with the strongest enhancement occur- tional richness is robust when a sufficiently large number of

ring in tropical forest regions. growth strategies is sampled. Each set of box and whiskers
in Fig. 10a represents the geographic variation in the mean
4.2 Biodiversity patterns percent of surviving strategies for a diversity ensemble. The

percentages of surviving strategies are fairly stable across all
The geographic pattern of simulated functional richnessof the diversity ensembles. In FigOb, however, we see a
(Fig. 8a) is highly and significantlyr€ = 0.71) correlated dramatic convergence in the fraction of surviving strategies
with a map of vascular plant species richness derived fromat the local grid-cell scale. Here, each set of box and whiskers
observations Kreft and Jetz 2007). Out of the 2000 ran- represents the geographic variation in the standard devia-
domly assembled plant growth strategies, 1411 growth stratetion of the surviving percentage of growth strategies within
gies survived in at least one grid cell, and the maximuma diversity ensemble. Across the 20 simulations in the high-
value for a single grid cell was 1322 in western Amazo- est diversity ensembles(= 2000), the standard deviation of
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GPP =3330 gC m2yr? GPP = 2474 gC m2 yr!

65% 52%

———> Ra =2180gC m2yr! —> Ra=1273gC m?yr'
35% 48%

NPP = 1150 gC m=2 yr-!
43%
/ 38%

NPP = 1201 gC m2 yr

41% 41%

Canopy Wood Fine roots Canopy Wood Fine roots
255 gC 18560 gC 103 gC 15318 gC 87 gC
T=0.6 years T=40years T=0.45 years T =37 years T=0.45 years
CWD CWD
Litter 2421 gC Litter 2373 gC
1=5.2years T=12.8 years
. Soil
513"223%2 G 23460 gC
9 T= 21years
a) Observations b) JeDi-DGVM

Malhi et al. (2009)

Fig. 7. Carbon pools and fluxes in Amazonia fr¢a) synthesis of observationsélhi et al, 2009 and(b) as simulated by JeDi-DGVM for
years 1980-2004. GPP, gross primary productivity;&itotrophic respiration; NPP, net primary productivity; CWD, coarse woody debris.

the percent of surviving strategies is less than 1% for morancreases as you move towards higher diversity ensembles.
than 90 % of the vegetated grid cells. This means that theiThis is suggestive of positive biodiversity—ecosystem func-
maps of functional richness look nearly identical. FigL@e tioning effects Cardinale et a).2012), which, while highly
shows that not only does the percentage of surviving strateintriguing, are beyond the scope of this paper. We discuss the
gies converge as the number of sampled strategies increasgmssibility of using JeDi-DGVM to follow up on this topic in
but that the surviving strategies also have similar trait valuesSect.5.5.
All fifteen traits show significant convergence in their CWM  Figure 11b illustrates that the convergence of simulated
values, as shown by a decrease in the global means of thePP in higher diversity ensembles also holds true at the lo-
CWM ensemble standard deviations with increasing samplesal grid-cell scale. Each set of box and whiskers in EiZp
diversity. represents the geographic variation in the coefficient of vari-
The convergence in the number and identity of the surviv-ation (CV) of mean annual NPP within a diversity ensemble.
ing strategies leads to a similar convergence in the simulatedhe median ensemble CV for the lowest diversity ensem-
biogeochemical patterns. As an example, Hitp shows a  ble (S = 10) is 0.72. This implies that the standard deviation
scatter plot of the global mean terrestrial NPP values fromin NPP across the 20 simulations in that ensemble is nearly
each ensemble simulation. The diversity ensembles with fewequal to or above the mean NPP values for at least half of
sampled strategies, on the left side of the plot, exhibit tremenall vegetated grid cells. In other words, with only 10 ran-
dous variation in global mean NPP. In the diversity ensem-domly sampled strategies, it is not possible to constrain mod-
ble containing 20 simulations with 10 randomly sampled elled NPP using the JeDi-DGVM mechanistic trait filtering
strategies § = 10), global mean NPP varies between 29 to approach. Moving left across the plot, as the number of sam-
57 Pg C. As one goes from left to right across the plot, diver-pled strategies increases, the median ensemble CV decreases.
sity ensembles with increasing numbers of sampled strateThe highest diversity ensembl& £ 2000) has a median en-
gies show progressively smaller variation in global meansemble CV of 0.03 and the ensemble CV 90th percentile is
NPP. At the right side of the plot, the diversity ensemble 0.05, i.e. the ensemble standard deviation of NPP is less than
containing simulations with 2000 randomly sampled strate-5 % of the ensemble mean NPP for 90 % of all vegetated grid
gies (S = 2000) has a range of only 1.3 Pg C. Another strik- cells.
ing feature of Figl1la is that the ensemble mean NPP also
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Fig. 8. Geographic patterns ¢&) functional richness (FR) angh) Ranked growth strategy

functional evenness (FE) as simulated by JeDi-DGVM.
Fig. 9. (a) Simulated relative abundance distributions of plant

growth strategies for four richness quartilés) Simulated relative
abundance versus growth strategy rank for four richness quartiles

The geographic pattern of the ensemble NPP CV for theQ1-Q4). On the x-axis, growth strategies are ranked according to
highest diversity ensembleS & 2000) is shown as a map their abundances, which in turn are plotted on the y-axis.
in Fig. 12. Overall, the pattern of the ensemble NPP CV is
very similar to the geographic pattern of trait parameter con-
vergence (not shown). The ensemble NPP CV is very low
(< 0.02) throughout most of the vegetated areas in the tropicsurviving growth strategies for analysis. In reality, these re-
and subtropics, meaning that the results are highly robust andions are sparsely vegetated, if not completely barren, and
not dependent on any particular random set of growth strateeontribute little to the global exchange fluxes of water and
gies. The ensemble CV values are highef(02 to 0.06) but  carbon.
still reasonably low throughout most of the temperate and To provide further insight into the mechanism driving the
boreal forest regions in the midlatitudes. Higher values ofconvergence of both the biogeochemical and biodiversity
ensemble CV#£ 0.06) are present in desert regions, particu- patterns, we show three scatter plots containing CWMs of a
larly in central Asia, western Australia, the southwest USA, functional trait parameter with respect to some environmen-
the edges of the Sahara, and the polar tundra. Future JeDial condition (Fig.13). In each scatter plot, the red line rep-
DGVM studies may be able to further constrain the uncer-resents the mean of the uniform prior distribution used in the
tainty in these regions by sampling more growth strategiesrandom sampling of that particular trait parameter. When the
Several test runs with 50 000 sampled strategies showed higtalues of a particular trait parameter have little influence on
levels of convergence in all but the most extreme environ-the distribution of growth strategy abundances in a grid cell,
ments. Running JeDi-DGVM with so many strategies, how-the grey circle representing that grid cell will fall on or near
ever, is computationally burdensome. Alternative solutionsthe red line. Each trait parameterization, however, has been
might involve using more sophisticated search algorithms ordesigned such that, at least in some environments, functional
more carefully choosing the ranges and prior distributions oftrade-offs will cause some range of trait values to be more
the sampled trait parameter values. The white regions covbeneficial than other parts of the trait spectrum. If the mech-
ering large parts of the Sahara, the Tibetan plateau, Greeranism driving the convergence is environmental selection via
land, the Arabian Peninsula, and the high Arctic had too fewfunctional trade-offs, we would expect to see some CWM
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across all vegetated land grid cells; vertical whiskers indicate the

Fig. 10. (a)Box plots showing the geographic variation of the en- range; horizontal whiskers indicate the 10th and 90th percentiles.

semble mean of the percent of surviving strategiey Box plots

showing decreasing ensemble standard deviation of the percent of

surviving strategies with increasing number of sampled strategies,

S. Each ensemble contains 20 JeDi-DGVM simulations with the parameters has little to no influence on the survival or abun-

same number of randomly sampled growth strategles10, 20,  dance of growth strategies, because there are few, if any, peri-

50, 100, 200, 500, 1000 or 2000). Central boxes show the interquargs of the year in which low temperatures constrain produc-

tile range and median across @) non-glaciated an(b) vegetated ity As you move right across the plot, however, towards

land grid cells; vertical lines indicate the range; horizontal WhiSkerscolder temperatures, the values (@f) generally increase.

indicate the 10th and 90th percentil¢s) Line plots showing de- . . . o
creasing ensemble variation of the abundance-weighted trait value-ghIS is because trait parametgdetermines the critical tem-

with increasing number of sampled strategi€s Each circle rep- perature for the onset of plant growth_ in a linear function

resents the area-weighted spatial mean of the ensemble standard d€tween—5°C and 10°C (see AppendibA3 for more de-

viation of the community-weighted mean trait values for one of the tails). In cooler regions, the timing of the onset of the grow-

15 functional trait parameters. ing season strongly influences plant survival and abundance,
resulting in(t3) values skewed significantly away from the
expected prior value of 0.5.

Figure13b shows a similar scatter plot ¢f) with respect
trait parameters skewed away from the mean of the uniformto the intra-annual precipitation variability. The intra-annual
prior distribution, i.e. grey circles shifted off of the red line. precipitation variability (IPV) of each grid cell is calculated

In the first scatter plot (Figl3a), we show the CWMs of as the coefficient of variation of the climatic monthly means
trait parameters (denoted agr3)) with respect to mean an- of the precipitation forcing dataset. Trait parametede-
nual temperature. Nearly all of the CWMs from grid cells termines the fractional allocation of carbon to belowground
with mean annual temperatures greater thahClOe on or  growth (see AppendiA5 for more details). In regions with
near the red line. This indicates that in warm regions, traitlow values of IPV, i.e. where precipitation falls relatively
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=
evenly throughout the year, the values(gf generally fall g
below the expected prior value of 0.25. In aseasonal regions,
allocation of carbon to aboveground growth, and thus in- 0 , , , : : : :
creased access to light, seems to outweigh the benefits of 0 02 04 06 08 1.0 12 14
belowground growth. As you move left across the plot, how- Intraannual precipitation variability
ever, towards higher IPV values, the values®f generally =
increase. This illustrates the selective pressure of seasonally% 0.08- (€

dry environments towards growth strategies which prioritize =
root growth. Additional root biomass allows these growth fo.os—

strategies to sustain productivity throughout dry seasons by‘.(E *‘(‘ ~
taking up water from deeper parts of the soil column. 20.04- Fatdh

The last scatter plot shows CWM leaf N concentrations, ‘5 et
([NL]), with respect to mean annual temperature (ERf). = 0.02-
In the model, the leaf N concentratidiN, ], of each growth % , : : : : :
strategy is calculated as a linear function of its trait parameter -20  -10 0 10 20 30
115 (see AppendiX8 for more details)[N ], in turn, directly Mean Annual Temperature (°C)

affects both the productivity of a growth strategy via photo-

synthetic capacity and its maintenance respiration rate. PhoFig- 13. ()Scatter plot of the community-weighted means (CWMs)
tosynthetic capacity has a unimodal distribution, the shape off trait parameters with respect to mean annual temperature. Trait
which is influenced by air temperature and the ambieng CO parameters determines the critical temperature for the onset of
concentration. Leaf maintenance respiration increases mond22"t 9rowth in a linear function between5°C and 10°C. (b)
tonicallv with hiaher air temperature. Due to this trade-off Scatter plot of the CWMs of trait parameterwith respect to intra-
for eve?/y CIimatgt environmepnt there.WiII be some range o,f annual precipitation variability. Trait parameter determines the

i ; fractional allocation of carbon to belowground growth. Intra-annual
[NL] values that maximize NPP. Because the relative abuny,recipitation variability is calculated as the coefficient of variation

dance of a growth strategy is strongly linked to NRIR_]) of the climatic monthly means of the precipitation forcing dataset.
should be skewed towards these more productive trait val{c) Scatter plot of the CWMs of leaf N concentration with respect to
ues. Looking again at the scatter plot, we see {{iNy ]) mean annual temperature. Leaf N concentrations are calculated di-
values are indeed skewed away from the expected prior ofectly as a linear function of trait parametgg. Each grey point rep-
0.055gC gNt, and they generally decrease with increasing resents the CWM across 2000 randomly sampled strategies within
mean annual temperature. This pattern is consistent with thé grid cell. The red lines represent the means of the uniform prior
broad global pattern of observed leaf C : N ratiBeich and distribution used in the random sampling of that particular trait pa-
Oleksyn 2004). rameter. (&= 0.50,b = 0.25, c = 0.055).

Whether or not the simulated relationship of leaf C: N and
mean annual temperatures match the observed global pattern
for the correct reasons is still an open question and beyontiiogeochemical and biodiversity patterns among the high-
the scope of this paper. Rather, we have simply shown thest diversity ensemble simulations. They are also great ex-
three scatter plots in Fid.3to provide insight into the mech- amples of the many newly testable mechanistic predictions
anistic trait-filtering process driving the convergence of themade possible by JeDi-DGVM’s unique and parsimonious
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functional trade-off approach. Future studies should evaluatef “Everything is everywhere, but the environment selects”
the simulated geographic distributions of CWM trait param- While this ecological hypothesis was originally formulated
eters against observed trait patterns. This possibility is diswith respect to the biogeography of marine microbes, ter-
cussed further in Sech.4. restrial plant species face considerable barriers to migra-
tion (e.g. mountain ranges, deserts, oceans). The timescales
) ) of terrestrial plant growth and dispersal also differ greatly
5 Discussion from those of fast-lived marine microbes transported along
ocean currents. Model-based studidmlcolm et al, 200
JeDi-D(_SVM introgluces se\(eral novel ele_m_ents to dyna_miCLoarie et al, 2009 show that the prefeEred ranges of n21any
vegetation modelling, allowing for an explicit representation plant species could shift tens to hundreds of kilometres over
of functional diversity that can evolve temporally. As the the next century due to anthropogenic greenhouse warming
current implementation represents an initial prototype frommaking the issue of estimating migration rates and the extent’

wh|ch refinements and added functionality will .be made, wey o \which everything is truly everywhere key to predicting fu-
discuss below several key concepts that underlie the formulat-ure vegetation composition

tion of JeDi-DGVM, and which will likely result in the great-

. . . Despite the importance of this issue to the vegetation mod-
est impact on model improvement in future efforts.

elling community (Neilson et al.2009, only one modelling
group (Lee 2011 has introduced mechanistic migration pro-
cesses in a DGVML.ee (201]) attributes this partially to the
JeDi-DGVM is a prototype meant to explore the potential difficulties associated with the considerable variation in seed

utility of a trait-based functional trade-off approach for tran- dispersal rates within the PFTs used by the current generation

sitioning the state of the art of global vegetation modelling ©f PGVMSs. Incorporating aspects of seed dispersal in a func-
beyond the limitations of a set of fixed PFTs. One of the tional trade-off framework, through additional traits such as

greatest potential advantages of this approach is that it doe3€€d Size, could help to constrain plant migration rates in cli-
not constrain the vegetated land surface to be represented Bjate change simulation experiments. Seed dispersal range,
a small set of functional types, but instead allows for a more@nd consequently the rate of plant migration, is closely linked

continuous representation of vegetation types that can evolvE® Seed size. Smaller seeds are more easily transported by
as a function of climatic suitability. We demonstrate in this € wind and animals than larger seeHzde 1999. Onthe
work that from this trade-off-based approach a realistic rep_other hand, larger seeds allow establishing plants to persist

resentation of land surface biophysical form and function carfhfough longer periods of stress. Parameterizing the trade-off
emerge. between seed size and dispersal rates will be challenging, but

For this approach to be successful, several key requirepOSSibly less so than modelling migration with a PFT-based
ments must be met, particularly (1) identification of the key Scheme.
trade-offs that determine the ability of a plant to survive in ] N
a given environment, and (2) proper parameterization of the>-3 Agdgregation scheme and competition
costs and benefits of the traits associated with those trade- ) ] .
offs. In this current implementation, JeDi-DGVM utilizes The aggregation of vegetation states and fluxes across the di-

15 functional parameters that characterize the behaviour of€rSity represented in each computational grid cell is based
a growth strategy in terms of its carbon allocation strat-O" the_ “biomass-ratio” hypothesis. This scheme determln_es
egy, phenological dynamics, tissue turnover and the balanci'e grid cell flux or state as an average across all surviv-
between respiration and photosynthesis. The positive perid plant growth strategies in the grid cell, weighted by

formance of JeDi-DGVM in the C-LAMP evaluation lends thelr' respec.tlve biomass, imposing the |mpI!C|t gssumptlon
credibility to this approach, and will motivate further evalu- that interaction between plant growth strategies is weak. For
ation of the critical plant traits and trade-offs that determine ©x@mple, JeDi-DGVM does not currently account for the

the performance of the vegetated land surface. New informashading of plant growth strategies that resemble understory
tion sources linking costs and benefits with observed traitsPlants by those that resemble dominant canopy trees. Like-
such as the TRY databaséattge et al, 2013, will provide wise, the hydrologic conditions that a plant growth strat-

important constraints on future refinements of this approach®3Y experiences are not influenced by the other surviving
plant growth strategies in its grid cell. Thus, understory plant

5.2 Is everything everywhere? growth strategies do not stand to benefit during periods of
drought from the observed phenomena of hydraulic redis-
JeDi-DGVM assumes that the distribution of plant growth tribution, wherein deep-rooted plants redistribute soil wa-
strategies is able to adjust quickly to climatic changes, al-ter from lower soil layersl{ee et al, 2005 Prieto et al.
lowing all of the sampled plant growth strategies to emerge2012). These types of competitive and facilitative interac-
when a given climate anywhere on the globe becomes suittions are known to influence community-assembly processes
able. This can be stated through the ecological hypothesiat the local scaleGavender-Bares et aR009, leading to

5.1 Representation of trade-offs
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trait divergence. However, at larger scales, including the spamodelling these processes. This could also alter the timescale
tial resolution of the simulation results presented here, traitof simulated shifts in vegetated composition.
selection and trait convergence due to environmental filtering
have been shown to be the dominant community-assembl$.4 Further evaluation
processesKraft et al, 2008 Swenson and WeiseR01Q
Freschet et al2011 Kraft et al, 2011). Here, we evaluated the feasibility of using the JeDi-DGVM
The “biomass-ratio” aggregation scheme was chosen fomodelling approach to simulate broad-scale patterns of ter-
its simplicity and its demonstrated effectiveness for mak-restrial biogeochemistry and ecosystem properties. However,
ing statistical predictions about community fluxes from trait another key and unique test for this approach would be to
abundance information at the field sca@afnier et al.  directly compare the emergent patterns of simulated func-
2004 Vile et al, 2006 Kazakou et al.2006 Diaz et al, tional trait parameters with our growing knowledge about
2007 Quetier et al.2007). However, the mechanistic trade- the geographic distribution of plant traits and their environ-
off-based trait filtering framework of JeDi-DGVM does not mental co-variates. This information could come from trait
preclude the integration of more sophisticated aggregatiordatabases (e.g. TR¥Xattge et al, 2011) or remote sensing
schemes. For exampBohn et al(2011) recently used JeDi-  products (e.g. canopy nitrogen observatiodfinger et al,
DGVM model output together with the simple population 2008. A further test would be to compare simulated shifts
dynamics model DIVE (Dynamics and Interactions of VEg- in functional trait parameters and allocation patterns with
etation) to explore how seed competition, resource compeebserved shifts in trait abundances from ecosystem manip-
tition and environmental disturbances might influence com-ulation experiments, e.g. irrigatiokelsson and Axelssgn
munity structure. In the future, the trade-off-based modelling1986, CO, enhancementAinsworth and Long 2004, or
approach of JeDi-DGVM could be directly integrated with throughfall exclusionKEisher et al.2007). These fine-scale
the representation of population dynamics from the DIVE comparisons would help further refine various aspects of
model or from other recent models (e.g. the Ecosystem Dethe biogeochemical formulations and trade-offs incorporated

mography modelMoorcroft et al, 2001, Medvigy et al, into JeDi-DGVM, and give greater confidence in projections
2009 R. Fisher et aJ.2010 which explicitly account for  regarding the future fate of the terrestrial biosphere.
canopy height structure and age classes. In Sect.4.1.9 we briefly compared the simulated alloca-

With these more explicit competition schemes, growth tion of NPP to different plant carbon pools with carbon bud-
strategies would directly compete for resources such as lightget observationa\alhi et al, 2009 from three Amazonian
Currently with the “biomass-ratio” approach, the develop- forest ecosystems. This analysis should be expanded globally
ment of each growth strategy is simulated completely inde-by comparing the the simulated patterns of carbon flows and
pendently of the others, much like if they were potted plantsstocks with observations from other existing datasets based
grown in greenhouses. The contribution of each growth straton carbon inventoriesQannel] 1982 Litton et al, 2007
egy to the grid-cell fluxes is weighted by its relative biomassLuyssaert et al.2007 Malhi et al, 2011). More specifi-
only. This implicitly assumes that larger strategies will win cally, one could look at how the simulated allocation pat-
out of over smaller strategies. There is no explicit consid-terns vary along environmental gradients (dfton and Gi-
eration of plant height or disturbance processes that act difarding 2008 Cornwell and Ackerly2009. In this study, we
ferently upon different strategies. With a more explicit com- only examined the community-aggregated allocation fluxes.
petition scheme, the strategies would constantly interact; a$t would be equally interesting to explore how the simulated
one strategy grew higher than its competitors, it would havepartitioning of NPP varies among surviving plant growth
preferential access to light, thus reducing the amount of lightstrategies within grid cells (cAckerly and Cornwell2007).
available for the other strategies. This would likely reduce the For instanceWolf et al. (2011) and Malhi et al. (2011
number of surviving strategies and may even alter the idenfound evidence that the strongest allocation trade-off was not
tity of the most abundant strategy (Efanklin et al, 2012). between root and shoots, as has been commonly thought, but

Also, the current version of JeDi-DGVM may have diffi- rather more specifically between allocation to fine roots and
culties representing savannah-like ecosystems. If you imagaboveground wood. This relationship is likely mediated be-
ine a grid cell with just two successful growth strategies, atween sites by hydrological conditions and within sites by
grass-like strategy and a tree-like strategy, in the current verthe competitive dynamics between faster and slower grow-
sion of JeDi-DGVM the much higher biomass density of ing trees. In principle, the functional trade-off modelling ap-
the tree-like strategy will dominate in the mass-weighting proach of JeDi-DGVM should be able to capture both of
scheme. This will cause the grid-cell to have forest-like these phenomena. However, this might require the introduc-
fluxes and physical characteristics. In reality, environmentatltion of further trade-off constraints, e.g. related to distur-
heterogeneity and disturbance processes, such as fire and héances, wood economics, and plant hydraulics Katkler
bivory, might prevent the tree-like strategy from dominating et al, 2006 Chave et al.2009 Falster et a].2010.
the grid cell. JeDi-DGVM could be improved by explicitly The evaluation of JeDi-DGVM presented here has almost

entirely ignored the effects of human land use. These land
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use processes are known to be dramatically altering large 3.

portions of the terrestrial biosphere (€oley et al, 2005.
Future model evaluations could account for these processes
by excluding grid cells known to be heavily modified by
humans. Ideally, however, future versions of JeDi-DGVM
would model human land use processes directly.

R. Pavlick et al.: The Jena Diversity-Dynamic Global Vegetation Model

Climate model projections point towards the possibility
of novel climates without modern or palaeo-analogues
(Jackson and Williams2004 Williams and Jacksgn
2007. This causes difficulties for PFT-based DGVM
modelling approaches because they often rely so heav-
ily on bioclimatic relationships based on present-day

empirical observations. Because JeDi-DGVM samples
functional trait parameters from their full theoretical
ranges, it may produce surviving growth strategies
or compositions of growth strategies without present-
day analoguesReu et al. 2013. Coupling JeDi-
DGVM directly within an earth system model would
allow for the exciting possibility of exploring how
these no-analogue vegetation compositions influence
atmosphere—biosphere interactions.

5.5 Potential applications

The “bottom-up” functional trade-off-based modelling
framework presented here represents a step forward in the de-
velopment of a comprehensive and predictive representation
of the terrestrial biosphere for use in earth system models. By
mechanistically simulating the full range and continuous na-
ture of plant functional diversity, it will be possible to explore
new areas of research.

1. JeDi-DGVM could be used to investigate the relation- g
ships between plant biodiversity and ecosystem func-
tioning. Experimental and theoretical ecologists have|n this paper, we introduced the JeDi-DGVM, which rep-
debated the magnitude and direction of these re'ationTesents a new class of dynamic g|0ba| Vegetation models
ships for decadesvicCann 200Q Loreay 2003 Reiss  that simulates many randomly assembled hypothetical plant
etal, 2009. Results from biodiversity manipulation ex- growth strategies, rather than the traditional approach of us-
periments at the field scale, however, generally agreeng a small number of PFTs defined a priori. In a systematic
that diversity promotes ecosystem stabiliygnce and  evaluation, we have shown that its bottom-up plant functional
Duffy, 2006 Tilman et al, 2006 Ives and Carpen- trade-off approach, together with a simple mass-based aggre-
ter, 2007 Proulx et al, 2010. This implies that PFT-  gation mechanism, is able to capture the broad patterns of
based vegetation models, by under-representing functerrestrial biogeochemical fluxes and associated land surface
tional diversity, might overestimate the response of ter-properties reasonably well. The evaluation results compare
restrial ecosystems to climatic variability and change. favourably with two other state-of-the-art TBMs based on
With JeDi-DGVM, it is now possible to make numeri- the older PFT paradigm. Additionally, we have shown that
cal estimates of these biodiversity—ecosystem functionnlike PFT-based models, JeDi-DGVM is able to mechanis-
ing relationships at the global scale and their signifi- tically reproduce the global-scale biogeographical patterns
cance for modelling the fate of the terrestrial biosphereof plant species richness and community evenness. Finally,
in the twenty-first century. This could be accomplished these biogeochemical and biodiversity patterns were shown
by running a diverse JeDi-DGVM simulation with many  to be robust when the number of randomly sampled growth
plant growth strategies and another simulation whereinstrategies simulated was sufficiently large. This robustness is
the functional diversity is artificially reduced (e.g. recre- the result of a mechanistic trait filtering process made possi-
ating something like PFTs by simulating only a sin- pje by the careful formulations of functional trade-offs within
gle plant growth strategy at each grid cell character-the model structure, and not simply due to averaging of many
ized by the community-aggregated functional trait pa- ynbiased random variables.
rameters from the first simulation). It would be interest-  Because it is more closely based on first principles, JeDi-
ing to compare the temporal variability in the simulated pGVM requires less input data and is able to produce a
ecosystem fluxes of both approaches, as well as the abikyider range of testable outputs than earlier DGVMs based
ity of the two simulated ecosystems to adapt to changindon the PFT concept. This new approach sets the foundation
environmental forcings. for future applications in which the simulated vegetation re-

sponse to global change has a greater ability to adapt through

changes in ecosystem composition, having potentially wide-
ranging implications for biosphere—atmosphere interactions
under global change.

Conclusions

2. By coupling the JeDi-DGVM trade-off-based approach
with an optimization algorithm, it is possible to seek out
those functional trait combinations that maximize a par-
ticular ecosystem service. JeDi-DGVM could be used,
for example, to investigate the optimal set of functional
trait parameters which maximize the allocation to seed
biomass under the present-day climate of each model
grid cell, allowing for estimates of the upper bound of
realizable yields as a function of climatic constraint.
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Appendix A rameter values of the land surface module, affecting both the
absorption of solar radiation and the land surface hydrology.

Jena Diversity-Dynamic Global Vegetation For example, the absorption of solar radiation, which sup-

Model (JeDi-DGVM) description plies the energy for photosynthesis and evapotranspiration, is

proportional to leaf area index (LAI), which is derived from
JeDi-DGVM builds upon the plant diversity model of leaf biomass. Fine root biomass affects the maximum rate of
KM2000, which itself took many model formulations from water uptake from the rooting zone, influencing the plant’s
earlier land surface Roeckner et al.1996 and terres- water status and the supply of moisture for evapotranspira-
trial biosphere models (e.drotter et al. 1993 Knorr and  tion. Likewise, the coarse root biomass of a plant determines
Heimann 1995 Kaduk and Heimannl996. Here, the eco- the hydrologic depth of its rooting zone. The land surface
physiological parameterizations have been kept relativelyconditions in turn affect the net primary productivity (NPP),
simple to keep the computational requirements manageablavhich forms the input to the storage pool. A plant growth
This makes it possible to simulate the development of manystrategy is considered to be alive as long as the carbon in
plant growth strategies in parallel across a global grid overthe storage pool is greater than ze€, (> 0). The details of
long simulation periods within a reasonable time frame onthese processes are described in the following subsections.
a single Linux workstation. That said, several of the for- The particular functioning of a plant growth strategy is de-
mulations and parameter values, particularly with respect tdined by a set of 15 functional trait parameters (.., 715).
the calculation of productivity and respiration, have beenThese functional trait parameters control the allocation of
changed to improve the realism of the simulated fluxes. Alsocarbon from the storage pool to the other tissue pools, the
whereas the KM2000 model simulated the life cycle of indi- tissue turnover rates, the phenological response to environ-
vidual generic plants from germination to death, the JeDi-mental conditions, and the ecophysiological balance between
DGVM introduces tissue turnover and thus simulates somephotosynthesis and respiration. All of the functional trait pa-
thing closer to the mean of a population for each plant growthrameters range between zero and one. However, these ranges
strategy. Finally, the most important new feature is the intro-are often extended by using the functional trait parameters
duction of a scaling mechanism to aggregate the exchangas either exponents or coefficients. Each functional trait pa-
fluxes and land surface properties of many plant growthrameter is associated with one or more functional trade-offs.
strategies to the community level based on the “biomass+or instance, a higher allocation to fine roots enhances the

ratio” hypothesis. rate at which a plant can extract moisture from the soil ma-
trix, but this comes at the expense of allocation to the above-
Al Plant module overview ground pools and thus a decreased ability to capture light for

photosynthesis, as well as the metabolic cost of maintaining
The plant module simulates the development of plant growththat biomass. The implementation of these trade-offs are ex-
strategies based on the fundamental ecophysiological proplained in further detail below. The descriptions of the func-
cesses of photosynthesis, respiration, allocation, phenologyjonal trait parameters are summarized in Tabk
and reproduction. Plant development is coupled in a process-
based manner to a land surface hydrology module which simA2  Vegetation carbon pool dynamics
ulates canopy interception, throughfall, infiltration, evapora- ) ) ) ) . .
tion, root water uptake, and surface runoff, using daily me- 1he foIIowmg_d|fferent|aI equations describe the dynamics
teorological forcing of downwelling shortwave and net long- ©f the vegetation carbon pools.
wave radiation, precipitation, and near-surface air tempera- g A
ture. The variables and parameters involved in the develop- —— = NPP+GERM— ZCAAtissue(l_ CREStissue

ment of the plant growth strategies are summarized in Ta- ddct‘s Cs

ble B4. The details of the land surface module are described — = CaAs(1— cress) — GERM— —

in AppendixB. dr s

Each plant growth strategy is represented by six carbon tis- dﬂ = CaAL(1— cRresL) — &8 (A1)

sue pools defined per unit area: stored assimildtgdeaves dr 8

CL, fine rootsCg, aboveground wood (branches and stems) dCr _ CaAr(l—c ) — Cr

CwL, belowground wood (coarse rootS)yr, and a repro- dr ALR RESR R

ductive (or “seed”) poolCs. When growing conditions are  dCw CwL

favourable, carbon germinates from the “seed” pool to the ™ g; = CaAwL(1 - creswi) — WL

storage pool. The plant then begins to grow by allocating gc, Cwr

carbon from the storage pool to the various tissue pools. TheT = CaAAWR(1— cRESWR) — TWR

tissue pools are also subject to turnover and senescence. The

litter fluxes from these two processes serve as input to the soiThe details of the various terms are described below in the
carbon module. The sizes of the tissue pools influence the pdaeollowing subsections.
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A3 Growing conditions A4 Germination

The timing of plant growth and germination is controlled by Germination of carbon from the “seed” pad4 to the storage
environmental conditions, specifically, soil wetnef&g and pool Ca occurs when germination conditions are favourable
near-surface air temperatufe Soil wetnessfy is defined (fcerm = 1) and the “seed” pool is not emptg'§ > 0):
as the ratio of moistur® stored in the rooting zone relative
to the.maximu.m storage capacity of the .rooting zngax - GERM = fGERMVGERML (A4)
Functional trait parameters andz; and time constantsy max(p, kGerm)
andrr determine how quickly a plant responds to changes inwith ygerm = 10%42.
the environmental conditions.

Functional trait parametef modulates the germination frac-

forow T (1) = T + 1 ferowr (t — A1) tion yserwm, the fraction of “seed” carbo@'s which can ger-
’ I+er minate to the storage podla in a single daily time step
with 77 = 10#172 (Cohen 1968 Alvarado and Bradford2002. Values oft
near zero result in a conservative strategy with only a small
fraction of “seed” carbon germinating to the storage pool
feroww () = fw + tw feroww (t = A7) per day when germination conditions are mgtgdrm = 1).
1+mw Higher values yield increasingly more opportunistic strate-
with fiy = w and oy = 10%22 (A2) gies. When germination conditions are favouraftesem =
Wwmax 1) and the “seed” pool i€s =0, a small amount of initial
carbon is added to the “seed” pool to allow a growth strategy
fw bare+ Tw ferRow G (f — Af) to begin growth. When this occurs, an equivalent amount of
JerowG(f) = — 1+ o : carbon is added to the community-aggregated gross primary
. Whare productivity (see AppendiA9) to maintain the conservation
with i, bare= of mass in the grid-cell variables.

Wmax 0

Values of functional trait parametersandr,; near zero rep- A5 Carbon allocation

resent a short memory and thus a quick response to chang
while larger values represent a longer memory and a slowe
response. For example, a plant with a low valuejofvould
react almost immediately to a warm day in early spring,
whereas a plant with a larger value would react only after
several days or weeks of spring warmth. Likewise, a high
value ofry would lead a plant to continue to allocate carbon
despite persisting drought conditions.

For germination, only the soil wetness of the top 50 mm

Biants allocate carbon from the storage pool to growth when
fhe growing conditions are favourablégrow = 1). Alloca-

tion to the “seed” pool occurs when net primary productivity
is greater then zerofégep= 1 when NPP> 0). The amount

of carbon allocated to each tissue pool is proportional to the
size of the storage podls and to the set of functional trait
parametersis, ..., r19, Which together form the plant’s car-
bon allocation strategy:

Wiop (see EqB16) relative to the storage capacity of bare A t5
non-vegetated soil is considered. Germination and growth S= fSEED15+t6+t7+,8
only occur when both the temperature functifigrow r is fe
above a critical temperatuf@i; and the relevant soil wetness AL = ferow(1 —19) fs+16+17+1g
condition, forow,w Of ferowg, IS greater than a critical t7
value of 0.5. The critical temperatufg is a linear function AR = ferow(1l— flo)m (A5)
of functional trait parameteg between-5 °C and 10°C. 16
AwL = ferow/fVEGl9——
0 feroww<0.5 and ferow,7 <Tcrit ‘stieti1tls
Jerow= 1 f >0.5 or f >Teri A3 Awr = fGROWfVEGt10I—7-
crow,w =>0. GROW,T > Tcrit . s+ 1o+ 17+ 18
fGERM = 0 ferowc<0.5 and ferowr <Teit The allocation fractions are mathematically constrained such
1 ferowc=0.5 or ferowr>Tcrit that they sum to less than on® (Agssue< 1). The unallo-

cated fraction (+ ) Ajissud remains in the storage po6lh
for future growth or maintenance respiration.
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A6 Turnover and senescence model Roeckner et a] 1996 along with modifications intro-
duced by KM2000, and is described in detail in Apperlix
These parameters are computed for each plant growth strat-

egy from its carbon tissue pools and functional trait parame-

The turnover timesy, andwgr of the woody tissue pools
are defined as functions of functional trait parameter

ters.
TwL = Twr = 36579111+ 1). (A6)
. ) LAl = C_ SLA
Eq. (A6) yields a range of turnover times between 1 and LAl
80yr. The base turnover time, o, for the leaf and fine root Nec=1—e
pools is defined as a function of functional trait parameter g =1 — ¢~¢FORCWL

f2: Wimax = cwLmax LAI (Al11)

365
Zo107 02,
12
Equation A7) yields a range of turnover times log-
distributed between 1 and 100 months, which covers the

range of observatlon_s in the TRT data"bais’at(ge et al, The land surface parameters and their conversion constants
2011). The turnover times for the “seed” and storage pools ;.. < ,mmarized in Tab@3

are assumed constant across all plant growth strategies (se€1y 4 |eaf area index, LAI, of a plant growth strategy is cal-

TableB4). culated as the product of its leaf biomags and its specific

Senesdcence _is triggerzd V\_/hen both NPP .and tﬁe timefeatf area SLA. The SLA of a plant growth strategy is esti-
averaged net primary productivitiupp are negative, where mated as a function of leaf lifespan using an empirical rela-

NPP+ tnppfpp(f — Af) tionship derived byReich et al(1997), wherer, is the base

ans= fvecavec + (1 — fveG)asolL
Whax= maX[Wmaxo, CPAWY CSRLCWR]

S = csruUCR fw

0= (A7)

1) = A8
Jnpp(?) 1+ e (A8) leaf turnover rate from EqAQ7).
i iia—2 365\ %*°
with onpp= 1 : SLA = 0.030(—) (A12)
L,
0 >0 or NPP>=O0

JSEN= { 1 Fnppz 0 d NPTD 0 (A9) This establishes a trade-off such that a plant growth strategy

fapp <0 an < falls along a spectrum between an evergreen strategy with

Functional trait parameteys in time constantypp describes thicker, long-lived leaves and a deciduous strategy with thin-

the memory of past NPP conditions. Valuesgfnear zero
represent a short persistence during periods of negative NP
while values closer to one represent longer persistence. Du
ing periods of senescence, the turnover rates of the leaf an
fine root pools increase proportional to a constant factor,
tsen- The relative magnitude of this increase is determined
by functional trait parametei .

1 _l
L= (— + fSENt14> (A10)
L0 TSEN
1 -1
TR= (— Sfsen(1— 114)> .
L0 TSEN

A7 Land surface parameters

The land surface parameters (maximum plant available wa
ter storage in the rooting zor®uax , leaf area index LAl,
potential supply rate for transpiratidh fractional vegetative
cover fyeg, fractional forest coverfror, snow-free surface
albedoans, and the storage capacity of the candpywvax )
relate the development of a plant growth strategy to the cou
pled land surface module, which simulates its environmenta

ner, short-lived leavesReich et al. 1998 Westoby et al.

3002 Shipley et al, 20063.

The leaf area index LAl is then used to determine both the
actional vegetation covefygg according to the Lambert—
eer law (Monsi and Saekil953 and the water storage ca-
pacity of the canopyW max . The parameterization of the
fractional forest coverfror is taken as an analogy of the
formulation used for vegetative covgyeg. The snow-free
surface albedays is calculated as the mean of the canopy
albedoayeg and the bare soil albednsoy. (constant for all
plant growth strategies), weighted by the fractional vegeta-
tion cover fygg. The canopy albedaygg of a plant growth
strategy is a linear function of the canopy nitrogen concen-
tration[ N ] (Hollinger et al, 2010.

r_

d

aveg = 3.21G N, ]+ 0.02

(A13)

The formulations regarding root propertiedax and
S) are obtained from first principles. The motivation for us-
ing a square-root relationship for the maximum plant avail-
able water storage in the rooting zone comes fromShie
nozaki et al.(1964 pipe model. From the pipe model per-
kpective, the root system is viewed as an assemblage of pipes

conditions. The module itself is based on the land surfacewvhich connect the root ends (the organs responsible for wa-

component of the ECHAM4 atmospheric general circulation

www.biogeosciences.net/10/4137/2013/

ter absorption from the soil) with the leaves. If we assume a
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uniform density of root ends within the rooting zone, we ob- The canopy nitrogen concentratig®v, | itself is a linear
tain a square root relationship between the depth of the rootfunction of functional trait parameteys, leading to a range
ing zone and the total length of the coarse roots (given byof values between 0.01 and 0.09 gNgC The supply of
the product of the coarse root bioma&gr and an assumed nitrogen is not considered as a limiting factor. The curva-
constant specific root length parameteg| ). The maximum  ture parametef is assumed constant across all plant growth
plant available soil water storadg®yax is then given by the  strategies. Day length is computed from the cosine of the
product of this rooting zone depth and the unit plant availablesolar zenith angle, which varies with season and latitude
water capacitypaw (i.€. the difference between field capac- (Hartmann 1994). The quantum efficiency and the factor

ity and permanent wilting point per unit depth) taken from a «7 modifying the light-saturated photosynthetic capacity are
global dataset@unne and Willmott1996. Finally, we as- computed as functions of both air temperature and ambient
sume the potential supply rate for transpiratiis relatedto ~ CO, concentrations followingannell and Thornley1998.

the fine root biomas€r and soil wetnesgy via a constant The moisture stress facteiy,o is a function of the ratio

specific root water uptake parametegy. between the potential supply rate for transpiratiéh &nd
the atmospheric demand for transpiratidr further details

A8 Net primary productivity in AppendixB).

The net primary productivity NPP of each plant growth strat- ay,0 = 1 — exp(—S/D) (A18)

egy is computed as the difference between its gross primary

productivity GPP and its autotrophic respiration flux RES The autotrophic respiration RE®f a plant growth strat-
egy is calculated as the sum of its growth respiration, RES

NPP= GPP-RES (A14) and maintenance respiration, RESluxes McCreg 197Q

) . ] ] Thornley, 1970. Growth respiration consumes a fixed frac-
The parameters and varl'able?% involved in the calculation Oftion, crestissue Of the carbon allocated from the storage pool
these fluxes are summarized in Tablé Ca to the tissue pool. These fractions are assumed to be con-

GPP is estimated using a big-leaf non-rectangular hy-gtant across all plant growth strategies.
perbola approachJ6hnson and Thornleyi984 Franklin,

2007: RESy=Ca Y (AtissusREStissud (A19)
GPP= i[(<1>1a+ Pmax) (A15)  Following Ryan (1993, maintenance respiration RRSs
20 calculated based on the nitrogen content of each tissue, a spe-
_ \/(¢]a+ Pran)? _4*9¢Iapmax:| #H,0. cific r_esplrat|on ratesresn, at 20°C and aQ 1o temperature
function.
While more sophisticated and likely more accurate photo-RES, = cRESNQma(TITZO)[NL] (A20)

s:ynthe_3|s schemes are apundant, we _chose to use this rela- [(CL + CR) + csapwoodCwL + CwR)]
tively simple approach for its computational expediency and

to keep the number of necessary parameters low. Absorbetlhe fine root nitrogen concentrati¢iVr] is assumed to be
photosynthetically active radiatioh, is derived, following  equal to the leaf nitrogen concentratipN; ] for all plant

the Lambert—Beer law of light extinction, from the photosyn- growth strategies. The fractions of sapwood carbon to woody
thetically active radiation (assumed to be half of downwardcarbon (0.05) and sapwood nitrogen to leaf nitrogen (0.10)
shortwave radiation) above the canafgyand the fractional are similarly assumed constant across all plant growth strate-

coverage of vegetatiotMonsi and Saeki1953: gies and are accounted for by parametggwood The “seed”
and storage carbon pools are not subject to maintenance res-
la= Io fveG. (A16)  piration within the model; however, they do decay at a con-

The light-saturated canopy photosynthetic capagjtyx of stant rate as described in SOAE.

a plant growth strategy is estimated as a linear function ofag  scaling from plant growth strategies to

the canopy nitrogen concentratipny_ ] following an empir- community-aggregated fluxes
ical relationship proposed b@llinger et al.(2008 assum-

ing a foliar carbon content of 0.48 gC gDM. Similar rela-  JeDi-DGVM calculates community-aggregated fluxes and

tionships between N content and photosynthetic capacity argroperties assuming the “biomass-ratio” hypotheSisrte,

well-documented at the leaf scale (Field and Mooney, 1986;1999, i.e. as the mean over the individual plant growth

Reich et al., 1997; Wright et al., 2004). strategies weighted by their mass-based relative abundances.
4 4 The instantaneous relative abundapgg.) of a plant growth

Pmax= (59.2- 1077 [N ]+ 1.1-107) ar (A17) strategyi in a grid cellj is assumed to {)e proportional to its

[NL]=0.01+0.08-115 living biomass at that grid cell relative to the sum of the liv-

ing biomass of all surviving growth strategi§sn that grid
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cell. The living biomassCtey, j), of a growth strategy is the The soil carbon dynamics are not computed separately for

sum of its leaf, fine root, woody and storage carbon poolseach plant growth strategy. Instead, carbon enters the two

(Ctoti, jy = Cad, ) +CLi, ) + Cra, j) + CwLi, j) + CwRa, j))- common litter pools through the community-aggregated litter
fluxes(LIT tssue from the turnover of the various vegetation

« _ _ Crotij tissue pools.
Pijp=s A~ Co
2_i=1Crot(k. j) n c
.. ti k

dp(i,j) _ PZ‘)J') 4] (A21) (LIT tissue = Z <p(k)'ILUQ)>

dr Ty =1 Ttissuek)

n

The relative abundancey;, ;, used for the calculation of + ) (Ctissugty Max(©0, —Apg))) (A24)
community-aggregated fluxes and properties relaxes towards k=1
the instantaneous relative abundangg; at timescalerp LT — "~ Cs(i)
(= 365 days). This relaxation mechanism was introduced to {LITs) = = A

alleviate numerical issues. This mass-weighted aggregation
scheme conserves water and carbon quantities at the gridfhe second term in the calculation dfIT jissue IS heces-

cell scale. Equation&24 andA25 reconcile the fact that the  sary to maintain the conservation of carbon when the relative

prognostic variables are defined per unit area but weightedibundance of a plant growth strategy decreases during the
by mass. Energy is not fully conserved due to the empiri-current time step. Likewise, the vegetation carbon pools (ex-

cal nature of the snowmelt parameterization and the lack otept the “seed” pooCs) are scaled down when the relative

ground heat storage. The mass-weighted scheme itself, hovabundance of a growth strategy increases during the current
ever, does not preclude the conservation of energy. time step.

In the previous subsections describing the development of
individual plant growth strategies, we omitted subscript No- Cysquq/) = Crissuar—an Pa=An
tation to improve readability. Throughout the remainder of pa—an +max0, Ap)
this appendix, we adopt chevron (angled bracket) notation tol_

: . he decomposition fluxes DEQut of the detritus carbon
denote community-aggregated fluxes and properties. As an .
X . . "pools are computed from the amount of carbon in that pool, a
example, the community-aggregated net primary productiv- . . .
Q10temperature response function, and a fixed turnover time

ity (NPP;) for a given grid cellj is equal 'to' the sum of the for that pool at reference temperature®®0 The value of 1.4
NPP fluxes of all the plant growth strategiem that grid cell s . - .
for the sensitivity of heterotrophic respiration to air tempera-

weighted by their respective mass-based relative abundancetsu.re 0101 is taken from a recent global study of FLUXNET

sites Mahecha et al.2010. Fixed fractions of the decom-

(A25)

N position fluxes from the litter pools enter the common soil
(NPP;) =" pi )NPR j) (A22)  carbon pool.
i=1
r-20, C
A10 Soil carbon DEC, = Q10" © )T—x (A26)
X

The soil carbon module in JeDi-DGVM is loosely based The heterotrophic respiration flux RE® the atmosphere is
on the soil carbon component of the JSBACH land surfaceestimated as the sum of the fractions of the decomposition
model Raddatz et a]2007 Thum et al, 2011). The param-  fluxes from the litter pools not entering the soil carbon pool
eters and variables of the soil carbon module are summarizegind the decomposition flux out of the soil carbon pool.

in TableC5. The following differential equations describe the

dynamics of the three detritus carbon pools, fine litter carbon RESh = ciiteamDECLIT + cowd-amDECcwp + DECsoiL - (A27)

Cuir, woody litter carborCewp, and soil carboCsoit. Finally, the community-aggregated net ecosystem exchange

dcur NEE is calculated as the difference between the heterotrophic
q — (HTL+(LITR) + (LITA) + (LITs) — DEG T respiration and the community-aggregated net primary pro-
dc ductivity fluxes.
& = (LTw) + (LiTwr) — DECewp (A23)
doo NEE = RES, — (NPP (A28)
T (1 - ciiteatm)DECLT + (1 — cowd-atm) DECewp

— DECsoiL
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Appendix B

Land surface module _]o T<0
Fmelt= . (84)

min(3.22T, Pspow+Ws) T >0
The land surface hydrology module of JeDi-DGVM is
largely based on the land surface component of the ECHAM4Surface runoff Frunost 0occurs when the throughfall or
atmospheric general circulation moddRaeckner et al.  snowmelt fluxes cause the rooting zone reservoir to exceed
1996 along with modifications introduced by KM2000. It its maximum capacitfuax (see EqA11).
consists of four budget equations for water stored in the veg-

etation canopyV_, in the snow coveWs, in the rooting zone | Finfall T<0 (B5)
W, and below the rooting zon&sug. N max(0, W+ Fintall+ Frneti— Winax) T >0
awi = Prain— Ecan— Finiall (B1)  When the air temperature drops beloWw®, the soil is as-
dr sumed to be frozen, inhibiting infiltration, and the entire
dWs = Penow— Frmeit— Esnow throughfall flux becomes surface runoff.
dr Drainage from the rooting zongqyyain Supplies water to
dw the subrooting zone and depends on the soil wetn
—— = Fihfall + Fmelt— Frunoff — Ebare— Etrans / g P m&(
dr W I Wiax).
aw — Fdrain— Fawmax 0 fin<0.05
SUB g
dr = Fdrain— Fsubdraint Fawmax Frain—= dmin fw d 0.05< fw<0.9
) dmin fw+(dmax— dmin) <va__()099) Sw=0.9
The variables and parameters of the land surface module are (B6)

summarized in Table€6 and C7. The module runs on a

daily time step using forcing variables: precipitation fluX) ( When the rooting zone is between 5% and 90 % of field ca-
near-surface air temperaturg)( and downward shortwave pacity, it drains slowly ¢min = 0.24 mmd1) with a linear

and longwave radiation fluxe®R§y, and Riy;). The vari-  dependence on soil wetness. When the rooting zone nears
ous flux terms of the budget equations are described belowsaturation fiy > 0.9), the drainage rate quickly increases

A schematic diagram of the land surface module is shown inwith increasing wetness towards its maximum drainage

Fig.B1. rate @max= 2.40 mmd-1). Drainage from the rooting zone
_ ceases when the soil wetness falls below 5 %.
B1 Water storage and runoff generation When the incoming drainage from the overlying rooting

o S zone Fyrain causes the subrooting zone to exceed its maxi-
The partitioning of precipitation between snaf¥new and mum capacity Wsug may), the excess flows out as subrooting

rain Prajn depends on near-surface air temperaftifellow- zone drainag@supgrair
ing Wigmosta et al(1994.

p T<-11 Fsubdrain= max0, Wsug + Fdrain— (Wsug max — Wmax)),B7
Ponow={ P35L  —11<T <33 (B2) (B7)

0 T=>33 where Wsyg max is maximum storage capacity of the entire

soil column.
The flux termFawmax accounts for changes in the depth

Rainfall is first intercepted in the canopy reservidir up to  Of the rooting zoné¥uwax (see EqALl) due to the balance

a maximum storage capaci¥_max, Which depends on LAl  between carbon allocation to coarse root growth and the loss

(see EqA11). If a precipitation event causes the water in the of coarse root biomass via turnover.

canopy reservoir to exceed its storage capacity, the excess

Prain= P — Psnow

; : AWmax- oS98 AWmax < 0
water flows from the canopy reservoir to the rooting zone asg,, -~ Max” Wsu max—Wmax max (B8)
throughfall Fintay. AWmax: %ﬁx AWmax > 0
Fintall = max(0, WL + Prain— Wimax) (B3) Coarse root growth (i.e. an increase in the depth of the root-

ing zoneWyax ) leads to a virtual flow of water from the
SnowmeltFmelr is computed according to a day-degree for- subrooting zone to the rooting zone. Likewise, a decrease in
mula using a melt rate of 3.22 mmt°C~! (Hagemann and  the depth of the rooting zone due to coarse root turnover leads
Dimenil 1997). to a virtual flow of water from the rooting zone to the sub-
rooting zone.
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Fig. B1. Schematic diagram of the land surface module. For symbols, see THIES, C6, andC?7.

B2 Potential evapotranspiration

The fractional snow areg@snow depends on the amount of
water in the snow coves:

Ws
Scrit

fsnow = min(1, ), (B9)
where Ws ¢rit is the critical snow depth (water equivalent).
Following Robock(1980), the albedo of snows depends on
air temperaturg” and the fractional forest covefior (see
Eq.A11).

www.biogeosciences.net/10/4137/2013/

as,min = 0.3fFor+ 0.4(1 - fror)
asmax= 0.4fror+ 0.8(1 — fror)

0 T7>0
as = | as,max—(as max—ds min) T—]i__olo -10<7<0  (B10)
1 T<-10

The potential evapotranspiration fluxes for the snow-
covered and snow-free fractions are estimated using the
Priestley—Taylor equatiorP¢iestley and Taylorl972 from
the net radiation fluxes described below, the slope of the sat-
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uration vapour pressure curg@t air temperatur@, the psy- B3.3 Bare soil evaporation
chrometric constarit, the latent heat of vaporization and

the Priestley—Taylor coefficiei. Bare soil evaporatioBpare0ccurs in the fraction of the snow-
free area not covered by vegetatidn— fvec) and declines
€(T)  Rnets linearly with decreasing soil moisture.

Ds=ap———

ST +T A
e(T) Rnetns

ns=0dp————
e(T+I A

D (B11) Epare= Min (B16)

{b(l — JveG) (Dns — Ecan
The net radiative energy available for evaporative processes

Rnetis calculated separately for the snow-covered and snow- (g [1_ cos(n W—(Wmax—Wtop)):I W W Wi
free fractions from the downward shortwavgsy, , and net bz{ ' Wiop = e o

longwave,R), radiation fluxes, day length, and the albedo 0 W <Wmax—Wiop
of the respective fractioni§ andans). (B17)
h The factord limits soil evaporation to the water in the to
Rnets = W86400<R (1—as) + ———R ) _ P p
nets = fSNO s d 86400 50 mm of the rooting zon&¥iop).
R =(1- B12
netns = (1= fsnow) A (B12) B3.4 Transpiration
86 400 Rsw (1 —ang) + ———R) ) o .
< s "~ 86400 Transpiration Etrans is reduced by the factown,o from

Eq. (A18), which is a saturating function of the available

Net Iong\é\{a\;e ra;ﬂaqomw IS thedsum of tf&eldownward Io(jr!g- supply for transpiratior§ and the atmospheric demand for
wave radiation forcingRyy, and upward longwave radia- transpiration Dns— Ecan).

tion, Ry, estimated from the near-surface air temperature in

Kelvin (Tk = T +27316) using the Stefan—-Boltzmann equa- Doe— E

thﬂ Etransz m|n aHZOfVEG( ns Can) (818)
W — Epare

Ry = o Tk, (B13)

B4 Approximation of latent and sensible heat fluxes

wheree is the average emissivity of land surfacBsutsaert

1982 ando is the Stefan—Boltzmann constant. The total evapotranspiration flux ET is calculated as the sum

of evaporation from the canopy reservoir and bare soil, sub-

B3 Actual evapotranspiration limation from snow, and transpiration by the vegetation.
B3.1 Sublimation from snow cover ET = Ecan+ Ebaret Esnow+ Etrans
L=MET (B19)

Sublimation from snowEsnqw is taken as the minimum of Rnet= J: R (- f )R
the potential evaporation rate for the snow-covered fraction "¢t — /SNOWTnets SNOW) fnetns

Ds and the supply of water in the snow cov&. H = Rnet— L

Fsuplim= min(Ds, Ws) (814)  Thelatent heat flux. is estimated by multiplying the evapo-
transpiration flux by the latent heat of vaporization for water

B3.2 Evaporation from canopy interception reservoir A. Total net radiatiorRpetis computed as the weighted com-

bination of the net radiation over snow-covered and snow-
Similarly, evaporation from the canopy reservdiean is  free areas. Sensible hefdtis assumed to make up the differ-
taken as the minimum of the potential evapotranspirationence between the net radiation and latent heat fluxes.
rate for the snow-free fraction and the supply of water in the
canopyW, .

Ecan= min(Dps, W) (B15)
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Appendix C
Model parameters and variables

Table C1. State variables and parameters of the plant growth module.

Symbol Description Value/units

Vegetation carbon pools

Ca Assimilates/storage carbon pool gC A
CL Leaves carbon pool gCTﬁ
CR Fine roots carbon pool gCTt
CwL Woody stem carbon pool gCT
CwR Coarse roots carbon pool gCt M
Cs Reproduction carbon pool gCTﬁ

Growing conditions

ferowr  Time-weighted temperature conditions °C
feroww  Time-weighted soil moisture conditions Otol
feermw  Time-weighted soil moisture conditions for germination 0to 1
JGERM 0: no germination, 1: germination

fGRrROW 0: no growth, 1: growth

T Response time to temperature conditions days
™w Response time to moisture conditions days

Allocation and germination

AL Allocation from storage to leaves Otol
AR Allocation from storage to fine roots Otol

AwL Allocation from storage to stem Otol

AWR Allocation from storage to coarse roots Otol
Ag Allocation from storage to reproduction Otol
YGERM Germination fraction dayst

Turnover and senescence

Tiissue Turnover times of vegetation carbon pools days
PP Time-weighted productivity conditions gCThd1
INPP Response time to productivity conditions days
fSEN 0: no senescence, 1: senescence

Carbon fluxes

GERM Germination gCm2d1
GPP Gross primary productivity gCmd?!
RES Autotrophic respiration gCm?d1
NPP Net primary productivity gCmid1

www.biogeosciences.net/10/4137/2013/ Biogeosciences, 10, 41372013
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Table C2. Summary of the functional trait parameters. This table summarizes the parameters in the model description which define a plant
growth strategy. Column 2 gives a brief description of the effect of this parameter on the plant behaviour and column 3 gives the equation in
which the parameter occurs. All of these parameters range between zero and one.

Parameter  Description Equation
1 Growth response time to moisture conditions A2)
tp Growth response time to temperature conditions  A2)(
t3 Critical temperature for growth AB)
7] Germination fraction A4)
tg Allocation to reproduction AD)
tg Allocation to aboveground growth AB)
t7 Allocation to belowground growth AB)
tg Allocation to storage AD)
tg Relative allocation to aboveground structure A5)
110 Relative allocation to belowground structure A5)
111 Turnover time of structural pools Ap)
12 Turnover time of leaf and fine root pools A7)
113 Senescence response time to productivity condition88) (
t14 Relative senescence aboveground A9)
115 Plant nitrogen status AL7)

Table C3.Parameters and state variables of the interface between the land surface module and the plant growth module.

Symbol

Description

Value/units

Land surface parameters needed by land surface module

LAI

JVEG
fFOR
ans
Wmax
S

Leaf area index, depends ar)

Fractional vegetation cover

Fractional forest cover

Snow-free surface albedo

Maximum plant available soil water storage, dependin@gjr
Potential supply rate for transpiration, dependingipn

m2 m—2
Otol
Otol
Oto1l

mm

mm a1

Conversion parameters

SLA

CWLMAX
CFOR
aveG
asolL
Wmax 0
CPAW

k

CSRL
CSRU

Specific leaf area, depends gn convertsC| to LAI
Conversion factor fo€| to W max

Conversion factor foCw_ to fror

Canopy albedo

Bare soil albedo

Minimum value ofWiyax

Unit plant available water capacity

Light extinction coefficient

Specific coarse root length, relatég to Wax
Specific root water uptake, relat€g to S

m2gc1
0.2 mmnt2
0.002 nf gc1!
Oto1l
0.2
50 mm
mmB mn1 soil
0.5
2250 mmgC1
0.5mmgcld?

Biogeosciences, 10, 4137477, 2013
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Table C4. Variables and parameters used in net primary productivity calculations.

Symbol Description Value/units
h Day length s

0 Convexity of photosynthesis—radiation curve 0.9

1) Photosynthetic quantum efficiency 2.73 ug@\]
I3 Absorbed photosynthetically active radiation W
Pmax Light-saturated photosynthetic rate gCfhs 1
[N ] Canopy nitrogen concentration gNgé

aT Temperature limitation on productivity Otol
oH,0 Water limitation on productivity Otol
CREStissue  Growth respiration coefficient gCgé
CRESN Maintenance respiration coefficient gCoN
010AR Temperature sensitivity of autotrophic respiration 1.6

Table C5. State variables, fluxes, and parameters of the soil carbon module.

Symbol

Description Value/units

Detritus carbon pools

Cur
Ccwb
CsolL

Fine litter carbon pool gC me
Woody litter carbon pool gC 113
Soil carbon pool gC m?2

Carbon fluxes

(LITissue  Community-aggregated litter fluxes gCrhd—1
DECx Decomposition fluxes from the detritus carbon pools g1
(GPP Community-aggregated gross primary productivity gCa—1
(RES)) Community-aggregated autotrophic respiration gCZrd*l
RES, Heterotrophic respiration gCntd?!
NEE Net ecosystem exchange gCfo1
Parameters

Clitsatm Fraction of fine litter decomposition to atmosphere 0.77
Cowdsatm Fraction of woody litter decomposition to atmosphere 0.2

LT Turnover time of fine litter at 20C 2.05yr
TCWD Turnover time of woody litter at 20C 60 yr

SOIL Turnover time of soil carbon at 20C 100 yr
010.HR Heterotrophic respiration coefficient 1.4

www.biogeosciences.net/10/4137/2013/
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Table C6. Forcing, state, and flux variables of the land surface module.

Symbol Description Value/units
Forcing variables
P Precipitation mm a1
Rswy Downwelling shortwave radiation wnt
R Downward longwave radiation wnt
T 2 m air temperature °C
Water pools
Ws Water stored in snow cover mm
wL Water intercepted in canopy mm
w Water stored in rooting zone mm
Wsus Water stored below rooting zone mm
Water fluxes
Psnow Snowfall mm d1
Prain Rainfall mm d-1
Fmelt Snowmelt mm a1
Finfall Throughfall mm a1
Fuunoff  Runoff mm d-1
Fdrain Drainage from rooting zone mnTd
Fawmax Flux due to change in rooting zone depth ~ mmid
Fsubdrain  Drainage from subrooting zone mrTd
Epare Bare soil evaporation mnrd
Ecan Evaporation from the canopy reservoir mm™d
Esnow Sublimation from snow cover mntd
Etrans Transpiration mmd?
Table C7.0Other parameters and variables of the land surface module.
Symbol Description Value/units
Drainage parameters
dmin Slow drainage rate 0.24 mnTéd
dmax Fast drainage rate 2.4mmd
d Drainage exponent 1.5
Wsuemax Maximum storage capacity of the entire soil column 1500 mm
Snow cover parameters
as,min Minimum snow albedo 0.4t00.8
as max Maximum snow albedo 0.3t00.4
as Snow albedo 0.3t00.8
Ws crit Critical snow depth 10 mm
fsNnow Fractional snow area Otol
Evapotranspiration parameters and variables
€ Average emissivity of land surfaces 0.97
o Stefan—Boltzmann constant 603x 108 Wm—2K—4
ap Priestley—Taylor coefficient 1.26
e(T) Slope of the saturation vapour pressure curve PAK
r Psychrometric constant 65 Pak
A Latent heat of vaporization for water 2500 J iy
Rnets Net radiation on snow-covered areas #d
Rnetns Net radiation on snow-free areas e
Ds Potential evapotranspiration from snow-covered areas min d
Dns Potential evapotranspiration from snow-free areas mth d
Wiop Bare soil evaporation depth 50 mm

Biogeosciences, 10, 4137477, 2013
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Appendix D meteorological data using a model tree ensemble algorithm
(Jung et al.2009. It covers years 1982—-2008, although here
C-LAMP evaluation protocol we only used model years 1982—-2004 for the comparison due
to the limitation of the meteorological forcing dataset. The
D1 Phenology estimate of GPPReer et al, 2010 was derived from five em-

pirical models calibrated against FLUXNET observations. It

Simulated leaf area index (LAI) values were evaluated g ers years 19982005, although here we only used model
against remote sensing observations from the MODerate rSjears 1998-2004 for the comparison.

olution Imaging Spectroradiometer (MODIS) (Myneni et al.,

2002; Zhao et al., 2005; MOD15A2 Collection 4). Specifi- D3 Seasonal cycle of atmospheric CD

cally, three phenology metrics were considered; the timing of

maximum LAI, the maximum monthly LAI, and the annual The annual cycle of atmospheric @@as simulated by ap-
mean LAI. All three metrics used monthly mean LAl obser- plying atmospheric impulse response functions from the At-
vations and modelled estimates from years 2000 to 2004. Th&ospheric Tracer Transport Model Intercomparison Project
LAI phase metric was computed at each grid cell as the off-(TRANSCOM) Phase 3 Level 2 experimen@Guiney et al.

set in months between the observed and simulated maximurd004) to the JeDi-DGVM net ecosystem exchange (NEE)
LAl values, normalized by the maximum possible offset (6 fluxes. The monthly JeDi-DGVM NEE fluxes for years
months), and finally, averaged across biomes. The maximund991-2000 were aggregated into 11 TRANSCOM land basis
and annual mean LAl metrick were computed using the regions. These aggregated NEE fluxes were then multiplied

equation by monthly response functions frofaker et al.(2006),
yielding simulated atmospheric G@me series for 57 obser-
i Im; —o;]| vation stations around the globe. This process was repeated
[ mitoi for all 13 TRANSCOM atmospheric transport models and
M=1- a7 (O1)  the multimodel mean annual cycle was compared with obser-

) ) ) _vations from the GLOBALVIEW dataseMasarie and Tans
wherem; is the simulated LAl at the grid cell corresponding 1995 We computed the coefficient of determinatioR)(as
to the satellite observation;) andn is the number of model 5 measure of phase and the ratio of modelled annual ampli-
grid cells in each biome. Global means for these metrics wergge 4\, to observed amplituddo as a measure of magni-

computed by averaginyy across different biome types. tude (see EqD2).
D2 Global patterns of productivity and M=1— Am 1 (D2)
evapotranspiration Ao

Modelled esti f : ductivity (NPP These two metrics were computed for three latitude bands
odelled estimates of net primary productivity (NPP) were i, e Northern Hemisphere (0-38, 30-60 N, 6090 N).

compared with a compilation of field-based _observationsA” stations within each band were weighted equally. The
frglm the E(I:ozsggtem g/lodeI—Data Iqtercompanson (EMDI)dscores from the mid and high latitude bands were given more
(Olson et al, 2001) and remote sensing estimates extracte weight due to their stronger annual signal and the relatively

from the MODIS MOD17A3 Collection 4.5 productegin- - . . .
smaller contributions of oceanic and anthropogenic fluxes in
sch et al. 2006 Zhao et al. 2005 200§. We compared the regions Pog

mean annual NPP as simulated by JeDi-DGVM for years
1975-2000 with the EMDI observations on a point-by-point D4  |nterannual variability in CO 5 fluxes
basis for each observation site to the corresponding model
grid cell using Eq. D1) described above. As a second NPP The same TRANSCOM response functions
metric, we used Eq.01) again with the modelled and ob- (Baker et al.200§ and the GLOBALVIEW CQ mea-
served values averaged into discrete precipitation bins okurementsNlasarie and Tansl995 described above were
400 mmyr L. For the third and fourth NPP metrics, we com- combined to obtain estimates of the interannual variability
puted the coefficient of determinatior?] between the mean in global terrestrial NEE fluxes for years 1988—-2004. We
annual MODIS and modelled NPP (for years 2000—2004) forcompared these inversion estimates with JeDi-DGVM, again
all non-glaciated land grid cells and for the zonal means. incorporating information about the phase and magnitude.
In addition to the NPP metrics from the C-LAMP pro- The phase agreement was evaluated by the coefficient of
tocol, we also evaluated JeDi-DGVM against spatially ex- determination #2) between the simulated global annual
plicit, data-driven model estimates of evapotranspirationmean NEE fluxes and the TRANSCOM-based estimates.
(ET; Jung et al.2010 and gross primary productivity (GPP; The magnitude of interannual variability was calculated
Beer et al. 2010. The estimate of ETJung et al. 2010 using the standard deviation of the simulated and observed
was compiled by upscaling FLUXNET site measurementsvalues asAy andAop in Eg. 02). The phase and magnitude
with geospatial information from remote sensing and surfacemetrics were then averaged together with equal weighting.
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D5 Eddy covariance measurements of energy and
carbon

Simulated monthly mean surface energy and carbon fluxe
were evaluated against gap-filled L4 Ameriflux dafalge

et al, 2002 Heinsch et a].2006 Stoeckli et al.2008. For
each Ameriflux data month, we sampled the correspondingrhe service charges for this open access publication
model grid output. Then, we constructed an annual cycle ofhave been covered by the Max Planck Society.
monthly means, and using EqPY) computed metrics for

NEE, GPP, and the fluxes of sensible and latent heat. All 74Edited by: P. Stoy

tower sites were weighted equally.
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